WO2018176549A1 - Procédé de fabrication d'une résistance sensible au gaz, et capteur de gaz fabriqué au moyen de ce procédé - Google Patents

Procédé de fabrication d'une résistance sensible au gaz, et capteur de gaz fabriqué au moyen de ce procédé Download PDF

Info

Publication number
WO2018176549A1
WO2018176549A1 PCT/CN2017/082347 CN2017082347W WO2018176549A1 WO 2018176549 A1 WO2018176549 A1 WO 2018176549A1 CN 2017082347 W CN2017082347 W CN 2017082347W WO 2018176549 A1 WO2018176549 A1 WO 2018176549A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
dielectric layer
manufacturing
silicon
photoresist
Prior art date
Application number
PCT/CN2017/082347
Other languages
English (en)
Chinese (zh)
Inventor
赖建文
Original Assignee
上海申矽凌微电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海申矽凌微电子科技有限公司 filed Critical 上海申矽凌微电子科技有限公司
Publication of WO2018176549A1 publication Critical patent/WO2018176549A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body

Definitions

  • the present invention relates to a method of manufacturing a sensor, and more particularly to a method of manufacturing a gas sensitive resistor and a gas sensor manufactured using the same.
  • the general structure has the following parts: a silicon back cavity structure; a metal heating layer, a wiring metal layer, and a gas sensing material layer.
  • the conventional gas sensor of the prior art has the following disadvantages: (1) the selectivity difference of the silicon cavity prepared by dry etching makes the structure uneven and unstable; (2) the electrode connection of the heating resistor and the gas sensitive resistor is different.
  • the metal layer makes the structure complicated and the consistency is poor; (3) It can only be used as a gas-sensitive material, and it is difficult to make a variety of gas sensors; (4) It is difficult to be compatible with the aluminum-copper metal wiring process with low cost and reliable process.
  • the quality of the environment is closely related to people's lives and work comfort and health.
  • people's requirements for the environment have become higher and higher, people hope to have simple, reliable and inexpensive methods and products to detect the quality of ambient air, such as carbon monoxide, flammable gases, ethanol, NO2, etc.
  • the amount of gas in the air is a relatively common method.
  • such sensors have a long manufacturing process, a complicated structure, and low consistency and reliability.
  • the object of the present invention is to provide a gas varistor which is simplified in process, high in structural stability, and capable of fabricating a plurality of gas sensing units on the same structure to realize multi-gas detecting function.
  • Method and gas sensor manufactured using the method are provided.
  • the present invention provides a method of manufacturing a gas sensitive resistor, comprising the following steps:
  • Step 1 forming an empty silicon cavity on the back side of the silicon wafer
  • Step 2 fabricating a heating resistor and a gas resistance measuring electrode on the front side of the silicon wafer;
  • step 3 a heating resistor electrode is formed on the front side of the silicon wafer.
  • step 1 comprises:
  • Step 1 in the back side of the silicon wafer, a two-step etching method is used to fabricate an empty silicon cavity;
  • Step 2 simultaneously fabricating a measuring electrode of a heating resistor and a gas resistance resistor on the front surface of the silicon wafer with the same metal layer;
  • step 3 a gas sensing resistor and an electrode for heating the resistor are fabricated on the front side of the silicon wafer.
  • step 1 comprises:
  • Step 1.1 simultaneously growing a first dielectric layer on the front and back sides of the silicon wafer;
  • Step 1.2 performing photoreceptor sensing on the back side of the silicon wafer
  • Step 1.3 dry etching the silicon wafer substrate on the back surface to form a first-order silicon cavity
  • step 1.4 the silicon substrate on the back side is wet-etched until the first dielectric layer forms a second-order silicon cavity; the first-order silicon cavity and the second-order silicon cavity are combined into an empty silicon cavity.
  • step 2 comprises:
  • Step 2.1 depositing a metal thin film layer by physical vapor deposition on the first dielectric layer
