CN116574067A - 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用 - Google Patents

一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用 Download PDF

Info

Publication number
CN116574067A
CN116574067A CN202310544385.7A CN202310544385A CN116574067A CN 116574067 A CN116574067 A CN 116574067A CN 202310544385 A CN202310544385 A CN 202310544385A CN 116574067 A CN116574067 A CN 116574067A
Authority
CN
China
Prior art keywords
protein
cross
cleavable
mass spectrum
tyrosine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310544385.7A
Other languages
English (en)
Inventor
魏忠林
闫启博
马小婷
张彦芯
曹军刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202310544385.7A priority Critical patent/CN116574067A/zh
Publication of CN116574067A publication Critical patent/CN116574067A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/74Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving hormones or other non-cytokine intercellular protein regulatory factors such as growth factors, including receptors to hormones and growth factors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4731Casein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/575Hormones
    • G01N2333/61Growth hormones [GH] (Somatotropin)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/91Transferases (2.)
    • G01N2333/9116Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • G01N2333/91165Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1)
    • G01N2333/91171Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5) general (2.5.1) with definite EC number (2.5.1.-)
    • G01N2333/91177Glutathione transferases (2.5.1.18)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Endocrinology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明的一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用属于蛋白质空间结构技术领域,所述质谱可裂解酪氨酸选择性交联剂,是含有以两个脲唑基团和两个对称的质谱可裂解的C‑S键为骨架结构的化学交联剂;制备方法包括将二胺基硫醚、(Boc)2O和Na2CO3按摩尔比1:2.2:2.2加入到体积比1:1的甲醇和水混合溶剂中,室温条件下反应12h等步骤;使用所述质谱可裂解酪氨酸选择性交联剂与蛋白质通过“电点击化学”的方式进行化学交联反应,将交联的蛋白经酶解后产物进行质谱鉴定,初步判断蛋白中被修饰的肽段。本发明的SBT合成步骤简单,原料价格低廉环保,交联反应在接近生理pH值条件进行。

