WO2018179340A1 - エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 - Google Patents
エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 Download PDFInfo
- Publication number
- WO2018179340A1 WO2018179340A1 PCT/JP2017/013611 JP2017013611W WO2018179340A1 WO 2018179340 A1 WO2018179340 A1 WO 2018179340A1 JP 2017013611 W JP2017013611 W JP 2017013611W WO 2018179340 A1 WO2018179340 A1 WO 2018179340A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angular velocity
- inter
- component
- error
- engine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/028—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0097—Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2474—Characteristics of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1002—Output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1015—Engines misfires
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/14—Timing of measurement, e.g. synchronisation of measurements to the engine cycle
Definitions
- the present invention relates to an engine vehicle and an inter-tooth error removal method and apparatus for a crank pulsar rotor, and more particularly to an engine vehicle suitable for non-uniform explosion engines and single cylinder engines and an inter-tooth error removal method and apparatus for a crank pulsar rotor. .
- misfire parameter the parameter (misfire parameter) of the misfire determination includes the inter-tooth error of the crank pulsar rotor, it is necessary to remove the inter-tooth error of the crank pulsar rotor for accurate misfire determination.
- Patent Document 1 discloses an inter-tooth error removal method for a crank pulser rotor focused on the change in angular velocity component caused by inertia torque in the equal interval explosion engine with the generation cycle of TDC pulses.
- An object of the present invention is an engine vehicle that solves the above technical problems and enables accurate misfire determination by removing an inter-tooth error of a crank pulsar rotor from misfire parameters even in unequally spaced explosion engines and single cylinder engines It is another object of the present invention to provide an inter-tooth error removal method and apparatus for a crank pulsar rotor.
- the engine vehicle of the present invention and the method and apparatus for removing inter-tooth error of a crank pulsar rotor are characterized in that they have the following configurations.
- the method for removing the inter-tooth error of the crank pulser rotor detects the angular velocity of each crank angle from the time between crank pulses, and is detected near the compression top dead center of the engine based on the angular velocity of each crank angle
- the relative angular velocity of each crank angle to the reference angular velocity is calculated, the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity, and the inertial torque component and the pumping torque component are removed from the integrated angular velocity
- the integrated angular velocity is calculated, the inter-dental error coefficient is calculated and learned from the post-removal integrated angular velocity, the inter-dental error component at each engine speed is calculated using the inter-dental error coefficient, and the post-removal integrated angular velocity is toothed The error component was removed.
- the inter-tooth error coefficient is calculated by dividing the integrated angular velocity after removal by the reference angular velocity detected near the compression top dead center of the engine.
- the interdental error component at each engine speed is calculated by multiplying the interdental error coefficient by the reference angular velocity detected near the compression top dead center of the engine.
- a standard vehicle equipped with an ideal crank pulsar rotor with substantially zero interdental error is operated in a steady state with substantially no combustion torque generated by the chassis, and the angular velocity at each crank angle is detected. Based on the angular velocity of the crank angle, the relative angular velocity of each crank angle with respect to the reference angular velocity detected near the compression top dead center of the engine is calculated, and the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity The inertia torque component is removed from the integrated angular velocity to obtain the pumping torque component, and data is set in the ECU and used as the pumping torque component.
- the inter-tooth error elimination device of the crank pulsar rotor detects near the compression top dead center of the engine based on the means for detecting the angular velocity of each crank angle from the time between crank pulses
- a means for calculating the relative angular velocity of each crank angle with respect to the determined reference angular velocity a means for integrating the relative angular velocity within a predetermined crank angle range to calculate an integrated angular velocity, an inertial torque component and a pumping torque component from the integrated angular velocity
- means for removing the interdental error component from the integrated angular velocity after removal is
- the engine vehicle of the present invention comprises means for detecting the angular velocity of each crank angle from the time between crank pulses, and each crank relative to a reference angular velocity detected near the compression top dead center of the engine based on the angular velocity of each crank angle.
- Means for calculating a relative angular velocity at an angle and means for calculating an integrated angular velocity by integrating the relative angular velocity within a predetermined crank angle range, and removing and integrating an inertial torque component and a pumping torque component from the integrated angular velocity
- Means for calculating an angular velocity means for calculating and learning an interdental error coefficient from the post-removal integrated angular velocity, and means for calculating an interdental error component at each engine speed using the interdental error coefficient, elimination
- a means is provided for removing the interdental error component from the post-accumulated angular velocity.
