WO2018177044A1 - 列车车载控制系统和列车 - Google Patents

列车车载控制系统和列车 Download PDF

Info

Publication number
WO2018177044A1
WO2018177044A1 PCT/CN2018/076539 CN2018076539W WO2018177044A1 WO 2018177044 A1 WO2018177044 A1 WO 2018177044A1 CN 2018076539 W CN2018076539 W CN 2018076539W WO 2018177044 A1 WO2018177044 A1 WO 2018177044A1
Authority
WO
WIPO (PCT)
Prior art keywords
train
unit
interface unit
control system
vehicle
Prior art date
Application number
PCT/CN2018/076539
Other languages
English (en)
French (fr)
Inventor
薄云览
卓开阔
王发平
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2018177044A1 publication Critical patent/WO2018177044A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0018Communication with or on the vehicle or train
    • B61L15/0036Conductor-based, e.g. using CAN-Bus, train-line or optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling

Definitions

  • the invention relates to the technical field of train control, in particular to a train onboard control system and a train.
  • VOBC Vehicle Onboard Controller
  • ATO Automatic Train Operation
  • the mainstream signal manufacturers' VOBC usually adopts two-two-two-two architecture or three-two architecture, and one set is placed between the front and the rear.
  • a first object of the present invention is to propose a train-on-vehicle control system.
  • the system is capable of two-way automatic driving with low cost.
  • a second object of the invention is to propose a train.
  • a first aspect of the present invention provides a train onboard control system, including: an onboard controller, where the onboard controller includes a logic operation unit, a first IO interface unit, and a second IO interface unit.
  • the logic operation unit, the first IO interface unit are all disposed at a first end of the train, the second IO interface unit is disposed at a second end of the train, and the logic operation unit passes an industrial field bus Connected to the first IO interface unit and the second IO interface unit respectively; wherein the logic operation unit is configured to collect the train according to the first IO interface unit or the second IO interface unit Controlling a signal to control the train to execute a control command corresponding to the control signal, wherein the control signal includes at least a key activation signal, and the logic operation unit is configured to determine the operation of the train according to the key activation signal direction.
  • the train on-board control system of the embodiment of the invention can realize the control of the two-way travel of the train through an on-board controller, and has low cost and high product competitiveness.
  • the present invention proposes a train comprising the train onboard control system described above.
  • the train of the embodiment of the present invention can realize the two-way automatic driving function and the speed protection function by adopting the above-mentioned train on-board control system, and has low cost and stronger product competitiveness.
  • FIG. 1 is a schematic structural view of a train on-board control system in the related art
  • FIG. 2 is a schematic structural view of a train onboard control system according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an in-vehicle controller according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a train according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a train-on-board control system in the related art.
  • the on-board control system of the front and the on-board control system at the rear of the vehicle have the same configuration, including: VOBC, which can implement ATP (Automatic Train Protection) and ATO functions.
  • VOBC which can implement ATP (Automatic Train Protection) and ATO functions.
  • One DMI is configured at each end. (Driver machine interface); a set of wireless APs are arranged in the front and rear of the vehicle to realize high-speed communication of the vehicle and the ground; a BTM (Balise transmitter module) is used for each of the front and the rear of the vehicle.
  • BTM Balise transmitter module
  • a vehicle VOBC control system is placed in each of the front and rear of the vehicle.
  • the train is running, only one set is in working state, the other set is in a dormant state, the utilization rate is low, and all devices are redundantly configured. high cost.
  • an embodiment of the present invention provides a train onboard control system.
  • the train onboard control system 100 includes an onboard controller 10.
  • the onboard controller 10 includes a logic operation unit 11, a first IO interface unit 12, and a second IO interface unit 13.
  • the logic operation unit 11 and the first IO interface unit 12 are both disposed at a first end of the train, and the second IO interface
  • the unit 13 is disposed at the second end of the train, and the logical operation unit 11 is connected to the first IO interface unit 12 and the second IO interface unit 13 via an industrial field bus, respectively.
  • the first end of the train may be a front end and the second end is a rear end. That is, the logical operation unit 11 and the first IO interface unit 12 are both disposed on the front of the train, and the second IO interface unit 13 is disposed. At the rear of the train, see Figure 2.
  • the first end of the train may be a rear end and the second end is a front end. That is, the logical operation unit 11 and the first IO interface unit 12 are both disposed at the rear of the train, and the second IO interface unit 13 is set at the front of the train.
  • the industrial field bus may be, but is not limited to, a CAN bus, an MVB bus, an Ethernet bus, a Profibus bus.
  • the logic operation unit 11 is configured to control the train to execute the control instruction corresponding to the control signal according to the control signal of the train collected by the first IO interface unit 12 or the second IO interface unit 13. That is, the first IO interface unit 12 and the second IO interface unit 13 are used to collect control signals of the train, and the logic operation unit 11 is configured to generate and control according to control signals of the first IO interface unit 12 or the second IO interface unit.