Description

一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用
技术领域
本发明属于蛋白质空间结构技术领域,具体涉及一种质谱可裂解酪氨酸选择性交联剂的制备,并应用交联质谱技术简化蛋白质及其复合物交联信息的分析。
背景技术
蛋白质根据其自身的结构和相互作用为基础实现功能,分析蛋白质的结构和相互作用促进了生命科学研究的进程(Trends Biochem Sci.2018,43(11),908-920)。对蛋白质三维结构及其间作用关系的深入探究,不但可以了解蛋白质发挥生物作用的过程,而且揭示了疾病预防机制,丰富了诊断、治疗药物的种类,是蛋白质研究领域中非常重要的一部分。对蛋白质复杂结构的分析,已经成为国家发展和科技战略不可或缺的一部分。
目前,已知的蛋白质结构信息中的大多数是利用X射线单晶衍射法(Nucleicacids research,2019,47(D1):D520-D8)、核磁共振法(Nature,2006,440(7080):52-7)和冷冻电镜技术(Nature Structural Biology,2000,7(9):711-4)等得出。这些传统方法具有高效率、保留了蛋白质结构的折叠稳定性、不会破坏其分子的构象和精确测量距离下的分子接近程度等优势,可以直观的将蛋白质结构和蛋白质间作用关系显现出来。但是,由于蛋白质及其复合物的含量、纯度、分子大小和结晶性等因素限制了其应用,并且这类方法具有复杂的样品制备和测试过程、繁多的操作步骤及高额的实验成本,也进一步限制了它们的发展。化学交联结合质谱(Chemical cross-linking coupled with massspectrometry,XL-MS)是近些年开发的新型技术,将蛋白质化学与质谱技术联合,用以表征蛋白质结构及其间作用关系,此技术通过质谱分析由化学交联剂通过共价键紧密连接的氨基酸侧链官能团,确定发生交联的氨基酸位点(Analytical Chemistry 2018,90(1),144-165)。交联质谱相比于解析蛋白质结构和探究其相互作用的传统方法,优势在于:
(1)XL-MS技术测定蛋白质样品分子量从理论上是不受限制的(专利,CN109425647 A);
(2)保留了质谱高灵敏度的特点;
(3)实验操作和分析流程简单;
(4)适用于揭示不稳定和微弱的相互作用;
(5)可以区分蛋白质间的直接及间接作用关系;
(6)化学交联剂实现了在细胞内和生理环境等多个体系中进行交联(专利,CN107129455A),这提升了在多个层面上表征蛋白质结构及其间作用关系的能力,相比于难以解析的液相中蛋白质的空间结构,该技术弥补了X射线单晶衍射和冷冻电镜技术的不足之处(Angewandte Chemie-International Edition,2018,57(22):6390-6;Prog BiochemBiophys,2014,41(11):1109-1125)。
但是,交联质谱技术也面临着很多挑战(Mass Spectrometry Reviews,2018,37(6):738-49),其中最为严峻的是交联碎片复杂(Nat Commun,2019,10(1):3404),包括单肽碎片离子和被交联剂连接的碎片离子,而交联双肽由两条单肽经交联剂连接组成,分析空间随被研究对象规模的扩大而呈指数级的增长(Journal of Proteomics,2020,220:103754)。这无疑提升了识别交联位点的难度,同时也增加了错误发现率。尽管交联剂的交联臂长可以作为距离约束,促进结构建模、阐明蛋白质结构和其间的相互作用(Molecular&Cellular Proteomics,2010,9(8):1634-49),但是对于链内交联而言,交联剂会与其两端连接的氨基酸形成一个闭合环,仅通过单肽碎裂产生的离子碎片无法精准的识别交联位点。面对挑战,研究人员开发了质谱可裂解交联剂扩大交联质谱技术的应用(Analyticaland Bioanalytical Chemistry,2017,409(1):33-44),研究成果证明了质谱可裂解交联剂探测蛋白质结构和其间作用关系的高效性。