WO2018179340A1 - エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 - Google Patents

エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 Download PDF

Info

Publication number
WO2018179340A1
WO2018179340A1 PCT/JP2017/013611 JP2017013611W WO2018179340A1 WO 2018179340 A1 WO2018179340 A1 WO 2018179340A1 JP 2017013611 W JP2017013611 W JP 2017013611W WO 2018179340 A1 WO2018179340 A1 WO 2018179340A1
Authority
WO
WIPO (PCT)
Prior art keywords
angular velocity
inter
component
error
engine
Prior art date
Application number
PCT/JP2017/013611
Other languages
English (en)
French (fr)
Inventor
信之 岸
明彦 友田
富幸 佐々木
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201780088872.XA priority Critical patent/CN110494640B/zh
Priority to JP2019508110A priority patent/JP6818127B2/ja
Priority to PCT/JP2017/013611 priority patent/WO2018179340A1/ja
Priority to EP17903534.0A priority patent/EP3604779B1/en
Publication of WO2018179340A1 publication Critical patent/WO2018179340A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle

Definitions

  • the present invention relates to an engine vehicle and an inter-tooth error removal method and apparatus for a crank pulsar rotor, and more particularly to an engine vehicle suitable for non-uniform explosion engines and single cylinder engines and an inter-tooth error removal method and apparatus for a crank pulsar rotor. .
  • misfire parameter the parameter (misfire parameter) of the misfire determination includes the inter-tooth error of the crank pulsar rotor, it is necessary to remove the inter-tooth error of the crank pulsar rotor for accurate misfire determination.
  • Patent Document 1 discloses an inter-tooth error removal method for a crank pulser rotor focused on the change in angular velocity component caused by inertia torque in the equal interval explosion engine with the generation cycle of TDC pulses.
  • An object of the present invention is an engine vehicle that solves the above technical problems and enables accurate misfire determination by removing an inter-tooth error of a crank pulsar rotor from misfire parameters even in unequally spaced explosion engines and single cylinder engines It is another object of the present invention to provide an inter-tooth error removal method and apparatus for a crank pulsar rotor.
  • the engine vehicle of the present invention and the method and apparatus for removing inter-tooth error of a crank pulsar rotor are characterized in that they have the following configurations.
  • the method for removing the inter-tooth error of the crank pulser rotor detects the angular velocity of each crank angle from the time between crank pulses, and is detected near the compression top dead center of the engine based on the angular velocity of each crank angle
  • the relative angular velocity of each crank angle to the reference angular velocity is calculated, the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity, and the inertial torque component and the pumping torque component are removed from the integrated angular velocity
  • the integrated angular velocity is calculated, the inter-dental error coefficient is calculated and learned from the post-removal integrated angular velocity, the inter-dental error component at each engine speed is calculated using the inter-dental error coefficient, and the post-removal integrated angular velocity is toothed The error component was removed.
  • the inter-tooth error coefficient is calculated by dividing the integrated angular velocity after removal by the reference angular velocity detected near the compression top dead center of the engine.
  • the interdental error component at each engine speed is calculated by multiplying the interdental error coefficient by the reference angular velocity detected near the compression top dead center of the engine.
  • a standard vehicle equipped with an ideal crank pulsar rotor with substantially zero interdental error is operated in a steady state with substantially no combustion torque generated by the chassis, and the angular velocity at each crank angle is detected. Based on the angular velocity of the crank angle, the relative angular velocity of each crank angle with respect to the reference angular velocity detected near the compression top dead center of the engine is calculated, and the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity The inertia torque component is removed from the integrated angular velocity to obtain the pumping torque component, and data is set in the ECU and used as the pumping torque component.
  • the inter-tooth error elimination device of the crank pulsar rotor detects near the compression top dead center of the engine based on the means for detecting the angular velocity of each crank angle from the time between crank pulses
  • a means for calculating the relative angular velocity of each crank angle with respect to the determined reference angular velocity a means for integrating the relative angular velocity within a predetermined crank angle range to calculate an integrated angular velocity, an inertial torque component and a pumping torque component from the integrated angular velocity
  • means for removing the interdental error component from the integrated angular velocity after removal is
  • the engine vehicle of the present invention comprises means for detecting the angular velocity of each crank angle from the time between crank pulses, and each crank relative to a reference angular velocity detected near the compression top dead center of the engine based on the angular velocity of each crank angle.
  • Means for calculating a relative angular velocity at an angle and means for calculating an integrated angular velocity by integrating the relative angular velocity within a predetermined crank angle range, and removing and integrating an inertial torque component and a pumping torque component from the integrated angular velocity
  • Means for calculating an angular velocity means for calculating and learning an interdental error coefficient from the post-removal integrated angular velocity, and means for calculating an interdental error component at each engine speed using the interdental error coefficient, elimination
  • a means is provided for removing the interdental error component from the post-accumulated angular velocity.
  • the method for removing the inter-tooth error of the crank pulser rotor detects the angular velocity of each crank angle from the time between crank pulses, and is detected near the compression top dead center of the engine based on the angular velocity of each crank angle
  • the relative angular velocity of each crank angle to the reference angular velocity is calculated, the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity, and the inertial torque component and the pumping torque component are removed from the integrated angular velocity
  • the integrated angular velocity is calculated, the inter-dental error coefficient is calculated and learned from the post-removal integrated angular velocity, the inter-dental error component at each engine speed is calculated using the inter-dental error coefficient, and each post-removal integrated angular velocity is calculated Since the inter-tooth error component in the engine speed is eliminated, the integrated value of the relative angular velocity is used as the misfire parameter even in the unequally spaced explosion engine or single cylinder engine.
  • the inter-tooth error coefficient is calculated by dividing the integrated angular velocity after removal by the reference angular velocity detected near the compression top dead center of the engine, so the inter-tooth error coefficient independent of the engine speed is determined .
  • the interdental error component is calculated by multiplying the interdental error coefficient by the reference angular velocity detected in the vicinity of the compression top dead center of the engine, the interdental error component at any engine speed can be calculated Become.