  • Step 2.2 performing photolithography and dry etching on the metal thin film layer to form four gas resistance measuring electrodes and heating resistors;
  • Step 2.3 depositing a second dielectric layer on the metal thin film layer by plasma enhanced chemical vapor deposition
  • Step 2.4 performing photolithography and dry etching on the second dielectric layer, forming a first contact hole penetrating the second dielectric layer on the second dielectric layer;
  • Step 2.5 coating a photoresist on the second dielectric layer
  • Step 2.6 performing photoreceptor sensitization and development on the photoresist to obtain a metal oxide gas varistor pattern, and the photoresist in the gas varistor pattern is removed by the developer after development, and the photoresist outside the pattern is retained;
  • Step 2.7 depositing a metal oxide film on the photoresist and the second dielectric layer by physical vapor deposition, the metal oxide film covering the second dielectric layer and the four gas resistance measuring electrodes and heating in the gas resistance pattern a metal oxide film covering the photoresist outside the gas resistance pattern;
  • Step 2.8 removing the photoresist, removing the metal oxide film covering the photoresist from the gas resistance pattern, leaving a metal oxide film in the gas resistance pattern;
  • step 2.9 the metal oxide film is baked to form a gas sensitive resistor.
  • step 3 comprises:
  • Step 3.1 performing photolithography and etching on the second dielectric layer covered by the non-metal oxide film, forming a second contact hole penetrating through the second dielectric layer on the second dielectric layer, and simultaneously retaining the photoresist;
  • Step 3.2 depositing an alloy thin film on the photoresist and the second contact hole by physical vapor deposition
  • step 3.3 the photoresist is removed, and the alloy film is formed into a Pad pattern.
  • the Pad alloy film is connected to the underlying metal film layer of the heating resistor or the metal film layer of the measuring electrode of the gas sensor through the second contact hole.
  • the thickness of the first dielectric layer is 0.5 micrometer to 2 micrometers, the material of the first dielectric layer is silicon oxide or silicon nitride; the thickness of the second dielectric layer is 100 nanometers to 1000 nanometers, and the material of the second dielectric layer is Silicon oxide or silicon nitride.
  • the silicon wafer substrate on the back side is dry etched, and the remaining silicon wafer substrate has a thickness of 10 micrometers to 100 micrometers to form a first-order silicon cavity.
  • the metal thin film layer has a thickness of 100 nm to 2 ⁇ m, and the metal thin film layer is made of a refractory metal, preferably a metal tungsten or a tungsten titanium alloy.
  • the metal oxide film has a thickness of 100 nm to 800 nm, and the metal oxide film is made of a gas sensing material, preferably SnO 2 , ZnO, TiO 2 or SnO 2 doped with Fe, Zn, Pt or Pd. , ZnO or TiO 2 ;
  • the alloy film has a thickness of 0.5 ⁇ m to 3 ⁇ m, and the alloy film is made of an aluminum-copper alloy or an aluminum-copper-silicon alloy.
  • the metal oxide film is baked in a vacuum or nitrogen atmosphere at a temperature of 300 ° C to 900 ° C for a period of 10 minutes to 8 hours.
  • a gas sensor manufactured by a method of manufacturing a gas sensitive resistor.
  • the beneficial effects of the present invention are as follows: the dry-wet two-step process can significantly improve the efficiency and quality of etching.
  • the process can use a layer of metal wiring to simultaneously achieve the heating function and resistance test function of the gas sensor, simplifying the process.
  • Gas-sensitive materials are measured using a four-terminal Kevin structure that accurately measures the resistivity of a material at the same time.
  • the invention adopts the Liftoff process to manufacture a gas-sensitive resistor and an aluminum metal wire, and can independently manufacture a sensing unit of a plurality of gas-sensitive materials.
  • the process flow of the invention can be compatible with the mature low-cost aluminum-copper metal wiring process at the same time, which is beneficial to mass production of the product.