应用较多的是含有C-N键(AnalyticalChemistry,2010,82(16):6958-68)、N=N键(Journal of the American Society forMass Spectrometry,2017,28(10):2039-53)和C-S键(Analytical Chemistry,2014,86(4):2099-106)的特异性靶向赖氨酸残基、酸性残基和半胱氨酸残基质谱可裂解交联剂,但还未将质谱可裂解原理应用于靶向其他氨基酸的交联剂的设计,从而简化交联产物的识别。酪氨酸的邻近性、灵活性和溶剂暴露是激素生成位点的关键特征,酪氨酸对受到其刚性α-螺旋主链的限制,有些偶联反应不能有效发生(Nature 2020,578(7796),627-630)。选择性地靶向交联蛋白质中的酪氨酸残基并且确定其三维构型是非常有应用意义的。基于电点击化学原理,含有二硫键和脲唑的交联剂DBB可以成功交联蛋白质中的酪氨酸侧链(专利CN111554345A)。但是,为了更精准的确定链内交联产物的交联位点,需要额外进行还原DBB交联剂中的二硫键的实验并进行烷基化反应,并对烷基化产物再次进行质谱分析,这无疑加大了分析工作的成本和数据处理的难度。与亚砜结构(Journal of Proteome Research,2019,18(3):1363-70)相连的C-S键键能很低,当目标肽段发生断裂时,低键能C-S键也会被切割发生断裂,将交联双肽的识别转变为交联单肽的识别,从而更准确的识别交联产物。
发明内容
本发明的目的在于,基于点击电化学标记酪氨酸的可行性和低键能C-S键的质谱可裂解性,设计、合成一种新颖且简单的质谱可裂解交联剂(SBT),来简化酪氨酸交联位点的识别。质谱可裂解选择性交联酪氨酸的交联剂第一次被设计合成并应用于交联质谱技术分析(XL-MS),这势必会丰富并提升XL-MS探究蛋白质、蛋白质复合物的结构和相互作用甚至蛋白质动力学的应用。
本发明的具体的技术方案如下:
一种质谱可裂解酪氨酸选择性交联剂,是含有以两个脲唑基团和两个对称的质谱可裂解的C-S键为骨架结构的化学交联剂,结构通式为:
其中,R基团代表氢、甲基或者乙基,n=0,1,2或3。
一种质谱可裂解酪氨酸选择性交联剂的制备方法,有以下步骤:
在0℃条件下,将二胺基硫醚、(Boc)2O和Na2CO3按摩尔比1:2.2:2.2加入到体积比1:1的甲醇和水混合溶剂中,室温条件下反应12h;得到的产物与间氯过氧苯甲酸按摩尔比1:1溶于三氯甲烷中,室温反应6h;纯化的产物和TFA(三氟乙酸)按摩尔比1:20溶于二氯甲烷中,室温下反应9h;得到的产物与乙基苯肼-1,2-二羧酸酯、三乙胺按摩尔比1:1:3加入到甲醇中,80℃条件下反应1.5h;得到的产物加入到2倍摩尔量的氢氧化钾的无水乙醇溶液中;78℃条件下反应12h,得到质谱可裂解酪氨酸选择性交联剂。
一种质谱可裂解酪氨酸选择性交联剂的应用,其特征在于脲唑基团在“电点击化学”条件下与酪氨酸特异性交联,使用所述质谱可裂解酪氨酸选择性交联剂与蛋白质通过“电点击化学”的方式进行化学交联反应,将交联的蛋白经酶解后产物进行质谱鉴定,初步判断蛋白中被修饰的肽段;在进行MS2碎裂时,目标肽段发生断裂的同时,低键能C-S键也发生断裂,将交联双肽的识别转变为交联单肽的识别,从而更准确、更快速的识别交联产物;对于链内交联产物而言,根据识别到的含有S、T或A型交联剂碎片的b,y离子识别其交联位点;具体步骤有:
(1)化学交联反应:进行电化学交联酪氨酸反应,将待鉴定的蛋白质和交联剂按摩尔比1:100溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h,反应使用三电极系统为石墨工作电极、铂对电极和饱和甘汞参比电极;所用的模型多肽为血管紧张素II和多肽(WNTQSTYSEA),所用的蛋白质是重组人生长激素、谷胱甘肽S-转移酶蛋白和β-酪蛋白;
(2)酶解反应:将步骤(1)中交联的蛋白质进行酶解,使用溶解于1%乙酸溶液的胰蛋白酶对交联蛋白进行酶解反应,37℃下孵育4h,胰蛋白酶与蛋白的质量比为50:1;
(3)质谱测试:将交联多肽使用液相色谱-质谱联用仪进行测试;
(4)质谱数据分析:通过对交联酶切后肽段的质量比未修饰肽段的质量差异来判断交联位点;
(5)确定蛋白质三维结构信息:对得到的质谱数据进行分析整理,利用GaussianView 6软件和PyMOL 2.3软件分别计算交联剂的间隔长度和蛋白中酪氨酸间的Cα-Cα欧氏距离并推断出蛋白质三维结构信息。
