WO2018176253A1 - 一组用于羧基标记的同位素标记试剂及其合成方法 - Google Patents

一组用于羧基标记的同位素标记试剂及其合成方法 Download PDF

Info

Publication number
WO2018176253A1
WO2018176253A1 PCT/CN2017/078547 CN2017078547W WO2018176253A1 WO 2018176253 A1 WO2018176253 A1 WO 2018176253A1 CN 2017078547 W CN2017078547 W CN 2017078547W WO 2018176253 A1 WO2018176253 A1 WO 2018176253A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
isotope
methyl iodide
solution
labelling
Prior art date
Application number
PCT/CN2017/078547
Other languages
English (en)
French (fr)
Inventor
吴明火
刘敏
周豪
胡玉峰
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2017/078547 priority Critical patent/WO2018176253A1/zh
Publication of WO2018176253A1 publication Critical patent/WO2018176253A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/62Preparation of compounds containing amino groups bound to a carbon skeleton by cleaving carbon-to-nitrogen, sulfur-to-nitrogen, or phosphorus-to-nitrogen bonds, e.g. hydrolysis of amides, N-dealkylation of amines or quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of chemical synthesis and relates to a group of isotopic labeling reagents for labeling carboxyl groups and a synthesis method thereof.
  • the isotope and its labeling reagent involved in the method are commodities having high technical content and high added value. Efficient and accurate relative or absolute quantification can be achieved by combining LC-MS by modifying the reactive groups in the target analyte and introducing isotope labels. Since the 1970s, this method has been widely used in agriculture, food safety, life sciences, environment, clinical medicine, pharmacy and other fields.
  • the carboxyl group may be optionally modified to couple the labeling reagent containing the isotope to the target by a condensation reaction.
  • the primary amino group-containing reagent is one of the most widely used modification reagents, and can be modified by forming an amide bond with a carboxyl group in the target.
  • the present invention selects an isotope-containing methyl iodide as an isotope-derived reagent, and through its nucleophilic substitution reaction with a tertiary amino group, an isotope is introduced into the final target product, that is, for carboxyl labeling.
  • Isotope labeling reagent When the sample is analyzed, the labeled reagent is first reacted with the target analyte in the sample, the isotope-labeled quaternary ammonium is introduced into the original analyte, and the labeled product is analyzed by LC-MS.
  • the main content of the invention is to synthesize a novel set of isotopic labeling reagents, and use N,N-dimethylethylenediamine and its homologues as raw materials to introduce isotopes into the final target product through nucleophilic substitution reaction.
  • N,N-dimethylethylenediamine and its homologues as raw materials to introduce isotopes into the final target product through nucleophilic substitution reaction.
  • it is necessary to shield the primary amine to prevent the primary The amine is methylated; after completion of the nucleophilic substitution reaction, the protecting group on the original primary amine group is removed, and the primary amine group for reaction with the carboxyl group is recovered.
  • a set of isotopic labeling reagents for carboxyl labeling is characterized by a primary amine at one end, a trimethylammonium salt at the other end, and a plurality of carbon chains between the primary amine and the trimethylammonium salt. Connected, the number of carbon atoms in the middle carbon chain is 2-7, and the structural formula is as follows:
  • R CH 3 ,CH 2 D,CHD 2 ,CD 3 , 13 CH 3 , 13 CH 2 D, 13 CHD 2 , 13 CD 3
  • the above-mentioned isotope labeling reagent is synthesized by first protecting the primary amino group with di-tert-butyl dicarbonate ((BOC) 2 O), and then reacting with methyl iodide or isotope-substituted methyl iodide under alkaline conditions ( ⁇ and carbon) 13) The reaction is carried out, and finally a protective group is removed under acidic conditions to obtain a series of analogous compounds of (2-aminoethyl)trimethylammonium, which are isotopically labeled reagents. Specifically, the following steps are included:
  • the reaction formula is as follows:
  • reaction raw material and the alkali are sequentially added, and the mixture is uniformly stirred at room temperature to obtain a mixed solution.
