WO2018179397A1 - 表面処理鋼板 - Google Patents
表面処理鋼板 Download PDFInfo
- Publication number
- WO2018179397A1 WO2018179397A1 PCT/JP2017/013762 JP2017013762W WO2018179397A1 WO 2018179397 A1 WO2018179397 A1 WO 2018179397A1 JP 2017013762 W JP2017013762 W JP 2017013762W WO 2018179397 A1 WO2018179397 A1 WO 2018179397A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- plating layer
- treated steel
- content
- less
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 139
- 239000010959 steel Substances 0.000 title claims abstract description 139
- 238000007747 plating Methods 0.000 claims abstract description 102
- 239000000463 material Substances 0.000 claims abstract description 52
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 238000009792 diffusion process Methods 0.000 claims description 29
- 239000000126 substance Substances 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 105
- 238000000034 method Methods 0.000 description 44
- 238000010438 heat treatment Methods 0.000 description 32
- 239000011701 zinc Substances 0.000 description 31
- 230000000694 effects Effects 0.000 description 27
- 238000005260 corrosion Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 22
- 239000011248 coating agent Substances 0.000 description 18
- 238000000576 coating method Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 18
- 238000005275 alloying Methods 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000003921 oil Substances 0.000 description 12
- 239000011651 chromium Substances 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000011572 manganese Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 229910018137 Al-Zn Inorganic materials 0.000 description 8
- 229910018573 Al—Zn Inorganic materials 0.000 description 8
- 229910019142 PO4 Inorganic materials 0.000 description 8
- 238000005452 bending Methods 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 239000010452 phosphate Substances 0.000 description 8
- 238000005336 cracking Methods 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 238000007598 dipping method Methods 0.000 description 5
- 239000003973 paint Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000004070 electrodeposition Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910018571 Al—Zn—Mg Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910015372 FeAl Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
Definitions
- the present invention relates to a surface-treated steel sheet.
- Structural members used in automobiles and the like are sometimes manufactured by hot stamping (hot pressing) in order to increase both strength and dimensional accuracy.
- hot stamping hot pressing
- the steel sheet is heated to Ac 3 points or more and rapidly cooled while being pressed with a mold. That is, in the manufacturing, pressing and quenching are performed simultaneously. According to the hot stamp, it is possible to produce a molded article with high dimensional accuracy and high strength.
- Patent Document 1 discloses a steel sheet for hot pressing in which a Zn plating layer is formed.
- Patent Document 2 discloses a high-strength aluminum-plated steel sheet for automobile members on which an Al plating layer is formed.
- Patent Document 3 discloses a hot-pressed Zn-based plated steel material in which various elements such as Mn are added to the plated layer of the Zn-plated steel sheet.
- Patent Document 2 since Al having a melting point higher than that of Zn is used for the plating layer, there is a low possibility that the molten metal enters the steel plate as in Patent Document 1. For this reason, it is expected that excellent LME resistance can be obtained, and as a result, the fatigue characteristics of the molded article after hot stamping are excellent.
- the steel material on which the Al plating layer is formed has a problem that it is difficult to form a phosphate film during the phosphate treatment performed before the coating of the automotive member. In other words, depending on the steel material, the phosphate treatment property cannot be sufficiently obtained, and there is a concern that the corrosion resistance after coating is lowered.
- the outermost layer (oxide film) after hot stamping is modified to improve spot weldability.
- LME is generated and hot stamping occurs.
- the fatigue characteristics of the steel material cannot be obtained sufficiently.
- the phosphate processability may be reduced.
- An object of the present invention is to solve the above problems and to provide a surface-treated steel sheet suitable as a material for a molded body having excellent fatigue characteristics, spot weldability, and post-coating corrosion resistance.
- the present invention has been made to solve the above-described problems, and the gist of the present invention is the following surface-treated steel sheet.
- a surface-treated steel sheet comprising a base material and a plating layer formed on the surface of the base material,
- the average composition of the plating layer is mass%, Mg: 0.5 to 2.0%, and satisfy the following formulas (i) to (iii): Surface treated steel sheet. 75.0 ⁇ Zn + Al ⁇ 98.5 (i) 0.4 ⁇ Zn / Al ⁇ 1.5 (ii) Zn / Al ⁇ Mg ⁇ 1.6 (iii)
- the element symbol in the above formula represents the content (% by mass) of each element contained in the plating layer.
- the average composition of the plating layer is further mass%, Si: more than 0% and 15.0% or less, The surface-treated steel sheet according to (1) above.
- the average composition of the plating layer further satisfies the following formula (iv):
- the element symbol in the above formula represents the content (% by mass) of each element contained in the plating layer.
- the plating layer has a Fe diffusion layer on the base material side in the plating layer, The ratio of the thickness of the Fe diffusion layer to the total thickness of the plating layer is 15 to 50%.
- the surface-treated steel sheet according to any one of (1) to (3) above.
- the average composition of the plating layer is further mass%, Fe: 5.0 to 25.0%, The surface-treated steel sheet according to (4) above.
- the chemical composition of the base material is mass%, C: 0.05 to 0.4%, Si: 0.5% or less, and Mn: 0.5-2.5%,
- a hot stamping is performed on the surface-treated steel sheet according to the present invention, a molded article having excellent fatigue characteristics, spot weldability, and post-coating corrosion resistance can be obtained.
- the present inventors examined the structure of a surface-treated steel sheet suitable as a material for a molded article that has excellent LME resistance during hot stamping and has excellent spot weldability and post-coating corrosion resistance after hot stamping.
- the present inventors examined a method for improving the post-coating corrosion resistance of the molded body.
- the corrosion resistance of the molded article after hot stamping can be improved by including Mg in the plating layer of the surface-treated steel sheet.
- LME tends to occur and the fatigue characteristics deteriorate.
- the Mg content in the plating layer is excessive, the spot weldability of the molded article produced thereby is also lowered.
- the present inventors have intensively studied a method for improving the corrosion resistance without deteriorating the LME resistance and the spot weldability. As a result, it has been clarified that all the above properties can be secured in a well-balanced manner by appropriately managing the Mg content in the plated layer of the surface-treated steel sheet.
- a surface-treated steel sheet according to an embodiment of the present invention includes a base material and a plating layer formed on the surface of the base material. Each is described in detail below.
- Carbon (C) is an element that increases the strength of the compact after hot stamping. If the C content is too small, the above effect cannot be obtained. On the other hand, if the C content is excessive, the toughness of the steel sheet decreases. Therefore, the C content is 0.05 to 0.4%.
- the C content is preferably 0.10% or more, and more preferably 0.13% or more.
- the C content is preferably 0.35% or less.
- Si 0.5% or less
- Silicon (Si) is an element that is inevitably contained and has a function of deoxidizing steel. However, if the Si content is excessive, Si in the steel diffuses during the heating of the hot stamp, and an oxide is formed on the steel sheet surface, thereby deteriorating the phosphate processability. Si is furthermore an element raising the Ac 3 point of the steel sheet, the Ac 3 point is increased, there is a possibility that the heating temperature during hot stamping may exceed the evaporation temperature of the Zn plating. Therefore, the Si content is 0.5% or less.