本发明具有如下优点:
1、本发明的SBT合成步骤简单,原料价格低廉环保,交联反应在接近生理pH值条件进行;
2、本发明设计合成的质谱可裂解的交联剂SBT含有与亚砜结构相连的低能C-S键,当目标肽段发生断裂时,低键能C-S键也会被切割发生断裂,将交联双肽的识别转变为交联单肽的识别;对于链内交联产物而言,根据识别到的含有S或A型交联剂碎片的b,y离子可以更便捷、更高可信度地识别其交联位点;简化了识别酪氨酸交联位点的分析工作和时间成本,促进了链内交联形成闭合环产物的精准鉴定,促进了基于酪氨酸的应用型研究;
3、本发明提出的基于交联剂SBT的交联策略,标志着第一代质谱可裂解酪氨酸选择性交联剂的诞生。不仅丰富了具有不同化学性质的质谱可裂解交联剂库,而且更为重要的是增强了阐明蛋白质及其复合物结构和表征蛋白质间相互作用的能力。
附图说明
图1是基于质谱可裂解酪氨酸选择性交联剂(SBT)的交联策略。
图2是SBT交联血管紧张素II的质谱图。
图3是SBT交联多肽(WNTQSTYSEA)的质谱图。
图4是重组人生长激素的链内交联产物质谱图。
图5是重组人生长激素的链内交联产物空间结构。
图6是谷胱甘肽S-转移酶蛋白的空间结构和交联位点。
图7是β-酪蛋白的空间结构和交联位点。
具体实施方式
实施例1
本实施例公开了SBT(化合物6)交联剂的制备方法,包含五个步骤:
步骤一:化合物2的合成:
在0℃条件下,将0.36g化合物1(二胺基硫醚)(1eq.,3mmol)加入到(Boc)2O(2.2eq.,6.6mmol)、甲醇(10mL)和水(10mL)混合溶剂中,再将0.7g Na2CO3(2.2eq.,6.6mmol)加入到上述混合物中,撤走冰浴,将反应物置于室温条件下搅拌12h。使用二氯甲烷萃取反应液两次,收集有机相并加入无水硫酸钠进行干燥,旋转蒸除溶剂得到了白色粉状化合物2(产率为96%)。1H NMR(300MHz,CDCl3)δ4.95(s,2H),3.31(t,J=6.4Hz,4H),2.66(t,J=6.5Hz,4H),1.45(s,18H).
步骤二:化合物3的合成:
在0℃条件下,将溶于5mL三氯甲烷中的0.466g间氯过氧苯甲酸(1eq.,2.7mmol)逐滴加入到溶于15mL三氯甲烷的0.864g化合物2(1eq.,2.7mmol)的混合物中,撤走冰浴,将反应体系置于室温条件下搅拌6h。所得化合物用饱和NaHCO3溶液洗涤两次,收集有机相并加入无水硫酸钠干燥,真空浓缩,柱层析法(甲醇/二氯甲烷溶液1:10)纯化产物,得到白色粉状化合物3(产率为82%)。1H NMR(400MHz,CDCl3)δ5.16(s,1H),3.62(d,J=4.3Hz,1H),3.02(d,J=6.6Hz,1H),2.87(dd,J=9.2,3.9Hz,1H),1.44(s,4H).
步骤三:化合物4的合成:
在0℃条件下,将0.109g的化合物3(1eq.,0.32mmol)溶于475μL TFA(20eq.,6.4mmol)和1mL二氯甲烷的混合溶液中,将反应体系在室温条件下搅拌9h,使用二氯甲烷萃取反应液两次,收集有机相并加入无水硫酸钠干燥,真空浓缩,得到无色透明油状化合物4(产率为90%)。1H NMR(400MHz,d-DMSO)δ8.07(s,6H),3.20(ddd,J=22.0,12.2,6.0Hz,6H),3.06(dt,J=13.3,6.3Hz,2H).
步骤四:化合物5的合成:
在0℃条件下,将溶于1.5mL甲醇的135μL三乙胺(3eq.,0.96mmol)和0.158g的乙基苯肼-1,2-二羧酸酯(1eq.,0.32mmol)的混合物逐滴加入到溶于1.5mL甲醇的0.044g化合物4(1eq.,0.32mmol)中并搅拌20分钟,撤走冰浴,将反应液升温至80℃,搅拌1.5h。用NaHCO3水溶液洗涤反应液。收集有机相加入无水硫酸钠干燥,真空浓缩,柱层析法(甲醇/二氯甲烷溶液1:1)纯化产物,得到白色粉状化合物5(产率为33%)。1H NMR(400MHz,d-DMSO)δ8.79(s,2H),7.88(s,2H),6.63(s,2H),4.03(q,J=7.0Hz,4H),3.39(d,J=5.9Hz,4H),2.92(dt,J=13.5,7.0Hz,2H),2.79(dd,J=12.5,6.1Hz,2H),1.17(t,J=6.9Hz,6H).