- the method for removing the inter-tooth error of the crank pulser rotor detects the angular velocity of each crank angle from the time between crank pulses, and is detected near the compression top dead center of the engine based on the angular velocity of each crank angle
- the relative angular velocity of each crank angle to the reference angular velocity is calculated, the relative angular velocity is integrated within a predetermined crank angle range to calculate an integrated angular velocity, and the inertial torque component and the pumping torque component are removed from the integrated angular velocity
- the integrated angular velocity is calculated, the inter-dental error coefficient is calculated and learned from the post-removal integrated angular velocity, the inter-dental error component at each engine speed is calculated using the inter-dental error coefficient, and each post-removal integrated angular velocity is calculated Since the inter-tooth error component in the engine speed is eliminated, the integrated value of the relative angular velocity is used as the misfire parameter even in the unequally spaced explosion engine or single cylinder engine.
- the inter-tooth error coefficient is calculated by dividing the integrated angular velocity after removal by the reference angular velocity detected near the compression top dead center of the engine, so the inter-tooth error coefficient independent of the engine speed is determined .
- the interdental error component is calculated by multiplying the interdental error coefficient by the reference angular velocity detected in the vicinity of the compression top dead center of the engine, the interdental error component at any engine speed can be calculated Become.
- a standard vehicle equipped with an ideal crank pulsor rotor having substantially zero inter-tooth error is operated in a steady state with substantially no combustion torque generated by the chassis, and the angular velocity at each crank angle is detected. Based on the angular velocity of the angle, the relative angular velocity of each crank angle with respect to the reference angular velocity detected near the compression top dead center of the engine is calculated, and the integrated angular velocity is calculated by integrating the relative angular velocity within a predetermined crank angle range Since the inertia torque component is removed from the angular velocity to obtain the pumping torque component, and data is set in the ECU and used as the pumping torque component, the pumping torque component may be removed from the integrated value of the relative angular velocity detected in the mass sales vehicle. It will be possible.
- the inter-tooth error elimination device of the crank pulsar rotor detects near the compression top dead center of the engine based on the means for detecting the angular velocity of each crank angle from the time between crank pulses
- a means for calculating the relative angular velocity of each crank angle with respect to the determined reference angular velocity a means for integrating the relative angular velocity within a predetermined crank angle range to calculate an integrated angular velocity, an inertial torque component and a pumping torque component from the integrated angular velocity
- the means for removing the interdental error component at each engine speed from the integrated angular velocity after removal the means for removing the interdental error component at each engine speed from the integrated angular velocity after removal.
- the engine vehicle of the present invention comprises means for detecting the angular velocity of each crank angle from the time between crank pulses, and each crank relative to a reference angular velocity detected near the compression top dead center of the engine based on the angular velocity of each crank angle.
- FIG. 1 is a functional block diagram of a method and apparatus for removing inter-tooth error of a motorcycle and a crank pulsar rotor to which the present invention is applied. It is a figure showing an example of angular velocity of each crank angle at the time of steady operation in a fuel cut state by a chassis. It is a figure for demonstrating the function of a 720 degree
- FIG. 7 is a diagram (no misfire) showing an example of a misfire detection method in which a relative angular velocity is obtained from an angular velocity detected for each occurrence of a crank pulse and the integrated value is used as a misfire parameter.
- FIG. 13 is a diagram (misfire presence) showing an example of a misfire detection method in which a relative angular velocity is obtained from an angular velocity detected for each occurrence of a crank pulse and the integrated value is used as a misfire parameter.
- FIGS. 10 and 11 are diagrams showing an example of a misfire detection method in which the relative angular velocity is obtained from the angular velocity detected each time a crank pulse is generated, and the integrated value (integrated angular velocity) is used as the misfire parameter.
- the relative angular velocity is calculated by subtracting the reference angular velocity detected in the vicinity of the compression top dead center of each cylinder of the engine from the angular velocity detected each time a crank pulse is generated [each figure (a)].
- # 1 and # 2 are cylinder identifiers added to identify two cylinders in the order of ignition, and in FIG. 10, combustion is normally performed in any of the cylinders # 1 and # 2.
- FIG. 11 shows the case where a misfire has occurred only in the # 1 cylinder.