  • concentration of the reaction raw material in water is 0.5-5mmol/mL;
  • the alkali is sodium hydroxide, sodium carbonate, sodium hydrogencarbonate or triethylamine, and the concentration of the base in water is 0.75-25mmol/mL;
  • the organic solvent is one of tetrahydrofuran, 1,4-dioxane, and dichloromethane.
  • step 1.2 Under the condition of 0-5 ° C, di-tert-butyl dicarbonate (BOC) 2 O is added dropwise to the mixed solution obtained in step 1.1), reacted in an ice water bath for 10-30 min, and then reacted at room temperature for 2-4 h to obtain a reaction solution. .
  • the molar ratio of the reaction raw material to (BOC) 2 O is 1:1.-3.
  • Step 2 Introducing methyl iodide or isotopically substituted methyl iodide into the reaction system to obtain the corresponding quaternary ammonium product; the method of introducing the isotope in this step is achieved by a nucleophilic substitution reaction between the isotopic methyl iodide and the tertiary amino group. . Specific steps:
  • step 1.2 Adjusting the pH of the reaction solution obtained in step 1.2) to about neutral, and rotating the solvent to dryness, then adding solvent, alkali and methyl iodide or isotope-substituted methyl iodide reagent to the reaction flask in turn, heating and refluxing at 60-80 ° C.
  • the reaction solution was obtained after the reaction for 2-4 h.
  • the base is one of sodium hydroxide, sodium carbonate and potassium carbonate;
  • the solvent is one of acetonitrile, acetone and DMF;
  • the reaction raw material methyl iodide or isotopically substituted methyl iodide, alkali
  • the molar ratio is 1:1.1-2:1.5-10;
  • the isotopically substituted methyl iodide is CH 2 DI, CHD 2 I, CD 3 I, 13 CH 3 I, 13 CH 2 DI, 13 CHD 2 I, 13 CD 3 I.
  • Step 3 Deprotect the group under acidic conditions to obtain the corresponding trimethylammonium salt
  • the pH of the reaction solution obtained in the second step was adjusted to 6-8 with hydrochloric acid, and the solvent was evaporated to dryness.
  • a solution of hydrogen chloride in ethyl acetate was added to the reaction flask.
  • the invention adopts isotopic methyl iodide as an isotope source reagent, and uses N,N-dimethylethylenediamine homolog (the number of carbon atoms in the intermediate carbon chain is 2-7) as a raw material, and passes the isotope-containing methyl iodide.
  • the isotope is introduced into the final target product by a nucleophilic substitution reaction with a tertiary amine group in the starting material.
  • the carboxyl group can be labeled to obtain its corresponding isotope internal standard.
  • the beneficial effects of the present invention are that a novel set of isotopically labeled reagents for highly efficient labeling of carboxyl groups is synthesized by high-efficiency nucleophilic substitution reaction by methyl iodide substituted with relatively inexpensive D or 13 C.
  • the target containing a carboxyl group is quantitatively analyzed by MS or LC-MS, it is not necessary to use the internal standard for the respective isotope.
  • a sample and a standard of a known concentration of the target to be tested may be separately derivatized with the synthesized labeling reagent, and converted into a target having an isotope. After labeling, the carboxyl group of the target is converted into quaternary ammonium.
  • the detection mode is changed from the common negative ion mode to the positive ion mode, and the ionization efficiency becomes high, which can improve the sensitivity of the analysis and Test your ability.
  • a plurality of samples are relatively quantitatively or absolutely quantified, 5-8 samples are simultaneously labeled in parallel, and after the labeling reaction is completed, the samples are mixed, and the analysis is performed once by MS or LC-MS, and the analysis time of the instrument is reduced. To 1/5-1/8 of the original aspect. Compared with single injection analysis of each sample, labeling with this series of isotope reagents can significantly improve the efficiency and accuracy of the analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一组用于羧基标记的同位素标记试剂及其合成方法,同位素标记试剂的一端为伯胺,另一端为三甲基铵盐,伯胺与三甲基铵盐之间通过多个碳链相连。合成过程为:以N,N-二甲基乙二胺及其同系物为反应原料,用二碳酸二叔丁酯((BOC) 2O)对伯氨基进行保护,然后在碱性条件下与含有同位素D及 13C的碘甲烷试剂反应,最后在酸性条件脱去保护基团得到目标产物。通过亲核取代反应合成了一组可用于高效标记羧基的同位素标记试剂,价格低,操作简单,采用所述同位素试剂进行标记后可显著提高分析的效率及准确性。