- the Si content is preferably 0.3% or less, and more preferably 0.2% or less.
- Mn 0.5 to 2.5%
- Mn Manganese
- the Mn content is preferably 0.6% or more, and more preferably 0.7% or more.
- Mn content is 2.4% or less, and it is more preferable that it is 2.3% or less.
- Phosphorus (P) is an impurity contained in steel. P segregates at the grain boundaries to lower the toughness of the steel and to reduce the delayed fracture resistance. Therefore, the P content is 0.03% or less. It is preferable to reduce the P content as much as possible.
- S 0.01% or less Sulfur (S) is an impurity contained in steel. S forms sulfides, lowers the toughness of the steel, and lowers the delayed fracture resistance. Therefore, the S content is 0.01% or less. It is preferable to reduce the S content as much as possible.
- Al 0.1% or less
- Aluminum (Al) is an element that is generally used for the purpose of deoxidizing steel and is inevitably contained. However, if the Al content is excessive, deoxidation is sufficiently performed, but the Ac 3 point of the steel sheet rises, and the heating temperature during hot stamping may exceed the evaporation temperature of Zn plating. Therefore, the Al content is 0.1% or less.
- the Al content is preferably 0.05% or less. In order to obtain the above effects, the Al content is preferably 0.01% or more.
- the Al content is sol. It means the content of Al (acid-soluble Al).
- N 0.01% or less Nitrogen (N) is an impurity inevitably contained in steel. N forms nitrides and lowers the toughness of the steel. Further, when B is contained in the steel, N combines with B to reduce the amount of solute B, and consequently lowers the hardenability. Therefore, the N content is 0.01% or less. It is preferable to reduce the N content as much as possible.
- B 0 to 0.005% Boron (B) has the effect of increasing the hardenability of steel and increasing the strength of the molded body after hot stamping, and therefore may be included as necessary. However, if the B content is excessive, this effect is saturated. Therefore, the B content is 0.005% or less. In order to acquire said effect, it is preferable that B content is 0.0001% or more.
- Ti 0 to 0.1% Titanium (Ti) combines with N to form a nitride. When Ti and N are bonded in this way, the bond between B and N is suppressed, and a decrease in hardenability due to BN formation can be suppressed. Therefore, Ti may be included as necessary. However, if the Ti content is excessive, the above effect is saturated, and further, Ti nitride is excessively precipitated and the toughness of the steel is lowered. Therefore, the Ti content is 0.1% or less. In addition, Ti refines the austenite grain size at the time of hot stamping heating by the pinning effect, thereby enhancing the toughness of the molded body. In order to acquire said effect, it is preferable that Ti content is 0.01% or more.
- Cr 0 to 0.5% Since chromium (Cr) has an effect of improving the hardenability of steel, it may be contained as necessary. However, if the Cr content is excessive, Cr carbide is formed. Since this Cr carbide is difficult to dissolve during heating of the hot stamp, it becomes difficult for austenitization to proceed, and the hardenability decreases. Therefore, the Cr content is 0.5% or less. In order to acquire said effect, it is preferable that Cr content is 0.1% or more.
- Mo 0 to 0.5% Molybdenum (Mo) has an effect of improving the hardenability of steel, and may be contained as necessary. However, if the Mo content is excessive, the above effect is saturated. Therefore, the Mo content is 0.5% or less. In order to acquire said effect, it is preferable that Mo content is 0.05% or more.
- Niobium (Nb) forms carbides, refines crystal grains during hot stamping, and has the effect of increasing the toughness of the steel. Therefore, niobium (Nb) may be contained as necessary. However, if the Nb content is excessive, not only the above effects are saturated, but also the hardenability is lowered. Therefore, the Nb content is 0.1% or less. In order to acquire said effect, it is preferable that Nb content is 0.02% or more.
- Nickel (Ni) has the effect of increasing the toughness of the steel. Ni further suppresses embrittlement due to the presence of molten Zn during heating with a hot stamp. Therefore, you may contain Ni as needed. However, if the Ni content is excessive, these effects are saturated. Therefore, the Ni content is 1.0% or less. In order to obtain the above effect, the Ni content is preferably 0.1% or more.
- the balance is Fe and impurities.
- the impurity is a component that can be included in ore or scrap as a raw material, or a component that can be mixed due to the manufacturing environment, etc. when industrially manufacturing a steel sheet, and added intentionally. It means the ingredient which is not done.
- the plating layer in the present invention is mainly composed of Zn and Al. That is, the average composition of the plating layer satisfies the following formula (i).
- the plated layer of the surface-treated steel sheet satisfies the following conditions, it becomes possible to improve the fatigue characteristics, spot weldability, and post-coating corrosion resistance of the molded body after hot stamping. 75.0 ⁇ Zn + Al ⁇ 98.5 (i)
- the element symbol in the above formula represents the content (% by mass) of each element contained in the plating layer.
- the ratio of Zn and Al is also important. Therefore, the average composition of the plating layer of the present invention satisfies the following formula (ii).
- the value of Zn / Al is less than 0.4, the phosphate processability cannot be ensured, and the corrosion resistance after coating deteriorates.
- the value of Zn / Al exceeds 1.5, LME cannot be suppressed and fatigue characteristics deteriorate.
- the value of Zn / Al is preferably 1.2 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. 0.4 ⁇ Zn / Al ⁇ 1.5 (ii)
- the average composition of the plating layer is by mass, and contains Mg: 0.5 to 2.0%.
- Mg content in the plating layer is less than 0.5%, the effect of improving the corrosion resistance of the molded article after hot stamping is insufficient.
- Mg content exceeds 2.0% the risk of LME occurring during hot stamping increases.
- Mg is easily oxidized, it is concentrated as an oxide on the surface layer of the molded body after hot stamping. Since Mg oxide has high electrical resistance, if it is excessively concentrated, the weldability of the compact deteriorates.
- the Mg content in the plating layer is preferably 0.6% or more, and more preferably 0.8% or more. Further, the Mg content is preferably 1.8% or less, and more preferably 1.5% or less.
- the Mg content in the plating layer needs to be adjusted in relation to the contents of Zn and Al, and specifically, the following formula (iii) needs to be satisfied.
- the value of Zn / Al ⁇ Mg exceeds 1.6, LME cannot be suppressed and the fatigue characteristics deteriorate.
- the value of Zn / Al ⁇ Mg is preferably 1.4 or less, more preferably 1.2 or less, and even more preferably 1.0 or less.
- the average composition of the plating layer is mass%, and may further contain Si: more than 0% and 15.0% or less.
- Si is contained in the plating layer, the adhesion between the base material and the plating layer can be improved.
- the Si content in the plating layer exceeds 15.0%, there is a possibility that performance such as corrosion resistance and weldability of the molded body after hot stamping cannot be secured.
- the Si content is preferably 0.1% or more, more preferably 0.3% or more.