- the relative angular velocity accelerates if combustion is normally performed in the combustion stroke after compression top dead center of the engine, but decelerates if a misfire occurs [respective drawings (b)]. Therefore, the integrated angular velocity obtained by integrating the relative angular velocity within the predetermined crank angle range is a positive value for the cylinder in which combustion was normally performed, and a negative value for the cylinder in which the misfire has occurred. It can be used as a parameter to determine [each figure (c)].
- the pumping torque is a torque generated by the pump operation of the piston in each stroke of intake, compression, expansion, and exhaust of the engine, and an index different from the pumping loss representing the energy loss generated in the intake stroke and the exhaust process of the engine. It is.
- an environment in which the inter-tooth error is eliminated is prepared by preparing in advance a standard vehicle Mref provided with an ideal crank pulser rotor having substantially zero inter-tooth error for each type of vehicle that performs misfire detection. Furthermore, by removing the fluctuation component other than the pumping torque by the above-mentioned appropriate method using this standard vehicle Mref, the integrated angular velocity dominated by the pumping torque component is determined, and extracted as the pumping torque component specific to the vehicle type , This data is set in the ECU of each mass sales vehicle.
- FIG. 1 is a block diagram for explaining an engine vehicle to which the present invention is applied and an inter-tooth error removal method and apparatus for a crank pulser rotor thereof.
- a motorcycle equipped with a 4-cycle 2-cylinder non-uniform explosion engine explosion interval: 180 degrees 540 degrees
- explosion interval 180 degrees 540 degrees
- the standard vehicle Mref is mounted with a non-uniform explosion engine E, and its crankshaft 2 is equipped with an ideal crank pulsar rotor 3 ref with substantially zero inter-tooth error, and has a pumping torque component extraction device 100.
- the crank angular velocity measuring unit 5a measures the angular velocity with substantially no combustion torque generated, so the time between crank pulses of the ideal crank pulser rotor 3ref in the fuel cut state is the crank pulser sensor 4a. Measure and calculate the angular velocity of each crank angle. A known moving averaging process or the like is applied to the angular velocity of each crank angle to remove noise components.
- FIG. 2 shows angular velocities at respective crank angles when steady operation is performed in a fuel cut state in the chassis.
- the 720-degree filter processing unit 6a cancels a linear change in one cycle period on the basis of the calculation result of the angular velocity ⁇ , and extracts a fluctuation component having a relatively short cycle. As a result, it is possible to remove an angular velocity fluctuation component due to a load torque applied from a tire of a vehicle driven by an engine or an accessory or friction of a sliding component of the engine.
- FIG. 3 shows an example in which a 720-degree filter is applied to a cycle in which combustion torque is generated but decelerated by load torque. Since extraction of the pumping torque component is performed in steady operation in the chassis, there is almost no linear change in angular velocity in one cycle period.
- the fluctuation component is removed in a state where the combustion torque is substantially absent, so that the obtained angular velocity ⁇ substantially includes only the fluctuation component due to the inertia torque and the pumping torque.
- the relative angular velocity calculator 7a sets the angular velocity ⁇ measured near the compression top dead center (# 1 TDC: crank angle 0 degree) of the first cylinder (# 1) as the reference angular velocity ⁇ 1ref (A)]
- the integrated angular velocity calculator 8a integrates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j to calculate a first cylinder integrated angular velocity ⁇ 1_i and a second cylinder integrated angular velocity ⁇ 2_j.
- the inertial torque component removing unit 9a removes the inertial torque component obtained by desktop calculation from the first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j, and removes the first cylinder after removing the integrated angular velocity ⁇ 1'_i and the second cylinder after removing the integration
- the angular velocity ⁇ 2′_j is calculated.
- the inertial torque Tq1 for a single cylinder can be determined based on the connecting rod length L, crank radius R, offset e, crankshaft angular velocity ⁇ , and total mass m of the piston and connecting rod. it can.
- this embodiment assumes a two-cylinder engine with unequally spaced explosions, and the synthetic inertia torque Tq obtained by shifting the phase of the inertia torque Tq1 for a single cylinder by 180 degrees and adding the two cylinders is shown in FIG. It becomes like six.
- the synthetic inertial torque Tq can be approximated by the equation of motion of rotation of the following equation (1), where I is an inertial mass such as a piston, a connecting rod, or a crank.