步骤五:化合物6的合成:
在100mL的圆底烧瓶中,将15mg氢氧化钾(2eq.,0.268mmol)溶于15mL的无水乙醇。随后,将0.053g化合物5(1eq.,0.134mmol)加入到上述溶液中。在78℃的条件下,回流反应12h。待反应液降低温度到室温,并用盐酸(5N)溶液酸化至pH为2.0。旋转蒸除溶剂,再用甲醇重新溶解,过滤,将溶液真空浓缩,得到粉白色固体化合物6(产率为81%),即所述质谱可裂解酪氨酸选择性交联剂。1H NMR(300MHz,d-DMSO)δ10.21(s,4H),3.82–3.65(m,4H),3.12(dt,J=13.5,6.6Hz,2H),2.96(dt,J=12.9,6.3Hz,2H).13C NMR(101MHz,d-DMSO)δ154.49(s),49.49(s),32.48(s).HRMS-ESI(m/z)calculated for C10H17N6O4S2([M+H]+)305.0659,found 305.0663.
利用本发明的质谱可裂解酪氨酸选择性交联剂(SBT)交联策略如图1所示。
实施例2
对模型多肽血管紧张素II进行交联鉴定
(1)化学交联反应:进行电化学交联酪氨酸反应,将血管紧张素II(1eq.,0.2mM)和SBT(10eq.,2mM)溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h。
(2)将上述交联产物使用Agilent 1290Infinity液相色谱-Bruker micrOTOF-QⅡ质谱联用仪(LC-MSn)进行分析。在进行质谱分析之前,使用Agilent Zorbax 300SB-C18反相柱(4.6×250mm,5μm,柱温为40℃)进行液相分离。流速为1mL/min;线性梯度为:0-5min为5%B,6-55min为5-60%B,56-60min为60-98%B,流动相缓冲液A和B分别为含有0.1%甲酸的水和乙腈。MS2谱图是通过碰撞诱导解离(CID)产生的,能量为15eV。
(3)质谱数据分析:如果交联酶切后肽段的质量比未修饰肽段的质量高302.06Da,则认为交联到该肽段上的酪氨酸且是链端交联肽;链间交联和链内交联肽是SBT中两个脲唑基团均分别与肽段中的两个酪氨酸发生反应的结果,肽段质量将增加300.06Da。顾名思义,若被交联的酪氨酸位于同一个肽段中,则被认为是链内交联;若一个SBT分子两端连接的酪氨酸位于两个肽段中,则被认为是链间交联。对二级质谱碎裂数据进行分析时,质量增加了175.02Da的b,y离子表明该离子含有交联剂SBT的S型碎片,质量增加了159.01Da的b,y离子表明该离子含有交联剂SBT的T型碎片,质量增加了125.04Da的b,y离子表明该离子含有交联剂SBT的A型碎片。
(4)上述数据的结果表明,通过使用SBT作为质谱可裂解酪氨酸选择性交联剂对血管紧张素II进行电点击化学交联反应,共鉴定到1个链端交联位点信息(质谱数据如图2所示),实现了对血管紧张素II中酪氨酸的特异性交联。
实施例3
对模型多肽(WNTQSTYSEA)进行交联鉴定
(1)化学交联反应:进行电化学交联酪氨酸反应,将多肽(WNTQSTYSEA)(1eq.,0.2mM)和SBT(10eq.,2mM)溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h。
(2)将上述交联产物使用Agilent 1290Infinity液相色谱-Bruker micrOTOF-QⅡ质谱联用仪(LC-MSn)进行分析。在进行质谱分析之前,使用Agilent Zorbax 300SB-C18反相柱(4.6×250mm,5μm,柱温为40℃)进行液相分离。流速为1mL/min;线性梯度为:0-5min为5%B,6-55min为5-60%B,56-60min为60-98%B,流动相缓冲液A和B分别为含有0.1%甲酸的水和乙腈。MS2谱图是通过碰撞诱导解离(CID)产生的,能量为15eV。质谱分析数据如附图3所示。
(3)质谱数据分析:与血管紧张素II相同。
(4)上述数据的结果表明,通过使用SBT作为质谱可裂解酪氨酸选择性交联剂对多肽(WNTQSTYSEA)进行电点击化学交联反应,共识别到1个链端交联位点信息(质谱数据如图3所示),实现了对多肽(WNTQSTYSEA)中酪氨酸的特异性交联。
实施例4
对重组人生长激素进行空间结构鉴定
(1)化学交联反应:进行电化学交联酪氨酸反应,将重组人生长激素(1eq.,0.2mM)和SBT(100eq.,2mM)溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h。