  • a standard vehicle equipped with an ideal crank pulsor rotor having substantially zero inter-tooth error is operated in a steady state with substantially no combustion torque generated by the chassis, and the angular velocity at each crank angle is detected. Based on the angular velocity of the angle, the relative angular velocity of each crank angle with respect to the reference angular velocity detected near the compression top dead center of the engine is calculated, and the integrated angular velocity is calculated by integrating the relative angular velocity within a predetermined crank angle range Since the inertia torque component is removed from the angular velocity to obtain the pumping torque component, and data is set in the ECU and used as the pumping torque component, the pumping torque component may be removed from the integrated value of the relative angular velocity detected in the mass sales vehicle. It will be possible.
  • the inter-tooth error elimination device of the crank pulsar rotor detects near the compression top dead center of the engine based on the means for detecting the angular velocity of each crank angle from the time between crank pulses
  • a means for calculating the relative angular velocity of each crank angle with respect to the determined reference angular velocity a means for integrating the relative angular velocity within a predetermined crank angle range to calculate an integrated angular velocity, an inertial torque component and a pumping torque component from the integrated angular velocity
  • the means for removing the interdental error component at each engine speed from the integrated angular velocity after removal the means for removing the interdental error component at each engine speed from the integrated angular velocity after removal.
  • the engine vehicle of the present invention comprises means for detecting the angular velocity of each crank angle from the time between crank pulses, and each crank relative to a reference angular velocity detected near the compression top dead center of the engine based on the angular velocity of each crank angle.
  • FIG. 1 is a functional block diagram of a method and apparatus for removing inter-tooth error of a motorcycle and a crank pulsar rotor to which the present invention is applied. It is a figure showing an example of angular velocity of each crank angle at the time of steady operation in a fuel cut state by a chassis. It is a figure for demonstrating the function of a 720 degree
  • FIG. 7 is a diagram (no misfire) showing an example of a misfire detection method in which a relative angular velocity is obtained from an angular velocity detected for each occurrence of a crank pulse and the integrated value is used as a misfire parameter.
  • FIG. 13 is a diagram (misfire presence) showing an example of a misfire detection method in which a relative angular velocity is obtained from an angular velocity detected for each occurrence of a crank pulse and the integrated value is used as a misfire parameter.
  • FIGS. 10 and 11 are diagrams showing an example of a misfire detection method in which the relative angular velocity is obtained from the angular velocity detected each time a crank pulse is generated, and the integrated value (integrated angular velocity) is used as the misfire parameter.
  • the relative angular velocity is calculated by subtracting the reference angular velocity detected in the vicinity of the compression top dead center of each cylinder of the engine from the angular velocity detected each time a crank pulse is generated [each figure (a)].
  • # 1 and # 2 are cylinder identifiers added to identify two cylinders in the order of ignition, and in FIG. 10, combustion is normally performed in any of the cylinders # 1 and # 2.
  • FIG. 11 shows the case where a misfire has occurred only in the # 1 cylinder.
  • the relative angular velocity accelerates if combustion is normally performed in the combustion stroke after compression top dead center of the engine, but decelerates if a misfire occurs [respective drawings (b)]. Therefore, the integrated angular velocity obtained by integrating the relative angular velocity within the predetermined crank angle range is a positive value for the cylinder in which combustion was normally performed, and a negative value for the cylinder in which the misfire has occurred. It can be used as a parameter to determine [each figure (c)].
  • the pumping torque is a torque generated by the pump operation of the piston in each stroke of intake, compression, expansion, and exhaust of the engine, and an index different from the pumping loss representing the energy loss generated in the intake stroke and the exhaust process of the engine. It is.
  • an environment in which the inter-tooth error is eliminated is prepared by preparing in advance a standard vehicle Mref provided with an ideal crank pulser rotor having substantially zero inter-tooth error for each type of vehicle that performs misfire detection. Furthermore, by removing the fluctuation component other than the pumping torque by the above-mentioned appropriate method using this standard vehicle Mref, the integrated angular velocity dominated by the pumping torque component is determined, and extracted as the pumping torque component specific to the vehicle type , This data is set in the ECU of each mass sales vehicle.
  • FIG. 1 is a block diagram for explaining an engine vehicle to which the present invention is applied and an inter-tooth error removal method and apparatus for a crank pulser rotor thereof.
  • a motorcycle equipped with a 4-cycle 2-cylinder non-uniform explosion engine explosion interval: 180 degrees 540 degrees
  • explosion interval 180 degrees 540 degrees
  • the standard vehicle Mref is mounted with a non-uniform explosion engine E, and its crankshaft 2 is equipped with an ideal crank pulsar rotor 3 ref with substantially zero inter-tooth error, and has a pumping torque component extraction device 100.
  • the crank angular velocity measuring unit 5a measures the angular velocity with substantially no combustion torque generated, so the time between crank pulses of the ideal crank pulser rotor 3ref in the fuel cut state is the crank pulser sensor 4a. Measure and calculate the angular velocity of each crank angle. A known moving averaging process or the like is applied to the angular velocity of each crank angle to remove noise components.
  • FIG. 2 shows angular velocities at respective crank angles when steady operation is performed in a fuel cut state in the chassis.
  • the 720-degree filter processing unit 6a cancels a linear change in one cycle period on the basis of the calculation result of the angular velocity ⁇ , and extracts a fluctuation component having a relatively short cycle. As a result, it is possible to remove an angular velocity fluctuation component due to a load torque applied from a tire of a vehicle driven by an engine or an accessory or friction of a sliding component of the engine.
  • FIG. 3 shows an example in which a 720-degree filter is applied to a cycle in which combustion torque is generated but decelerated by load torque. Since extraction of the pumping torque component is performed in steady operation in the chassis, there is almost no linear change in angular velocity in one cycle period.
  • the fluctuation component is removed in a state where the combustion torque is substantially absent, so that the obtained angular velocity ⁇ substantially includes only the fluctuation component due to the inertia torque and the pumping torque.
  • the relative angular velocity calculator 7a sets the angular velocity ⁇ measured near the compression top dead center (# 1 TDC: crank angle 0 degree) of the first cylinder (# 1) as the reference angular velocity ⁇ 1ref (A)]
  • the integrated angular velocity calculator 8a integrates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j to calculate a first cylinder integrated angular velocity ⁇ 1_i and a second cylinder integrated angular velocity ⁇ 2_j.
  • the inertial torque component removing unit 9a removes the inertial torque component obtained by desktop calculation from the first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j, and removes the first cylinder after removing the integrated angular velocity ⁇ 1'_i and the second cylinder after removing the integration
  • the angular velocity ⁇ 2′_j is calculated.
  • the inertial torque Tq1 for a single cylinder can be determined based on the connecting rod length L, crank radius R, offset e, crankshaft angular velocity ⁇ , and total mass m of the piston and connecting rod. it can.
  • this embodiment assumes a two-cylinder engine with unequally spaced explosions, and the synthetic inertia torque Tq obtained by shifting the phase of the inertia torque Tq1 for a single cylinder by 180 degrees and adding the two cylinders is shown in FIG. It becomes like six.