- the angular velocity change d ⁇ due to the synthetic inertia torque Tq is to be obtained in the present embodiment, and is obtained by converting the above equation (1) into the following equation (2).
- the angular velocity change amount d ⁇ due to the inertial torque can be determined using the inertial torque Tq generated at a certain engine speed, the inertial mass I, and the required time dt required for unit angle rotation at the relevant engine speed. It becomes like (a).
- a value obtained by integrating the relative angular velocity based on the compression top dead center of the engine is required. Therefore, the relative value d ⁇ ′ based on the value of the compression top dead center of the angular velocity change amount d ⁇ due to inertia torque It is sufficient to find the integrated value of. Further, with respect to the angular velocity change amount d ⁇ ′, it is necessary to perform the same processing as the noise removal method applied to the angular velocity of each crank angle.
- the inertial torque component at each engine rotational speed is obtained by setting the integrated value of the angular velocity change amount d ⁇ 'in unit rotational speed, setting data in the pumping torque extraction device 100 and the ECU of each mass-produced vehicle, and multiplying this value by the reference angular velocity. It is determined by
- FIG. 7B shows an example of extracting the pumping torque component (3) by removing the inertia torque component (2) from the integrated value (1) of the relative angular velocity.
- the pumping torque component of each of the cylinders # 1 and # 2 depends on the engine speed and the throttle valve opening degree, and the pumping torque component when the throttle valve is fully closed is, for example, as shown in FIG.
- the extraction of the pumping torque component is obtained, for example, in the form of a map based on the engine speed and the intake manifold pressure, using the engine speed as a parameter.
- first and second cylinder pumping torques ⁇ 1′_i and ⁇ 2′_j determined as described above are common to each vehicle if they are the same vehicle type, the inertia torque component and the pumping torque component are the same for each vehicle type. Data are set in the ECU of the mass-produced vehicle M and used for correcting a misfire parameter.
- each mass-production vehicle M is provided with the inter-dental error coefficient learning device 200, and the inter-dental error coefficient used to obtain the inter-dental error component is calculated and learned under the condition that the fuel is cut as one condition. Do.
- the crank angular velocity measuring unit 5b obtains an angular velocity ⁇ .
- the 720 degree filter processing unit 6b removes the angular velocity fluctuation component due to the load torque and the friction.
- the relative angular velocity calculation unit 7b calculates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j.
- the integrated angular velocity calculator 8b calculates first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j.
- the inertial torque component removing unit 9b calculates integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after removal of the first and second cylinders from which the inertial torque component has been removed.
- crank pulsator rotor 3 of the mass sales vehicle M includes an inter-tooth error
- the post-removal integrated angular velocity ⁇ 1′_i, ⁇ 2′_j after the first and second cylinders is removed in addition to the pumping torque component. Contains ingredients.
- the inter-dental error coefficient learning unit 10b registers the pumping torque component of each cylinder from the integrated angular velocity ⁇ 1′_i and ⁇ 2′_j after removal of the first and second cylinders in the ECU using the standard vehicle Mref in the ECU.
- the first and second cylinder inter-teeth error components ⁇ 1 ′ ′ _ i and ⁇ 2 ′ ′ _ j are obtained by removing the data using the above data.
- FIG. 9 shows an example of extracting the inter-dental error component (4) by removing the inertia torque component (2) and the pumping torque component (3) from the integrated value (1) of the relative angular velocity.
- the first and second inter-tooth error coefficients Kpul1 are obtained by dividing the first and second inter-cylinder inter-tooth error components ⁇ 1 '' _ i and 2 ⁇ 2 '' _ j by the first cylinder reference angular velocity ⁇ ref1 and the second cylinder reference angular velocity ⁇ ref2, respectively.
- the second inter-dental error coefficient Kpul2 is calculated and stored in the ECU as a learning result of the inter-dental error coefficient Kpul.
- each mass sales vehicle M includes the misfire determination device 300, and calculates a misfire parameter during actual traveling to determine whether or not a misfire has occurred.
- the crank angular velocity measurement unit 5b determines the angular velocity ⁇ .
- the 720 degree filter processing unit 6b removes the angular velocity fluctuation component due to the load torque and the friction.
- the relative angular velocity calculation unit 7b calculates the first and second cylinder relative angular velocities ⁇ 1_i and ⁇ 2_j.
- the integrated angular velocity calculator 8b calculates first and second cylinder integrated angular velocities ⁇ 1_i and ⁇ 2_j.
- the inertia torque component removing unit 9b removes the inertia torque component, and calculates integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after the first and second cylinders are removed.
- the pumping torque component removing unit 11b uses the data of the pumping torque component set in the ECU using the standard vehicle Mref from the integrated angular velocities ⁇ 1′_i and ⁇ 2′_j after the first and second cylinder removal.
- the integrated angular velocities ⁇ 1 ′ ′ _ i and ⁇ ⁇ 2 ′ ′ _ j after first and second cylinder removal are calculated.
- the inter-tooth error component removing unit 12b is configured to calculate the first cylinder reference angular velocity ⁇ ref1 and the second cylinder inter-tooth error coefficient Kpul1 and Kpul2 that the inter-tooth error coefficient learning device 200 learns and stores in the ECU.
- the first and second cylinder inter-tooth error components are calculated by multiplying the cylinder reference angular velocity ⁇ ref2.
- a misfire parameter is calculated for each cylinder by subtracting the first and second cylinder inter-tooth error components from the first and second cylinder post-removal integrated angular velocities ⁇ 1 ′ ′ _ i and ⁇ 2 ′ ′ _ j.
- the misfire determination unit 13b determines the presence or absence of a misfire based on the misfire parameter.
- the present embodiment in the unequally spaced explosion engine or single cylinder engine, it is possible to remove the interdental error from the misfire parameter without measuring the error for each tooth of the pulsar rotor, and high accuracy based on the misfire parameter Misfire determination is possible.
- the inertial torque component is described as being removed from the integrated angular velocity, but the present invention is not limited to this, and the inertial torque component can be finally removed from the integrated angular velocity.
- the relationship between the crank angle and the angular velocity component resulting from the inertia torque may be obtained in advance, and the inertia torque component corresponding to the crank angle may be removed from the angular velocity before integration.
- the relative angular velocity and its integrated angular velocity are obtained based on the reference angular velocity, and the post-removal integrated angular velocity is divided by the reference angular velocity detected near the compression top dead center of the engine to obtain the interdental error coefficient. It explained as what it asked for.
- the present invention is not limited to this, and the relative angular velocity and its integrated angular velocity are obtained based on the average angular velocity of the cycle for evaluating misfire, the engine rotational speed, or values corresponding thereto. You may divide by rotation speed etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
Claims (22)
- クランクパルス間時間から各クランク角の角速度を検知する手段(4b,5b)と、
各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算する手段(7b)と、
所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段(8b)と、
前記積算角速度または積算前の角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段(9b,11b)と、
前記除去後積算角速度から歯間誤差係数を計算して学習する手段(10b)と、
前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算する手段(12b)と、
除去後積算角速度から歯間誤差成分を除去する手段(12b)とを具備したことを特徴とする、クランクパルサロータの歯間誤差除去装置。 - 前記角速度を検知する手段は、燃焼トルクが実質的に発生しない状態で角速度を検知することを特徴とする、請求項1に記載のクランクパルサロータの歯間誤差除去装置。