- the Si content in the plating layer is increased, formation of an Fe diffusion layer described later is suppressed. Therefore, when it is desired to promote the formation of the Fe diffusion layer, the Si content is preferably 10.0% or less, and more preferably 5.0% or less.
- the average composition of the plating layer preferably satisfies the following formula (iv) in relation to the Mg content.
- the average composition of the plating layer is determined by the following method.
- the surface-treated steel sheet including the plating layer is dissolved with a 10% HCl aqueous solution.
- an inhibitor that suppresses dissolution of Fe as a base material is added to hydrochloric acid.
- Each element contained in the solution is measured by inductively coupled plasma optical emission spectrometry (ICP-OES).
- the plating layer in the present invention preferably has an Fe diffusion layer on the base material side in the plating layer.
- the Fe diffusion layer is composed of a structure mainly composed of Fe—Al—Zn phase.
- the fact that the Fe—Al—Zn phase is mainly means that the total area ratio of the Fe—Al—Zn phase is 90% or more.
- the total area ratio of the Fe—Al—Zn phase is more preferably 95% or more, and further preferably 99% or more.
- the Fe—Al—Zn phase of the present invention is a general term for Fe (Al, Zn) 2 , Fe 2 (Al, Zn) 5 or Fe (Al, Zn) 3 .
- the Fe content in the Fe diffusion layer is in the range of 20 to 55% by mass.
- the Fe—Al—Zn phase may contain Si.
- the Fe diffusion layer is not formed as much as possible.
- the surface-treated steel sheet is used for hot stamping, if there is an Fe diffusion layer mainly composed of Fe-Al-Zn phase in the plating layer, alloying of Zn and Al in the plating layer during hot stamping And the Fe—Al alloy is rapidly formed. Since the formation of the Fe—Al alloy is promoted particularly near the interface with the base material, the effect of suppressing LME is exhibited.
- the Fe—Al alloy is a general term for ⁇ Fe, Fe 3 Al, and FeAl.
- the ratio of the thickness of the Fe diffusion layer to the total thickness of the plating layer of the present invention is preferably 15 to 50%. If the ratio is less than 15%, the effect of suppressing LME cannot be sufficiently obtained. On the other hand, if the above ratio exceeds 50%, cracking may occur when the steel sheet is wound into a coil.
- the ratio of the thickness of the Fe diffusion layer to the total thickness of the plating layer is preferably 20% or more, and more preferably 25% or more. Further, the ratio of the thickness of the Fe diffusion layer is preferably 45% or less, and more preferably 40% or less.
- FIG. 1 is an example of an image obtained by SEM observation of a cross section of a surface-treated steel sheet according to an embodiment of the present invention.
- FIG. 1A shows an example in which plating is performed under conditions for positively forming an Fe diffusion layer.
- FIG.1 (b) is the example which performed the plating process on normal conditions. 1 that the boundary between the Fe diffusion layer and the other layers in the plating layer can be clearly observed.
- the Fe content in the Fe diffusion layer was 20% or more and the structure was mainly composed of Fe—Al—Zn phase in the range of 20 to 55% by mass. did it. In the other layers, it was less than 20%. Therefore, in the present invention, the total thickness of the plating layer and the thickness of the Fe diffusion layer are measured from the results of EPMA analysis and SEM observation. Further, in the present invention, after observing the plating from the cross section by SEM, the total thickness of the plating layer and the thickness of the Fe diffusion layer are measured at any 12 locations, and the measured values at 10 locations except the maximum and minimum are measured. The average value is adopted as each thickness.
- the overall thickness of the plating layer of the present invention is not particularly limited, and can be set to 5 to 40 ⁇ m, for example.
- the total thickness of the plating layer is preferably 10 ⁇ m or more, and preferably 30 ⁇ m or less.
- the thickness of the Fe diffusion layer is not particularly limited, but is preferably 3 ⁇ m or more in order to obtain an effect of suppressing LME. On the other hand, if the thickness is excessive, cracking may occur when the steel sheet is wound into a coil shape.
- the average composition of the plating layer may further contain Fe: 5.0 to 25.0% by mass%. preferable.
- the process of manufacturing the surface-treated steel sheet of this embodiment includes the process of manufacturing a base material and the process of forming a plating layer on the surface of the base material. Hereinafter, each step will be described in detail.
- a base material of the surface-treated steel sheet is manufactured.
- molten steel having the above-described chemical composition is manufactured, and using this molten steel, a slab is manufactured by a casting method, or an ingot is manufactured by an ingot-making method.
- the base material (hot-rolled sheet) of the surface-treated steel sheet is obtained by hot rolling the slab or the ingot.
- an Al—Zn—Mg plating layer is formed on the surface of the base material to produce a surface-treated steel sheet.
- the method for forming the plating layer may be a hot dipping process, or any other process such as a thermal spray plating process or a vapor deposition plating process.
- an example of forming an Al—Zn—Mg plating layer by a hot dipping process is as follows. That is, the base material is immersed in a hot dipping bath made of Al, Zn, Mg and impurities, and a plating layer is attached to the surface of the base material. Next, the base material to which the plating layer is attached is pulled up from the plating bath.
- the thickness of the plating layer can be adjusted by appropriately adjusting the pulling speed of the steel plate from the plating bath and the flow rate of the wiping gas. As described above, it is preferable to adjust so that the total thickness of the plating layer is 5 to 40 ⁇ m.
- the immersion time in the plating bath is 15 s or less, and the average cooling rate after immersion is 5 ° C. / S or more is preferable.
- an Fe diffusion layer is formed in the plating layer and the ratio of the thickness of the Fe diffusion layer to the total thickness of the plating layer is adjusted to a range of 15 to 50%, it is immersed in a plating bath.
- the time is preferably 5 to 15 s, and the average cooling rate after immersion is preferably 5 to 30 ° C./s or less.
- Hot stamping conditions By subjecting the surface-treated steel sheet of the present invention to hot stamping, it is possible to obtain a molded article having excellent fatigue characteristics, spot weldability, and post-coating corrosion resistance. By performing hot stamping under the conditions described below, it is possible to more reliably obtain a molded article having excellent characteristics. In addition, before performing a hot stamp, you may perform a rust prevention oil film formation process and a blanking process as needed.
- Hot stamp process Normal hot stamping is performed by heating a steel sheet to a hot stamping temperature range (hot working temperature range), then hot working, and further cooling. According to the normal hot stamping technique, it is recommended to increase the heating rate of the steel sheet as much as possible in order to shorten the manufacturing time. Further, if the steel sheet is heated to the hot stamp temperature range, the alloying of the plating layer proceeds sufficiently, so that the normal hot stamp technology does not place importance on the control of the heating condition of the steel sheet.
- the surface-treated steel sheet is charged into a heating furnace (gas furnace, electric furnace, infrared furnace, etc.).
- a heating furnace gas furnace, electric furnace, infrared furnace, etc.
- the surface-treated steel sheet is heated to a temperature range of 500 to 750 ° C., and an alloying heat treatment is carried out for 10 to 450 s within this temperature range.