  • the signal corresponds to the control command, and controls the train to execute the control command.
  • the control signal includes at least a key activation signal, and the logic operation unit 11 is configured to determine a running direction of the train according to the key activation signal.
  • the first IO interface unit 12 is connected to the IO interface of the first end of the train (ie, the A end in FIG. 2), and the second IO interface unit 13 and the second end of the train (ie, the figure)
  • the IO interface of the B terminal in 2 is connected.
  • the logic operation unit 11 determines that the running direction of the train is B ⁇ A, that is, the A end is the front end of the train, and the first IO interface unit 12 continues to receive the train A.
  • control signals transmitted by the terminal such as an emergency brake signal, a maximum common brake signal, a switch gate enable signal, etc.
  • the logic operation unit 11 controls the train execution corresponding to the control signal according to the control signal collected by the first IO interface unit 12.
  • the control unit command such as controlling the train emergency brake, the maximum common brake, allowing the door to open, etc.; after the second IO interface unit 13 receives the key activation signal transmitted by the train B end, the logic operation unit 11 determines that the train running direction is A ⁇ B, that is, the B end is the front of the train, and the second IO interface unit 13 continues to receive other control signals transmitted by the B end of the train, such as an emergency brake signal, a maximum common brake signal, a switch door enable signal, etc., and the logic operation unit 11 Controlling, according to the control signal collected by the second IO interface unit 13, the train executing the control command corresponding to the control signal, such as controlling the emergency braking of the train, and maximizing Brake, allowing the door and the like.
  • control signal may also include an integrity signal for the train, i.e., when the train is being controlled, the integrity of the train information needs to be confirmed to ensure safe operation of the train.
  • the IO interface of the train may be a relay interface to implement transmission between the control signal of the train and the onboard controller.
  • the onboard controller 10 may adopt a redundant security architecture, such as a two-by-two-two architecture or a two-by-three architecture. That is to say, two logic operation units 11 can be provided. When one of the logic operation units 11 fails, the other logic operation unit 11 can automatically control the vehicle, so that the train travels will not be affected, or when the train running direction changes. At this time, it is possible to switch to another logical operation unit 11 for car control to increase the utilization ratio of the two logical operation units 11.
  • a redundant security architecture such as a two-by-two-two architecture or a two-by-three architecture. That is to say, two logic operation units 11 can be provided. When one of the logic operation units 11 fails, the other logic operation unit 11 can automatically control the vehicle, so that the train travels will not be affected, or when the train running direction changes. At this time, it is possible to switch to another logical operation unit 11 for car control to increase the utilization ratio of the two logical operation units 11.
  • the logical operation unit 11 includes a first logical operator 111 corresponding to the first IO interface unit 12 and a second logical operator corresponding to the second IO interface unit 13. 112, wherein the first logical operator 111, the first IO interface unit 12, the second logical operator 112, and the second IO interface unit 13 all adopt a two-two architecture.
  • the onboard controller 10 may further include a switching unit 14.
  • the switching unit 14 is connected to the first logical operator 111 and the second logical operator 112, respectively, and the switching unit 14 is configured to control the first logical operator 111 or the second logical computing device 112 to operate according to the running direction of the train.
  • the logical operation unit 11 and the first IO interface unit 12 and the second IO interface unit 13 are respectively connected by a CAN bus.
  • the switching unit 14 controls the first logical operator 111 to operate, and passes through the first logical operator CPU1 and the first logical computing unit CPU2 in the first logical computing unit 111.
  • the data collected by the first IO interface unit CPU1 and the first IO interface unit CPU2 transmitted by the two CAN buses (such as the control signal) are voted two times, that is, the first logical operator CPU1 and the first logical operator CPU2 both confirm After the data collected by the first IO interface unit CPU1 and the first IO interface unit CPU2 are identical, corresponding control is performed.
  • the switching unit 14 controls the second logic operator 112 to operate, and passes through the second logic operator CPU1 and the second logic in the second logic operator 111.
  • the operator CPU2 performs two-and-two voting on the data (such as the control signal) collected by the second IO interface unit CPU1 and the second IO interface unit CPU2 transmitted by the two CAN buses, that is, the second logical operator CPU1 and the second logical operator After confirming that the data collected by the second IO interface unit CPU1 and the second IO interface unit CPU2 are identical, the CPU 2 performs corresponding control.
  • the communication protocol between the first IO interface unit 12, the second IO interface unit 13, and the logical operation unit 11 may be a communication protocol that satisfies the requirements of EN50159.
  • the train-mounted vehicle control system 100 further includes a vehicle-mounted transponder 21, a transponder antenna 22 corresponding to the on-vehicle transponder 21, a first speed sensor 31, and a second speed sensor. 32.
  • the vehicle transponder 21 and the transponder antenna 22 are both disposed in the middle of the train.