Description

一组用于羧基标记的同位素标记试剂及其合成方法 技术领域
本发明属于化学合成领域,涉及一组用于标记羧基的同位素标记试剂及其合成方法。
背景技术
随着质谱(mass spectrometry)技术的不断发展和蛋白质组学研究的不断深入,用于定量分析的稳定同位素标记(stable isotope labeling)技术获得了飞速发展。该方法中所涉及的同位素及其标记试剂是一种具有高技术含量和高附加值的商品。通过对目标分析物中的可反应基团进行修饰并引入同位素标记物,结合LC-MS可以实现高效准确的相对或绝对定量。自上世纪70年代以来,该方法被广泛应用于农业、食品安全、生命科学、环境、临床医学、药学等领域。
对于含有羧基的目标分析物,可选择对羧基进行修饰,通过缩合反应将含有同位素的标记试剂联接到目标物上。在众多修饰试剂中,带伯氨基的试剂是应用最为广泛的修饰试剂之一,可通过与目标物中的羧基形成酰胺键实现修饰。在制备同位素修饰试剂的过程中,本发明选用了含同位素的碘甲烷作为同位素来源试剂,通过其与叔胺基的亲核取代反应,将同位素引入到最终的目标产物上,即用于羧基标记的同位素标记试剂。在对样品进行分析时,先用该标记试剂与样品中的目标分析物进行反应,将带有同位素标记的季铵引入到原分析物中,再用LC-MS对标记后的产物进行分析。
发明内容
本发明主要内容为合成一组新型的同位素标记试剂,以N,N-二甲基乙二胺及其同系物为原料,通过亲核取代反应,将同位素引入到最终的目标产物。为得到所期望的产物,在进行亲核取代反应时,需要将其伯胺进行屏蔽,阻止伯 胺被甲基化;亲核取代反应完成后,再将原来伯胺基上的保护基团去除,复原得到用于与羧基反应的伯胺基。
本发明的技术方案为:
一组用于羧基标记的同位素标记试剂,所述的同位素标记试剂的结构特点是一端为伯胺,另一端为三甲基铵盐,伯胺与三甲基铵盐之间通过多个碳链相连,中部碳链上碳原子个数为2-7个,结构式如下:
Figure PCTCN2017078547-appb-000001
R=CH3,CH2D,CHD2,CD3,13CH3,13CH2D,13CHD2,13CD3
上述同位素标记试剂的合成方法,合成过程先用二碳酸二叔丁酯((BOC)2O)对伯氨基进行保护,然后在碱性条件下与碘甲烷或同位素取代的碘甲烷(氘及碳13)等反应,最后在酸性条件脱去保护基团得到(2-氨基乙基)三甲基铵的系列类似化合物,所述的系列类似化合物为同位素标记试剂。具体包括以下步骤:
第一步:以N,N-二甲基乙二胺及其同系物(n=1-6)为反应原料,采用二碳酸二叔丁酯((BOC)2O)对伯氨基进行保护,反应式如下:
Figure PCTCN2017078547-appb-000002
具体步骤为:
1.1)在反应瓶中加入摩尔比为1:1-1:3的水和有机溶剂后,再依次加入反应原料和碱,室温下搅拌均匀后得到混合溶液。所述的反应原料在水中的浓度为0.5-5mmol/mL;所述的碱为氢氧化钠、碳酸钠、碳酸氢钠或三乙胺,碱在水中的浓度为0.75-25mmol/mL;所述的有机溶剂为四氢呋喃、1,4-二氧六环、二氯甲烷中的一种。
1.2)在0-5℃条件下,将二碳酸二叔丁酯(BOC)2O逐滴加入步骤1.1)得到的混合溶液中,冰水浴反应10-30min,再常温反应2-4h得到反应溶液。所述的反应原料与(BOC)2O的摩尔比为1:1.-3。
第二步:反应体系中引入碘甲烷或同位素取代的碘甲烷,得到相应的季铵产物;该步骤中引入同位素的方式是借助含同位素的碘甲烷与叔氨基之间的亲核取代反应实现的。具体步骤:
调节步骤1.2)得到的反应溶液pH到中性左右,旋转蒸干溶剂后,在反应瓶中依次加入溶剂、碱和碘甲烷或同位素取代的碘甲烷试剂,在60-80℃条件下,加热回流反应2-4h后得到反应溶液。所述的碱为氢氧化钠、碳酸钠、碳酸钾中的一种;所述的溶剂为乙腈、丙酮、DMF中的一种;所述的反应原料、碘甲烷或同位素取代的碘甲烷、碱的摩尔比为1:1.1-2:1.5-10;所述同位素取代的碘甲烷为CH2DI、CHD2I、CD3I、13CH3I、13CH2DI、13CHD2I、13CD3I。