- the base material Fe diffuses in the plating layer, and alloying proceeds.
- This alloying can suppress LME.
- the alloying heating temperature does not need to be constant and may vary within a range of 500 to 750 ° C.
- the surface-treated steel sheet is heated to a temperature range of Ac 3 points to 950 ° C., and then hot working is performed. At this time, the time during which the temperature of the surface-treated steel sheet is within the temperature range of Ac 3 to 950 ° C. (oxidation temperature range) is limited to 60 s or less. When the temperature of the surface-treated steel sheet is within the oxidation temperature range, the oxide film on the surface layer of the plating layer grows. If the time during which the temperature of the surface-treated steel sheet is within the oxidation temperature range exceeds 60 s, the oxide film grows too much, and there is a concern that the weldability of the formed body will deteriorate.
- oxidation temperature range the time during which the temperature of the surface-treated steel sheet is within the oxidation temperature range is within the oxidation temperature range exceeds 60 s, the oxide film grows too much, and there is a concern that the weldability of the formed body will deteriorate.
- the lower limit of the time during which the temperature of the surface-treated steel sheet is within the oxidation temperature range is over 0 s.
- a non-oxidizing atmosphere such as a 100% nitrogen atmosphere
- an oxide film is not formed, and thus the heating is performed in an oxidizing atmosphere such as an air atmosphere.
- the conditions such as the heating rate and the maximum heating temperature are not particularly defined, and various conditions capable of performing hot stamping can be selected.
- the surface-treated steel sheet taken out from the heating furnace is press-formed using a mold.
- the steel sheet is quenched with a mold simultaneously with the press forming.
- a cooling medium for example, water
- a molded object can be manufactured according to the above process.
- the method of heating the surface-treated steel sheet using a heating furnace has been described as an example, it may be heated by energization heating. Even in this case, the steel sheet is heated for a predetermined time by energization heating, and the steel sheet is press-formed using a mold.
- the antirust oil film forming process is to form an antirust oil film by applying antirust oil to the surface of the surface-treated steel sheet after the plating treatment process and before the hot stamping process, and is optionally included in the manufacturing method. May be.
- the surface of the surface-treated steel sheet may be oxidized.
- the rust-preventing oil film forming step can suppress the formation of the scale of the molded body. Note that any known technique can be used as a method of forming the rust-preventing oil film.
- This process is a process of forming the steel sheet into a specific shape by performing a shearing process and / or a punching process on the surface-treated steel sheet after the antirust oil film forming process and before the hot stamping process.
- the sheared surface of the steel plate after blanking is easily oxidized.
- the rust preventive oil spreads to some extent on the shear surface. Thereby, the oxidation of the steel plate after blanking can be suppressed.
- the base material was prepared. That is, slabs were produced by continuous casting using molten steel having the chemical composition shown in Table 1. Subsequently, the slab was hot-rolled to produce a hot-rolled steel sheet, and the hot-rolled steel sheet was further pickled, and then cold-rolled to produce a cold-rolled steel sheet. And this cold-rolled steel plate was used as the base material (plate thickness 1.4 mm) of the surface-treated steel plate.
- plating treatment was performed according to the conditions shown in Table 2 to manufacture surface-treated steel sheets for each test example.
- the average composition of the plated layer of the obtained surface-treated steel sheet was measured.
- the surface-treated steel sheet including the plating layer was dissolved with a 10% HCl aqueous solution.
- an inhibitor that suppresses dissolution of the base material Fe was added to hydrochloric acid.
- Each element contained in the solution was measured by ICP-OES.
- LME generation the case where the crack has progressed to the base material (the location where the Fe concentration is 98% or more) was defined as LME generation.
- excellent (1) is 20% elongation without cracking, and 20% elongation is cracking, but 15% elongation is not cracking.
- an energy dispersive X-ray analysis is performed on the area around the crack end position using an energy dispersive X-ray microanalyzer.
- EDS energy dispersive X-ray analysis
- the spot compacts were spot welded with a pressure of 350 kgf using a direct current power source. Tests were conducted with various welding currents, the value where the nugget diameter of the weld exceeded 4.7 mm was set as the lower limit, the value of the welding current was increased appropriately, and the value generated during welding was set as the upper limit. . A value between the upper limit value and the lower limit value was set as an appropriate current range, and the difference between the upper limit value and the lower limit value was used as an index of spot weldability. In the evaluation of spot weldability, this value is 1.5A or more excellent (1), 1.0A or more and less than 1.5A is good (2), 0.5A or more and less than 1.0A. Yes (3), less than 0.5 A was evaluated as impossible (4).
- phosphate treatment was performed using a zinc phosphate treatment solution (trade name: Palbond 3020) manufactured by Nippon Parkerizing Co., Ltd. Specifically, the temperature of the treatment liquid was 43 ° C., and the compact was immersed in the treatment liquid for 120 s. Thereby, the phosphate film was formed on the steel material surface.
- a cation type electrodeposition paint manufactured by Nippon Paint Co., Ltd. was electrodeposited by applying a slope of 160V to each molded body, and further, 20 ° C. at a baking temperature of 170 ° C. Baked for a minute.
- the film thickness of the paint after electrodeposition coating was controlled on the surface-treated steel sheet before hot stamping under the condition that the electrodeposition coating was 15 ⁇ m.
- a cross-cut was made on the formed body after electrodeposition coating so as to reach the base steel material, and a composite corrosion test (JASO M610 cycle) was conducted. Corrosion resistance is evaluated by the paint blister width, and after the 180-cycle combined corrosion test, the paint blister width is 2.0 mm or less (1), and the one with more than 2.0 mm and 3.0 mm or less is good ( 2) More than 3.0 mm and less than 4.0 mm were evaluated as acceptable (3), and more than 4.0 mm were evaluated as unacceptable (4).
- An object of the present invention is to provide a surface-treated steel sheet suitable as a material for a molded body that is excellent in balance in all of fatigue characteristics (LME resistance), spot weldability, and post-coating corrosion resistance. Therefore, considering these evaluation results comprehensively, the overall evaluation A that was excellent or good in any test and the comprehensive evaluation B that was at least impossible in any test was accepted, and either The thing of the comprehensive evaluation C which was impossible in the test was made disqualified. The results are shown in Table 4.
- the surface-treated steel sheet according to the present invention is used as a raw material, and by hot stamping under appropriate conditions, a balance is achieved in all of fatigue characteristics (LME resistance), spot weldability, and post-paint corrosion resistance. It was confirmed that an excellent molded article was obtained.
- the molded body made of the surface-treated steel sheet according to the present invention can be suitably used as a structural member used for automobiles and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Coating With Molten Metal (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
前記めっき層の平均組成が、質量%で、
Mg:0.5~2.0%、を含有し、かつ
下記(i)~(iii)式を満足する、
表面処理鋼板。
75.0≦Zn+Al≦98.5 ・・・(i)
0.4≦Zn/Al≦1.5 ・・・(ii)
Zn/Al×Mg≦1.6 ・・・(iii)
但し、上記式中の元素記号は、めっき層中に含まれる各元素の含有量(質量%)を表す。
Si:0%を超えて15.0%以下、を含有する、
上記(1)に記載の表面処理鋼板。
上記(1)または(2)に記載の表面処理鋼板。
Mg+Ca+Ti+Sr+Cr≦2.0 ・・・(iv)
但し、上記式中の元素記号は、めっき層中に含まれる各元素の含有量(質量%)を表す。
前記めっき層の全体厚さに対する前記Fe拡散層の厚さの割合が、15~50%である、
上記(1)から(3)までのいずれかに記載の表面処理鋼板。
Fe:5.0~25.0%、を含有する、
上記(4)に記載の表面処理鋼板。
C:0.05~0.4%、
Si:0.5%以下、および
Mn:0.5~2.5%、を含有する、
上記(1)から(5)までのいずれかに記載の表面処理鋼板。
上記(1)から(6)までのいずれかに記載の表面処理鋼板。
本発明の一実施形態に係る表面処理鋼板は、母材と該母材の表面に形成されためっき層とを備える。それぞれについて、以下に詳述する。
本実施形態に係る課題であるホットスタンプ成形後の疲労特性、スポット溶接性、および塗装後耐食性の改善は、表面処理鋼板のめっき層の構成によって実現される。したがって、本実施形態に係る表面処理鋼板の母材は特に限定されない。しかし、母材の成分が以下に説明する範囲内である場合、疲労特性、スポット溶接性、および塗装後耐食性に加えて、好適な機械特性を有する成形体が得られる。
炭素(C)は、ホットスタンプ後の成形体の強度を高める元素である。C含有量が少な過ぎると、上記効果が得られない。一方、C含有量が過剰であると、鋼板の靭性が低下する。したがって、C含有量は0.05~0.4%とする。C含有量は0.10%以上であるの他好ましく、0.13%以上であるのがより好ましい。また、C含有量は0.35%以下であるのが好ましい。
シリコン(Si)は、不可避的に含まれ、鋼を脱酸する作用を有する元素である。しかしながら、Si含有量が過剰であると、ホットスタンプの加熱中に鋼中のSiが拡散し、鋼板表面に酸化物が形成されて、りん酸塩処理性を低下させる。Siは、さらに、鋼板のAc3点を上昇させる元素であり、Ac3点が上昇すると、ホットスタンプ時の加熱温度がZnめっきの蒸発温度を超えてしまうおそれがある。したがって、Si含有量は0.5%以下とする。Si含有量は0.3%以下であるのが好ましく、0.2%以下であるのがより好ましい。上記製品性能の観点からはSi含有量の下限値の制約はないが、上述する脱酸を目的として使用されるため、実質的な下限値が存在する。求められる脱酸レベルによるが、通常は0.05%である。
マンガン(Mn)は、焼入れ性を高め、ホットスタンプ後の成形体の強度を高める元素である。Mn含有量が少な過ぎると、この効果は得られない。一方、Mn含有量が過剰であると、この効果は飽和する。したがって、Mn含有量は0.5~2.5%とする。Mn含有量は0.6%以上であるのが好ましく、0.7%以上であるのがより好ましい。また、Mn含有量は2.4%以下であるのが好ましく、2.3%以下であるのがより好ましい。
りん(P)は、鋼中に含まれる不純物である。Pは結晶粒界に偏析して鋼の靭性を低下させ、耐遅れ破壊性を低下させる。したがって、P含有量は0.03%以下とする。P含有量はできる限り少なくすることが好ましい。
硫黄(S)は、鋼中に含まれる不純物である。Sは硫化物を形成して鋼の靭性を低下させ、耐遅れ破壊性を低下させる。したがって、S含有量は0.01%以下とする。S含有量はできる限り少なくすることが好ましい。
アルミニウム(Al)は、一般に鋼の脱酸目的で使用され、不可避的に含有される元素である。しかしながら、Al含有量が過剰であると、脱酸は十分に行われるが、鋼板のAc3点が上昇して、ホットスタンプ時の加熱温度がZnめっきの蒸発温度を超えるおそれがある。したがって、Al含有量は0.1%以下とする。Al含有量は0.05%以下であるのが好ましい。上記の効果を得るためには、Al含有量は0.01%以上であるのが好ましい。なお、本明細書において、Al含有量は、sol.Al(酸可溶Al)の含有量を意味する。
窒素(N)は、鋼中に不可避的に含まれる不純物である。Nは窒化物を形成して鋼の靭性を低下させる。Nはさらに、鋼中にBが含有される場合、Bと結合して固溶B量を減らし、ひいては焼入れ性を低下させる。したがって、N含有量は0.01%以下とする。N含有量はできる限り少なくすることが好ましい。
ボロン(B)は、鋼の焼入れ性を高め、ホットスタンプ後の成形体の強度を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、B含有量が過剰であると、この効果は飽和する。したがって、B含有量は0.005%以下とする。上記の効果を得るためには、B含有量は0.0001%以上であるのが好ましい。
チタン(Ti)は、Nと結合して窒化物を形成する。このようにTiとNとが結合する場合には、BとNとの結合が抑制され、BN形成による焼入れ性の低下を、抑制することができる。そのため、Tiを必要に応じて含有させてもよい。しかしながら、Ti含有量が過剰であると上記効果が飽和し、さらに、Ti窒化物が過剰に析出して鋼の靭性が低下する。したがって、Ti含有量は0.1%以下とする。なお、Tiはそのピン止め効果により、ホットスタンプ加熱時のオーステナイト粒径を微細化し、それにより成形体の靱性等を高める。上記の効果を得るためには、Ti含有量は0.01%以上であるのが好ましい。
クロム(Cr)は、鋼の焼入れ性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Cr含有量が過剰であると、Cr炭化物が形成される。このCr炭化物は、ホットスタンプの加熱時に溶解し難いことから、オーステナイト化が進行し難くなり、焼き入れ性が低下する。したがって、Cr含有量は0.5%以下とする。上記の効果を得るためには、Cr含有量は0.1%以上であるのが好ましい。
モリブデン(Mo)は、鋼の焼入れ性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Mo含有量が過剰であると、上記効果は飽和する。したがって、Mo含有量は0.5%以下とする。上記の効果を得るためには、Mo含有量は0.05%以上であるのが好ましい。
ニオブ(Nb)は、炭化物を形成して、ホットスタンプ時に結晶粒を微細化し、鋼の靭性を高める効果を有するため、必要に応じて含有させてもよい。しかしながら、Nb含有量が過剰であると、上記効果が飽和するだけでなく、焼入れ性が低下する。したがって、Nb含有量は0.1%以下とする。上記の効果を得るためには、Nb含有量は0.02%以上であるのが好ましい。
ニッケル(Ni)は、鋼の靭性を高める効果を有する。Niは、さらに、ホットスタンプでの加熱時に、溶融Znの存在に起因した脆化を抑制する。そのため、Niを必要に応じて含有させてもよい。しかしながら、Ni含有量が過剰であると、これらの効果は飽和する。したがって、Ni含有量は1.0%以下とする。上記の効果を得るためには、Ni含有量は0.1%以上であるのが好ましい。
本発明におけるめっき層は、ZnおよびAlを主体とする。すなわち、めっき層の平均組成が下記(i)式を満足する。表面処理鋼板のめっき層が下記の条件を満足することによって、ホットスタンプ後の成形体の疲労特性、スポット溶接性、および塗装後耐食性を向上させることが可能になる。
75.0≦Zn+Al≦98.5 ・・・(i)
但し、上記式中の元素記号は、めっき層中に含まれる各元素の含有量(質量%)を表す。
0.4≦Zn/Al≦1.5 ・・・(ii)
Zn/Al×Mg≦1.6 ・・・(iii)
Mg+Ca+Ti+Sr+Cr≦2.0 ・・・(iv)
本実施形態の表面処理鋼板を製造する工程には、母材を製造する工程と、母材の表面にめっき層を形成する工程とが含まれる。以下、各工程について、詳述する。
母材製造工程では、表面処理鋼板の母材を製造する。例えば、上述した化学組成を有する溶鋼を製造し、この溶鋼を用いて、鋳造法によりスラブを製造するか、または、造塊法によりインゴットを製造する。次いで、スラブまたはインゴットを熱間圧延することにより、表面処理鋼板の母材(熱延板)が得られる。なお、上記熱延板に対して酸洗処理を行い、酸洗処理後の熱延板に対して冷間圧延を行って得られる冷延板を表面処理鋼板の母材としてもよい。
めっき処理工程では、上記の母材表面にAl-Zn-Mgめっき層を形成して、表面処理鋼板を製造する。めっき層の形成方法は、溶融めっき処理であってもよいし、溶射めっき処理、蒸着めっき処理等の、その他のいかなる処理であってもよい。母材とめっき層との密着性を高めるためには、めっき層にSiを含有させることが好ましい。
本発明の表面処理鋼板にホットスタンプを施すことによって、疲労特性、スポット溶接性、および塗装後耐食性に優れた成形体を得ることができる。以下に説明する条件においてホットスタンプを行うことで、より確実に上記特性に優れた成形体を得ることが可能になる。なお、ホットスタンプを行う前に、必要に応じて、防錆油膜形成処理およびブランキング加工処理を行ってもよい。
通常のホットスタンプは、鋼板をホットスタンプ温度範囲(熱間加工温度範囲)まで加熱し、次いで熱間加工し、さらに冷却することにより行われる。通常のホットスタンプ技術によれば、製造時間を短縮するために、鋼板の加熱速度をなるべく大きくすることがよいとされる。また、鋼板をホットスタンプ温度範囲まで加熱すればめっき層の合金化が十分に進むので、通常のホットスタンプ技術は、鋼板の加熱条件の制御を重要視していない。
防錆油膜形成工程は、めっき処理工程後、かつ、ホットスタンプ工程前に、表面処理鋼板の表面に防錆油を塗布して防錆油膜を形成するものであり、製造方法に任意に含まれてもよい。表面処理鋼板が製造されてからホットスタンプが行われるまでの時間が長い場合には、表面処理鋼板の表面が酸化されるおそれがある。しかしながら、防錆油膜形成工程により防錆油膜が形成された表面処理鋼板の表面は酸化し難いので、防錆油膜形成工程は、成形体のスケールの形成を抑制することができる。なお、防錆油膜の形成方法は、公知のいかなる技術を用いることもできる。
本工程は、防錆油膜形成工程後、かつ、ホットスタンプ工程前に、表面処理鋼板に対して剪断加工および/または打ち抜き加工を行って、当該鋼板を特定の形状に成形する工程である。ブランキング加工後の鋼板の剪断面は酸化し易い。しかしながら、鋼板表面に事前に防錆油膜が形成されていれば、上記剪断面にも防錆油がある程度広がる。これにより、ブランキング加工後の鋼板の酸化を抑制することができる。
各試験例の表面処理鋼板に対して、700℃で120s保持する合金化加熱処理を行なった後、900℃で30s加熱し、直ちに3種類のハンドプレス機を用いて熱間V曲げ加工を行い成形体とした。なお、金型の形状は、V曲げ加工による曲げ半径の外側部分が曲げ加工終了時に、それぞれ10%、15%および20%伸ばされるような形状とした。
各試験例の表面処理鋼板に対して、700℃で120s保持する合金化加熱処理を行なった後、900℃で30s加熱し、直ちに水冷ジャケットを備えた平板金型に鋼板を挟み込んで板状の成形体を製造した。なお、ホットスタンプ時の冷却速度が遅い部分でも、マルテンサイト変態開始点(410℃)程度まで、50℃/s以上の冷却速度となるように焼入れした。
各試験例の表面処理鋼板に対して、700℃で120s保持する合金化加熱処理を行なった後、900℃で30s加熱し、直ちに水冷ジャケットを備えた平板金型に鋼板を挟み込んで板状の成形体を製造した。なお、ホットスタンプ時の冷却速度が遅い部分でも、マルテンサイト変態開始点(410℃)程度まで、50℃/s以上の冷却速度となるように焼入れした。
本発明においては、疲労特性(耐LME性)、スポット溶接性、および塗装後耐食性の全てにおいてバランスよく優れる成形体の素材として好適な表面処理鋼板を提供することを目的としている。そのため、これらの評価結果を総合的に勘案し、いずれの試験においても優または良であった総合評価Aおよびいずれの試験においても少なくとも不可がなかった総合評価Bのものを合格とし、いずれかの試験において不可があった総合評価Cのものを不合格とした。それらの結果を表4に示す。
Claims (7)
- 母材と該母材の表面に形成されためっき層とを備える表面処理鋼板であって、
前記めっき層の平均組成が、質量%で、
Mg:0.5~2.0%、を含有し、かつ
下記(i)~(iii)式を満足する、
表面処理鋼板。
75.0≦Zn+Al≦98.5 ・・・(i)
0.4≦Zn/Al≦1.5 ・・・(ii)
Zn/Al×Mg≦1.6 ・・・(iii)
但し、上記式中の元素記号は、めっき層中に含まれる各元素の含有量(質量%)を表す。 - 前記めっき層の平均組成が、さらに質量%で、
Si:0%を超えて15.0%以下、を含有する、
請求項1に記載の表面処理鋼板。 - 前記めっき層の平均組成が、さらに下記(iv)式を満足する、
請求項1または請求項2に記載の表面処理鋼板。
Mg+Ca+Ti+Sr+Cr≦2.0 ・・・(iv)
但し、上記式中の元素記号は、めっき層中に含まれる各元素の含有量(質量%)を表す。 - 前記めっき層が、前記めっき層中の母材側にFe拡散層を有し、
前記めっき層の全体厚さに対する前記Fe拡散層の厚さの割合が、15~50%である、
請求項1から請求項3までのいずれかに記載の表面処理鋼板。 - 前記めっき層の平均組成が、さらに質量%で、
Fe:5.0~25.0%、を含有する、
請求項4に記載の表面処理鋼板。 - 前記母材の化学組成が、質量%で、
C:0.05~0.4%、
Si:0.5%以下、および
Mn:0.5~2.5%、を含有する、
請求項1から請求項5までのいずれかに記載の表面処理鋼板。 - ホットスタンプ用である、
請求項1から請求項6までのいずれかに記載の表面処理鋼板。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17904193.4A EP3604603A4 (en) | 2017-03-31 | 2017-03-31 | SURFACE TREATED STEEL SHEET |
MX2019011429A MX2019011429A (es) | 2017-03-31 | 2017-03-31 | Lamina de acero con tratamiento superficial. |
US16/499,830 US11884998B2 (en) | 2017-03-31 | 2017-03-31 | Surface treated steel sheet |
JP2019508153A JP6897757B2 (ja) | 2017-03-31 | 2017-03-31 | 表面処理鋼板 |
KR1020197032184A KR20190133753A (ko) | 2017-03-31 | 2017-03-31 | 표면 처리 강판 |
BR112019019173A BR112019019173A2 (pt) | 2017-03-31 | 2017-03-31 | chapa de aço com tratamento de superfície |
CA3057007A CA3057007A1 (en) | 2017-03-31 | 2017-03-31 | Surface treated steel sheet |
CN201780089263.6A CN110475899A (zh) | 2017-03-31 | 2017-03-31 | 表面处理钢板 |
PCT/JP2017/013762 WO2018179397A1 (ja) | 2017-03-31 | 2017-03-31 | 表面処理鋼板 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013762 WO2018179397A1 (ja) | 2017-03-31 | 2017-03-31 | 表面処理鋼板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179397A1 true WO2018179397A1 (ja) | 2018-10-04 |
Family
ID=63677365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013762 WO2018179397A1 (ja) | 2017-03-31 | 2017-03-31 | 表面処理鋼板 |
Country Status (9)
Country | Link |
---|---|
US (1) | US11884998B2 (ja) |
EP (1) | EP3604603A4 (ja) |
JP (1) | JP6897757B2 (ja) |
KR (1) | KR20190133753A (ja) |
CN (1) | CN110475899A (ja) |
BR (1) | BR112019019173A2 (ja) |
CA (1) | CA3057007A1 (ja) |
MX (1) | MX2019011429A (ja) |