  • the first speed sensor 31 and the second speed sensor 32 are both connected to the onboard controller 10, and the first speed sensor 31 and the second speed sensor 32 are both disposed at the first end of the train (see FIG. 2), or, first The speed sensor 31 is disposed at a first end of the train and the second speed sensor 32 is disposed at a second end of the train.
  • the logic operation unit 11 determines the transponder message receiving direction of the onboard transponder 21 and the phase directions of the first speed sensor 31 and the second speed sensor 32 according to the running direction of the train.
  • both the first speed sensor 31 and the second speed sensor 32 are preferably disposed at the first end of the train and at the same end of the train as the logic operation unit 11.
  • the first speed sensor 31 and/or the second speed sensor 32 are transmitted to the logic operation unit 11 as a pulse signal.
  • the logic operation unit 11 can determine the first speed sensor 31. And/or the phase direction of the second speed sensor 32.
  • the first speed sensor 31 and the second speed sensor 32 may each be a linear speed sensor or an angular velocity sensor for collecting the linear velocity or angular velocity of the train.
  • it may be, but not limited to, a photoelectric vehicle speed sensor, a magnetoelectric speed/speed sensor, a Hall-type vehicle speed sensor, a rotary vehicle speed sensor, and the like.
  • the ground transponder when the ground transponder receives the electromagnetic energy transmitted by the onboard transponder antenna 22 when the train passes over the ground transponder, the ground transponder converts the electromagnetic energy into a working power source to activate the corresponding electronic device.
  • the circuit operates and transmits passive transponder messages (such as line grade, track section, speed limit parameters, switch information, special positioning information, etc.) or active transponder messages to the vehicle-mounted transponder 21 (eg, pick-up access) Parameters, temporary speed limit information, etc.).
  • the logic operation unit 11 determines the running direction of the train, the transponder message can be further determined, so that the train driver can control the train through the vehicle controller according to the transponder message.
  • the signal phase directions of the first speed sensor 31 and/or the second speed sensor 32 may be further determined to facilitate positioning of the train and provide the train based on the speed distance curve. Overspeed protection to effectively shorten the tracking distance while ensuring the safety of the train.
  • the train onboard control system 100 further includes a first switch 41 and a second switch 42, and the first switch 41 and the second switch 42 are both disposed at the first end of the train. And a first vehicle access point 43 connected to the first switch 41 is disposed at the first end of the train, and a second vehicle access point 44 connected to the second switch 42 is disposed at the second end of the train to implement the train.
  • Wireless communication with the ground Thereby, wireless communication between the train and the ground is realized by a high-speed wireless network, so that continuous monitoring of the train is realized, and the optimal driving interval is easily obtained.
  • the logic operation unit of the embodiment of the present invention can determine the running direction of the train according to the key activation signal collected by the first IO interface unit or the second IO interface unit, and thus can The receiving direction of the transponder message of the onboard transponder, the phase direction of the first speed sensor and/or the second speed sensor is determined according to the running direction of the train.
  • the train on-board control system 100 further includes a first Doppler radar 51, a second Doppler radar 52, a first human-machine interaction unit 61, and a second human-machine interaction unit 62.
  • the first Doppler radar 51 is disposed at the first end of the train
  • the second Doppler radar 52 is disposed at the second end of the train
  • the first Doppler radar 51 and the second Doppler radar 52 are both
  • the onboard controller 10 is connected.
  • the first human-machine interaction unit 61 is disposed at the first end of the train
  • the second human-machine interaction unit 62 is disposed at the second end of the train
  • the first human-machine interaction unit 61 and the second human-machine interaction unit 62 both pass the train network. It is connected to the in-vehicle controller 10, wherein the in-vehicle controller 10 determines the positions of the first human-machine interaction unit 61 and the second human-machine interaction unit 62 based on the train network address.
  • the first human-machine interaction unit 61 and the second human-machine interaction unit 62 are both in a cold standby mode to switch to a power-on state according to a key activation signal, wherein the first end of the train is the front end.
  • the first human-machine interaction unit 61 is in the power-on state, and when the second end of the train is the front, the second human-machine interaction unit 62 is in the power-on state.
  • the first human-machine interaction unit 61 disposed at the train A end is in the power-on state.
  • the second human-machine interaction unit 62 is in an unpowered state; when the second IO interface unit 13 at the B end of the train collects a key activation signal, that is, the B end is the train front, the second human-machine interaction unit 62 disposed at the B end of the train is on In the electrical state, the first human-machine interaction unit 61 is in an unpowered state.
  • the train on-board control system proposed by the present invention can not only realize the functions of two-way automatic driving and speed protection, but also reduce the logic operation unit and two speed sensors of a vehicle controller in configuration.
  • the present invention proposes a train.
  • the train 1000 includes the train onboard control system 100 described above.
  • the train of the embodiment of the present invention can realize the two-way automatic driving function and the speed protection function by adopting the above-mentioned train on-board control system, and has low cost and stronger product competitiveness.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Abstract