(2)使用溶解于1%乙酸溶液的胰蛋白酶对上述溶液进行酶解反应,37℃下孵育4h,胰蛋白酶与蛋白的质量比为50:1。
(3)将上述交联酶解产物使用Vanquish UPLC与Orbitrap Fusion Tribrid联用质谱仪(LC-MSn)进行分析。在进行质谱分析之前,使用ACQUITY Premier CSH C18反相色谱柱(1.7μm,2.1x 150mm,Waters)进行液相分离。液相色谱柱温度保持在60℃。质谱使用DDA运行,MS1扫描范围为m/z 200-2000。MS1的分辨率为120000,AGC目标设定为标准,最大IT为50ms。MS2分辨率为60000,AGC目标设定为标准,最大IT为118ms,隔离窗口为1.2m/z。动态排除被设定为7s。ESI源运行时,鞘内气体流速/L.min-1:40,辅助气体流速/L.min-1:10,喷雾电压/kV:3.8,毛细管温度/℃:325,辅助气体加热器温度/℃:350。
(4)质谱数据分析:与血管紧张素II相同。
(7)用Gaussian View 6软件计算SBT交联剂的间隔长度和酪氨酸侧链贡献的距离。重组人生长激素的Cα-Cα欧式距离由PyMOL 2.3软件对PDB文件(网站:http://www.rcsb.org/)进行计算。重组人生长激素空间结构和交联位点如图4、图5所示。
实施例5
对谷胱甘肽S-转移酶蛋白进行空间结构鉴定
(1)化学交联反应:进行电化学交联酪氨酸反应,将谷胱甘肽S-转移酶蛋白(1eq.,0.2mM)和SBT(100eq.,2mM)溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h。
(2)使用溶解于1%乙酸溶液的胰蛋白酶对上述溶液进行酶解反应,37℃下孵育4h,胰蛋白酶与蛋白的质量比为50:1。
(3)将上述交联酶解产物使用Vanquish UPLC与Orbitrap Fusion Tribrid联用质谱仪(LC-MSn)进行分析。在进行质谱分析之前,使用ACQUITY Premier CSH C18反相色谱柱(1.7μm,2.1x 150mm,Waters)进行液相分离。液相色谱柱温度保持在60℃。质谱使用DDA运行,MS1扫描范围为m/z 200-2000。MS1的分辨率为120000,AGC目标设定为标准,最大IT为50ms。MS2分辨率为60000,AGC目标设定为标准,最大IT为118ms,隔离窗口为1.2m/z。动态排除被设定为7s。ESI源运行时,鞘内气体流速/L.min-1:40,辅助气体流速/L.min-1:10,喷雾电压/kV:3.8,毛细管温度/℃:325,辅助气体加热器温度/℃:350。
(4)质谱数据分析:与血管紧张素II相同。
(7)用Gaussian View 6软件计算SBT交联剂的间隔长度和酪氨酸侧链贡献的距离。谷胱甘肽S-转移酶蛋白的Cα-Cα欧式距离由PyMOL 2.3软件对PDB文件(网站:http://www.rcsb.org/)进行计算。谷胱甘肽S-转移酶蛋白的空间结构和交联位点如图6所示。
实施例6
对β-酪蛋白进行空间结构鉴定
(1)化学交联反应:进行电化学交联酪氨酸反应,将β-酪蛋白(1eq.,0.2mM)和SBT(100eq.,2mM)溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h。
(2)使用溶解于1%乙酸溶液的胰蛋白酶对上述溶液进行酶解反应,37℃下孵育4h,胰蛋白酶与蛋白的质量比为50:1。
(3)将上述交联酶解产物使用Vanquish UPLC与Orbitrap Fusion Tribrid联用质谱仪(LC-MSn)进行分析。在进行质谱分析之前,使用ACQUITY Premier CSH C18反相色谱柱(1.7μm,2.1x 150mm,Waters)进行液相分离。液相色谱柱温度保持在60℃。质谱使用DDA运行,MS1扫描范围为m/z 200-2000。MS1的分辨率为120000,AGC目标设定为标准,最大IT为50ms。MS2分辨率为60000,AGC目标设定为标准,最大IT为118ms,隔离窗口为1.2m/z。动态排除被设定为7s。ESI源运行时,鞘内气体流速/L.min-1:40,辅助气体流速/L.min-1:10,喷雾电压/kV:3.8,毛细管温度/℃:325,辅助气体加热器温度/℃:350。
(4)质谱数据分析:与血管紧张素II相同。