- 前記歯間誤差係数を計算して学習する手段は、前記除去後積算角速度を前記基準角速度で除して歯間誤差係数を計算することを特徴とする、請求項1または2に記載のクランクパルサロータの歯間誤差除去装置。
- 前記歯間誤差成分を計算する手段は、各エンジン回転数における歯間誤差成分を、前記歯間誤差係数に前記基準角速度を乗じて算出することを特徴とする、請求項1ないし3のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
- 前記角速度の検知結果から、車載エンジンに生じ得る第1角速度変動成分を除去する手段(6b)を具備し、
前記相対角速度を計算する手段は、前記第1角速度変動成分を除去された角速度を対象に相対角速度を計算することを特徴とする、請求項1ないし4のいずれかにに記載のクランクパルサロータの歯間誤差除去装置。 - 前記第1角速度変動成分が、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルク並びにエンジンの摺動部品のフリクションに起因する角速度変動成分であることを特徴とする、請求項5に記載のクランクパルサロータの歯間誤差除去装置。
- 前記除去後積算角速度を計算する手段は、前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去することを特徴とする請求項1ないし6のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
- 前記エンジンが不等間隔爆発エンジンであることを特徴とする、請求項1ないし7のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
- 前記エンジンが単気筒エンジンであることを特徴とする、請求項1ないし7のいずれかに記載のクランクパルサロータの歯間誤差除去装置。
- クランクパルス間時間から各クランク角における角速度を検知し、
各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算し、
所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、
前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算し、
前記除去後積算角速度から歯間誤差係数を計算して学習し、
前記歯間誤差係数を用いて各エンジン回転数における歯間誤差成分を計算し、
除去後積算角速度から歯間誤差成分を除去することを特徴とする、クランクパルサロータの歯間誤差除去方法。 - 燃焼トルクが実質的に発生しない状態で角速度を検知することを特徴とする、請求項10に記載のクランクパルサロータの歯間誤差除去方法。
- 前記除去後積算角速度を前記基準角速度で除して歯間誤差係数を計算することを特徴とする、請求項10または11に記載のクランクパルサロータの歯間誤差除去方法。
- 各エンジン回転数における歯間誤差成分を、前記歯間誤差係数に前記基準角速度を乗じて算出することを特徴とする、請求項10ないし12のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
- 前記角速度の検知結果から、車載エンジンに生じ得る第1角速度変動成分を除去し、当該第1角速度変動成分を除去された角速度を対象に相対角速度を計算することを特徴とする請求項10ないし13のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
- 前記第1角速度変動成分が、エンジンにより駆動される車両のタイヤや補機から加わる負荷トルク並びにエンジンの摺動部品のフリクションに起因する角速度変動成分であることを特徴とする請求項14に記載のクランクパルサロータの歯間誤差除去方法。
- 前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去することを特徴とする請求項10ないし15のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
- 前記エンジンが不等間隔爆発エンジンであることを特徴とする、請求項10ないし16のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
- 前記エンジンが単気筒エンジンであることを特徴とする、請求項10ないし16のいずれかに記載のクランクパルサロータの歯間誤差除去方法。
- 歯間誤差が実質的にゼロの理想クランクパルサロータを装備する標準車両の各クランク角における角速度を検知し、
各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算し、
所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算し、
前記積算角速度から慣性トルク成分を除去してポンピングトルク成分を求め、
ECUにデータ設定しポンピングトルク成分として用いることを特徴とする、請求項10ないし18のいずれかに記載のクランクパルサロータの歯間誤差除去方法。 - クランクパルス間時間から各クランク角の角速度を検知する手段と、
各クランク角の角速度に基づいて、エンジンの圧縮上死点近傍で検知された基準角速度に対する各クランク角における相対角速度を計算する手段と、
所定のクランク角範囲内で前記相対角速度を積算して積算角速度を計算する手段と、
前記積算角速度から慣性トルク成分およびポンピングトルク成分を除去して除去後積算角速度を計算する手段と、
前記除去後積算角速度から歯間誤差係数を計算して学習する手段と、
前記歯間誤差係数を用いて各エンジン回転数の歯間誤差成分を計算する手段と、
除去後積算角速度から歯間誤差成分を除去する手段
を具備したことを特徴とする、エンジン車両。 - 燃焼トルクが実質的に発生しない状態で検知された角速度に基づいて計算された前記除去後積算角速度を歯間誤差成分とし、当該歯間誤差成分を前記基準角速度で除して歯間誤差係数を計算して学習し、各エンジン回転数における歯間誤差成分を、前記歯間誤差係数と前記基準角速度との積から求めることを特徴とする、請求項20に記載のエンジン車両。
- 除去後積算角速度から歯間誤差成分を除去した値を失火パラメータとして失火判定を行うことを特徴とする、請求項21に記載のエンジン車両。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780088872.XA CN110494640B (zh) | 2017-03-31 | 2017-03-31 | 机动车及曲轴脉冲发生器转子的齿间误差消除方法及装置 |
JP2019508110A JP6818127B2 (ja) | 2017-03-31 | 2017-03-31 | エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 |
PCT/JP2017/013611 WO2018179340A1 (ja) | 2017-03-31 | 2017-03-31 | エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 |
EP17903534.0A EP3604779B1 (en) | 2017-03-31 | 2017-03-31 | Engine vehicle, inter-gear teeth error removal method for crank pulsar rotor, and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/013611 WO2018179340A1 (ja) | 2017-03-31 | 2017-03-31 | エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018179340A1 true WO2018179340A1 (ja) | 2018-10-04 |
Family
ID=63674537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/013611 WO2018179340A1 (ja) | 2017-03-31 | 2017-03-31 | エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3604779B1 (ja) |
JP (1) | JP6818127B2 (ja) |
CN (1) | CN110494640B (ja) |
WO (1) | WO2018179340A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019085890A (ja) * | 2017-11-02 | 2019-06-06 | 株式会社デンソー | エンジン用失火判定装置及び車両 |
WO2020192688A1 (zh) * | 2019-03-26 | 2020-10-01 | 武汉理工大学 | 一种汽车齿圈角速度测量误差消除方法与装置 |
KR102213233B1 (ko) * | 2019-11-28 | 2021-02-08 | 주식회사 현대케피코 | 단 기통 엔진의 실화 진단 시스템 및 실화 진단 방법 |
EP3916398A1 (en) | 2020-05-29 | 2021-12-01 | Honda Motor Co., Ltd. | Crank angular velocity measuring device and misfire detection device |
JP7566825B2 (ja) | 2022-07-21 | 2024-10-15 | ヤマハ発動機株式会社 | 独立スロットル型の2-4気筒エンジンユニット |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567518B2 (ja) * | 2021-02-01 | 2024-10-16 | セイコーエプソン株式会社 | 減速機の角度伝達誤差補正方法およびロボットシステム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176590A (ja) * | 1996-12-17 | 1998-06-30 | Toyota Motor Corp | 多気筒内燃機関の出力変動検出方法 |
JPH10231749A (ja) * | 1996-12-19 | 1998-09-02 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2004536993A (ja) * | 2001-07-23 | 2004-12-09 | インターナショナル エンジン インテレクチュアル プロパティー カンパニー リミテッド ライアビリティ カンパニー | エンジントルク計算 |
JP2008111354A (ja) | 2006-10-30 | 2008-05-15 | Honda Motor Co Ltd | 内燃機関のクランク角速度検出装置 |
JP2014199040A (ja) * | 2013-03-29 | 2014-10-23 | 本田技研工業株式会社 | エンジン制御装置 |
JP2016070255A (ja) * | 2014-10-01 | 2016-05-09 | 川崎重工業株式会社 | 失火判定装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59205028D1 (de) * | 1992-08-14 | 1996-02-22 | Siemens Ag | Verfahren zur Erkennung und Korrektur von Fehlern bei der Zeitmessung an sich drehenden Wellen |
JP3675049B2 (ja) * | 1996-08-09 | 2005-07-27 | 株式会社デンソー | 内燃機関の失火検出装置 |
DE19540674C2 (de) * | 1995-10-31 | 1999-01-28 | Siemens Ag | Adaptionsverfahren zur Korrektur von Toleranzen eines Geberrades |
DE10017107A1 (de) * | 2000-04-06 | 2001-10-18 | Bosch Gmbh Robert | Verfahren zur Kompensation der Drehunförmigkeit bei der Drehzahlerfassung |
CN100580241C (zh) * | 2005-12-27 | 2010-01-13 | 本田技研工业株式会社 | 内燃机的失火检测装置 |
DE102010003561A1 (de) * | 2010-03-31 | 2011-10-06 | Robert Bosch Gmbh | Verfahren zur systematischen Behandlung von Fehlern |
CN102374061B (zh) * | 2010-08-13 | 2014-01-22 | 长春易控汽车电子有限公司 | 发动机曲轴齿形误差学习方法 |
DE102014220509A1 (de) * | 2014-10-09 | 2016-04-14 | Volkswagen Aktiengesellschaft | Verfahren zur Bestimmung der Lage des Zylinderkolbens anhand eines hochaufgelösten Körperschallsignals oder Drehzahlsignals |
JP6164432B2 (ja) * | 2015-05-14 | 2017-07-19 | トヨタ自動車株式会社 | 内燃機関の失火判定装置 |
-
2017
- 2017-03-31 CN CN201780088872.XA patent/CN110494640B/zh active Active
- 2017-03-31 WO PCT/JP2017/013611 patent/WO2018179340A1/ja active Application Filing
- 2017-03-31 EP EP17903534.0A patent/EP3604779B1/en active Active
- 2017-03-31 JP JP2019508110A patent/JP6818127B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10176590A (ja) * | 1996-12-17 | 1998-06-30 | Toyota Motor Corp | 多気筒内燃機関の出力変動検出方法 |