一种列车(1000)及其车载控制系统(100),其中,车载控制系统(100)包括:车载控制器(10),车载控制器(10)包括逻辑运算单元(11)、第一IO接口单元(12)和第二IO接口单元(13),逻辑运算单元(11)、第一IO接口单元(12)均设置在列车(1000)的第一端,第二IO接口单元(13)设置在列车(1000)的第二端,且逻辑运算单元(11)通过工业现场总线分别与第一IO接口单元(12)和第二IO接口单元(13)相连;其中,逻辑运算单元(11)用于根据第一IO接口单元(12)或第二IO接口单元(13)采集到的列车(1000)的至少包括钥匙激活信号的控制信号控制列车(1000)执行与控制信号对应的控车指令,其中,逻辑运算单元(11)用于根据钥匙激活信号判断列车(1000)的运行方向。能够实现双向自动驾驶,在配置上减少了一套逻辑运算单元(11),成本低,竞争力高。

Description

列车车载控制系统和列车
相关申请的交叉引用
本申请基于申请号为201710210117.6,申请日为2017年3月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及列车控制技术领域,具体涉及一种列车车载控制系统和一种列车。
背景技术
VOBC(Vehicle Onboard Controller,车载控制器)作为列车安全控制的核心系统,通过高速的无线网络进行车与地面之间的无线通信,实现对列车的连续监控,获得最佳的行车间隔;通过列车自主定位,基于速度距离曲线对列车提供超速防护,在保证列车安全的前提下有效缩短追踪距离;实现ATO(Automatic Train Operation,列车自动控制)功能,自动控制列车的启动、巡航、精确停车以及车门与屏蔽门的联动,达到高效、节能和舒适的运营要求。目前主流信号厂商的VOBC通常采用二乘二取二架构或三取二架构,车头和车尾各放置一套,正向行驶时,车头VOBC处于正常控车状态,车尾VOBC处于休眠状态;反向行驶时,车尾VOBC处于正常控车状态,车头VOBC处于休眠状态。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本发明的第一个目的在于提出一种列车车载控制系统。该系统能够实现双向自动驾驶功能,且成本低。
本发明的第二个目的在于提出一种列车。
为达到上述目的,本发明第一方面实施例提出了一种列车车载控制系统,包括:车载控制器,所述车载控制器包括逻辑运算单元、第一IO接口单元和第二IO接口单元,所述逻辑运算单元、所述第一IO接口单元均设置在所述列车的第一端,所述第二IO接口单元设置在所述列车的第二端,且所述逻辑运算单元通过工业现场总线分别与所述第一IO接口单元和所述第二IO接口单元相连;其中,所述逻辑运算单元用于根据所述第一IO接口单元或所述第二IO接口单元采集到的所述列车的控制信号控制所述列车执行与所述控制信号对应的控车指令,其中,所述控制信号至少包括钥匙激活信号,所述逻辑运算单元用于根据所述钥匙激活信号判断所述列车的运行方向。
本发明实施例的列车车载控制系统,通过一个车载控制器即可实现列车双向行驶的控制,成本低,产品竞争力高。
进一步地,本发明提出了一种列车,其包括上述的列车车载控制系统。
本发明实施例的列车,通过采用上述列车车载控制系统,不仅能够实现双向自动驾驶功能和速度防护功能,且成本低,具有更强的产品竞争力。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术中的列车车载控制系统的结构示意图;
图2是根据本发明的一个实施例的列车车载控制系统的结构示意图;
图3是根据本发明一个实施例的车载控制器的结构示意图;以及
图4是根据本发明实施例的列车的结构框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
图1是相关技术中的列车车载控制系统的结构示意图。如图1所示,车头的车载控制系统和车尾的车载控制系统的配置相同,均包括:VOBC,能够实现ATP(Automatic Train Protection,列车自动保护)功能和ATO功能,每端配置一台DMI(Driver machine interface,人机交互界面);车头和车尾各配置一套无线AP,实现车地无线的高速通信;车头和车尾各配置一套BTM(Balise transmitter module,车载应答器),用于接收地面无源应答器和有源应答器报文;车头和车尾各安装两个速度传感器,用于测速测距以进行列车自身定位;车头和车尾各安装一个多普勒雷达,用于在车轮空转打滑时进行速度矫正;车头和车尾的VOBC均连入列车网络,用于ATO控车和列车其它信息的通信;列车IO为VOBC与列车之间的继电接口单元,包括紧急制动、最大常用制动、开关门允许、钥匙激活、列车完整性等IO接口单元。
上述技术中,在车头和车尾各放置一套车载VOBC控制系统,在列车运行时,只有一套处于工作状态,另一套处于休眠状态,利用率低,且所有设备均冗余配置,系统成本高。