WO (1) | WO2018179397A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018179395A1 (ja) * | 2017-03-31 | 2019-12-12 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JPWO2021182465A1 (ja) * | 2020-03-12 | 2021-09-16 | ||
WO2022154082A1 (ja) * | 2021-01-14 | 2022-07-21 | 日本製鉄株式会社 | めっき鋼材 |
KR20240140130A (ko) | 2022-03-29 | 2024-09-24 | 제이에프이 스틸 가부시키가이샤 | 열간 프레스 부재 및 열간 프레스용 강판 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102153164B1 (ko) * | 2017-12-26 | 2020-09-07 | 주식회사 포스코 | 열간 프레스 성형용 도금강판 및 이를 이용한 성형부재 |
DE102020202171A1 (de) | 2020-02-20 | 2021-08-26 | Thyssenkrupp Steel Europe Ag | Verfahren zur Herstellung eines oberflächenveredelten Stahlblechs und oberflächenveredeltes Stahlblech |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049256A (ja) | 2001-08-09 | 2003-02-21 | Nippon Steel Corp | 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
JP2005113233A (ja) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | 熱間プレス用Zn系めっき鋼材 |
JP2008069398A (ja) * | 2006-09-13 | 2008-03-27 | Sumitomo Metal Ind Ltd | Al系めっき熱処理鋼材およびその製造方法 |
CN102312130A (zh) * | 2011-09-07 | 2012-01-11 | 东北大学 | 一种五元合金热浸镀层原料制备和使用方法 |
JP2012112010A (ja) * | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材 |
JP2014088616A (ja) * | 2012-10-25 | 2014-05-15 | Fontaine Holdings Nv | 長尺の鋼製品に対する亜鉛めっきのためのZn−Al−Mg合金への連続シングル浸漬方法 |
JP2015214749A (ja) * | 2014-04-23 | 2015-12-03 | Jfeスチール株式会社 | 溶融Al−Zn系めっき鋼板及びその製造方法 |
JP2016153539A (ja) * | 2016-06-01 | 2016-08-25 | Jfe鋼板株式会社 | 溶融Al−Zn系めっき鋼板とその製造方法 |
JP2016166415A (ja) * | 2015-03-02 | 2016-09-15 | Jfe鋼板株式会社 | 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法 |
JP2016539249A (ja) * | 2013-09-13 | 2016-12-15 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | 防食コーティングを具えた鋼部品およびその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW575643B (en) | 2001-01-31 | 2004-02-11 | Jfe Steel Corp | Surface treated steel sheet and method for producing the same |
WO2002061164A1 (fr) | 2001-01-31 | 2002-08-08 | Nkk Corporation | Tole d'acier pretraite et son procede de production |
WO2012070694A1 (ja) | 2010-11-26 | 2012-05-31 | Jfeスチール株式会社 | 溶融Al-Zn系めっき鋼板およびその製造方法 |
JP5652321B2 (ja) | 2011-05-13 | 2015-01-14 | 新日鐵住金株式会社 | 熱間複合成形性及び打抜き部の耐遅れ破壊特性に優れたホットスタンプ用鋼板とその製造方法 |
CN103764865B (zh) | 2012-08-01 | 2016-08-17 | 蓝野钢铁有限公司 | 金属镀覆钢带 |
US20150267287A1 (en) | 2012-10-18 | 2015-09-24 | Bluescope Steel Limited | Method of producing metal coated steel strip |
AU2014212967B2 (en) | 2013-01-31 | 2016-05-19 | Jfe Galvanizing & Coating Co., Ltd. | Hot-dip Al-Zn alloy coated steel sheet and method for producing same |
CA2933039C (en) * | 2013-12-25 | 2019-06-25 | Nippon Steel & Sumitomo Metal Corporation | Automobile part and method for manufacturing automobile part |
CN106282873A (zh) | 2015-05-13 | 2017-01-04 | 宝山钢铁股份有限公司 | 一种热冲压钢的合金镀层及其制备方法 |
WO2017017484A1 (en) | 2015-07-30 | 2017-02-02 | Arcelormittal | Method for the manufacture of a hardened part which does not have lme issues |
WO2017017485A1 (en) * | 2015-07-30 | 2017-02-02 | Arcelormittal | A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium |
US20190160507A1 (en) | 2016-05-10 | 2019-05-30 | Nippon Steel & Sumitomo Metal Corporation | Hot stamped steel |
WO2018096387A1 (en) * | 2016-11-24 | 2018-05-31 | Arcelormittal | Hot-rolled and coated steel sheet for hot-stamping, hot-stamped coated steel part and methods for manufacturing the same |
EP3561147A4 (en) * | 2016-12-26 | 2020-03-25 | Posco | STEEL PLATED WITH ZINC ALLOY WITH EXCELLENT WELDABILITY AND CORROSION RESISTANCE |
-
2017
- 2017-03-31 BR BR112019019173A patent/BR112019019173A2/pt not_active Application Discontinuation
- 2017-03-31 US US16/499,830 patent/US11884998B2/en active Active
- 2017-03-31 CN CN201780089263.6A patent/CN110475899A/zh active Pending
- 2017-03-31 CA CA3057007A patent/CA3057007A1/en not_active Abandoned
- 2017-03-31 WO PCT/JP2017/013762 patent/WO2018179397A1/ja active Application Filing
- 2017-03-31 KR KR1020197032184A patent/KR20190133753A/ko active IP Right Grant
- 2017-03-31 MX MX2019011429A patent/MX2019011429A/es unknown
