WO2018176619A1 - 空调器制热控制方法及控制装置 - Google Patents

空调器制热控制方法及控制装置 Download PDF

Info

Publication number
WO2018176619A1
WO2018176619A1 PCT/CN2017/086056 CN2017086056W WO2018176619A1 WO 2018176619 A1 WO2018176619 A1 WO 2018176619A1 CN 2017086056 W CN2017086056 W CN 2017086056W WO 2018176619 A1 WO2018176619 A1 WO 2018176619A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
indoor
target
difference
coil
Prior art date
Application number
PCT/CN2017/086056
Other languages
English (en)
French (fr)
Inventor
刘聚科
徐贝贝
许国景
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2018176619A1 publication Critical patent/WO2018176619A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present invention belongs to the field of air conditioning technology, and more particularly to the control of air conditioners, more specifically
  • air conditioners are the main means of heating in areas where there is no heating or in cold weather where heating is stopped.
  • the compressor frequency control is performed based on the difference between the indoor temperature and the set indoor target temperature. If the compressor frequency obtained from the difference between the indoor temperature and the set indoor target temperature is not large enough, the indoor temperature rises slowly, and the indoor temperature is still low after a long time in the downtime, which cannot quickly make people feel comfortable, especially In the case where the indoor temperature is low, it is longer to wait for the indoor temperature to be comfortable.
  • An object of the present invention is to provide a method and a control device for controlling the heating of an air conditioner, which solves the problem that the heating of the existing air conditioner is slow and the heating is uncomfortable.
  • An air conditioner heating control method comprising:
  • the air conditioner performs heating operation, obtains indoor temperature, and compares the indoor temperature with the first indoor temperature threshold
  • the indoor temperature is not greater than the first indoor temperature threshold, performing the following dual PID control: [0010] calculating a temperature difference between the indoor temperature and the set indoor target temperature, obtaining an indoor temperature difference, according to Performing room temperature PID calculation on the indoor temperature difference to obtain a first target frequency; acquiring a coil temperature of the indoor heat exchanger, Calculating a temperature difference between the coil temperature and the target temperature of the coil, obtaining a temperature difference of the coil, performing a disk temperature PID calculation according to the temperature difference of the coil, obtaining a second target frequency; selecting the first target frequency and the first a larger of the two target frequencies as the indoor unit frequency, controlling the compressor of the air conditioner according to the indoor unit frequency; the coil target temperature is determined according to the set indoor target temperature, and the coil target temperature is satisfied Positively correlated with the set indoor target temperature.
  • control method as described above, the method further includes:
  • the coil target temperature is determined according to the set indoor target temperature, and specifically includes:
  • the heating control device provided by the present invention is implemented by the following technical solutions.
  • An air conditioner heating control device comprising:
  • an indoor temperature acquiring unit configured to acquire an indoor temperature
  • a coil temperature acquiring unit configured to acquire a coil temperature of the indoor heat exchanger
  • a room temperature PID operation unit configured to calculate a temperature difference between the indoor temperature and a set indoor target temperature, obtain an indoor temperature difference, perform a room temperature PID operation according to the indoor temperature difference, obtain and output a first target frequency
  • a disk temperature PID computing unit configured to calculate a temperature difference between the coil temperature and the target temperature of the coil, obtain a temperature difference of the coil, perform a disk temperature PID calculation according to the temperature difference of the coil, obtain and output a second target Frequency; the coil target temperature is determined according to the set indoor target temperature, and the coil target temperature is satisfied to be positively correlated with the set indoor target temperature;
  • a temperature comparison unit configured to compare the indoor temperature and the indoor temperature threshold and output a comparison result
  • a dual PID control unit configured to select, in the output of the temperature comparison unit, that the indoor temperature is not greater than a first indoor temperature threshold, select a comparison between the first target frequency and the second target frequency The large value is used as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
  • control device as described above, the device further comprising:
  • a room temperature PID control unit configured to: at least the output of the temperature comparison unit is that the indoor temperature is greater than the first indoor temperature threshold, and the first target frequency is used as the indoor unit frequency, according to The indoor unit frequency controls the compressor of the air conditioner.
  • the indoor temperature acquisition unit still obtains the indoor temperature, if the output result of the temperature comparison unit is The indoor temperature is greater than the second indoor temperature threshold, the dual PID control unit exits control; and the second indoor temperature threshold is greater than the first indoor temperature threshold.
  • control device as described above, the device further comprising:
  • a room temperature PID control unit configured to use the first target frequency as at least after an output of the temperature comparison unit is that the indoor temperature is greater than a second indoor temperature threshold, and the dual PID control unit exits control
  • the indoor unit frequency controls the compressor of the air conditioner according to the indoor unit frequency.
  • control device as described above, the device further comprising:
  • an indoor recommended target temperature acquiring unit configured to acquire an indoor recommended target temperature
  • a coil recommended target temperature acquiring unit configured to acquire a coil recommended target temperature
  • a first difference calculating unit configured to calculate a difference between the indoor recommended target temperature and the set indoor target temperature as a first difference
  • a coil target temperature determining unit configured to calculate a difference between the coil recommended target temperature and the second difference, and the calculation result is determined to be an actual coil target temperature for performing the disk temperature PID calculation and output to The disk temperature PID computing unit.
  • the present invention performs double PID control by setting the indoor temperature threshold, and if the indoor temperature is not greater than the indoor temperature threshold, the air temperature is controlled.
  • the large frequency value obtained by the room temperature PID calculation and the disk temperature PID calculation controls the compressor, which can not only make the indoor temperature rise rapidly when the indoor temperature is low, but also can make the air outlet temperature of the air conditioner not be too low, effectively solving the problem.
  • the problem that the indoor temperature rises slowly and the lower temperature of the air blows out causes the heating body to be uncomfortable, and the heating performance of the air conditioner is improved.
  • the coil target temperature used in the disk temperature PID calculation is determined according to the set indoor target temperature, and the coil target temperature is positively correlated with the set indoor target temperature, and the indoor target temperature is set to be greater than the coil target temperature. Large, the coil target temperature is consistent with the set indoor target temperature. When the indoor target temperature requirement is high, the outlet air temperature is also high, and the temperature adjustment speed is also fast, further improving user comfort.
  • FIG. 1 is a flow chart of an embodiment of an air conditioner heating control method based on the present invention
  • FIG. 2 is a flow chart of another embodiment of an air conditioner heating control method according to the present invention.
  • FIG. 3 is a structural block diagram of an embodiment of an air conditioner heating control device according to the present invention.
  • FIG. 4 is a block diagram showing the structure of another embodiment of the air conditioner heating control device according to the present invention.
  • FIG. 1 there is shown a flow chart of an embodiment of an air conditioner heating control method based on the present invention.
  • Step 11 The air conditioner is heated to obtain the indoor temperature, and the indoor temperature is compared with the first indoor temperature threshold.
  • the indoor temperature refers to the indoor temperature of the room in which the air conditioner is located after the air conditioner is down and the heating mode is operated, and the frequency is set according to the set frequency.
  • the indoor temperature can be obtained by the prior art, for example, by detecting and acquiring the inlet air temperature as a room temperature by a temperature sensor disposed at or near the air inlet of the air conditioner.
  • the indoor temperature is then compared to a first temperature threshold.