基于上述发现,本发明实施例提供一种列车车载控制系统。
下面参考附图描述根据本发明实施例提出的列车车载控制系统和列车。
图2是根据本发明一个实施例的列车车载控制系统的结构示意图。如图2所示,该列车车载控制系统100包括车载控制器10。
其中,车载控制器10包括逻辑运算单元11、第一IO接口单元12和第二IO接口单元13,逻辑运算单元11和第一IO接口单元12均设置在列车的第一端,第二IO接口单元13 设置在列车的第二端,且逻辑运算单元11通过工业现场总线分别与第一IO接口单元12和第二IO接口单元13相连。
在一个示例中,上述列车的第一端可以是车头、第二端是车尾,即言,逻辑运算单元11和第一IO接口单元12均设置在列车的车头,第二IO接口单元13设置在列车的车尾,可参见图2。
在另一个示例中,上述列车的第一端可以是车尾、第二端是车头,即言,逻辑运算单元11和第一IO接口单元12均设置在列车的车尾,第二IO接口单元13设置在列车的车头。
可选地,工业现场总线可以但不限于是CAN总线、MVB总线、以太网总线、Profibus总线。
在本发明的实施例中,逻辑运算单元11用于根据第一IO接口单元12或第二IO接口单元13采集到的列车的控制信号控制列车执行与控制信号对应的控车指令。也就是说,第一IO接口单元12和第二IO接口单元13用于采集列车的控制信号,逻辑运算单元11用于根据第一IO接口单元12或第二IO接口单元的控制信号生成与控制信号对应的控车指令,并控制列车执行所述控车指令。其中,控制信号至少包括钥匙激活信号,逻辑运算单元11用于根据钥匙激活信号判断列车的运行方向。
具体地,如图2所示,第一IO接口单元12与列车的第一端(即图2中的A端)的IO接口相连,第二IO接口单元13与列车的第二端(即图2中的B端)的IO接口相连。第一IO接口单元12接收到列车A端传输的钥匙激活信号后,逻辑运算单元11判断列车的运行方向为B→A,即A端为列车的车头,第一IO接口单元12继续接收列车A端传输的其它控制信号,如紧急制动信号、最大常用制动信号、开关门允许信号等,进而逻辑运算单元11根据第一IO接口单元12采集到的控制信号控制列车执行与控制信号对应的控车指令,如控制列车紧急制动、最大常用制动、允许开门等;第二IO接口单元13接收到列车B端传输的钥匙激活信号后,逻辑运算单元11判断列车的运行方向为A→B,即B端为列车的车头,第二IO接口单元13继续接收列车B端传输的其它控制信号,如紧急制动信号、最大常用制动信号、开关门允许信号等,进而逻辑运算单元11根据第二IO接口单元13采集到的控制信号控制列车执行与控制信号对应的控车指令,如控制列车紧急制动、最大常用制动、允许开门等。由此,通过一个车载控制器即可实现列车双向行驶的控制。
在本发明的一些示例中,控制信号还可以包括列车的完整性信号,即在对列车进行控制时,需要确认列车信息的完整性,以保证列车的安全运行。
可选地,列车的IO接口可以为继电接口,以实现列车的控制信号与车载控制器之间的传输。
在本发明的实施例中,为了保证车载控制器10的可靠性,车载控制器10可以采用冗余安全架构,如二乘二取二架构或二乘三取二架构。即言,可以设置两个逻辑运算单元11,当其中一逻辑运算单元11故障时,可以自动由另一逻辑运算单元11进行控车,使得列车 行驶不会受到影响,或者,当列车运行方向改变时,可以切换至另一逻辑运算单元11进行控车,以增加两个逻辑运算单元11的利用率。
在本发明的一个具体示例中,如图3所示,逻辑运算单元11包括与第一IO接口单元12对应的第一逻辑运算器111和与第二IO接口单元13对应的第二逻辑运算器112,其中,第一逻辑运算器111、第一IO接口单元12、第二逻辑运算器112和第二IO接口单元13均采用二取二架构。
进一步地,车载控制器10还可以包括切换单元14。其中,切换单元14分别与第一逻辑运算器111和第二逻辑运算器112相连,切换单元14用于根据列车的运行方向控制第一逻辑运算器111或第二逻辑运算器112工作。
具体地,如图3所示,逻辑运算单元11与第一IO接口单元12和第二IO接口单元13之间分别采用CAN总线连接。第一IO接口单元12所在的列车端为列车车头时,切换单元14控制第一逻辑运算器111工作,并通过第一逻辑运算器111中的第一逻辑运算器CPU1和第一逻辑运算器CPU2对两条CAN总线传输的第一IO接口单元CPU1和第一IO接口单元CPU2采集的数据(如控制信号)进行二取二表决,即第一逻辑运算器CPU1和第一逻辑运算器CPU2均确认第一IO接口单元CPU1和第一IO接口单元CPU2采集的数据一致后,进行相应控制。同理,第二IO接口单元13所在的列车端为列车车头时,切换单元14控制第二逻辑运算器112工作,并通过第二逻辑运算器111中的第二逻辑运算器CPU1和第二逻辑运算器CPU2对两条CAN总线传输的第二IO接口单元CPU1和第二IO接口单元CPU2采集的数据(如控制信号)进行二取二表决,即第二逻辑运算器CPU1和第二逻辑运算器CPU2均确认第二IO接口单元CPU1和第二IO接口单元CPU2采集的数据一致后,进行相应控制。
其中,需要说明的是,第一IO接口单元12、第二IO接口单元13与逻辑运算单元11之间的通信协议可以是满足EN50159要求的通信协议。
在本发明的一个实施例中,如图2所示,该列车车载控制系统100还包括车载应答器21、与车载应答器21对应的应答器天线22、第一速度传感器31和第二速度传感器32。
其中,车载应答器21和应答器天线22均设置在列车的中部。第一速度传感器31和第二速度传感器32均与车载控制器10相连,第一速度传感器31和第二速度传感器32均设置在列车的第一端(参见图2所示),或者,第一速度传感器31设置在列车的第一端,第二速度传感器32设置在列车的第二端。其中,逻辑运算单元11根据列车的运行方向确定车载应答器21的应答器报文接收方向,以及第一速度传感器31和第二速度传感器32的相位方向。
可以理解,为便于安装,可优选将第一速度传感器31和第二速度传感器32均设置在列车的第一端,且与逻辑运算单元11设置在列车的同一端。
在列车载运行时,第一速度传感器31和/或第二速度传感器32传输至逻辑运算单元11 的为脉冲信号,在列车的运行方向确定后,逻辑运算单元11即可确定第一速度传感器31和/或第二速度传感器32的相位方向。
具体的,第一速度传感器31和第二速度传感器32均可以是线速度传感器或角速度传感器,用于采集列车的线速度或角速度。具体可以是但不限于是光电车速传感器、磁电式车速/转速传感器、霍尔式车速传感器、旋转式车速传感器等。
具体地,如图2所示,当列车经过地面应答器上方时,地面应答器接收到车载应答器天线22发送的电磁能量后,地面应答器将电磁能量转换为工作电源,以启动对应的电子电路工作,并向车载应答器21传送无源应答器报文(如线路坡度、轨道区段、限速参数、道岔信息、特殊定位信息等)或有源应答器报文(如接车进路参数、临时限速信息等)。其中,在逻辑运算单元11确定列车的运行方向后,可进一步确定应答器报文,以便于列车司机根据应答器报文通过车载控制器对列车进行控制。
并且,在逻辑运算单元11确定列车的运行方向后,可进一步判断第一速度传感器31和/或第二速度传感器32的信号相位方向,以便于对列车进行定位,并基于速度距离曲线对列车提供超速防护,以在保证列车安全的前提下有效缩短追踪距离。
在本发明的一个实施例中,如图2所示,列车车载控制系统100还包括第一交换机41和第二交换机42,第一交换机41和第二交换机42均设置在列车的第一端,且在列车的第一端配置有与第一交换机41相连的第一车载接入点43,在列车的第二端配置有与第二交换机42相连的第二车载接入点44,以实现列车与地面之间的无线通信。由此,通过高速的无线网络实现列车与地面之间的无线通信,以实现对列车的连续监控,便于获得最佳的行车间隔。
可以看出,相较于图1所示的现有技术,本发明实施例的逻辑运算单元可以根据第一IO接口单元或第二IO接口单元采集的钥匙激活信号确定列车的运行方向,进而可以根据列车的运行方向确定车载应答器的应答器报文的接收方向、第一速度传感器和/或第二速度传感器的相位方向。
进一步地,如图2所示,上述列车车载控制系统100还包括第一多普勒雷达51、第二多普勒雷达52、第一人机交互单元61和第二人机交互单元62。
其中,第一多普勒雷达51设置在列车的第一端,第二多普勒雷达52设置在列车的第二端,且第一多普勒雷达51和第二多普勒雷达52均与车载控制器10相连。第一人机交互单元61设置在列车的第一端,第二人机交互单元62设置在列车的第二端,且第一人机交互单元61和第二人机交互单元62均通过列车网络与车载控制器10相连,其中,车载控制器10根据列车网络地址判断第一人机交互单元61和第二人机交互单元62的位置。
在本发明的一个实施例中,第一人机交互单元61和第二人机交互单元62均采用冷备方式,以根据钥匙激活信号切换至上电状态,其中,列车的第一端为车头时,第一人机交互单元61处于上电状态,列车的第二端为车头时,第二人机交互单元62处于上电状态。
具体地,如图2所示,当列车A端的第一IO接口单元12采集到钥匙激活信号,即A端为列车车头时,设置在列车A端的第一人机交互单元61处于上电状态,第二人机交互单元62处于无电状态;当列车B端的第二IO接口单元13采集到钥匙激活信号,即B端为列车车头时,设置在列车B端的第二人机交互单元62处于上电状态,第一人机交互单元61处于无电状态。
综上,与现有技术相比,本发明提出的列车车载控制系统不仅可以实现双向自动驾驶和速度防护的功能,而且在配置上减少了一套车载控制器的逻辑运算单元、两个速度传感器、一套BTM单元、两个车载交换机,由此,使得控制系统的成本大大降低,提高了产品竞争力。
基于上述实施例的列车车载控制系统,本发明提出了一种列车。
图4是根据本发明实施例的列车的结构框图。如图4所示,列车1000包括上述列车车载控制系统100。
本发明实施例的列车,通过采用上述列车车载控制系统,不仅能够实现双向自动驾驶功能和速度防护功能,且成本低,具有更强的产品竞争力。
另外,根据本发明实施例的列车的其它构成以及作用对于本领域的普通技术人员而言都是已知的,为了减少冗余,此处不做赘述。
在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任 一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种列车车载控制系统,其特征在于,包括:
    车载控制器,所述车载控制器包括逻辑运算单元、第一IO接口单元和第二IO接口单元,所述逻辑运算单元和所述第一IO接口单元均设置在所述列车的第一端,所述第二IO接口单元设置在所述列车的第二端,且所述逻辑运算单元通过工业现场总线分别与所述第一IO接口单元和所述第二IO接口单元相连;
    其中,所述逻辑运算单元用于根据所述第一IO接口单元或所述第二IO接口单元采集到的所述列车的控制信号控制所述列车执行与所述控制信号对应的控车指令,其中,所述控制信号至少包括钥匙激活信号,所述逻辑运算单元用于根据所述钥匙激活信号判断所述列车的运行方向。
  2. 如权利要求1所述的列车车载控制系统,其特征在于,还包括:
    车载应答器和与所述车载应答器对应的车载应答器天线,所述车载应答器和所述车载应答器天线均设置在所述列车的中部;
    第一速度传感器和第二速度传感器,所述第一速度传感器和所述第二速度传感器均与所述车载控制器相连,所述第一速度传感器和所述第二速度传感器均设置在所述列车的第一端,或者,所述第一速度传感器设置在所述列车的第一端,所述第二速度传感器设置在所述列车的第二端;
    其中,所述逻辑运算单元根据所述列车的运行方向确定所述车载应答器的应答器报文接收方向,以及所述第一速度传感器和所述第二速度传感器的相位方向。
  3. 如权利要求2所述的列车车载控制系统,其特征在于,所述第一速度传感器和所述第二速度传感器均为线速度传感器或角速度传感器。
  4. 如权利要求1至3中任一项所述的列车车载控制系统,其特征在于,还包括:
    第一交换机和第二交换机,所述第一交换机和所述第二交换机均设置在所述列车的第一端,且在所述列车的第一端配置有与所述第一交换机相连的第一车载接入点,在所述列车的第二端配置有与所述第二交换机相连的第二车载接入点,以实现所述列车与地面之间的无线通信。
  5. 如权利要求1至4中任一项所述的列车车载控制系统,其特征在于,还包括:
    第一多普勒雷达和第二多普勒雷达,所述第一多普勒雷达设置在所述列车的第一端,所述第二多普勒雷达设置在所述列车的第二端,且所述第一多普勒雷达和所述第二多普勒雷达均与所述车载控制器相连。
  6. 如权利要求1至5中任一项所述的列车车载控制系统,其特征在于,还包括:
    第一人机交互单元和第二人机交互单元,所述第一人机交互单元设置在所述列车的第一端,所述第二人机交互单元设置在所述列车的第二端,且所述第一人机交互单元和所述 第二人机交互单元均通过列车网络与所述车载控制器相连,其中,所述车载控制器根据列车网络地址判断所述第一人机交互单元和所述第二人机交互单元的位置。
  7. 如权利要求1-6中任一项所述的列车车载控制系统,其特征在于,所述车载控制器采用冗余安全架构。
  8. 如权利要求1至7中任一项所述的列车车载控制系统,其特征在于,所述逻辑运算单元包括与所述第一IO接口单元对应的第一逻辑运算器和与所述第二IO接口单元对应的第二逻辑运算器,其中,所述第一逻辑运算器、所述第一IO接口单元、所述第二逻辑运算器和所述第二IO接口单元均采用二取二架构。
  9. 如权利要求8所述的列车车载控制系统,其特征在于,所述车载控制器还包括:
    切换单元,所述切换单元分别与所述第一逻辑运算器和所述第二逻辑运算器相连,所述切换单元用于根据所述列车的运行方向控制所述第一逻辑运算器或所述第二逻辑运算器工作。
  10. 如权利要求6至9中任一项所述的列车车载控制系统,其特征在于,所述第一人机交互单元和所述第二人机交互单元均采用冷备方式,以根据所述钥匙激活信号切换至上电状态,其中,所述列车的第一端为车头时,所述第一人机交互单元处于上电状态,所述列车的第二端为车头时,所述第二人机交互单元处于上电状态。
  11. 如权利要求1至10中任一项所述的列车车载控制系统,其特征在于,所述工业现场总线至少包括CAN总线、以太网总线、MVB总线、Profibus总线。
  12. 一种列车,其特征在于,包括如权利要求1-11中任一项所述的列车车载控制系统。
PCT/CN2018/076539 2017-03-31 2018-02-12 列车车载控制系统和列车 WO2018177044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710210117.6A CN107878504A (zh) 2017-03-31 2017-03-31 列车车载控制系统和列车
CN201710210117.6 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018177044A1 true WO2018177044A1 (zh) 2018-10-04