- 2017-03-31 JP JP2019508153A patent/JP6897757B2/ja active Active
- 2017-03-31 EP EP17904193.4A patent/EP3604603A4/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003049256A (ja) | 2001-08-09 | 2003-02-21 | Nippon Steel Corp | 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材 |
JP2003073774A (ja) | 2001-08-31 | 2003-03-12 | Sumitomo Metal Ind Ltd | 熱間プレス用めっき鋼板 |
JP2005113233A (ja) | 2003-10-09 | 2005-04-28 | Nippon Steel Corp | 熱間プレス用Zn系めっき鋼材 |
JP2008069398A (ja) * | 2006-09-13 | 2008-03-27 | Sumitomo Metal Ind Ltd | Al系めっき熱処理鋼材およびその製造方法 |
JP2012112010A (ja) * | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材 |
CN102312130A (zh) * | 2011-09-07 | 2012-01-11 | 东北大学 | 一种五元合金热浸镀层原料制备和使用方法 |
JP2014088616A (ja) * | 2012-10-25 | 2014-05-15 | Fontaine Holdings Nv | 長尺の鋼製品に対する亜鉛めっきのためのZn−Al−Mg合金への連続シングル浸漬方法 |
JP2016539249A (ja) * | 2013-09-13 | 2016-12-15 | ティッセンクルップ スチール ヨーロッパ アーゲーThyssenkrupp Steel Europe Ag | 防食コーティングを具えた鋼部品およびその製造方法 |
JP2015214749A (ja) * | 2014-04-23 | 2015-12-03 | Jfeスチール株式会社 | 溶融Al−Zn系めっき鋼板及びその製造方法 |
JP2016166415A (ja) * | 2015-03-02 | 2016-09-15 | Jfe鋼板株式会社 | 溶融Al−Zn−Mg−Siめっき鋼板とその製造方法 |
JP2016153539A (ja) * | 2016-06-01 | 2016-08-25 | Jfe鋼板株式会社 | 溶融Al−Zn系めっき鋼板とその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3604603A1 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018179395A1 (ja) * | 2017-03-31 | 2019-12-12 | 日本製鉄株式会社 | ホットスタンプ成形体 |
JPWO2021182465A1 (ja) * | 2020-03-12 | 2021-09-16 | ||
WO2021182465A1 (ja) * | 2020-03-12 | 2021-09-16 | 日本製鉄株式会社 | ホットスタンプ用めっき鋼板 |
JP7265217B2 (ja) | 2020-03-12 | 2023-04-26 | 日本製鉄株式会社 | ホットスタンプ用めっき鋼板 |
WO2022154082A1 (ja) * | 2021-01-14 | 2022-07-21 | 日本製鉄株式会社 | めっき鋼材 |
JP7510087B2 (ja) | 2021-01-14 | 2024-07-03 | 日本製鉄株式会社 | めっき鋼材 |
KR20240140130A (ko) | 2022-03-29 | 2024-09-24 | 제이에프이 스틸 가부시키가이샤 | 열간 프레스 부재 및 열간 프레스용 강판 |
Also Published As
Publication number | Publication date |
---|---|
JP6897757B2 (ja) | 2021-07-07 |
EP3604603A1 (en) | 2020-02-05 |
US20200024708A1 (en) | 2020-01-23 |
KR20190133753A (ko) | 2019-12-03 |
CA3057007A1 (en) | 2018-10-04 |
JPWO2018179397A1 (ja) | 2019-12-19 |
CN110475899A (zh) | 2019-11-19 |
BR112019019173A2 (pt) | 2020-04-14 |
US11884998B2 (en) | 2024-01-30 |
MX2019011429A (es) | 2019-11-01 |
EP3604603A4 (en) | 2020-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7433386B2 (ja) | ホットスタンピング用の熱間圧延及びコーティングされた鋼板、ホットスタンピングされ、コーティングされた鋼部品及びこれらを製造するための方法 | |
JP6566128B2 (ja) | ホットスタンプ成形体 | |
JP6819771B2 (ja) | ホットスタンプ成形体 | |
JP6515356B2 (ja) | ホットスタンプ用鋼板およびその製造方法、並びにホットスタンプ成形体 | |
CN111868290B (zh) | 热冲压成型体 | |
JP6897757B2 (ja) | 表面処理鋼板 | |
CN111868291B (zh) | 热冲压成型体 | |
JP6326761B2 (ja) | ホットスタンプ鋼材の製造方法、ホットスタンプ用鋼板の製造方法及びホットスタンプ用鋼板 | |
JP6822491B2 (ja) | ホットスタンプ用合金化Alめっき鋼板およびホットスタンプ部材 | |
JP6406475B1 (ja) | 焼入れ用Alめっき溶接管、並びにAlめっき中空部材及びその製造方法 | |
EP2527483A1 (en) | High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same | |
JP2022095819A (ja) | 接合部品及びその製造方法 | |
JP6947335B1 (ja) | ホットスタンプ用鋼板およびホットスタンプ成形体 | |
TWI588293B (zh) | 熱壓印成形體 | |
WO2022091351A1 (ja) | Zn系めっきホットスタンプ成形品 | |
CN115066516B (zh) | 热冲压成型体 | |
CN115698343A (zh) | 经冷轧、退火和配分的钢板及其制造方法 | |
JP2021181618A (ja) | 熱間プレス部材およびその製造方法 | |
JP7173368B2 (ja) | 熱間プレス部材および熱間プレス用鋼板ならびに熱間プレス部材の製造方法 | |
TWI637069B (zh) | Surface treated steel | |
WO2023017844A1 (ja) | 接合部品および接合鋼板 | |
WO2024122121A1 (ja) | めっき鋼板 | |
TW201837208A (zh) | 熱沖壓成形體 | |
JPWO2020213201A1 (ja) | 熱間プレス用鋼板および熱間プレス部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17904193 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508153 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3057007 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019019173 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197032184 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017904193 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017904193 Country of ref document: EP Effective date: 20191031 |
|
ENP | Entry into the national phase |
Ref document number: 112019019173 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190916 |