  • FIG. 1 is a schematic view showing a manufacturing method of a gas-sensitive resistor of the present invention
  • FIG. 2 is a schematic view showing the manufacturing method of the gas-sensitive resistor of the present invention
  • FIG. 3 is a schematic view 3 of a method for manufacturing a gas sensitive resistor of the present invention.
  • FIG. 4 is a schematic view showing the manufacturing method of the gas sensitive resistor of the present invention.
  • FIG. 5 is a schematic view showing the manufacturing method of the gas sensitive resistor of the present invention.
  • FIG. 6 is a schematic view showing a manufacturing method of a gas-sensitive resistor of the present invention.
  • Figure 7 is a schematic view showing the manufacturing method of the gas sensitive resistor of the present invention.
  • Figure 8 is a schematic view showing the manufacturing method of the gas-sensitive resistor of the present invention
  • Fig. 9 is a schematic view 9 showing a method of manufacturing a gas-sensitive resistor of the present invention.
  • the manufacturing method of the gas-sensitive resistor of the present invention comprises: Step 1: growing a first dielectric layer of silicon oxide or silicon nitride on the front and back surfaces of a 100-crystal N-type or P-type silicon wafer 1. 2, the thickness is between 0.5 microns and 2 microns;
  • Step 2 Make the first mask 3 (photosensitive) on the back of the silicon wafer;
  • Step 3 first dry etching the back silicon substrate, the remaining silicon thickness is between about 10 microns and 100 microns, forming a first-order silicon cavity 4;
  • Step 4 further wet etching the back silicon wafer 1 to stop on the first dielectric layer 2 on the surface to form a second-order silicon cavity 5, a first-order silicon cavity 4 and a second-order silicon cavity 5 to synthesize an empty silicon cavity Body 8; Since the wet silicon etching has good selectivity to the dielectric layer, the etching is automatically stopped on the dielectric layer, the process is stable, and the structure is reliable.
  • Step 5 depositing a metal thin film layer 6 with a thickness of between 100 nanometers and 2 micrometers, and the material may be metal tungsten, or a tungsten-titanium alloy, or other refractory metal.
  • the metal thin film layer 6 simultaneously serves two important functions: one as a heating resistor and the other as an electrode for measuring a gas-sensitive metal oxide.
  • Step 6 Perform a second front side photolithography and dry etching on the metal thin film layer 6 to form a measuring electrode of a heating resistor and a gas resistance resistor.
  • Step 7 depositing a second dielectric layer 7 of silicon oxide or silicon nitride on the metal thin film layer 6 by a PECVD process to a thickness of between 100 nm and 1000 nm.
  • Step 8 performing a third front side photolithography and a second dielectric layer etching on the silicon oxide or silicon nitride second dielectric layer 7, to obtain a first contact hole 9.
  • the first contact hole 9 is exposed by the first gas-sensitive resistance measuring electrode 11, the second gas-sensitive resistance measuring electrode 12, the third gas-sensitive resistance measuring electrode 13, and the fourth gas-sensitive resistance measuring electrode 14, which is measuring gas sensitivity.
  • Step 9 doing the fourth photomask sensitization, obtaining a metal oxide gas varistor pattern, leaving the photoresist 17;
  • Step 10 depositing a metal oxide film 10 on the photoresist 17 by a PVD method, the thickness of which is between 100 nm and 800 nm, and the material may be a gas sensitive substance such as SnO 2 , ZnO or TiO 2 , or through Fe, Such a gas-sensitive substance doped with an element such as Zn, Pt or Pd.
  • Step 11 removing the photoresist using a solvent, and leaving the gas-sensitive metal oxide film covering the first gas-resistance measuring electrode 11, the second gas-resistance measuring electrode 12, the third gas-resistance measuring electrode 13 and the first
  • the first gas sensing resistor measures the first contact hole 9 of the electrode 14 and is connected to the outer test pad, respectively.
  • the metal oxide film 10 is covered under the heating resistor 16 formed of the first metal layer 6, but is electrically isolated from the second dielectric layer 7 by silicon oxide or silicon nitride.
  • Step 12 Baking in a vacuum or nitrogen atmosphere at a certain temperature to crystallize the metal oxide to form a gas-sensitive resistor of a desired stable property.
  • the baking temperature is between 300 ° C and 700 ° C and the time is between 10 minutes and 8 hours.
  • Step 13 If two or more gas sensitive materials are required, the above process steps 9 to 12 can be repeated.
  • Step 14 performing a fifth photolithography on the silicon oxide or silicon nitride second dielectric layer 7, etching the silicon oxide or silicon nitride second dielectric layer 7, forming a second contact hole, and leaving the photoresist.
  • Step 15 PVD deposits an aluminum or aluminum-copper alloy film 15 having a thickness between 0.5 microns and 3 microns. After removing the photoresist with a solvent, the aluminum or aluminum-copper alloy film 15 is formed on the electrode of the heating resistor 16 formed in the second contact hole and the first metal layer 6, and the first gas-resistance measuring electrode 11, and the second gas-sensitive resistance measurement The electrode 12, the third gas-sensitive resistance measuring electrode 13 and the fourth gas-sensitive resistance measuring electrode 14 are connected as an external pad.
  • Step 16 Plan view of the entire structure, including the heating resistor 16 and its electrodes, the first gas-sensitive resistance measuring electrode 11, the second gas-sensitive resistance measuring electrode 12, and the third gas-sensitive resistor of the Kevin structure for measuring the characteristics of the gas-sensing resistance
  • the measuring electrode 13 and the fourth gas-sensitive resistance measuring electrode 14 are used.
  • Step 17 At this point, the new gas sensor MEMS structure completes the process.
  • Figure 9 is an equivalent circuit diagram including the both ends of the heating resistor 16Rheater, the first gas-sensitive resistance measuring electrode 11, the second gas-sensitive resistance measuring electrode 12, the third gas-sensitive resistance measuring electrode 13 and the first of the gas-sensitive resistor Rgas The four gas resistance measuring electrode 14 is used.
  • the present invention also provides a gas sensor manufactured using the above-described manufacturing method of a gas-sensitive resistor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une résistance sensible au gaz et un capteur de gaz fabriqué au moyen du procédé. Le procédé comprend les étapes suivantes : étape 1, fabrication d'une cavité de silicium creuse (8) sur le côté arrière d'une tranche de silicium (1) au moyen d'un procédé de gravure en deux étapes ; étape 2, fabrication simultanée d'une résistance chauffante (16) et d'électrodes (11, 12, 13) de mesure de résistance, sensibles au gaz, sur le côté avant de la tranche de silicium (1) par utilisation de la même couche métallique (6) ; et étape 3, fabrication des électrodes de la résistance sensible au gaz et de la résistance chauffante (16) sur le côté avant de la tranche de silicium (1). Selon le procédé de fabrication d'une résistance sensible au gaz, un procédé de gravure en deux étapes, sèche et humide, est utilisé et ainsi, l'efficacité et la qualité de gravure sont considérablement améliorées. Au moyen du processus technologique, une couche de câblage métallique peut servir à obtenir à la fois la fonction de chauffage et la fonction de test de résistance de la résistance sensible au gaz, et le processus est simplifié. Une structure de Kelvin à quatre extrémités sert à mesurer un matériau sensible au gaz, et la variation de résistivité électrique du matériau peut être mesurée avec précision. Un procédé de décollement sert à fabriquer la résistance sensible au gaz et un fil d'aluminium, et de multiples unités de capteur constituées d'un matériau sensible au gaz peuvent être fabriquées indépendamment. De plus, le procédé est compatible avec un procédé de câblage de métal aluminium-cuivre à faible coût.
PCT/CN2017/082347 2017-04-01 2017-04-28 Procédé de fabrication d'une résistance sensible au gaz, et capteur de gaz fabriqué au moyen de ce procédé WO2018176549A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710213909.9A CN107192744A (zh) 2017-04-01 2017-04-01 气敏电阻的制造方法及使用该方法制造的气体传感器
CN201710213909.9 2017-04-01

Publications (1)

Publication Number Publication Date
WO2018176549A1 true WO2018176549A1 (fr) 2018-10-04

Family

ID=59871754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082347 WO2018176549A1 (fr) 2017-04-01 2017-04-28 Procédé de fabrication d'une résistance sensible au gaz, et capteur de gaz fabriqué au moyen de ce procédé

Country Status (2)

Country Link
CN (1) CN107192744A (fr)
WO (1) WO2018176549A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782767B (zh) * 2016-08-26 2022-01-07 深迪半导体(绍兴)有限公司 一种气体传感器加热盘及加工方法
CN109932402B (zh) * 2019-04-23 2024-06-25 苏州纳格光电科技有限公司 热线型气体传感器芯片、传感器及传感器的制备方法
CN111122656A (zh) * 2019-12-04 2020-05-08 浙江省北大信息技术高等研究院 一种湿度传感器及其制备方法
CN117571792A (zh) * 2024-01-15 2024-02-20 北京智芯传感科技有限公司 一种基于mems技术的甲烷气体传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196556A (ja) * 1988-01-30 1989-08-08 Toshiba Corp ガスセンサ
US5659127A (en) * 1996-08-26 1997-08-19 Opto Tech Corporation Substrate structure of monolithic gas sensor
CN101126730A (zh) * 2007-01-10 2008-02-20 中山大学 一种气敏传感元件的电极部件及其制造方法
CN103675048A (zh) * 2013-11-18 2014-03-26 西安交通大学 一种基于mems的金属氧化物气体传感器及制备工艺
CN106124576A (zh) * 2016-06-28 2016-11-16 上海申矽凌微电子科技有限公司 集成的湿度传感器和多单元气体传感器及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132762A (ja) * 2005-11-09 2007-05-31 Nippon Ceramic Co Ltd ガスセンサの構造
CN101364573B (zh) * 2007-08-10 2010-08-04 联华电子股份有限公司 测试结构及测试方法
CN104089981B (zh) * 2014-06-23 2016-08-03 西安交通大学 基于纳米TiO2薄膜的微型氧气传感器及制备工艺
CN104458828A (zh) * 2014-12-22 2015-03-25 中国科学院重庆绿色智能技术研究院 丙酮气敏半导体传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196556A (ja) * 1988-01-30 1989-08-08 Toshiba Corp ガスセンサ
US5659127A (en) * 1996-08-26 1997-08-19 Opto Tech Corporation Substrate structure of monolithic gas sensor
CN101126730A (zh) * 2007-01-10 2008-02-20 中山大学 一种气敏传感元件的电极部件及其制造方法
CN103675048A (zh) * 2013-11-18 2014-03-26 西安交通大学 一种基于mems的金属氧化物气体传感器及制备工艺
CN106124576A (zh) * 2016-06-28 2016-11-16 上海申矽凌微电子科技有限公司 集成的湿度传感器和多单元气体传感器及其制造方法

Also Published As

Publication number Publication date
CN107192744A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
WO2018176549A1 (fr) Procédé de fabrication d'une résistance sensible au gaz, et capteur de gaz fabriqué au moyen de ce procédé
Prajapati et al. Single chip gas sensor array for air quality monitoring
US10942048B2 (en) Sensor chip used for multi-physical quantity measurement and preparation method thereof
CN105987935B (zh) Mems气体传感器及其制作方法
US20190353607A1 (en) Gas sensor
US20100314700A1 (en) Fabricating method for micro gas sensor and the same
TW506942B (en) Gas sensor and fabrication method thereof
WO2015085816A1 (fr) Capteur d'humidité à mems et procédé de préparation
CN104677952A (zh) 一种高稳定性薄膜氢气传感器及其使用方法
US10180406B2 (en) Semiconductor gas sensor device and manufacturing method thereof
JPH0862011A (ja) 熱伝播時間計測型フローセンサとその製造方法
JP4880931B2 (ja) プラットフォームチップを備えるセンサの使用方法
CN101620192A (zh) 一种用于测量薄膜导热率的测试结构
CN110726490A (zh) 一种微尺度火工品发火温度测量装置
CN112320754A (zh) 一种半导体导电薄膜线宽的在线测试结构及方法
CN108107081B (zh) 一种气体传感器的制造方法以及由此制造的气体传感器
US11635401B2 (en) Sensor device, method for manufacturing a sensor device and sensor assembly
CN107356637A (zh) 环境传感器的制造方法及使用该方法制造的环境传感器
CN111721469A (zh) 一种高灵敏度微型皮拉尼计
Bagga et al. Fabrication of coplanar microheater platform for LPG sensing applications
CN115308270A (zh) 一种钯合金薄膜氢气传感器及其制备方法和使用方法
CN210626387U (zh) 薄膜桥压式氢气氛传感器
JPH0618465A (ja) 複合センサ
CN107607152B (zh) 传感器的制造方法及传感器
JP5467775B2 (ja) ガスセンサの性能評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902912

Country of ref document: EP

Kind code of ref document: A1