Family

ID=61780487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/076539 WO2018177044A1 (zh) 2017-03-31 2018-02-12 列车车载控制系统和列车

Country Status (2)

Country Link
CN (1) CN107878504A (zh)
WO (1) WO2018177044A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108216303A (zh) * 2017-12-28 2018-06-29 交控科技股份有限公司 一种车载控制器和列车
CN108622119A (zh) * 2018-05-11 2018-10-09 中车青岛四方机车车辆股份有限公司 轨道列车的激活控制方法和装置
CN109720379B (zh) * 2018-12-31 2021-04-27 河南思维自动化设备股份有限公司 列控系统和列控系统四模切换显示方法
CN112124087B (zh) * 2019-06-24 2022-05-13 中车时代电动汽车股份有限公司 一种双向行驶车辆的分布式控制装置及方法
CN110304112B (zh) * 2019-07-05 2021-06-29 上海电气泰雷兹交通自动化系统有限公司 列车定位恢复的方法及列车定位初次建立的方法
CN110758489A (zh) * 2019-11-13 2020-02-07 通号城市轨道交通技术有限公司 一种列车自动防护系统
CN111003023B (zh) * 2019-12-26 2022-02-11 天津津航计算技术研究所 一种双系首尾双重冗余的列车专用自动唤醒自动休眠设备
CN112298223B (zh) * 2020-11-06 2021-08-03 北京城建智控科技有限公司 安全型列车控制系统
CN114590287B (zh) * 2020-12-03 2023-04-07 比亚迪股份有限公司 列车运行方向转换的方法、车载设备及介质
CN112622987A (zh) * 2020-12-04 2021-04-09 中国铁道科学研究院集团有限公司通信信号研究所 列车自主定位测速及完整性检查系统及方法
CN112606880B (zh) * 2020-12-23 2022-08-26 卡斯柯信号有限公司 基于布尔逻辑运算中引入车辆信息的铁路信号控制方法
CN113438291A (zh) * 2021-06-22 2021-09-24 中车株洲电力机车有限公司 轨道交通车辆及其车地通信拓扑结构
CN113467298B (zh) * 2021-06-28 2022-10-18 通号城市轨道交通技术有限公司 有轨电车车载控制器及有轨电车
CN114517621B (zh) * 2022-02-17 2024-07-05 上海嘉成轨道交通安全保障系统股份公司 一种地铁屏蔽门的控制系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102567205A (zh) * 2012-01-05 2012-07-11 铁道部运输局 列车网络控制软件仿真测试系统及仿真测试装置
US20130171590A1 (en) * 2006-03-20 2013-07-04 General Electric Company System, method, and computer software code for instructing an operator to control a powered system having an autonomous controller
CN103955616A (zh) * 2014-05-04 2014-07-30 兰州交通大学 基于动态故障树的ctcs-3级atp系统可靠性评估方法
CN204150063U (zh) * 2014-10-10 2015-02-11 株洲南车时代电气股份有限公司 一种lkj2000型列车运行监控装置
CN205186190U (zh) * 2015-10-10 2016-04-27 河南思维自动化设备股份有限公司 一种lkj系统的冗余主机单元

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568904B1 (ko) * 2013-11-04 2015-11-13 주식회사 포스코아이씨티 열차 제어 시스템 및 열차 제어 방법
CN105150876B (zh) * 2015-07-21 2017-06-06 株洲南车时代电气股份有限公司 一种基于轨枕检测的磁悬浮列车测速方法
CN105501256B (zh) * 2015-12-23 2017-05-31 中国铁道科学研究院通信信号研究所 一种中低速磁悬浮列车组合测速定位装置
CN106347413B (zh) * 2016-09-27 2019-06-21 中车青岛四方机车车辆股份有限公司 一种单一车载信号主机控车方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171590A1 (en) * 2006-03-20 2013-07-04 General Electric Company System, method, and computer software code for instructing an operator to control a powered system having an autonomous controller
CN102567205A (zh) * 2012-01-05 2012-07-11 铁道部运输局 列车网络控制软件仿真测试系统及仿真测试装置
CN103955616A (zh) * 2014-05-04 2014-07-30 兰州交通大学 基于动态故障树的ctcs-3级atp系统可靠性评估方法
CN204150063U (zh) * 2014-10-10 2015-02-11 株洲南车时代电气股份有限公司 一种lkj2000型列车运行监控装置
CN205186190U (zh) * 2015-10-10 2016-04-27 河南思维自动化设备股份有限公司 一种lkj系统的冗余主机单元

Also Published As

Publication number Publication date
CN107878504A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2018177044A1 (zh) 列车车载控制系统和列车
CN109263688B (zh) 轨旁设备对无人自动驾驶列车的休眠及唤醒方法
JP6698320B2 (ja) 処理装置および車両制御システム
CN104079669B (zh) 双驾双控智能车总线系统
CN114348020B (zh) 一种5g远程与自动驾驶安全冗余系统及控制方法
US20090044041A1 (en) Redundant Data Bus System
CN104199351B (zh) 一种汽车总线休眠唤醒方法
CN105814619A (zh) 行驶控制装置
KR102183952B1 (ko) 자율주행 차량의 제어장치
CN103523016A (zh) 用于在滑行期间运行车辆的方法
WO2021233479A1 (zh) 一种可以高效调车的车载设备及其方法
WO2020158702A1 (ja) 列車保安システム
CN104002834A (zh) 基于环线感应的有轨电车正线道岔控制系统及控制方法
CN102910193A (zh) 基于应答器信息传输技术的轨道车运行控制系统及方法
CN211519529U (zh) 轨道交通列车控制系统
CN106965760B (zh) 新能源电动汽车整车控制器
CN102951159A (zh) 车道偏离预警系统
CN106020169B (zh) 一种渣土车远程管理车载智能控制系统的控制方法
JP3902929B2 (ja) 車上装置
JPH11255125A (ja) 列車制御装置
CN105848985B (zh) 轨道车辆的控制
JP4686014B2 (ja) 列車制御システム
CN211765595U (zh) 一种车载控制器
CN114379644A (zh) 一种智能驾驶汽车的冗余式电动助力转向系统及工作方法
CN202147651U (zh) 一种预防机动车爆胎翻车的保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776862

Country of ref document: EP

Kind code of ref document: A1