JPH10231749A (ja) * | 1996-12-19 | 1998-09-02 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2004536993A (ja) * | 2001-07-23 | 2004-12-09 | インターナショナル エンジン インテレクチュアル プロパティー カンパニー リミテッド ライアビリティ カンパニー | エンジントルク計算 |
JP2008111354A (ja) | 2006-10-30 | 2008-05-15 | Honda Motor Co Ltd | 内燃機関のクランク角速度検出装置 |
JP2014199040A (ja) * | 2013-03-29 | 2014-10-23 | 本田技研工業株式会社 | エンジン制御装置 |
JP2016070255A (ja) * | 2014-10-01 | 2016-05-09 | 川崎重工業株式会社 | 失火判定装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019085890A (ja) * | 2017-11-02 | 2019-06-06 | 株式会社デンソー | エンジン用失火判定装置及び車両 |
WO2020192688A1 (zh) * | 2019-03-26 | 2020-10-01 | 武汉理工大学 | 一种汽车齿圈角速度测量误差消除方法与装置 |
KR102213233B1 (ko) * | 2019-11-28 | 2021-02-08 | 주식회사 현대케피코 | 단 기통 엔진의 실화 진단 시스템 및 실화 진단 방법 |
EP3916398A1 (en) | 2020-05-29 | 2021-12-01 | Honda Motor Co., Ltd. | Crank angular velocity measuring device and misfire detection device |
JP7566825B2 (ja) | 2022-07-21 | 2024-10-15 | ヤマハ発動機株式会社 | 独立スロットル型の2-4気筒エンジンユニット |
Also Published As
Publication number | Publication date |
---|---|
EP3604779B1 (en) | 2021-04-14 |
EP3604779A4 (en) | 2020-04-15 |
JP6818127B2 (ja) | 2021-01-20 |
CN110494640A (zh) | 2019-11-22 |
JPWO2018179340A1 (ja) | 2019-12-12 |
CN110494640B (zh) | 2022-03-08 |
EP3604779A1 (en) | 2020-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018179340A1 (ja) | エンジン車両ならびにクランクパルサロータの歯間誤差除去方法および装置 | |
JP4312762B2 (ja) | 内燃機関におけるミスファイアの検出 | |
JP3479090B2 (ja) | 多気筒エンジンの燃焼状態診断装置 | |
JP5099258B2 (ja) | 内燃機関のトルク推定装置 | |
US5699253A (en) | Nonlinear dynamic transform for correction of crankshaft acceleration having torsional oscillations | |
US10309872B2 (en) | Misfire determination apparatus for internal combustion engine | |
JP2009503478A (ja) | 内燃機関のシャフトにおけるシリンダ個別の回転特性量を求めるための方法 | |
JP6658588B2 (ja) | 内燃機関の失火検出装置 | |
US10788397B2 (en) | Engine misfire determination device and vehicle | |
JP2009541629A (ja) | ミスファイアを検出する方法および相応する装置 | |
US10794314B2 (en) | Unequal interval combustion engine misfire determination device and vehicle | |
US7540185B2 (en) | System and method for detecting engine misfires | |
Hamedović et al. | IMEP-estimation and in-cylinder pressure reconstruction for multicylinder SI-engine by combined processing of engine speed and one cylinder pressure | |
WO2018179341A1 (ja) | 単気筒エンジンの失火検知装置および方法ならびに車両 | |
US6212945B1 (en) | Method and apparatus for combustion quality diagnosis and control utilizing synthetic measures of combustion quality | |
Chen et al. | Estimation of engine rotational dynamics using Kalman filter based on a kinematic model | |
US5394742A (en) | Method for recognizing abnormal combustions in the cylinder of an internal-combustion engine | |
Kimmich et al. | Model based fault detection for the injection, combustion and engine-transmission | |
JP7092932B2 (ja) | クランク角速度測定装置および失火判定装置 | |
KR102554010B1 (ko) | 엔진의 실화 진단 방법 및 장치 | |
EP0948739A1 (fr) | Procede de calcul du couple d'un moteur thermique a injection commandee electroniquement | |
KR102119852B1 (ko) | 단기통 4행정 엔진의 실화 진단 방법 및 장치 | |
FR2950655A1 (fr) | Procede d'evaluation des couples instantanes des cylindres d'un moteur a combustion interne. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17903534 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019508110 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017903534 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017903534 Country of ref document: EP Effective date: 20191031 |