  • the synthetic inertial torque Tq can be approximated by the equation of motion of rotation of the following equation (1), where I is an inertial mass such as a piston, a connecting rod, or a crank.
  • the angular velocity change d ⁇ due to the synthetic inertia torque Tq is to be obtained in the present embodiment, and is obtained by converting the above equation (1) into the following equation (2).
  • the angular velocity change amount d ⁇ due to the inertial torque can be determined using the inertial torque Tq generated at a certain engine speed, the inertial mass I, and the required time dt required for unit angle rotation at the relevant engine speed. It becomes like (a).
  • a value obtained by integrating the relative angular velocity based on the compression top dead center of the engine is required. Therefore, the relative value d ⁇ ′ based on the value of the compression top dead center of the angular velocity change amount d ⁇ due to inertia torque It is sufficient to find the integrated value of. Further, with respect to the angular velocity change amount d ⁇ ′, it is necessary to perform the same processing as the noise removal method applied to the angular velocity of each crank angle.
  • the inertial torque component at each engine rotational speed is obtained by setting the integrated value of the angular velocity change amount d ⁇ 'in unit rotational speed, setting data in the pumping torque extraction device 100 and the ECU of each mass-produced vehicle, and multiplying this value by the reference angular velocity. It is determined by
  • FIG. 7B shows an example of extracting the pumping torque component (3) by removing the inertia torque component (2) from the integrated value (1) of the relative angular velocity.
  • the pumping torque component of each of the cylinders # 1 and # 2 depends on the engine speed and the throttle valve opening degree, and the pumping torque component when the throttle valve is fully closed is, for example, as shown in FIG.
  • the extraction of the pumping torque component is obtained, for example, in the form of a map based on the engine speed and the intake manifold pressure, using the engine speed as a parameter.
  • first and second cylinder pumping torques ⁇ 1′_i and ⁇ 2′_j determined as described above are common to each vehicle if they are the same vehicle type, the inertia torque component and the pumping torque component are the same for each vehicle type. Data are set in the ECU of the mass-produced vehicle M and used for correcting a misfire parameter.
  • each mass-production vehicle M is provided with the inter-dental error coefficient learning device 200, and the inter-dental error coefficient used to obtain the inter-dental error component is calculated and learned under the condition that the fuel is cut as one condition. Do.
  • the crank angular velocity measuring unit 5b obtains an angular velocity ⁇ .
  • the 720 degree filter processing unit 6b removes the angular velocity fluctuation component due to the load torque and the friction.
  • the relative angular velocity calculation unit 7b calculates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j.
  • the integrated angular velocity calculator 8b calculates first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j.
  • the inertial torque component removing unit 9b calculates integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after removal of the first and second cylinders from which the inertial torque component has been removed.
  • crank pulsator rotor 3 of the mass sales vehicle M includes an inter-tooth error
  • the post-removal integrated angular velocity ⁇ 1′_i, ⁇ 2′_j after the first and second cylinders is removed in addition to the pumping torque component. Contains ingredients.
  • the inter-dental error coefficient learning unit 10b registers the pumping torque component of each cylinder from the integrated angular velocity ⁇ 1′_i and ⁇ 2′_j after removal of the first and second cylinders in the ECU using the standard vehicle Mref in the ECU.
  • the first and second cylinder inter-teeth error components ⁇ 1 ′ ′ _ i and ⁇ 2 ′ ′ _ j are obtained by removing the data using the above data.
  • FIG. 9 shows an example of extracting the inter-dental error component (4) by removing the inertia torque component (2) and the pumping torque component (3) from the integrated value (1) of the relative angular velocity.
  • the first and second inter-tooth error coefficients Kpul1 are obtained by dividing the first and second inter-cylinder inter-tooth error components ⁇ 1 '' _ i and 2 ⁇ 2 '' _ j by the first cylinder reference angular velocity ⁇ ref1 and the second cylinder reference angular velocity ⁇ ref2, respectively.
  • the second inter-dental error coefficient Kpul2 is calculated and stored in the ECU as a learning result of the inter-dental error coefficient Kpul.
  • each mass sales vehicle M includes the misfire determination device 300, and calculates a misfire parameter during actual traveling to determine whether or not a misfire has occurred.
  • the crank angular velocity measurement unit 5b determines the angular velocity ⁇ .
  • the 720 degree filter processing unit 6b removes the angular velocity fluctuation component due to the load torque and the friction.
  • the relative angular velocity calculation unit 7b calculates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j.
  • the integrated angular velocity calculator 8b calculates first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j.
  • the inertia torque component removing unit 9b removes the inertia torque component, and calculates integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after the first and second cylinders are removed.
  • the pumping torque component removing unit 11b uses the data of the pumping torque component set in the ECU using the standard vehicle Mref from the integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after the first and second cylinder removal.
  • the integrated angular velocities ⁇ 1 ′ ′ _ i and ⁇ ⁇ 2 ′ ′ _ j after first and second cylinder removal are calculated.
  • the inter-tooth error component removing unit 12b is configured to calculate the first cylinder reference angular velocity ⁇ ref1 and the second cylinder inter-tooth error coefficient Kpul1 and Kpul2 that the inter-tooth error coefficient learning device 200 learns and stores in the ECU.
  • the first and second cylinder inter-tooth error components are calculated by multiplying the cylinder reference angular velocity ⁇ ref2.
  • a misfire parameter is calculated for each cylinder by subtracting the first and second cylinder inter-tooth error components from the first and second cylinder post-removal integrated angular velocities ⁇ 1 ′ ′ _ i and ⁇ 2 ′ ′ _ j.
  • the misfire determination unit 13b determines the presence or absence of a misfire based on the misfire parameter.
  • the present embodiment in the unequally spaced explosion engine or single cylinder engine, it is possible to remove the interdental error from the misfire parameter without measuring the error for each tooth of the pulsar rotor, and high accuracy based on the misfire parameter Misfire determination is possible.
  • the inertial torque component is described as being removed from the integrated angular velocity, but the present invention is not limited to this, and the inertial torque component can be finally removed from the integrated angular velocity.
  • the relationship between the crank angle and the angular velocity component resulting from the inertia torque may be obtained in advance, and the inertia torque component corresponding to the crank angle may be removed from the angular velocity before integration.
  • the relative angular velocity and its integrated angular velocity are obtained based on the reference angular velocity, and the post-removal integrated angular velocity is divided by the reference angular velocity detected near the compression top dead center of the engine to obtain the interdental error coefficient. It explained as what it asked for.
  • the present invention is not limited to this, and the relative angular velocity and its integrated angular velocity are obtained based on the average angular velocity of the cycle for evaluating misfire, the engine rotational speed, or values corresponding thereto. You may divide by rotation speed etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

不等間隔爆発エンジンや単気筒エンジンにおいても失火パラメータからクランクパルサロータの歯間誤差を除去して正確な失火判定を可能にする。 クランク角速度測定部(5)は、各クランク角の角速度を検知する。相対角速度計算部(7)は、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算する。積算角速度計算部(8)は、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する。慣性トルク成分除去部(9)およびポンピングトルク成分除去部(11)は、積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する。歯間誤差係数学習部(10)は、除去後積算角速度から歯間誤差係数を計算して学習する。歯間誤差成分除去部(12)は、歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算し、除去後積算角速度から歯間誤差成分を除去する。

Description

エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置
 本発明は、エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置に係り、特に、不等間隔爆発エンジンや単気筒エンジンに好適なエンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置に関する。
 四輪車両において、クランクパルスの発生時間間隔(クランクパルス間時間)から測定されるクランク角速度に基づいてエンジンの失火を判定する技術が知られている。ここで、失火判定のパラメータ(失火パラメータ)にはクランクパルサロータの歯間誤差が含まれることから、正確な失火判定のためにはクランクパルサロータの歯間誤差を除去する必要がある。
 特許文献1には、等間隔爆発エンジンにおいて慣性トルクに起因する角速度成分がTDCパルスの発生周期で変化することに着目したクランクパルサロータの歯間誤差除去方法が開示されている。
特開2008-111354号公報
 近年、修理性の向上や環境保護の観点から、自動二輪車においても失火判定技術の採用が検討されている。自動二輪車では、エンジンの性能や特徴に対する多様性の要求から、不等間隔爆発エンジンや単気筒エンジンが多数採用されている。
 しかしながら、特許文献1のクランクパルサロータの歯間誤差除去方法は、等間隔爆発エンジンの特性を利用した技術であるため、不等間隔爆発エンジンや単気筒エンジンにその原理を適用することができない。
 本発明の目的は、上記の技術課題を解決し、不等間隔爆発エンジンや単気筒エンジンにおいても失火パラメータからクランクパルサロータの歯間誤差を除去して正確な失火判定を可能にする、エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置を提供することにある。
 上記の目的を達成するために、本発明のエンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置は、以下の各構成を具備した点に特徴がある。
 (1) 本発明のクランクパルサロータの歯間誤差除去方法は、クランクパルス間時間から各クランク角の角速度を検知し、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算し、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算し、前記除去後積算角速度から歯間誤差係数を計算して学習し、前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算し、除去後積算角速度から歯間誤差成分を除去するようにした。
 (2) 燃焼トルクが実質的に発生しない状態で角速度を検知するようにした。
 (3) 除去後積算角速度をエンジンの圧縮上死点近傍で検知された基準角速度で除して歯間誤差係数を計算するようにした。
 (4)歯間誤差係数にエンジンの圧縮上死点近傍で検知された基準角速度を乗じて各エンジン回転数における歯間誤差成分を計算するようにした。
 (5) 角速度の検知結果から、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルク並びにエンジンの摺動部品のフリクションに起因する角速度変動成分(第1角速度変動成分)を除去し、相対角速度を計算するようにした。
 (6) 歯間誤差が実質的にゼロの理想クランクパルサロータを装備する標準車両を、シャーシにて燃焼トルクが実質的に発生しない状態で定常運転し、各クランク角の角速度を検知し、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算し、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、前記積算角速度から慣性トルク成分を除去してポンピングトルク成分を求め、ECUにデータ設定しポンピングトルク成分として用いるようにした。
 (7) 本発明のクランクパルサロータの歯間誤差除去装置は、クランクパルス間時間から各クランク角の角速度を検知する手段と、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算する手段と、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算する手段と、除去後積算角速度から歯間誤差成分を除去する手段を具備した。
 (8) 本発明のエンジン車両は、クランクパルス間時間から各クランク角の角速度を検知する手段と、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算する手段と、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算する手段と、除去後積算角速度から歯間誤差成分を除去する手段を具備した。
 (1) 本発明のクランクパルサロータの歯間誤差除去方法は、クランクパルス間時間から各クランク角の角速度を検知し、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算し、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算し、前記除去後積算角速度から歯間誤差係数を計算して学習し、前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算し、除去後積算角速度から各エンジン回転数における歯間誤差成分を除去するので、不等間隔爆発エンジンや単気筒エンジンにおいても、相対角速度の積算値を失火パラメータとして採用するにあたり、クランクパルサロータの歯間毎に誤差を計測することなく失火パラメータから歯間誤差を除去することが可能となり、高精度な失火判定が可能となる。
 (2) 燃焼トルクが実質的に発生しない状態で角速度を検知するようにしたので、燃焼トルク影響を排除することが可能となる。
 (3)除去後積算角速度をエンジンの圧縮上死点近傍で検知された基準角速度で除して歯間誤差係数を計算するようにしたので、エンジン回転数に依存しない歯間誤差係数が求められる。
 (4)歯間誤差係数にエンジンの圧縮上死点近傍で検知された基準角速度を乗じて歯間誤差成分を算出するようにしたので、任意のエンジン回転数における歯間誤差成分が算出可能となる。
 (5) 角速度の検知結果から第1角速度変動成分を除去して相対角速度を計算するようにしたので、第1角速度変動成分の影響を排除することが可能となる。
 (6) 歯間誤差が実質的にゼロの理想クランクパルサロータを装備する標準車両をシャーシにて燃焼トルクが実質的に発生しない状態で定常運転し、各クランク角の角速度を検知し、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算し、所定のクランク角範囲内で相対角速度を積算して積算角速度を計算し、積算角速度から慣性トルク成分を除去してポンピングトルク成分を求め、ECUにデータ設定しポンピングトルク成分として用いるようにしたので、量販車において検知された相対角速度の積算値からポンピングトルク成分を除去することが可能になる。
 (7) 本発明のクランクパルサロータの歯間誤差除去装置は、クランクパルス間時間から各クランク角の角速度を検知する手段と、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算する手段と、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算する手段と、除去後積算角速度から各エンジン回転数における歯間誤差成分を除去する手段を具備したので、不等間隔爆発エンジンや単気筒エンジンにおいても、相対角速度の積算値を失火パラメータとして採用するにあたり、クランクパルサロータの歯間毎に誤差を計測することなく失火パラメータから歯間誤差を除去することが可能となり、高精度な失火判定が可能となる。
 (8) 本発明のエンジン車両は、クランクパルス間時間から各クランク角の角速度を検知する手段と、各クランク角の角速度に基づいてエンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角の相対角速度を計算する手段と、所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、前記歯間誤差係数を用いて各エンジン回転数の歯間誤差成分を計算する手段と、除去後積算角速度から各エンジン回転数の歯間誤差成分を除去する手段を具備したので、不等間隔爆発エンジンや単気筒エンジンにおいても、相対角速度の積算値を失火パラメータとして採用するにあたり、クランクパルサロータの歯間毎に誤差を計測することなく失火パラメータから歯間誤差を除去することが可能となり、高精度な失火判定が可能となる。
本発明を適用した自動二輪車両ならびにクランクパルサロータの歯間誤差除去方法および装置の機能ブロック図である。 シャーシにて燃料カット状態で定常運転した時の各クランク角の角速度の例を示した図である。 720度フィルタ処理部の機能を説明するための図である。 相対角速度計算部の機能を説明するための図である。 積算角速度計算部の機能を説明するための図である。 慣性トルクの机上計算結果の例を示した図である。 慣性トルク成分除去部の機能を説明するための図である。 スロットルバルブ全閉時のポンピングトルク成分の例を示した図である。 歯間誤差除去部の機能を説明するための図である。 クランクパルスの発生毎に検出される角速度から相対角速度を求め、その積算値を失火パラメータとする失火検知手法の例を示した図(失火無し)である。 クランクパルスの発生毎に検出される角速度から相対角速度を求め、その積算値を失火パラメータとする失火検知手法の例を示した図(失火有り)である。
 以下、図面を参照して本発明の実施の形態について詳細に説明する。ここでは初めに、クランク角速度に基づく失火検知手法および本発明の概要について説明し、次いで、その実施形態について詳細に説明する。
 図10,11は、クランクパルスの発生毎に検出される角速度から相対角速度を求め、その積算値(積算角速度)を失火パラメータとする失火検知手法の例を示した図である。ここで相対角速度は、エンジンの各気筒の圧縮上死点近傍で検出される基準角速度をクランクパルスの発生毎に検出される角速度から減じることで算出される[各図(a)]。
 図10,11における#1,#2は、点火順に2つの気筒を識別するために付した気筒識別子であり、図10は、#1,#2のいずれの気筒でも正常に燃焼が行われている場合を示し、図11は、#1の気筒のみで失火が発生している場合を示している。
 相対角速度は、エンジンの圧縮上死点後の燃焼行程において正常に燃焼が行われれば増速するが失火が発生すると減速する[各図(b)]。したがって、相対角速度を所定のクランク角範囲内で積算することにより得られる積算角速度は、正常に燃焼が行われた気筒では正の値となり失火が発生した気筒では負の値となるので、失火気筒を判定するパラメータとして利用できる[各図(c)]。
 しかしながら、前記積算角速度には、燃焼トルク以外にクランクパルサロータの歯間誤差、センサギャップの動的変化などにより生じるノイズ、負荷トルク、フリクション、慣性トルクおよびポンピングトルク等に起因して変動する角速度成分が含まれる。したがって、失火検知を正確に行うためには、前記積算角速度からこれらの変動成分を全て除去する必要がある。
 これらの変動成分のうち、ノイズ、負荷トルク、フリクションおよび慣性トルクついては、統計処理やエンジン制御あるいは机上計算等により除去する手法が知られているが、ポンピングトルクについては、その有効な除去手法が確立されていない。
 ここでポンピングトルクとは、エンジンの吸気・圧縮・膨張・排気の各行程においてピストンのポンプ動作により生じるトルクであり、エンジンの吸気行程と排気工程に発生するエネルギー損失を表すポンピングロスとは異なる指標である。
 そこで、本発明では失火検知を行う車種毎に、歯間誤差が実質的にゼロの理想クランクパルサロータを備えた標準車両Mrefを予め用意することで歯間誤差を排除した環境を用意する。更に、この標準車両Mrefを用いて上述の適宜の手法でポンピングトルク以外の変動成分を除去することで、ポンピングトルク成分が支配的な積算角速度を求め、当該車種に固有のポンピングトルク成分として抽出し、これを各量販車両のECUにデータ設定する。
 この結果、各量販車両において、ノイズ、負荷トルク、フリクションおよび慣性トルクは上述の適宜の手法で除去し、ポンピングトルクはECUに設定したデータに基づいて除去することが可能となる。つまり、クランクパルサロータの歯間誤差以外の変動成分について除去することが可能となる。クランクパルサロータの歯間誤差については、予め歯間誤差以外の変動成分を全て排除した状態で測定した積算角速度に基づいて歯間誤差係数を計算し学習することで除去することが可能となる。
 次いで、図面を参照して本発明の実施の形態について詳細に説明する。図1は、本発明を適用したエンジン車両ならびにそのクランクパルサロータの歯間誤差除去方法および装置を説明するためのブロック図である。ここでは、4サイクル2気筒の不等間隔爆発エンジン(爆発間隔:180度540度)を搭載した自動二輪車を例にして説明する。
 標準車両Mrefは、不等間隔爆発エンジンEを搭載し、そのクランクシャフト2には歯間誤差が実質的にゼロの理想クランクパルサロータ3refが装備され、ポンピングトルク成分抽出装置100を有する。
 ポンピングトルク成分抽出装置100において、クランク角速度測定部5aは、燃焼トルクが実質的に発生しない状態で角速度を測定するため、燃料カット状態で理想クランクパルサロータ3refのクランクパルス間時間をクランクパルサセンサ4aで測定し、各クランク角の角速度を計算する。各クランク角の角速度には、周知の移動平均化処理等が適用されてノイズ成分が除去される。図2は、シャーシにて燃料カット状態で定常運転したときの各クランク角の角速度を示している。
 720度フィルタ処理部6aは、角速度ωの計算結果を対象に1サイクル期間における線形変化分をキャンセルし、比較的周期の短い変動成分を抽出する。これにより、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルクあるいはエンジンの摺動部品のフリクションによる角速度変動成分を除去できる。
 図3は、燃焼トルクが発生しているが負荷トルクにより減速したサイクルに720度フィルタを適用した例を示している。ポンピングトルク成分の抽出はシャーシでの定常運転にて行うため、1サイクル期間における角速度の線形変化分はほとんどない。
 上記のフィルタ処理により、燃焼トルクが実質的に無い状態で前記変動成分が除去されるので、得られる角速度ωには、実質的に慣性トルクとポンピングトルクによる変動成分のみが含まれることになる。
 相対角速度計算部7aは、図4に示したように、第1気筒(#1)の圧縮上死点(#1TDC:クランク角0度)近傍で測定された角速度ωを基準角速度ω1refとして[同図(a)]、当該#1TDCから180度のクランク角範囲内の各クランク角iで測定された角速度ω1_iと基準角速度ω1refとの差分を第1気筒相対角速度ωω1_i(=ω1_i-ω1ref)として求める[同図(b)]。
 同様に、第2気筒(#2)の圧縮上死点(#2TDC:クランク角180度)近傍で測定された角速度ωを基準角速度ω2refとして、当該#2TDCから180度のクランク角範囲内の各クランク角jで測定された角速度ω2_jと基準角速度ωrefとの差分を第2気筒相対角速度ωω2_j(=ω2_j-ω2ref)として求める。
 積算角速度計算部8aは、図5に示したように、前記第1および第2気筒相対角速度ωω1_i,ωω2_jをそれぞれ積算し、第1気筒積算角速度Σωω1_iおよび第2気筒積算角速度Σωω2_jを算出する。
 慣性トルク成分除去部9aは、前記第1および第2気筒積算角速度Σωω1_i,Σωω2_jから机上計算により求めた慣性トルク成分を除去し、第1気筒除去後積算角速度Σωω1'_iおよび第2気筒除去後積算角速度Σωω2'_jを算出する。
 単一気筒分の慣性トルクTq1は、例えば特許文献1に示されるように、コンロッド長L、クランク半径R、オフセットe、クランク軸の角速度ω、ピストン及びコンロッドの合計質量mに基づいて求めることができる。一方、本実施形態は不等間隔爆発の2気筒エンジンを想定しており、単一気筒分の慣性トルクTq1の位相を180度ずらして2気筒分を加算して求まる合成慣性トルクTqは、図6のようになる。
 合成慣性トルクTqは、ピストン・コンロッド・クランクなどの慣性マスをIとして、次式(1)の回転の運動方程式で近似できる。
    Tq=I×(dω/dt) …(1)
 ここで、本実施形態で求めるべきは合成慣性トルクTqによる角速度変化dωであり、上式(1)を次式(2)のように変換して求められる。
    dω=Tq×(dt/I) …(2)
 すなわち、慣性トルクによる角速度変化量dωは、あるエンジン回転数において発生する慣性トルクTq、慣性マスIおよび当該エンジン回転数における単位角度回転に要する所要時間dtを用いて求めることができ、例えば図7(a)のようになる。
 そして本実施形態では、エンジンの圧縮上死点を基準とした相対角速度を積算した値が必要となるので、慣性トルクによる角速度変化量dωの圧縮上死点の値を基準とした相対値dω'の積算値を求めればよい。また、前記角速度変化量dω'については、各クランク角の角速度に適用したノイズ除去手法と同じ処理を行う必要がある。各エンジン回転数における慣性トルク成分は、前記角速度変化量dω'の積算値を単位回転数で求めてポンピングトルク抽出装置100および各量産車両のECUにデータ設定し、この値に基準角速度を乗じることで求められる。
 本実施形態では、以上のようにして第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jが求まると、これらが各気筒#1,#2のポンピングトルク成分として抽出される。図7(b)は、相対角速度の積算値(1)から慣性トルク成分(2)を除去してポンピングトルク成分(3)を抽出する例を示している。
 各気筒#1,#2のポンピングトルク成分は、エンジン回転数およびスロットルバルブ開度に依存し、スロットルバルブ全閉時のポンピングトルク成分は、例えば図8のようになる。前記ポンピングトルク成分の抽出はエンジン回転数をパラメータとして、例えばエンジン回転数とインテークマニホールド圧力によるマップ形式で求められる。
 上記のようにして求められた第1および第2気筒ポンピングトルクΣωω1'_i,Σωω2'_jは、同一車種であれば各車両に共通なので、前記慣性トルク成分およびポンピングトルク成分を車種が同一の各量産車両MのECUにデータ設定し、失火パラメータの補正に用いる。
 図1へ戻り、各量産車両Mは歯間誤差係数学習装置200を備え、燃料カット状態であることを一つの条件として、歯間誤差成分を求めるために用いる歯間誤差係数を算出して学習する。
 歯間誤差係数学習装置200において、クランク角速度測定部5bは、角速度ωを求める。720度フィルタ処理部6bは、負荷トルクおよびフリクションによる角速度変動成分を除去する。相対角速度計算部7bは、第1および第2気筒相対角速度ωω1_i,ωω2_jを算出する。積算角速度計算部8bは、第1および第2気筒積算角速度Σωω1_i,Σωω2_jを算出する。慣性トルク成分除去部9bは、慣性トルク成分が除去された第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jを算出する。
 量販車両Mのクランクパルサロータ3には歯間誤差が含まれているので、前記第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jには、ポンピングトルク成分に加えて歯間誤差成分が含まれる。
 歯間誤差係数学習部10bは、前記第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jから各気筒のポンピングトルク成分を、前記標準車両Mrefを用いてECUに登録したポンピングトルク成分のデータを用いて除去することで、第1および第2気筒歯間誤差成分Σωω1''_i,Σωω2''_jを求める。図9は、相対角速度の積算値(1)から慣性トルク成分(2)およびポンピングトルク成分(3)を除去して歯間誤差成分(4)を抽出する例を示している。
 そして、第1および第2気筒歯間誤差成分Σωω1''_i,Σωω2''_jを、それぞれ第1気筒基準角速度ωref1および第2気筒基準角速度ωref2で除することで、第1歯間誤差係数Kpul1および第2歯間誤差係数Kpul2を算出し、これらを歯間誤差係数Kpulの学習結果としてECUに記憶する。
 図1へ戻り、各量販車両Mは、失火判定装置300を備え、実走行時に失火パラメータを算出して失火発生の有無を判定する。
 失火判定装置300において、クランク角速度測定部5bは、角速度ωを求める。720度フィルタ処理部6bは、負荷トルクおよびフリクションによる角速度変動成分を除去する。相対角速度計算部7bは、第1および第2気筒相対角速度ωω1_i,ωω2_jを算出する。積算角速度計算部8bは、第1および第2気筒積算角速度Σωω1_i,Σωω2_jを算出する。慣性トルク成分除去部9bは、慣性トルク成分を除去し、第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jを算出する。
 ポンピングトルク成分除去部11bは、前記第1および第2気筒除去後積算角速度Σωω1'_i,Σωω2'_jからポンピングトルク成分を、前記標準車両Mrefを用いてECUに設定したポンピングトルク成分のデータを用いて除去し、第1および第2気筒除去後積算角速度Σωω1''_i,Σωω2''_jを算出する。
 歯間誤差成分除去部12bは、前記歯間誤差係数学習装置200が学習してECUに記憶した第1および第2気筒歯間誤差係数Kpul1,Kpul2に、それぞれ第1気筒基準角速度ωref1および第2気筒基準角速度ωref2を乗じて第1および第2気筒歯間誤差成分を算出する。そして、前記第1および第2気筒歯間誤差成分を前記第1および第2気筒除去後積算角速度Σωω1''_i,Σωω2''_jから減じることで気筒毎に失火パラメータを算出する。失火判定部13bは、失火パラメータに基づいて失火の有無を判定する。
 本実施形態によれば、不等間隔爆発エンジンや単気筒エンジンにおいて、パルサロータの歯間毎に誤差を計測することなく失火パラメータから歯間誤差を除去することが可能となり、失火パラメータに基づく高精度な失火判定が可能となる。
 なお、上記の実施形態では、慣性トルク成分を積算角速度から除去するものとして説明したが、本発明はこれのみに限定されるものではなく、最終的に積算角速度から慣性トルク成分を除去できるのであれば、予めクランク角と慣性トルクに起因する角速度成分との関係を求めておき、積算する前の角速度からそのクランク角に対応する慣性トルク成分を除去するようにしても良い。
 また、上記の実施形態では、基準角速度に基づいて相対角速度およびその積算角速度をもとめ、除去後積算角速度を、エンジンの圧縮上死点近傍で検知された基準角速度で除して歯間誤差係数を求めるものとして説明した。しかしながら、本発明はこれのみに限定されるものではなく、失火を評価するサイクルの平均角速度やエンジン回転数またはこれらに相当する値に基づいて相対角速度およびその積算角速度をもとめ、前記平均角速度やエンジン回転数等で除するようにしても良い。
 2…クランクシャフト,3…クランクパルサロータ,3ref…理想クランクパルサロータ,4…クランクパルサセンサ,5a,5b…クランク角速度測定部,6a,6b…720度フィルタ処理部,7a,7b…相対角速度計算部,8a,8b…積算角速度計算部,9a,9b…慣性トルク成分除去部,10b…歯間誤差係数学習部,11b…ポンピングトルク成分除去部,12b…歯間誤差成分除去部,13b…失火判定部,100…ポンピングトルク成分抽出装置,200…歯間誤差係数学習装置,300…失火判定装置
 
 

Claims (22)

  1.  クランクパルス間時間から各クランク角の角速度を検知する手段(4b,5b)と、
     各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算する手段(7b)と、
     所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段(8b)と、
     前記積算角速度または積算前の角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段(9b,11b)と、
     前記除去後積算角速度から歯間誤差係数を計算して学習する手段(10b)と、
     前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算する手段(12b)と、
     除去後積算角速度から歯間誤差成分を除去する手段(12b)とを具備したことを特徴とする、クランクパルサロータの歯間誤差除去装置。
  2.  前記角速度を検知する手段は、燃焼トルクが実質的に発生しない状態で角速度を検知することを特徴とする、請求項1に記載のクランクパルサロータの歯間誤差除去装置。
  3.  前記歯間誤差係数を計算して学習する手段は、前記除去後積算角速度を前記基準角速度で除して歯間誤差係数を計算することを特徴とする、請求項1または2に記載のクランクパルサロータの歯間誤差除去装置。
  4.  前記歯間誤差成分を計算する手段は、各エンジン回転数における歯間誤差成分を、前記歯間誤差係数に前記基準角速度を乗じて算出することを特徴とする、請求項1ないし3のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
  5.  前記角速度の検知結果から、車載エンジンに生じ得る第1角速度変動成分を除去する手段(6b)を具備し、
     前記相対角速度を計算する手段は、前記第1角速度変動成分を除去された角速度を対象に相対角速度を計算することを特徴とする、請求項1ないし4のいずれかにに記載のクランクパルサロータの歯間誤差除去装置。
  6.  前記第1角速度変動成分が、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルク並びにエンジンの摺動部品のフリクションに起因する角速度変動成分であることを特徴とする、請求項5に記載のクランクパルサロータの歯間誤差除去装置。
  7.  前記除去後積算角速度を計算する手段は、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去することを特徴とする請求項1ないし6のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
  8.  前記エンジンが不等間隔爆発エンジンであることを特徴とする、請求項1ないし7のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
  9.  前記エンジンが単気筒エンジンであることを特徴とする、請求項1ないし7のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
  10.  クランクパルス間時間から各クランク角における角速度を検知し、
     各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算し、
     所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、
     前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算し、
     前記除去後積算角速度から歯間誤差係数を計算して学習し、
     前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算し、
     除去後積算角速度から歯間誤差成分を除去することを特徴とする、クランクパルサロータの歯間誤差除去方法。
  11.  燃焼トルクが実質的に発生しない状態で角速度を検知することを特徴とする、請求項10に記載のクランクパルサロータの歯間誤差除去方法。
  12.  前記除去後積算角速度を前記基準角速度で除して歯間誤差係数を計算することを特徴とする、請求項10または11に記載のクランクパルサロータの歯間誤差除去方法。
  13.  各エンジン回転数における歯間誤差成分を、前記歯間誤差係数に前記基準角速度を乗じて算出することを特徴とする、請求項10ないし12のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  14.  前記角速度の検知結果から、車載エンジンに生じ得る第1角速度変動成分を除去し、当該第1角速度変動成分を除去された角速度を対象に相対角速度を計算することを特徴とする請求項10ないし13のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  15.  前記第1角速度変動成分が、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルク並びにエンジンの摺動部品のフリクションに起因する角速度変動成分であることを特徴とする請求項14に記載のクランクパルサロータの歯間誤差除去方法。
  16.  前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去することを特徴とする請求項10ないし15のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  17.  前記エンジンが不等間隔爆発エンジンであることを特徴とする、請求項10ないし16のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  18.  前記エンジンが単気筒エンジンであることを特徴とする、請求項10ないし16のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  19.  歯間誤差が実質的にゼロの理想クランクパルサロータを装備する標準車両の各クランク角における角速度を検知し、
     各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算し、
     所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、
     前記積算角速度から慣性トルク成分を除去してポンピングトルク成分を求め、
     ECUにデータ設定しポンピングトルク成分として用いることを特徴とする、請求項10ないし18のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
  20.  クランクパルス間時間から各クランク角の角速度を検知する手段と、
     各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算する手段と、
     所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、
     前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、
     前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、
     前記歯間誤差係数を用いて各エンジン回転数の歯間誤差成分を計算する手段と、
     除去後積算角速度から歯間誤差成分を除去する手段
    を具備したことを特徴とする、エンジン車両。
  21.  燃焼トルクが実質的に発生しない状態で検知された角速度に基づいて計算された前記除去後積算角速度を歯間誤差成分とし、当該歯間誤差成分を前記基準角速度で除して歯間誤差係数を計算して学習し、各エンジン回転数における歯間誤差成分を、前記歯間誤差係数と前記基準角速度との積から求めることを特徴とする、請求項20に記載のエンジン車両。
  22.  除去後積算角速度から歯間誤差成分を除去した値を失火パラメータとして失火判定を行うことを特徴とする、請求項21に記載のエンジン車両。
PCT/JP2017/013611 2017-03-31 2017-03-31 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 WO2018179340A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780088872.XA CN110494640B (zh) 2017-03-31 2017-03-31 机动车及曲轴脉冲发生器转子的齿间误差消除方法及装置
JP2019508110A JP6818127B2 (ja) 2017-03-31 2017-03-31 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置
PCT/JP2017/013611 WO2018179340A1 (ja) 2017-03-31 2017-03-31 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置
EP17903534.0A EP3604779B1 (en) 2017-03-31 2017-03-31 Engine vehicle, inter-gear teeth error removal method for crank pulsar rotor, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013611 WO2018179340A1 (ja) 2017-03-31 2017-03-31 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置

Publications (1)

Publication Number Publication Date
WO2018179340A1 true WO2018179340A1 (ja) 2018-10-04

Family

ID=63674537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013611 WO2018179340A1 (ja) 2017-03-31 2017-03-31 エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置

Country Status (4)

Country Link
EP (1) EP3604779B1 (ja)
JP (1) JP6818127B2 (ja)
CN (1) CN110494640B (ja)
WO (1) WO2018179340A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085890A (ja) * 2017-11-02 2019-06-06 株式会社デンソー エンジン用失火判定装置及び車両
WO2020192688A1 (zh) * 2019-03-26 2020-10-01 武汉理工大学 一种汽车齿圈角速度测量误差消除方法与装置
KR102213233B1 (ko) * 2019-11-28 2021-02-08 주식회사 현대케피코 단 기통 엔진의 실화 진단 시스템 및 실화 진단 방법
EP3916398A1 (en) 2020-05-29 2021-12-01 Honda Motor Co., Ltd. Crank angular velocity measuring device and misfire detection device
JP7566825B2 (ja) 2022-07-21 2024-10-15 ヤマハ発動機株式会社 独立スロットル型の2-4気筒エンジンユニット

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7567518B2 (ja) * 2021-02-01 2024-10-16 セイコーエプソン株式会社 減速機の角度伝達誤差補正方法およびロボットシステム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176590A (ja) * 1996-12-17 1998-06-30 Toyota Motor Corp 多気筒内燃機関の出力変動検出方法
JPH10231749A (ja) * 1996-12-19 1998-09-02 Toyota Motor Corp 内燃機関の制御装置
JP2004536993A (ja) * 2001-07-23 2004-12-09 インターナショナル エンジン インテレクチュアル プロパティー カンパニー リミテッド ライアビリティ カンパニー エンジントルク計算
JP2008111354A (ja) 2006-10-30 2008-05-15 Honda Motor Co Ltd 内燃機関のクランク角速度検出装置
JP2014199040A (ja) * 2013-03-29 2014-10-23 本田技研工業株式会社 エンジン制御装置
JP2016070255A (ja) * 2014-10-01 2016-05-09 川崎重工業株式会社 失火判定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59205028D1 (de) * 1992-08-14 1996-02-22 Siemens Ag Verfahren zur Erkennung und Korrektur von Fehlern bei der Zeitmessung an sich drehenden Wellen
JP3675049B2 (ja) * 1996-08-09 2005-07-27 株式会社デンソー 内燃機関の失火検出装置
DE19540674C2 (de) * 1995-10-31 1999-01-28 Siemens Ag Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades
DE10017107A1 (de) * 2000-04-06 2001-10-18 Bosch Gmbh Robert Verfahren zur Kompensation der Drehunförmigkeit bei der Drehzahlerfassung
CN100580241C (zh) * 2005-12-27 2010-01-13 本田技研工业株式会社 内燃机的失火检测装置
DE102010003561A1 (de) * 2010-03-31 2011-10-06 Robert Bosch Gmbh Verfahren zur systematischen Behandlung von Fehlern
CN102374061B (zh) * 2010-08-13 2014-01-22 长春易控汽车电子有限公司 发动机曲轴齿形误差学习方法
DE102014220509A1 (de) * 2014-10-09 2016-04-14 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung der Lage des Zylinderkolbens anhand eines hochaufgelösten Körperschallsignals oder Drehzahlsignals
JP6164432B2 (ja) * 2015-05-14 2017-07-19 トヨタ自動車株式会社 内燃機関の失火判定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176590A (ja) * 1996-12-17 1998-06-30 Toyota Motor Corp 多気筒内燃機関の出力変動検出方法
JPH10231749A (ja) * 1996-12-19 1998-09-02 Toyota Motor Corp 内燃機関の制御装置
JP2004536993A (ja) * 2001-07-23 2004-12-09 インターナショナル エンジン インテレクチュアル プロパティー カンパニー リミテッド ライアビリティ カンパニー エンジントルク計算
JP2008111354A (ja) 2006-10-30 2008-05-15 Honda Motor Co Ltd 内燃機関のクランク角速度検出装置
JP2014199040A (ja) * 2013-03-29 2014-10-23 本田技研工業株式会社 エンジン制御装置
JP2016070255A (ja) * 2014-10-01 2016-05-09 川崎重工業株式会社 失火判定装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085890A (ja) * 2017-11-02 2019-06-06 株式会社デンソー エンジン用失火判定装置及び車両
WO2020192688A1 (zh) * 2019-03-26 2020-10-01 武汉理工大学 一种汽车齿圈角速度测量误差消除方法与装置
KR102213233B1 (ko) * 2019-11-28 2021-02-08 주식회사 현대케피코 단 기통 엔진의 실화 진단 시스템 및 실화 진단 방법
EP3916398A1 (en) 2020-05-29 2021-12-01 Honda Motor Co., Ltd. Crank angular velocity measuring device and misfire detection device
JP7566825B2 (ja) 2022-07-21 2024-10-15 ヤマハ発動機株式会社 独立スロットル型の2-4気筒エンジンユニット

Also Published As

Publication number Publication date
EP3604779B1 (en) 2021-04-14
EP3604779A4 (en) 2020-04-15
JP6818127B2 (ja) 2021-01-20
CN110494640A (zh) 2019-11-22
JPWO2018179340A1 (ja) 2019-12-12
CN110494640B (zh) 2022-03-08
EP3604779A1 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
WO2018179340A1 (ja) エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置
JP4312762B2 (ja) 内燃機関におけるミスファイアの検出
JP3479090B2 (ja) 多気筒エンジンの燃焼状態診断装置
JP5099258B2 (ja) 内燃機関のトルク推定装置
US5699253A (en) Nonlinear dynamic transform for correction of crankshaft acceleration having torsional oscillations
US10309872B2 (en) Misfire determination apparatus for internal combustion engine
JP2009503478A (ja) 内燃機関のシャフトにおけるシリンダ個別の回転特性量を求めるための方法
JP6658588B2 (ja) 内燃機関の失火検出装置
US10788397B2 (en) Engine misfire determination device and vehicle
JP2009541629A (ja) ミスファイアを検出する方法および相応する装置
US10794314B2 (en) Unequal interval combustion engine misfire determination device and vehicle
US7540185B2 (en) System and method for detecting engine misfires
Hamedović et al. IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure
WO2018179341A1 (ja) 単気筒エンジンの失火検知装置および方法ならびに車両
US6212945B1 (en) Method and apparatus for combustion quality diagnosis and control utilizing synthetic measures of combustion quality
Chen et al. Estimation of engine rotational dynamics using Kalman filter based on a kinematic model
US5394742A (en) Method for recognizing abnormal combustions in the cylinder of an internal-combustion engine
Kimmich et al. Model based fault detection for the injection, combustion and engine-transmission
JP7092932B2 (ja) クランク角速度測定装置および失火判定装置
KR102554010B1 (ko) 엔진의 실화 진단 방법 및 장치
EP0948739A1 (fr) Procede de calcul du couple d'un moteur thermique a injection commandee electroniquement
KR102119852B1 (ko) 단기통 4행정 엔진의 실화 진단 방법 및 장치
FR2950655A1 (fr) Procede d'evaluation des couples instantanes des cylindres d'un moteur a combustion interne.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508110

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017903534

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017903534

Country of ref document: EP

Effective date: 20191031