以不含同位素的碘甲烷为例,反应式如下:
Figure PCTCN2017078547-appb-000003
第三步:在酸性条件脱去保护基团得到相应的三甲基铵盐
用盐酸调节第二步得到的反应溶液的pH至6-8,旋转蒸干溶剂,在反应瓶中加入氯化氢的乙酸乙酯溶液,氯化氢的浓度为1-4mol/L,磁力搅拌,在20-40℃条件下反应20-60min后,析出相应的三甲基铵的盐酸盐,旋蒸干燥后就得到目标产品,结构式为:
Figure PCTCN2017078547-appb-000004
其中R为CH3、CH2D、CHD2、CD313CH313CH2D、13CHD213CD3;n=1-6,即目标产物中间碳链的碳原子个数可以为2-7个。
本发明选用了含同位素的碘甲烷作为同位素源头试剂,以N,N-二甲基乙二胺同系物(中间碳链上碳原子数为2-7个)为原料,通过含同位素的碘甲烷与原料中叔胺基的亲核取代反应,将同位素引入到最终的目标产物上。通过这种带有同位素标记的季铵盐与含有羧基的物质进行酰胺化反应,可以对羧基进行标记,得到其相应的同位素内标物。
本发明的有益效果为,通过以价格较为低廉的D或13C取代的碘甲烷,用高效的亲核取代反应合成了一组新型的可用于高效标记羧基的同位素标记试剂。当用MS或LC-MS对含有羧基的目标物进行定量分析时,无需借助为各自的同位素内标。可将样品及已知浓度的待测目标物的标准品分别用所合成的标记试剂进行衍生,将其转化为带有同位素的目标物。经过标记之后,目标物的羧基被转化为季铵,在MS或LC-MS的分析中,其检测模式由常用的负离子模式转变为正离子模式,离子化效率变高,可提高分析的灵敏度及检测能力。当对多个样品进行相对定量或绝对定量时,同时对5-8个样品平行进行标记处理,在完成标记反应之后对这些样品进行混合,用MS或LC-MS一次完成分析,仪器分析时间缩减至原始方面的1/5-1/8。与每个样品单次进样分析相比,利用该系列同位素试剂进行标记后可显著提高分析的效率及准确性。
具体实施方式
下面结合具体实施例,进一步阐述本发明。
实施例1:
(1)将1mL水和1mL四氢呋喃加入25mL圆底烧瓶中,再加入1.5mmol N,N-二甲基乙二胺和7.5mmol NaOH水溶液,混合均匀并置于0℃冰水浴中。在混合溶液中缓慢滴加2.5mmol(BOC)2O溶液,磁力搅拌下反应20min后,再室温反应2h。
Figure PCTCN2017078547-appb-000005
(2)反应结束后,将溶剂真空干燥,依次加入3mL乙腈,2mmol CH3I和6mmol NaOH水溶液,在65℃下磁力搅拌反应3h。
Figure PCTCN2017078547-appb-000006
(3)用盐酸调节第二步得到的反应溶液的pH为7,旋蒸干燥溶剂后,在反应瓶中加入3mL氯化氢的乙酸乙酯溶液(浓度为1mol/L),磁力搅拌,在25℃的反应温度下反应25min。
Figure PCTCN2017078547-appb-000007
(4)反应完成后,析出(2-氨基乙基)三甲基氯化铵的盐酸盐,旋蒸干燥后得到目标产品。
实施例2:
(1)取1mL水和2mL四氢呋喃于25mL圆底烧瓶中,加入1.5mmol N,N-二甲基乙二胺和6mmol三乙胺水溶液,混合均匀,并置于2℃冰水浴中。往混合溶液中缓慢滴加3mmol(BOC)2O溶液,在磁力搅拌下反应10min,后室温下反应2h。
(2)反应结束后,将溶剂真空干燥,依次加入3mL乙腈,1.7mmol CD3I和6mmol NaOH水溶液,在70℃下磁力搅拌反应4h。
Figure PCTCN2017078547-appb-000009
(3)将第二步反应中的溶液用盐酸调节pH=6,旋转蒸干,往反应瓶中加入3ml氯化氢的乙酸乙酯溶液(2mol/L),反应温度25℃,磁力搅拌进行反应30min。
Figure PCTCN2017078547-appb-000010
(4)反应完成后,有(2-氨基乙基)三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例3:
(1)取1.5mL水和1.5mL四氢呋喃于25mL圆底烧瓶中,加入1.5mmol N,N-二甲基乙二胺和6mmol NaOH水溶液,混合均匀,并置于3℃冰水浴中。往混合溶液中缓慢滴加3.5mmol(BOC)2O溶液,在磁力搅拌下反应15min,后室温下反应3h。
Figure PCTCN2017078547-appb-000011
(2)反应结束后,将溶剂真空干燥,依次加入3mL乙腈,2mmol CH2DI和6mmol NaOH水溶液,在65℃下磁力搅拌反应3h。
Figure PCTCN2017078547-appb-000012
(3)将第二步反应中的溶液用盐酸调节pH=6.5,旋转蒸干,往反应瓶中加入3ml氯化氢的乙酸乙酯溶液(3mol/L),反应温度30℃,磁力搅拌进行反应35min。
Figure PCTCN2017078547-appb-000013
(4)反应完成后,有(2-氨基乙基)三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例4:
(1)取1mL水和1mL 1,4-二氧六环于25mL圆底烧瓶中,加入1.5mmol N,N-二甲基乙二胺和7.5mmol NaOH水溶液,混合均匀,并置于4℃冰水浴中。往混合溶液中缓慢滴加3mmol(BOC)2O溶液,在磁力搅拌下反应25min,后室温下反应3h。
Figure PCTCN2017078547-appb-000014
(2)反应结束后,将溶剂真空干燥,依次加入3mL丙酮,2mmol CHD2I和6mmol NaOH水溶液,在75℃下磁力搅拌反应4h。
Figure PCTCN2017078547-appb-000015
(3)将第二步反应中的溶液用盐酸调节pH=7.5,旋转蒸干,往反应瓶中加入3mL氯化氢的乙酸乙酯溶液(4mol/L),反应温度40℃,磁力搅拌进行反应30min。
Figure PCTCN2017078547-appb-000016
(4)反应完成后,有(2-氨基乙基)三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例5:
(1)取1mL水和3mL四氢呋喃于25mL圆底烧瓶中,加入1.5mmol 4-二甲基氨基丁胺和7.5mmol三乙胺水溶液,混合均匀,并置于3℃冰水浴中。往混合溶液中缓慢滴加3mmol(BOC)2O溶液,在磁力搅拌下反应20min,后室温下反应3h。
Figure PCTCN2017078547-appb-000017
(2)反应结束后,将溶剂真空干燥,依次加入3mL DMF,2mmol CH3I和7mmol碳酸钠水溶液,在80℃下磁力搅拌反应3h。
Figure PCTCN2017078547-appb-000018
(3)将第二步反应中的溶液用盐酸调节pH=6.5,旋转蒸干,往反应瓶中加入3ml氯化氢的乙酸乙酯溶液(3mol/L),反应温度35℃,磁力搅拌进行反应40min。
Figure PCTCN2017078547-appb-000019
(4)反应完成后,有相应的三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例6:
(1)取1mL水和2mL 1,4-二氧六环于25mL圆底烧瓶中,加入1.5mmol N,N-二甲基乙二胺和10mmol三乙胺水溶液,混合均匀,并置于1℃冰水浴中。往混合溶液中缓慢滴加4mmol(BOC)2O溶液,在磁力搅拌下反应20min,后室温下反应2h。
Figure PCTCN2017078547-appb-000020
(2)反应结束后,将溶剂真空干燥,依次加入3mL乙腈,1.8mmol 13CH3I和6mmol NaOH水溶液,在75℃下磁力搅拌反应4h。
Figure PCTCN2017078547-appb-000021
(3)将第二步反应中的溶液用盐酸调节pH=7,旋转蒸干,往反应瓶中加入3mL氯化氢的乙酸乙酯溶液(3mol/L),反应温度30℃,磁力搅拌进行反应30min。
Figure PCTCN2017078547-appb-000022
(4)反应完成后,有(2-氨基乙基)三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例7:
(1)取1mL水和3mL四氢呋喃于25mL圆底烧瓶中,加入1.5mmol N,N-二甲基乙二胺和5mmol NaOH水溶液,混合均匀,并置于0℃冰水浴中。往混合溶液中缓慢滴加2.8mmol(BOC)2O溶液,在磁力搅拌下反应20min,后室温下反应2h。
Figure PCTCN2017078547-appb-000023
(2)反应结束后,将溶剂真空干燥,依次加入3mL丙酮,2mmol 13CD3I和6mmol NaOH水溶液,在70℃下磁力搅拌反应3h。
Figure PCTCN2017078547-appb-000024
(3)将第二步反应中的溶液用盐酸调节pH=7,旋转蒸干,往反应瓶中加入3ml氯化氢的乙酸乙酯溶液(3mol/L),反应温度25℃,磁力搅拌进行反应50min。
Figure PCTCN2017078547-appb-000025
(4)反应完成后,有(2-氨基乙基)三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。
实施例8:
(1)将1mL水和2mL四氢呋喃加入25mL圆底烧瓶中,再加入1.5mmol6-(二甲胺基)己胺和8mmol NaOH水溶液,混合均匀并置于0℃冰水浴中。在混合溶液中缓慢滴加2.5mmol(BOC)2O溶液,磁力搅拌下反应15min后,再室温反应2h。
Figure PCTCN2017078547-appb-000026
(2)反应结束后,将溶剂真空干燥,依次加入3mL DMF,2mmol CD3I和7mmol NaOH水溶液,在70℃下磁力搅拌反应4h。
Figure PCTCN2017078547-appb-000027
(3)将第二步反应中的溶液用盐酸调节pH=6,旋转蒸干,往反应瓶中加入3ml氯化氢的乙酸乙酯溶液(4mol/L),反应温度30℃,磁力搅拌进行反应40min。
Figure PCTCN2017078547-appb-000028
(4)反应完成后,有相应的三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得 到目标产品。
实施例9:
(1)将1mL水和2mL 1,4-二氧六环加入25mL圆底烧瓶中,加入1.5mmol7-(二甲氨基)庚胺和7mmol NaOH水溶液,混合均匀并置于0℃冰水浴中。在混合溶液中缓慢滴加2.5mmol(BOC)2O溶液,磁力搅拌下反应20min后,再室温反应4h。
Figure PCTCN2017078547-appb-000029
(2)反应结束后,将溶剂真空干燥,依次加入3mL乙腈,2mmol CH3I和7mmol NaOH水溶液,在75℃下磁力搅拌反应4h。
Figure PCTCN2017078547-appb-000030
(3)将第二步反应中的溶液用盐酸调节pH=7,旋转蒸干,往反应瓶中加入3mL氯化氢的乙酸乙酯溶液(4mol/L),反应温度30℃,磁力搅拌进行反应50min。
Figure PCTCN2017078547-appb-000031
(4)反应完成后,有相应的三甲基氯化铵的盐酸盐析出,旋蒸干燥后就得到目标产品。

Claims (9)

  1. 一组用于羧基标记的同位素标记试剂,其特征在于,所述的同位素标记试剂一端为伯胺,另一端为三甲基铵盐,伯胺与三甲基铵盐之间通过碳链相连,碳链上碳原子个数为2-7个,同位素标记试剂的结构式如下:
    Figure PCTCN2017078547-appb-100001
    其中R为CH3、CH2D、CHD2、CD313CH313CH2D、13CHD213CD3;n=1-6。
  2. 权利要求1所述的同位素标记试剂的合成方法,其特征在于,以下步骤:
    第一步:以N,N-二甲基乙二胺及其同系物(n=1-6)为反应原料,采用二碳酸二叔丁酯((BOC)2O)对伯氨基进行保护,反应式如下:
    Figure PCTCN2017078547-appb-100002
    具体步骤为:
    1.1)将摩尔比为1:1-1:3的水和有机溶剂混合后,依次加入反应原料和碱,室温下搅拌均匀得到混合溶液;所述的反应原料在水中的浓度为0.5-5mmol/mL;碱在水中的浓度为0.75-25mmol/mL;
    1.2)在0-5℃条件下,将二碳酸二叔丁酯(BOC)2O逐滴加入步骤1.1)得到的混合溶液中,冰水浴反应10-30min,再常温反应2-4h得到反应溶液;所述的反应原料与(BOC)2O的摩尔比为1:1.5-3;
    第二步:反应体系中引入碘甲烷或同位素取代的碘甲烷,得到季铵产物;
    调节步骤1.2)得到的反应溶液pH到中性左右,旋转蒸干溶剂后,依次加入溶剂、碱和碘甲烷或同位素取代的碘甲烷试剂,在60-80℃条件下,加热回流反应2-4h后得到反应溶液;所述的反应原料、碘甲烷或同位素取代的碘甲烷、碱的摩尔比为1:1.1-2:1.5-10;所述同位素取代的碘甲烷为CH2DI、CHD2I、CD3I、 13CH3I、13CH2DI、13CHD2I、13CD3I;
    第三步:在酸性条件脱去保护基团得到相应的三甲基铵盐
    用酸调节第二步得到的反应溶液的pH至6-8,蒸干溶剂后,加入氯化氢的乙酸乙酯溶液,在20-40℃条件下,磁力搅拌反应20-60min,析出三甲基铵的盐酸盐,旋蒸干燥后得到目标产品。
  3. 根据权利要求2所述的合成方法,其特征在于,步骤1.1)中所述的碱为氢氧化钠、碳酸钠、碳酸氢钠或三乙胺;步骤1.1)中所述的有机溶剂为四氢呋喃、1,4-二氧六环、二氯甲烷中的一种。
  4. 根据权利要求2或3所述的合成方法,其特征在于,所述的氯化氢的乙酸乙酯溶液中氯化氢的浓度为1-4mol/L。
  5. 根据权利要求2或3所述的合成方法,其特征在于,第二步中所述的碱为氢氧化钠、碳酸钠、碳酸钾中的一种;第二步中所述的碱为氢氧化钠、碳酸钠、碳酸钾中的一种。
  6. 根据权利要求4所述的合成方法,其特征在于,第二步中所述的碱为氢氧化钠、碳酸钠、碳酸钾中的一种;第二步中所述的碱为氢氧化钠、碳酸钠、碳酸钾中的一种。
  7. 根据权利要求2或3或6所述的合成方法,其特征在于,第三步中调节第二步反应溶液pH的酸为盐酸。
  8. 根据权利要求4所述的合成方法,其特征在于,第三步中调节第二步反应溶液pH的酸为盐酸。
  9. 根据权利要求5所述的合成方法,其特征在于,第三步中调节第二步反应溶液pH的酸为盐酸。
PCT/CN2017/078547 2017-03-29 2017-03-29 一组用于羧基标记的同位素标记试剂及其合成方法 WO2018176253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078547 WO2018176253A1 (zh) 2017-03-29 2017-03-29 一组用于羧基标记的同位素标记试剂及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/078547 WO2018176253A1 (zh) 2017-03-29 2017-03-29 一组用于羧基标记的同位素标记试剂及其合成方法

Publications (1)

Publication Number Publication Date
WO2018176253A1 true WO2018176253A1 (zh) 2018-10-04

Family

ID=63673897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078547 WO2018176253A1 (zh) 2017-03-29 2017-03-29 一组用于羧基标记的同位素标记试剂及其合成方法

Country Status (1)

Country Link
WO (1) WO2018176253A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102737A1 (en) * 2018-11-15 2020-05-22 Saint Louis University Isotope labeling for universal multiplexing of metabolites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109292A2 (en) * 2006-03-21 2007-09-27 Wisconsin Alumni Research Foundation Ionizable isotopic labeling reagents for relative quantification by mass spectrometry
CN107011185A (zh) * 2017-03-29 2017-08-04 大连理工大学 一组用于羧基标记的同位素标记试剂及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007109292A2 (en) * 2006-03-21 2007-09-27 Wisconsin Alumni Research Foundation Ionizable isotopic labeling reagents for relative quantification by mass spectrometry
CN107011185A (zh) * 2017-03-29 2017-08-04 大连理工大学 一组用于羧基标记的同位素标记试剂及其合成方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAMOS, SHANE M: "Relative Quantification of Carboxylic Acid Metabolites by Liquid Chromatography-Mass Spectrometry Using Isotopic Variants of Cholamine", ANAL. CHEM., vol. 79, no. 14, July 2007 (2007-07-01), pages 5143 - 5149, XP055539751, ISSN: 1520-6882 *
TORDE, RICHARD G: "Multiplexed Analysis of Cage and Cage Free Chicken Egg Fatty Acids Using Stable Isotope Labeling and Mass Spectrometry", MOLECULES, vol. 18, no. 12, 5 December 2013 (2013-12-05), pages 14977 - 14988, XP055539749, ISSN: 1420-3049 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020102737A1 (en) * 2018-11-15 2020-05-22 Saint Louis University Isotope labeling for universal multiplexing of metabolites
US20220011317A1 (en) * 2018-11-15 2022-01-13 Saint Louis University Isotope labeling for universal multiplexing of metabolites

Similar Documents

Publication Publication Date Title
Bernatowicz et al. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis
CA2660300C (en) Sugar chain-capturing substance and use thereof
Hansen et al. C-Terminally modified peptides via cleavage of the HMBA linker by O-, N-or S-nucleophiles
US11396527B2 (en) Dual mass spectrometry-cleavable crosslinking reagents for protein-protein interactions
Zhang et al. Highly sensitive and selective detection of biothiols by a new low dose colorimetric and fluorescent probe
Monfregola et al. Synthetic strategy for side chain mono-N-alkylation of Fmoc-amino acids promoted by molecular sieves
JP4679368B2 (ja) 発現微量タンパク質/ペプチドの検出・分離・同定法
WO2018176253A1 (zh) 一组用于羧基标记的同位素标记试剂及其合成方法
Fedorowicz et al. Synthesis and evaluation of dihydro-[1, 2, 4] triazolo [4, 3-a] pyridin-2-ium carboxylates as fixed charge fluorescent derivatization reagents for MEKC and MS proteomic analyses
US20050148086A1 (en) Fluorescent sensor for phosphate ion and phosphorylated peptide
CN111316105A (zh) 用于质谱法的基于亚砜的试剂
CN107011185A (zh) 一组用于羧基标记的同位素标记试剂及其合成方法
CN108948128B (zh) 一种基于缺电子苯甲醛的无催化剂腙连接多肽或蛋白质化学修饰方法
EP1923397B1 (en) Fluorinated amino acids and peptides
CN116574067A (zh) 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用
CN114773254B (zh) 季铵盐类化合物或其盐及其用途,区分2位羟基取代脂肪酸和3位羟基取代脂肪酸的方法
Špačková et al. Fast and Cost‐Efficient 17O‐Isotopic Labeling of Carboxylic Groups in Biomolecules: From Free Amino Acids to Peptide Chains
CN115594649A (zh) 一种半胱氨酸残基特异性化学探针及其制备方法和应用
CN108794489A (zh) 一种衍生化试剂及其制备方法与应用
CN113620847B (zh) 萘磺酰类化合物、其制备方法和应用
CN115536566B (zh) 化学交联剂、其制备方法及应用
CN108409635A (zh) 一种咔唑类荧光胸腺嘧啶类药物标记试剂、合成与应用
JP2005049164A (ja) ペプチドの高感度測定又は定量のためのラベル化試薬及び方法
JP7162853B1 (ja) 液相ペプチド合成用担体結合ペプチドの分析方法
JP4556473B2 (ja) タンパク質又はペプチドのc末端を修飾する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17902767

Country of ref document: EP

Kind code of ref document: A1