(7)用Gaussian View 6软件计算SBT交联剂的间隔长度和酪氨酸侧链贡献的距离。β-酪蛋白的Cα-Cα欧式距离由PyMOL 2.3软件对PDB文件(网站:http://www.rcsb.org/)进行计算。谷胱甘肽S-转移酶蛋白的空间结构和交联位点如图7所示。

Claims (3)

1.一种质谱可裂解酪氨酸选择性交联剂,是含有以两个脲唑基团和两个对称的质谱可裂解的C-S键为骨架结构的化学交联剂,结构通式为:
其中,R基团代表氢、甲基或者乙基,n=0,1,2或3。
2.一种权利要求1所述的质谱可裂解酪氨酸选择性交联剂的制备方法,有以下步骤:
在0℃条件下,将二胺基硫醚、(Boc)2O和Na2CO3按摩尔比1:2.2:2.2加入到体积比1:1的甲醇和水混合溶剂中,室温条件下反应12h;得到的产物与间氯过氧苯甲酸按摩尔比1:1溶于三氯甲烷中,室温反应6h;纯化的产物和TFA按摩尔比1:20溶于二氯甲烷中,室温下反应9h;得到的产物与乙基苯肼-1,2-二羧酸酯、三乙胺按摩尔比1:1:3加入到甲醇中,80℃条件下反应1.5h;得到的产物加入到2倍摩尔量的氢氧化钾的无水乙醇溶液中;78℃条件下反应12h,得到质谱可裂解酪氨酸选择性交联剂。
3.一种权利要求1所述的质谱可裂解酪氨酸选择性交联剂的应用,其特征在于脲唑基团在“电点击化学”条件下与酪氨酸特异性交联,使用所述质谱可裂解酪氨酸选择性交联剂与蛋白质通过“电点击化学”的方式进行化学交联反应,将交联的蛋白经酶解后产物进行质谱鉴定,初步判断蛋白中被修饰的肽段;在进行MS2碎裂时,目标肽段发生断裂的同时,低键能C-S键也发生断裂,将交联双肽的识别转变为交联单肽的识别,从而更准确、更快速的识别交联产物;对于链内交联产物而言,根据识别到的含有S、T或A型交联剂碎片的b,y离子识别其交联位点;具体步骤有:
(1)化学交联反应:进行电化学交联酪氨酸反应,将待鉴定的蛋白质和交联剂按摩尔比1:100溶解于100mM的pH为7.40的PB缓冲液,在0.44V的电压下室温反应4h,反应使用三电极系统为石墨工作电极、铂对电极和饱和甘汞参比电极;所用的模型多肽为血管紧张素II和多肽,所用的蛋白质是重组人生长激素、谷胱甘肽S-转移酶蛋白和β-酪蛋白;
(2)酶解反应:将步骤(1)中交联的蛋白质进行酶解,使用溶解于1%乙酸溶液的胰蛋白酶对交联蛋白进行酶解反应,37℃下孵育4h,胰蛋白酶与蛋白的质量比为50:1;
(3)质谱测试:将交联多肽使用液相色谱-质谱联用仪进行测试;
(4)质谱数据分析:通过对交联酶切后肽段的质量比未修饰肽段的质量差异来判断交联位点;
(5)确定蛋白质三维结构信息:对得到的质谱数据进行分析整理,利用Gaussian View6软件和PyMOL 2.3软件分别计算交联剂的间隔长度和蛋白中酪氨酸间的Cα-Cα欧氏距离并推断出蛋白质三维结构信息。
CN202310544385.7A 2023-05-16 2023-05-16 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用 Pending CN116574067A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310544385.7A CN116574067A (zh) 2023-05-16 2023-05-16 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310544385.7A CN116574067A (zh) 2023-05-16 2023-05-16 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116574067A true CN116574067A (zh) 2023-08-11

Family

ID=87533561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310544385.7A Pending CN116574067A (zh) 2023-05-16 2023-05-16 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116574067A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417405A (zh) * 2023-12-15 2024-01-19 上海快序生物科技有限公司 一种基于酪氨酸衍生化的肽段标记方法及其在蛋白质检测中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117417405A (zh) * 2023-12-15 2024-01-19 上海快序生物科技有限公司 一种基于酪氨酸衍生化的肽段标记方法及其在蛋白质检测中的应用