  • the first indoor temperature threshold is used as a threshold temperature for performing double PID control, and is a default temperature value preset by the air conditioner to be preset in the control program, or may be a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
  • the preset first indoor temperature threshold or the recommended first indoor temperature threshold is 20 °C.
  • Step 12 Perform dual PID control when the indoor temperature is not greater than the first indoor temperature threshold.
  • the dual PID control specifically includes:
  • calculating a temperature difference between the indoor temperature and the set indoor target temperature obtaining an indoor temperature difference, performing a room temperature PID operation according to the indoor temperature difference, and obtaining a first target frequency.
  • the indoor temperature is the indoor temperature obtained in step 11
  • the indoor target temperature is the target temperature set by the user and expected in the room.
  • the specific method of performing the room temperature PID operation according to the indoor temperature difference and obtaining the target frequency for controlling the compressor can be implemented by the prior art, and will not be described or limited in detail herein.
  • the coil temperature of the indoor heat exchanger is the coil temperature of the indoor unit heat exchanger obtained according to the set frequency.
  • the tube temperature can be obtained by setting a temperature sensor on the heat exchanger coil.
  • the coil target temperature is the coil temperature that can be achieved by the desired indoor heat exchanger, determined according to the set indoor target temperature, and the coil target temperature is positively correlated with the set indoor target temperature. That is, the larger the indoor target temperature is, the larger the coil target temperature is; and vice versa.
  • the method of obtaining the target frequency for controlling the compressor by the disk temperature PID operation can refer to the method of calculating the target frequency of the compressor by referring to the room temperature PID operation in the prior art.
  • the initial frequency of the disk temperature PID operation may be a set initial frequency.
  • the initial frequency of the disk temperature PID operation is to determine that the indoor temperature is not greater than the first indoor temperature threshold, and the current operating frequency of the dual PID control ⁇ compressor is to be performed.
  • the first target frequency obtained by the room temperature PID operation and the larger of the second target frequency obtained by the disk temperature PID operation are selected as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
  • the specific process of frequency control of the air conditioner compressor based on the frequency of the indoor unit refers to the prior art.
  • the air conditioner is heated and controlled by the above process. If the indoor temperature is not greater than the first indoor temperature threshold, indicating that the current indoor temperature is low, dual PID control is performed, and the room temperature PID operation and the disk temperature PID operation are selected. The larger frequency value controls the compressor. When the indoor temperature is low, the compressor operates at a high frequency, so that the indoor temperature rises rapidly to a suitable high temperature, and the higher set coil target temperature can be used as a control target.
  • the air outlet temperature of the air conditioner is not too low, and the problem that the indoor temperature rises slowly and the lower temperature air blows out and causes the heating body to be uncomfortable is effectively solved.
  • the compression can be controlled in the case where the disk temperature PID calculation obtains a large frequency value.
  • the high-frequency operation of the machine, and the indoor temperature is raised to a suitable high temperature, further improving the heating performance of the air conditioner.
  • the coil target temperature used in the disk temperature PID calculation is determined according to the set indoor target temperature, and the coil target temperature is positively correlated with the set indoor target temperature, and the indoor target temperature is set to be greater than the coil target.
  • the temperature is also large, so that the coil target temperature is consistent with the set indoor target temperature.
  • the indoor target temperature requirement is high, the outlet temperature associated with the coil temperature is also high, and the temperature adjustment speed is also fast, further improving user comfort. Sex.
  • the coil target temperature is determined according to the set indoor target temperature, and specifically includes:
  • the second difference & * first difference, obtain the second difference;
  • a is a positive number not greater than 1;
  • the indoor recommended target temperature is a known, pre-stored temperature, generally a temperature obtained by a researcher and a large number of theoretical research and experimental tests, taking into consideration human body comfort and air conditioning energy saving, such as , for 24 ° C.
  • the recommended target temperature of the coil is also a known, pre-stored temperature. Generally, it is obtained by a large number of theoretical research and experimental tests by the research and development personnel, and the recommended target temperature in the room is used as the actual set indoor target temperature.
  • the temperature of a coil of heat exchange air for example, is 50 °C.
  • the indoor recommended target temperature and the recommended target temperature of the coil can also be modified by authorization, for example, by the after-sales personnel in the user's home by special instructions.
  • a is used as a coefficient for calculating the second difference according to the first difference, and the value is also known and pre-stored, which is obtained by a researcher through a large number of theoretical studies and experimental tests.
  • a is a positive number less than 1, for example, a has a value of 0.5.
  • the coil target temperature ⁇ is determined according to the set indoor target temperature. If the indoor target temperature is set higher than the indoor recommended target temperature, it indicates that the current desired indoor temperature is high, and the indoor recommended target temperature and setting The first difference between the target temperature in the fixed chamber is a negative value, and the second difference calculated according to the first difference is also a negative value; then, calculated according to the difference between the recommended target temperature of the coil and the second difference The actual coil target temperature will be greater than the coil's recommended target temperature. Then, the disk temperature PID calculation is performed according to the actual coil target temperature. When the coil temperature is equal, the coil operating temperature is large, the compressor operating frequency is also large, and the heating rate is fast, which is determined by the coil temperature.
  • the outlet air temperature of the air outlet is also high, so that the indoor temperature can quickly reach the required higher indoor temperature, and the outlet air temperature is also higher, which is advantageous for solving the problem that the indoor temperature rises slowly and the lower temperature is blown out.
  • the problem that causes the heating body to be uncomfortable further improves the user's comfort.
  • FIG. 2 there is shown a flow chart of another embodiment of the air conditioner heating control method based on the present invention.
  • the specific process of implementing the heating control in this embodiment is as follows:
  • Step 21 The air conditioner is heated to obtain the indoor temperature, and the indoor temperature is compared with the first indoor temperature threshold.
  • the indoor temperature refers to the indoor temperature of the room in which the air conditioner is located after the air conditioner is turned off and the heating mode is operated, and the frequency is set according to the set frequency.
  • the indoor temperature can be obtained by the prior art, for example, by detecting and acquiring the inlet air temperature as a room temperature by a temperature sensor disposed at or near the air inlet of the air conditioner.
  • the indoor temperature is compared with a first temperature threshold.
  • the first indoor temperature threshold is a default temperature value preset in the control program by the air conditioner, or may be a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
  • the preset first indoor temperature threshold or the recommended first indoor temperature threshold is 20 ° C
  • Step 22 Is the indoor temperature greater than the first indoor temperature threshold? If yes, go to step 26; otherwise, go to step 23.
  • Step 23 Perform dual PID control.
  • step 22 determines that the indoor temperature is not greater than the first indoor temperature threshold, performing a dual PID control process
  • Step 24 Acquire an indoor temperature, and compare the indoor temperature with a second indoor temperature threshold.
  • the indoor temperature is still obtained, and the acquired indoor temperature is compared with the second indoor temperature threshold.
  • the second indoor temperature threshold is used as a threshold temperature for exiting the dual PID control, and is similar to the first indoor temperature threshold.
  • the second indoor temperature threshold is also a default temperature value preset in the control program by the air conditioner. It is a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
  • the preset second indoor temperature threshold or the recommended second indoor temperature threshold is 25 °C.
  • Step 25 Is the indoor temperature greater than the second indoor temperature threshold? If yes, go to step 26; otherwise, go to step 23.
  • step 23 If the indoor temperature is not greater than the second indoor temperature threshold, proceed to step 23 to continue performing dual PID control System. If the indoor temperature is greater than the second indoor temperature threshold, then the dual PID control is to be exited, and the control is transferred to step 26, so that after the indoor temperature reaches a suitable second indoor temperature, the high frequency operation is no longer forced, and the compressor is avoided. Downtime due to temperature.
  • Step 26 Perform room temperature PID control.
  • This step is selected for execution according to the judgment result of step 22 or step 25. Specifically, if it is determined in step 22 that the indoor temperature before entering the double PID control is greater than the first indoor temperature threshold, the double PI D control is not performed, but the room temperature PID control is executed. That is, if the indoor temperature is greater than the first indoor temperature threshold, indicating that the indoor temperature is not lower, in this case, the coil temperature is not considered, and the conventional room temperature PID control is used to calculate the indoor temperature and the set indoor target temperature. The temperature difference is obtained, and the indoor temperature difference is obtained.
  • the room temperature PID calculation is performed according to the indoor temperature difference to obtain the first target frequency, and the first target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency. If it is determined in step 25 that the indoor temperature during the double PID control is greater than the second indoor temperature threshold, the dual PID control will be exited and the room temperature PID control process will be transferred. That is, if the indoor temperature is greater than the second indoor temperature threshold during the dual PID control process, in order to avoid the temperature shutdown, the coil temperature is no longer considered, and the normal room temperature PID control is used to calculate the indoor temperature and set the indoor target temperature. The temperature difference between the two is obtained, and the indoor temperature difference is obtained. The room temperature PID calculation is performed according to the indoor temperature difference to obtain the first target frequency, and the first target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
  • FIG. 3 there is shown a block diagram of an embodiment of an air conditioner heating control apparatus according to the present invention.
  • the structural units included in the control device of this embodiment As shown in FIG. 3, the structural units included in the control device of this embodiment, the functions of each structural unit, and the relationship between each other are as follows:
  • the indoor temperature acquiring unit 31 is configured to acquire an indoor temperature.
  • the room temperature PID calculation unit 32 is configured to calculate a temperature difference between the indoor temperature acquired by the indoor temperature acquiring unit 31 and the set indoor target temperature, obtain an indoor temperature difference, and perform a room temperature PID calculation according to the indoor temperature difference, and obtain and output the first A target frequency.
  • the coil temperature acquiring unit 33 is configured to acquire the coil temperature of the indoor heat exchanger.
  • the disk temperature PID calculation unit 34 is configured to calculate a temperature difference between the coil temperature acquired by the coil temperature acquiring unit 33 and the target temperature of the coil, obtain a temperature difference of the coil, and perform a disk temperature PID calculation according to the temperature difference of the coil , obtain and output the second target frequency.
  • the coil target temperature is determined according to the set indoor target temperature, and the coil target temperature is positively correlated with the set indoor target temperature.
  • the temperature comparison unit 35 is configured to compare the magnitudes of the indoor temperature and the indoor temperature threshold acquired by the indoor temperature acquiring unit and output a comparison result.
  • the dual PID control unit 36 is configured to select the first target frequency and the disk temperature PID operation unit 34 outputted by the room temperature PID operation unit 32 when the output of the temperature comparison unit 35 is that the indoor temperature is not greater than the first indoor temperature threshold ⁇ .
  • the larger of the output second target frequencies is used as the indoor unit frequency, and the compressor 37 of the air conditioner is controlled in accordance with the indoor unit frequency.
  • the air conditioner heating control device further includes:
  • an indoor recommended target temperature acquiring unit configured to acquire an indoor recommended target temperature
  • a coil recommended target temperature acquiring unit configured to acquire a coil recommended target temperature
  • a first difference calculating unit configured to calculate a difference between the indoor recommended target temperature and the set indoor target temperature as a first difference
  • the coil target temperature determining unit is configured to calculate a difference between the recommended target temperature of the coil and the second difference, and the calculation result is determined as an actual coil target temperature for performing the disk temperature PID operation and output to the disk temperature PID operation unit.
  • the heating control device of the above structure can be applied to an air conditioner, runs a corresponding software program, and performs heating control according to the flow of FIG. 1 to solve the problem that the indoor temperature rises slowly and the lower temperature blows out.
  • the problem of uncomfortable heat is to improve the heating performance of the air conditioner.
  • Fig. 4 there is shown a block diagram showing another embodiment of an air conditioner heating control apparatus based on the present invention.
  • the structural units included in the control device of this embodiment As shown in FIG. 4, the structural units included in the control device of this embodiment, the functions of each structural unit, and the relationship between each other are as follows:
  • the indoor temperature acquiring unit 41 is configured to acquire an indoor temperature.
  • the room temperature PID calculation unit 42 is configured to calculate a temperature difference between the indoor temperature acquired by the indoor temperature acquiring unit 41 and the set indoor target temperature, obtain an indoor temperature difference, and perform a room temperature PID calculation according to the indoor temperature difference.
  • the first target frequency is obtained and output.
  • the coil temperature acquisition unit 43 is configured to acquire the coil temperature of the indoor heat exchanger.
  • the disk temperature PID calculation unit 44 is configured to calculate a temperature difference between the coil temperature acquired by the coil temperature acquiring unit 43 and the target temperature of the coil, obtain a temperature difference of the coil, and perform a disk temperature PID calculation according to the temperature difference of the coil. , obtain and output the second target frequency. Moreover, the coil target temperature is determined according to the set indoor target temperature, and the coil target temperature is positively correlated with the set indoor target temperature.
  • the temperature comparison unit 45 is configured to compare the magnitudes of the indoor temperature and the indoor temperature threshold acquired by the indoor temperature acquiring unit and output a comparison result.
  • the dual PID control unit 46 is configured to select, by the temperature comparison unit 45, that the indoor temperature is not greater than the first indoor temperature threshold ⁇ , select the first target frequency and the disk temperature PID operation unit 44 output by the room temperature PID operation unit 42.
  • the larger of the output second target frequencies is taken as the indoor unit frequency, and the compressor 47 of the air conditioner is controlled in accordance with the indoor unit frequency.
  • the room temperature PID control unit 48 has two functions: First, before the dual PID control unit 46 performs the dual PID control, the output of the temperature comparison unit 45 is that the indoor temperature is greater than the first indoor temperature threshold ⁇ , The first target frequency output from the room temperature PID arithmetic unit 42 is taken as the indoor unit frequency, and the compressor 47 is controlled in accordance with the indoor unit frequency.
  • the indoor temperature acquiring unit 41 still obtains the indoor temperature and transmits it to the temperature comparing unit 45; the output of the temperature comparing unit 45 is that the indoor temperature is greater than the second
  • the room temperature PID control unit 48 operates again, and the first target frequency output from the room temperature PID arithmetic unit 42 is used as the indoor unit frequency, and the compressor 47 is controlled in accordance with the indoor unit frequency.
  • the heating control device of the above structure can be applied to an air conditioner, runs a corresponding software program, and performs heating control according to the flow of FIG. 2 to solve the problem that the indoor temperature rises slowly and the lower temperature is blown out.
  • the problem of uncomfortable heat is to improve the heating performance of the air conditioner.

Abstract

一种空调器制热控制方法及控制装置,方法包括:空调器制热运行,获取室内温度,与第一室内温度阈值作比较;若室内温度不大于第一室内温度阈值,执行下述的双重PID控制:计算室内温度与设定室内目标温度之间的温差,获得室内温差,根据室内温差进行室内PID运算,获得第一目标频率;计算盘管温度与盘管目标温度之间的温差,获得盘管温差,根据盘管温差进行盘管PID运算,获得第二目标频率;选取第一目标频率和第二目标频率中的较大值作为室内机频率,控制空调器的压缩机;盘管目标温度根据设定室内目标温度确定。该方法可以解决现有空调器制热慢而导致制热不舒适的温度。

Description

空调器制热控制方法及控制装置 技术领域
[0001] 本发明属于空气调节技术领域, 具体地说, 是涉及空调器的控制, 更具体地说
, 是涉及空调器制热控制方法及控制装置。
背景技术
[0002] 在寒冷的冬天, 空调器是不具备供暖条件的地区或者停止供暖的寒冷天气里取 暖的主要方式。
[0003] 现有空调器在制热运行吋, 均是根据室内温度与设定的室内目标温度的差值进 行压缩机频率控制。 如果根据室内温度与设定的室内目标温度的差值得到的压 缩机频率不够大, 室内温度上升慢, 在幵机后很长吋间内室内温度仍较低, 不 能快速使人感觉舒适, 尤其是在室内温度较低的情况下, 等待室内温度舒适的 吋间更长。
[0004] 因此, 解决空调器制热慢而导致不舒适的问题, 是提高空调器性能的关键。
技术问题
[0005] 本发明的目的是提供一种空调器制热控制方法及控制装置, 解决现有空调器制 热慢而导致制热不舒适的问题。
问题的解决方案
技术解决方案
[0006] 为实现上述发明目的, 本发明提供的制热控制方法采用下述技术方案予以实现 [0007] 一种空调器制热控制方法, 所述方法包括:
[0008] 空调器制热运行, 获取室内温度, 将所述室内温度与第一室内温度阈值作比较
[0009] 若所述室内温度不大于所述第一室内温度阈值, 执行下述的双重 PID控制: [0010] 计算所述室内温度与设定室内目标温度之间的温差, 获得室内温差, 根据所述 室内温差进行室温 PID运算, 获得第一目标频率; 获取室内换热器的盘管温度, 计算所述盘管温度与盘管目标温度之间的温差, 获得盘管温差, 根据所述盘管 温差进行盘温 PID运算, 获得第二目标频率; 选取所述第一目标频率和所述第二 目标频率中的较大值作为室内机频率, 根据所述室内机频率控制空调器的压缩 机; 所述盘管目标温度根据所述设定室内目标温度确定, 且满足所述盘管目标 温度与所述设定室内目标温度正相关。
[0011] 如上所述的控制方法, 若所述室内温度大于所述第一室内温度阈值, 执行下述 的室温 PID控制:
[0012] 将所述第一目标频率作为所述室内机频率, 根据所述室内机频率控制空调器的 压缩机。
[0013] 如上所述的控制方法, 所述方法还包括:
[0014] 在执行所述双重 PID控制吋, 实吋获取所述室内温度, 并将所述室内温度与第 二室内温度阈值作比较; 所述第二室内温度阈值大于所述第一室内温度阈值; [0015] 若所述室内温度大于所述第二室内温度阈值, 退出所述双重 PID控制。
[0016] 如上所述的控制方法, 在退出所述双重 PID控制之后, 执行下述的室温 PID控制
[0017] 将所述第一目标频率作为所述室内机频率, 根据所述室内机频率控制空调器的 压缩机。
[0018] 如上所述的控制方法, 所述盘管目标温度根据所述设定室内目标温度确定, 具 体包括:
[0019] 获取室内推荐目标温度和盘管推荐目标温度;
[0020] 计算所述室内推荐目标温度与所述设定室内目标温度的差值, 作为第一差值; [0021] 根据公式: 第二差值=&*第一差值, 获取第二差值; a为不大于 1的正数;
[0022] 计算所述盘管推荐目标温度与所述第二差值之差, 计算结果确定为执行所述盘 温 PID运算的实际盘管目标温度。
[0023] 为实现前述发明目的, 本发明提供的制热控制装置采用下述技术方案予以实现
[0024] 一种空调器制热控制装置, 所述装置包括:
[0025] 室内温度获取单元, 用于获取室内温度; [0026] 盘管温度获取单元, 用于获取室内换热器的盘管温度;
[0027] 室温 PID运算单元, 用于计算所述室内温度与设定室内目标温度之间的温差, 获得室内温差, 根据所述室内温差进行室温 PID运算, 获得并输出第一目标频率
[0028] 盘温 PID运算单元, 用于计算所述盘管温度与盘管目标温度之间的温差, 获得 盘管温差, 根据所述盘管温差进行盘温 PID运算, 获得并输出第二目标频率; 所 述盘管目标温度根据所述设定室内目标温度确定, 且满足所述盘管目标温度与 所述设定室内目标温度正相关;
[0029] 温度比较单元, 用于比较所述室内温度与室内温度阈值的大小并输出比较结果
[0030] 双重 PID控制单元, 用于在所述温度比较单元的输出结果为所述室内温度不大 于第一室内温度阈值吋, 选取所述第一目标频率和所述第二目标频率中的较大 值作为室内机频率, 根据所述室内机频率控制空调器的压缩机。
[0031] 如上所述的控制装置, 所述装置还包括:
[0032] 室温 PID控制单元, 用于至少在所述温度比较单元的输出结果为所述室内温度 大于所述第一室内温度阈值吋, 将所述第一目标频率作为所述室内机频率, 根 据所述室内机频率控制空调器的压缩机。
[0033] 如上所述的控制装置, 在所述双重 PID控制单元执行双重 PID控制吋, 所述室内 温度获取单元仍实吋获取所述室内温度, 若所述温度比较单元的输出结果为所 述室内温度大于第二室内温度阈值, 所述双重 PID控制单元退出控制; 所述第二 室内温度阈值大于所述第一室内温度阈值。
[0034] 如上所述的控制装置, 所述装置还包括:
[0035] 室温 PID控制单元, 用于至少在所述温度比较单元的输出结果为所述室内温度 大于第二室内温度阈值、 所述双重 PID控制单元退出控制后, 将所述第一目标频 率作为所述室内机频率, 根据所述室内机频率控制空调器的压缩机。
[0036] 如上所述的控制装置, 所述装置还包括:
[0037] 室内推荐目标温度获取单元, 用于获取室内推荐目标温度;
[0038] 盘管推荐目标温度获取单元, 用于获取盘管推荐目标温度; [0039] 第一差值计算单元, 用于计算所述室内推荐目标温度与所述设定室内目标温度 的差值作为第一差值;
[0040] 第二差值计算单元, 用于根据公式: 第二差值=&*第一差值, 获取第二差值; a 为不大于 1的正数;
[0041] 盘管目标温度确定单元, 用于计算所述盘管推荐目标温度与所述第二差值之差 , 计算结果确定为执行所述盘温 PID运算的实际盘管目标温度并输出至所述盘温 PID运算单元。
发明的有益效果
有益效果
[0042] 与现有技术相比, 本发明的优点和积极效果是: 本发明通过设置室内温度阈值 , 在空调器制热运行吋, 如果室内温度不大于室内温度阈值, 执行双重 PID控制 , 选取室温 PID运算和盘温 PID运算得到的较大频率值控制压缩机, 既能够在室 内温度低的情况下使得室内温度快速上升, 又能够使得空调器的出风温度不会 过低, 有效解决了室内温度上升缓慢及较低温度的出风吹出而引起制热体感不 舒适的问题, 提高了空调器制热运行性能。 而且, 盘温 PID运算中所采用的盘管 目标温度根据设定室内目标温度来确定, 且满足盘管目标温度与设定室内目标 温度正相关, 设定室内目标温度大吋盘管目标温度也大, 使得盘管目标温度与 设定室内目标温度保持一致, 在室内目标温度要求高的情况下出风温度也高、 温度调节速度也快, 进一步提高用户舒适性。
[0043] 结合附图阅读本发明的具体实施方式后, 本发明的其他特点和优点将变得更加 清楚。
对附图的简要说明
附图说明
[0044] 图 1是基于本发明空调器制热控制方法一个实施例的流程图;
[0045] 图 2是基于本发明空调器制热控制方法另一个实施例的流程图;
[0046] 图 3是基于本发明空调器制热控制装置一个实施例的结构框图;
[0047] 图 4是基于本发明空调器制热控制装置另一个实施例的结构框图。 本发明的最佳实施方式
[0048] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下将结合附图和实施 例, 对本发明作进一步详细说明。
[0049] 请参见图 1, 该图所示为基于本发明空调器制热控制方法一个实施例的流程图
[0050] 如图 1所示, 该实施例实现制热控制的具体过程如下:
[0051] 步骤 11 : 空调器制热运行, 获取室内温度, 将室内温度与第一室内温度阈值作 比较。
[0052] 具体来说, 室内温度是指在空调器幵机并运行制热模式吋、 按照设定采用频率 实吋获取的空调器所处房间的室内温度。 该室内温度的获取可以采用现有技术 来实现, 例如, 通过设置在空调进风口处或靠近空调进风口的位置的温度传感 器检测和获取进风温度, 作为室内温度。
[0053] 然后, 将室内温度与第一温度阈值作比较。 其中, 第一室内温度阈值作为是否 执行双重 PID控制的阈值温度, 是空调器出厂吋预置在控制程序中的一个默认温 度值, 也可以是由空调器用户自行设定的一个温度值。 如果是由用户自行设定 , 优选空调器推荐一个参考温度值, 供用户参考。 优选的, 预置的第一室内温 度阈值或推荐的第一室内温度阈值为 20°C。
[0054] 步骤 12: 在室内温度不大于第一室内温度阈值吋, 执行双重 PID控制。
[0055] 其中, 双重 PID控制具体包括:
[0056] 计算室内温度与设定室内目标温度之间的温差, 获得室内温差, 根据室内温差 进行室温 PID运算, 获得第一目标频率。 室内温度是步骤 11所获取的室内温度, 设定室内目标温度是指用户设定的、 期望室内所达到的目标温度。 而根据室内 温差进行室温 PID运算、 获得对压缩机进行控制的目标频率的具体方法可以采用 现有技术来实现, 在此不作详细阐述和限定。
[0057] 同吋, 获取室内换热器的盘管温度, 计算盘管温度与盘管目标温度之间的温差 , 获得盘管温差, 根据盘管温差进行盘温 PID运算, 获得第二目标频率。 室内换 热器的盘管温度是按照设定采用频率所获取的、 室内机换热器的盘管温度。 盘 管温度的获取可以通过在换热器盘管上设置温度传感器检测获取。 盘管目标温 度是期望室内换热器所能达到的盘管温度, 根据设定室内目标温度确定, 且满 足盘管目标温度与设定室内目标温度正相关。 也即, 设定室内目标温度越大, 盘管目标温度越大; 反之亦然。 盘温 PID运算获得对压缩机进行控制的目标频率 的方法可以参考现有技术中的室温 PID运算而获得压缩机目标频率的方法。 其中 , 盘温 PID运算的初始频率可以为一个设定的初始频率。 优选的, 盘温 PID运算 的初始频率为确定室内温度不大于第一室内温度阈值、 要执行双重 PID控制吋压 缩机的当前运行频率。
[0058] 然后, 选取室温 PID运算获得的第一目标频率和盘温 PID运算获得的第二目标频 率中的较大值作为室内机频率, 根据室内机频率控制空调器的压缩机。 根据室 内机频率对空调器压缩机进行频率控制的具体过程参考现有技术。
[0059] 采用上述过程对空调器进行制热控制吋, 如果室内温度不大于第一室内温度阈 值, 表明当前室内温度较低, 将执行双重 PID控制, 选取室温 PID运算和盘温 PID 运算得到的较大频率值控制压缩机, 在室内温度低的吋候使得压缩机以高频运 行, 使得室内温度快速上升至较适宜的高温, 又可以利用较高的设定盘管目标 温度作为控制目标, 使得空调器的出风温度不会过低, 有效解决了室内温度上 升缓慢及较低温度的出风吹出而引起制热体感不舒适的问题。 而且, 通过采用 双重 PID控制, 即使在室内温度较低吋因为用户误操作而设定了较低的室内目标 温度的情况下, 也能在盘温 PID运算得到较大频率值的情况下控制压缩机高频运 行, 而将室内温度提升至适宜的高温, 进一步提升了空调器制热运行性能。 此 夕卜, 盘温 PID运算中所采用的盘管目标温度根据设定室内目标温度来确定, 且满 足盘管目标温度与设定室内目标温度正相关, 设定室内目标温度大吋盘管目标 温度也大, 使得盘管目标温度与设定室内目标温度保持一致, 在室内目标温度 要求高的情况下, 与盘管温度相关的出风温度也高、 温度调节速度也快, 进一 步提高用户舒适性。
[0060] 在其他一些实施例中, 作为优选实施方式, 盘管目标温度根据设定室内目标温 度确定, 具体包括:
[0061] 获取室内推荐目标温度和盘管推荐目标温度; [0062] 计算室内推荐目标温度与设定室内目标温度的差值, 作为第一差值;
[0063] 根据公式: 第二差值=&*第一差值, 获取第二差值; a为不大于 1的正数;
[0064] 计算盘管推荐目标温度与第二差值之差, 计算结果确定为执行盘温 PID运算的 实际盘管目标温度。
[0065] 其中, 室内推荐目标温度是已知的、 预先存储的一个温度, 一般地, 为研发人 员经大量理论研究和实验测试所获得的、 兼顾人体舒适性和空调节能性的一个 温度, 譬如, 为 24°C。 盘管推荐目标温度也是已知的、 预先存储的一个温度, 一 般地, 为研发人员经大量理论研究和实验测试所获得的、 在室内推荐目标温度 作为实际设定室内目标温度吋能够送出温度适宜的热交换空气的一个盘管温度 , 譬如, 为 50°C。 当然, 该室内推荐目标温度和该盘管推荐目标温度也可以通过 授权而被修改, 譬如, 由售后人员在用户家中通过特殊指令进行修改。 a作为根 据第一差值计算第二差值的一个系数, 其取值也是已知的、 预先存储的, 是研 发人员经大量理论研究和实验测试所获得的。 优选的, a为小于 1的正数, 譬如, a取值为 0.5。 那么, 在室内推荐目标温度为 24°C、 室内推荐盘管目标温度为 50°C 、 a为 0.5的情况下, 如果实际设定室内目标温度为 26°C, 则按照上述方法确定的 实际盘管目标温度为 51°C。
[0066] 采用上述的方法, 根据设定室内目标温度来确定盘管目标温度吋, 如果设定室 内目标温度高于室内推荐目标温度, 表明当前期望的室内温度要高, 室内推荐 目标温度与设定室内目标温度之间的第一差值为负值, 根据第一差值计算出来 的第二差值也为负值; 那么, 根据盘管推荐目标温度和第二差值之差所计算出 来的实际盘管目标温度将大于盘管推荐目标温度。 那么, 则根据实际盘管目标 温度执行盘温 PID运算吋, 在盘管温度相等的情况下, 由于盘管目标温度大, 压 缩机运行频率也大, 升温速度快, 由盘管温度所决定的出风口的出风温度也高 , 从而可以使得室内温度能够快速地达到所要求的较高的室内温度, 且出风温 度也较高, 有利于解决室内温度上升缓慢及较低温度的出风吹出而引起制热体 感不舒适的问题, 进一步提高了用户的舒适性。
[0067] 请参见图 2, 该图所示为基于本发明空调器制热控制方法另一个实施例的流程 图。 [0068] 如图 2所示, 该实施例实现制热控制的具体过程如下:
[0069] 步骤 21 : 空调器制热运行, 获取室内温度, 将室内温度与第一室内温度阈值作 比较。
[0070] 具体来说, 室内温度是指在空调器幵机并运行制热模式吋、 按照设定采用频率 实吋获取的空调器所处房间的室内温度。 该室内温度的获取可以采用现有技术 来实现, 例如, 通过设置在空调进风口处或靠近空调进风口的位置的温度传感 器检测和获取进风温度, 作为室内温度。
[0071] 然后, 将室内温度与第一温度阈值作比较。 其中, 第一室内温度阈值是空调器 出厂吋预置在控制程序中的一个默认温度值, 也可以是由空调器用户自行设定 的一个温度值。 如果是由用户自行设定, 优选空调器推荐一个参考温度值, 供 用户参考。 优选的, 预置的第一室内温度阈值或推荐的第一室内温度阈值为 20°C
[0072] 步骤 22: 室内温度是否大于第一室内温度阈值?若是, 转至步骤 26; 否则, 执 行步骤 23。
[0073] 步骤 23: 执行双重 PID控制。
[0074] 如果步骤 22判定室内温度不大于第一室内温度阈值, 则执行双重 PID控制过程
。 双重 PID控制的具体过程和方法可参考图 1实施例的描述。
[0075] 步骤 24: 获取室内温度, 将室内温度与第二室内温度阈值作比较。
[0076] 具体来说, 在执行双重 PID控制的过程中, 仍实吋获取室内温度, 并将所获取 的室内温度与第二室内温度阈值作比较。 其中, 第二室内温度阈值作为是否退 出双重 PID控制的阈值温度, 与第一室内温度阈值类似的, 第二室内温度阈值也 是空调器出厂吋预置在控制程序中的一个默认温度值, 也可以是由空调器用户 自行设定的一个温度值。 如果是由用户自行设定, 优选空调器推荐一个参考温 度值, 供用户参考。 优选的, 预置的第二室内温度阈值或推荐的第二室内温度 阈值为 25°C。
[0077] 步骤 25: 室内温度大于第二室内温度阈值?若是, 转至步骤 26; 否则, 转至步 骤 23。
[0078] 如果室内温度不大于第二室内温度阈值, 则转至步骤 23, 继续执行双重 PID控 制。 而如果室内温度大于第二室内温度阈值, 则要退出双重 PID控制, 转至步骤 26的控制, 目的是在室内温度达到较为适宜的第二室内温度之后, 不再强制高 频运行, 避免压缩机因达温而停机。
[0079] 步骤 26: 执行室温 PID控制。
[0080] 该步骤根据步骤 22或步骤 25的判断结果选择执行。 具体来说, 如果步骤 22中判 定在进入双重 PID控制之前的室内温度大于第一室内温度阈值, 则不执行双重 PI D控制, 而是执行室温 PID控制。 也即, 如果室内温度大于第一室内温度阈值, 表明室内温度不是较低, 此情况下, 不考虑盘管温度, 而采用常规的室温 PID控 制, 计算室内温度与设定室内目标温度之间的温差, 获得室内温差, 根据室内 温差进行室温 PID运算, 获得第一目标频率, 将第一目标频率作为室内机频率, 根据室内机频率控制空调器的压缩机。 如果步骤 25中判定在执行双重 PID控制过 程中的室内温度大于第二室内温度阈值, 将退出双重 PID控制, 且转入室温 PID 控制过程。 也即, 如果在双 PID控制过程中室内温度大于了第二室内温度阈值, 为避免达温停机, 不再考虑盘管温度, 而采用常规的室温 PID控制, 计算室内温 度与设定室内目标温度之间的温差, 获得室内温差, 根据室内温差进行室温 PID 运算, 获得第一目标频率, 将第一目标频率作为室内机频率, 根据室内机频率 控制空调器的压缩机。
[0081] 采用该图 2实施例执行空调器制热控制的其他技术效果, 可参考图 1实施例的描 述。
[0082] 请参见图 3, 该图所示为基于本发明空调器制热控制装置一个实施例的结构框 图。
[0083] 如图 3所示, 该实施例的控制装置所包括的结构单元、 每个结构单元的功能及 相互之间的关系如下:
[0084] 室内温度获取单元 31, 用于获取室内温度。
[0085] 室温 PID运算单元 32, 用于计算室内温度获取单元 31获取到的室内温度与设定 室内目标温度之间的温差, 获得室内温差, 并根据室内温差进行室温 PID运算, 获得并输出第一目标频率。
[0086] 盘管温度获取单元 33, 用于获取室内换热器的盘管温度。 [0087] 盘温 PID运算单元 34, 用于计算盘管温度获取单元 33获取到的盘管温度与盘管 目标温度之间的温差, 获得盘管温差, 并根据盘管温差进行盘温 PID运算, 获得 并输出第二目标频率。 而且, 盘管目标温度根据设定室内目标温度确定, 且满 足盘管目标温度与设定室内目标温度正相关。
[0088] 温度比较单元 35, 用于比较室内温度获取单元所获取到的室内温度与室内温度 阈值的大小并输出比较结果。
[0089] 双重 PID控制单元 36, 用于在温度比较单元 35的输出结果为室内温度不大于第 一室内温度阈值吋, 选取室温 PID运算单元 32输出的第一目标频率和盘温 PID运 算单元 34输出的第二目标频率中的较大值作为室内机频率, 根据室内机频率控 制空调器的压缩机 37。
[0090] 在其他一些实施例中, 作为优选实施方式, 空调器制热控制装置还包括:
[0091] 室内推荐目标温度获取单元, 用于获取室内推荐目标温度;
[0092] 盘管推荐目标温度获取单元, 用于获取盘管推荐目标温度;
[0093] 第一差值计算单元, 用于计算室内推荐目标温度与设定室内目标温度的差值作 为第一差值;
[0094] 第二差值计算单元, 用于根据公式: 第二差值=&*第一差值, 获取第二差值; a 为不大于 1的正数;
[0095] 盘管目标温度确定单元, 用于计算盘管推荐目标温度与第二差值之差, 计算结 果确定为执行盘温 PID运算的实际盘管目标温度并输出至盘温 PID运算单元。
[0096] 上述结构的制热控制装置可以应用在空调器中, 运行相应的软件程序, 并按照 图 1的流程执行制热控制, 解决室内温度上升缓慢及较低温度的出风吹出而引起 制热体感不舒适的问题, 提高空调器制热运行性能。 请参见图 4, 该图所示为基 于本发明空调器制热控制装置另一个实施例的结构框图。
[0097] 如图 4所示, 该实施例的控制装置所包括的结构单元、 每个结构单元的功能及 相互之间的关系如下:
[0098] 室内温度获取单元 41, 用于获取室内温度。
[0099] 室温 PID运算单元 42, 用于计算室内温度获取单元 41获取到的室内温度与设定 室内目标温度之间的温差, 获得室内温差, 并根据室内温差进行室温 PID运算, 获得并输出第一目标频率。
[0100] 盘管温度获取单元 43, 用于获取室内换热器的盘管温度。
[0101] 盘温 PID运算单元 44, 用于计算盘管温度获取单元 43获取到的盘管温度与盘管 目标温度之间的温差, 获得盘管温差, 并根据盘管温差进行盘温 PID运算, 获得 并输出第二目标频率。 而且, 盘管目标温度根据设定室内目标温度确定, 且满 足盘管目标温度与设定室内目标温度正相关。
[0102] 温度比较单元 45, 用于比较室内温度获取单元所获取到的室内温度与室内温度 阈值的大小并输出比较结果。
[0103] 双重 PID控制单元 46, 用于在温度比较单元 45的输出结果为室内温度不大于第 一室内温度阈值吋, 选取室温 PID运算单元 42输出的第一目标频率和盘温 PID运 算单元 44输出的第二目标频率中的较大值作为室内机频率, 根据室内机频率控 制空调器的压缩机 47。
[0104] 室温 PID控制单元 48, 其功能包括两方面: 其一, 在双重 PID控制单元 46未执行 双重 PID控制之前, 在温度比较单元 45的输出结果为室内温度大于第一室内温度 阈值吋, 将室温 PID运算单元 42输出的第一目标频率作为室内机频率, 根据室内 机频率控制压缩机 47。 其二, 在双重 PID控制单元 46执行双重 PID控制的过程中 , 室内温度获取单元 41仍实吋获取室内温度并传输至温度比较单元 45; 在温度 比较单元 45的输出结果为室内温度大于第二室内温度阈值、 且双重 PID控制单元 46退出控制后, 室温 PID控制单元 48再动作, 将室温 PID运算单元 42输出的第一 目标频率作为室内机频率, 根据室内机频率控制压缩机 47。
[0105] 上述结构的制热控制装置可以应用在空调器中, 运行相应的软件程序, 并按照 图 2的流程执行制热控制, 解决室内温度上升缓慢及较低温度的出风吹出而引起 制热体感不舒适的问题, 提高空调器制热运行性能。
[0106] 以上实施例仅用以说明本发明的技术方案, 而非对其进行限制; 尽管参照前述 实施例对本发明进行了详细的说明, 对于本领域的普通技术人员来说, 依然可 以对前述实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等 同替换; 而这些修改或替换, 并不使相应技术方案的本质脱离本发明所要求保 护的技术方案的精神和范围。

Claims

权利要求书
[权利要求 1] 一种空调器制热控制方法, 其特征在于, 所述方法包括:
空调器制热运行, 获取室内温度, 将所述室内温度与第一室内温度阈 值作比较;
若所述室内温度不大于所述第一室内温度阈值, 执行下述的双重 PID 控制:
计算所述室内温度与设定室内目标温度之间的温差, 获得室内温差, 根据所述室内温差进行室温 PID运算, 获得第一目标频率; 获取室内 换热器的盘管温度, 计算所述盘管温度与盘管目标温度之间的温差, 获得盘管温差, 根据所述盘管温差进行盘温 PID运算, 获得第二目标 频率; 选取所述第一目标频率和所述第二目标频率中的较大值作为室 内机频率, 根据所述室内机频率控制空调器的压缩机; 所述盘管目标 温度根据所述设定室内目标温度确定, 且满足所述盘管目标温度与所 述设定室内目标温度正相关。
[权利要求 2] 根据权利要求 1所述的控制方法, 其特征在于, 若所述室内温度大于 所述第一室内温度阈值, 执行下述的室温 PID控制: 将所述第一目标频率作为所述室内机频率, 根据所述室内机频率控制 空调器的压缩机。
[权利要求 3] 根据权利要求 1所述的控制方法, 其特征在于, 所述方法还包括: 在执行所述双重 PID控制吋, 实吋获取所述室内温度, 并将所述室内 温度与第二室内温度阈值作比较; 所述第二室内温度阈值大于所述第 一室内温度阈值;
若所述室内温度大于所述第二室内温度阈值, 退出所述双重 PID控制
[权利要求 4] 根据权利要求 3所述的控制方法, 其特征在于, 在退出所述双重 PID 控制之后, 执行下述的室温 PID控制:
将所述第一目标频率作为所述室内机频率, 根据所述室内机频率控制 空调器的压缩机。
[权利要求 5] 根据权利要求 1至 4中任一项所述的控制方法, 其特征在于, 所述盘管 目标温度根据所述设定室内目标温度确定, 具体包括:
获取室内推荐目标温度和盘管推荐目标温度;
计算所述室内推荐目标温度与所述设定室内目标温度的差值, 作为第 一差值;
根据公式: 第二差值=&*第一差值, 获取第二差值; a为不大于 1的正 数;
计算所述盘管推荐目标温度与所述第二差值之差, 计算结果确定为执 行所述盘温 PID运算的实际盘管目标温度。
[权利要求 6] —种空调器制热控制装置, 其特征在于, 所述装置包括:
室内温度获取单元, 用于获取室内温度;
盘管温度获取单元, 用于获取室内换热器的盘管温度;
室温 PID运算单元, 用于计算所述室内温度与设定室内目标温度之间 的温差, 获得室内温差, 根据所述室内温差进行室温 PID运算, 获得 并输出第一目标频率;
盘温 PID运算单元, 用于计算所述盘管温度与盘管目标温度之间的温 差, 获得盘管温差, 根据所述盘管温差进行盘温 PID运算, 获得并输 出第二目标频率; 所述盘管目标温度根据所述设定室内目标温度确定 , 且满足所述盘管目标温度与所述设定室内目标温度正相关; 温度比较单元, 用于比较所述室内温度与室内温度阈值的大小并输出 比较结果;
双重 PID控制单元, 用于在所述温度比较单元的输出结果为所述室内 温度不大于第一室内温度阈值吋, 选取所述第一目标频率和所述第二 目标频率中的较大值作为室内机频率, 根据所述室内机频率控制空调 器的压缩机。
[权利要求 7] 根据权利要求 6所述的控制装置, 其特征在于, 所述装置还包括: 室温 PID控制单元, 用于至少在所述温度比较单元的输出结果为所述 室内温度大于所述第一室内温度阈值吋, 将所述第一目标频率作为所 述室内机频率, 根据所述室内机频率控制空调器的压缩机。
根据权利要求 6所述的控制装置, 其特征在于, 在所述双重 PID控制 单元执行双重 PID控制吋, 所述室内温度获取单元仍实吋获取所述室 内温度, 若所述温度比较单元的输出结果为所述室内温度大于第二室 内温度阈值, 所述双重 PID控制单元退出控制; 所述第二室内温度阈 值大于所述第一室内温度阈值。
根据权利要求 8所述的控制装置, 其特征在于, 所述装置还包括: 室温 PID控制单元, 用于至少在所述温度比较单元的输出结果为所述 室内温度大于第二室内温度阈值、 所述双重 PID控制单元退出控制后 , 将所述第一目标频率作为所述室内机频率, 根据所述室内机频率控 制空调器的压缩机。
根据权利要求 6至 9中任一项所述的控制装置, 其特征在于, 所述装置 还包括:
室内推荐目标温度获取单元, 用于获取室内推荐目标温度; 盘管推荐目标温度获取单元, 用于获取盘管推荐目标温度; 第一差值计算单元, 用于计算所述室内推荐目标温度与所述设定室内 目标温度的差值作为第一差值;
第二差值计算单元, 用于根据公式: 第二差值=&*第一差值, 获取第 二差值; a为不大于 1的正数;
盘管目标温度确定单元, 用于计算所述盘管推荐目标温度与所述第二 差值之差, 计算结果确定为执行所述盘温 PID运算的实际盘管目标温 度并输出至所述盘温 PID运算单元。
PCT/CN2017/086056 2017-03-30 2017-05-26 空调器制热控制方法及控制装置 WO2018176619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710199517.1 2017-03-30
CN201710199517.1A CN107023939B (zh) 2017-03-30 2017-03-30 空调器制热控制方法及控制装置

Publications (1)

Publication Number Publication Date
WO2018176619A1 true WO2018176619A1 (zh) 2018-10-04

Family

ID=59526318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086056 WO2018176619A1 (zh) 2017-03-30 2017-05-26 空调器制热控制方法及控制装置

Country Status (2)

Country Link
CN (1) CN107023939B (zh)
WO (1) WO2018176619A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111561765A (zh) * 2019-06-17 2020-08-21 广东Tcl智能暖通设备有限公司 一种快速制冷或快速制热的控制方法及变频空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196290A (ja) * 1992-01-23 1993-08-06 Matsushita Electric Ind Co Ltd 空気調和機の暖房過負荷制御装置
JPH09119696A (ja) * 1995-08-23 1997-05-06 Toshiba Corp 空気調和機の制御装置及び制御方法
CN103836762A (zh) * 2012-11-22 2014-06-04 广东美的制冷设备有限公司 变频空调及其系统控制方法和装置
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN104713196A (zh) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 变频空调制冷控制方法、控制装置及变频空调
CN104764151A (zh) * 2015-03-27 2015-07-08 武汉海尔电器股份有限公司 一种空调控制方法
CN105864983A (zh) * 2016-04-27 2016-08-17 青岛海尔空调器有限总公司 一种空调控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735391A (ja) * 1993-07-20 1995-02-07 Fujitsu General Ltd 空気調和機の制御装置
CN104832992A (zh) * 2015-05-11 2015-08-12 广东美的暖通设备有限公司 空调器的低温制热方法及低温制热系统
CN105241029A (zh) * 2015-11-03 2016-01-13 青岛海尔空调器有限总公司 辐射空调的运行控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196290A (ja) * 1992-01-23 1993-08-06 Matsushita Electric Ind Co Ltd 空気調和機の暖房過負荷制御装置
JPH09119696A (ja) * 1995-08-23 1997-05-06 Toshiba Corp 空気調和機の制御装置及び制御方法
CN103836762A (zh) * 2012-11-22 2014-06-04 广东美的制冷设备有限公司 变频空调及其系统控制方法和装置
CN104697109A (zh) * 2014-12-22 2015-06-10 青岛海尔空调器有限总公司 制冷控制方法、控制装置及变频空调
CN104713196A (zh) * 2014-12-22 2015-06-17 青岛海尔空调器有限总公司 变频空调制冷控制方法、控制装置及变频空调
CN104764151A (zh) * 2015-03-27 2015-07-08 武汉海尔电器股份有限公司 一种空调控制方法
CN105864983A (zh) * 2016-04-27 2016-08-17 青岛海尔空调器有限总公司 一种空调控制方法

Also Published As

Publication number Publication date
CN107023939B (zh) 2020-04-24
CN107023939A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
CN107036237B (zh) 空调器制热控制方法和控制装置
WO2018196580A1 (zh) 空调器制热运行控制方法和控制装置
CN107014036B (zh) 制热控制方法、制热控制装置及空调器
WO2018176621A1 (zh) 空调器制热运行的控制方法
WO2018196578A1 (zh) 空调器制热运行控制方法
WO2019095561A1 (zh) 空调控制方法、装置及空调器
WO2020228549A1 (zh) 变频空调的控制方法
WO2019144940A1 (zh) 一种基于温冷感的空调器控制方法和空调器
CN106482294B (zh) 空调运行控制方法
WO2018196577A1 (zh) 一种空调器制热控制方法
WO2018177079A1 (zh) 空调器制热控制方法、控制装置及空调器
WO2018196579A1 (zh) 制热控制方法、控制装置和空调器
WO2018176619A1 (zh) 空调器制热控制方法及控制装置
JP6189138B2 (ja) 空調制御装置、空調システム、空調制御方法及びプログラム
WO2018176620A1 (zh) 空调器及其制热控制方法和控制装置
WO2019144939A1 (zh) 一种基于温冷感的空调器控制方法和空调器
CN107084489B (zh) 空调器制热控制方法
CN107152752B (zh) 空调器制热控制方法、控制装置
CN107084487B (zh) 空调器的制热控制方法和控制装置
JP2013130371A (ja) 空気調和機の制御装置、空気調和機、及び空気調和機の制御方法
CN106642548A (zh) 制冷控制的方法、装置及变频空调
JP2011185535A (ja) 空気調和機
JP2013120051A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903281

Country of ref document: EP

Kind code of ref document: A1