CN117417405B (zh) * 2023-12-15 2024-03-19 上海快序生物科技有限公司 一种基于酪氨酸衍生化的肽段标记方法及其在蛋白质检测中的应用

Similar Documents

Publication Publication Date Title
CN107525842B (zh) 一种用于研究蛋白质结构或蛋白质相互作用的分析方法
CN104987326B (zh) 反应性质量标记物的集合
US5627044A (en) Compositions and methods for protein structural determinations
EP1389305B1 (en) Peptide fragmentation
US11396527B2 (en) Dual mass spectrometry-cleavable crosslinking reagents for protein-protein interactions
KR20010085743A (ko) 지질 매트릭스 보조 화학결합 및 막 폴리펩티드의 합성
CN104560027B (zh) 一种可区分检测生物硫醇的荧光探针及其制备方法
EP3861009A1 (en) Solid-phase n-terminal peptide capture and release
Hernandez et al. Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing
CN105131035B (zh) 氨基官能团化合物及糖链标记带正电荷质谱衍生化试剂
CN116574067A (zh) 一种质谱可裂解酪氨酸选择性交联剂及其制备方法与应用
US20110028330A1 (en) Compounds and methods for the labelling and affinity-selection of proteins
EP1265072A1 (en) Method for characterising polypeptides
Wiejak et al. Improved scalable syntheses of mono-and bis-urethane derivatives of ornithine
CN109187940A (zh) 用于多糖分析的一种同位素标签试剂的制备和应用
Downard et al. Mass spectrometry in structural proteomics: The case for radical probe protein footprinting
NZ529987A (en) Characterising polypeptides which includes the use of a lysine selective agent, amine reactive agent and recovering N-terminal peptide fragments
CN110873766B (zh) 筛选药物引起结构和相互作用变化蛋白质的质谱分析方法
CN115232064B (zh) 一种两亲性双位点受体的合成及其荧光指示剂置换法识别atp与生物硫醇
Katritzky et al. Fluorescent labeling of peptides on solid phase
JP4679368B2 (ja) 発現微量タンパク質/ペプチドの検出・分離・同定法
Stefanowicz et al. Methods of the site-selective solid phase synthesis of peptide-derived Amadori products
CN111689882B (zh) 一种双断裂交联剂及其制备方法与应用
CA2551085A1 (en) Ionization modifier for mass spectrometry
CN117946081A (zh) 一种质谱可裂解异型双功能交联剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination