WO2018174249A1 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
WO2018174249A1
WO2018174249A1 PCT/JP2018/011714 JP2018011714W WO2018174249A1 WO 2018174249 A1 WO2018174249 A1 WO 2018174249A1 JP 2018011714 W JP2018011714 W JP 2018011714W WO 2018174249 A1 WO2018174249 A1 WO 2018174249A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
vehicle speed
command
unit
vehicle
Prior art date
Application number
PCT/JP2018/011714
Other languages
French (fr)
Japanese (ja)
Inventor
良平 上田
敏史 平松
恵大 北野
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020197021109A priority Critical patent/KR102325719B1/en
Priority to KR1020217036104A priority patent/KR102413466B1/en
Priority to KR1020237043367A priority patent/KR20240000626A/en
Priority to CN202210201677.6A priority patent/CN114527765A/en
Priority to CN201880009614.2A priority patent/CN110418570B/en
Priority to KR1020227020368A priority patent/KR102616945B1/en
Publication of WO2018174249A1 publication Critical patent/WO2018174249A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B33/00Tilling implements with rotary driven tools, e.g. in combination with fertiliser distributors or seeders, with grubbing chains, with sloping axles, with driven discs
    • A01B33/08Tools; Details, e.g. adaptations of transmissions or gearings
    • A01B33/082Transmissions; Gearings; Power distribution
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/003Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection
    • A01B69/004Steering or guiding of machines or implements pushed or pulled by or mounted on agricultural vehicles such as tractors, e.g. by lateral shifting of the towing connection automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/20Off-Road Vehicles
    • B60Y2200/22Agricultural vehicles
    • B60Y2200/221Tractors

Definitions

  • the present invention relates to a work vehicle capable of running while switching a mounted work machine between a working state and a non-working state.
  • Patent Document 1 This type of work vehicle is disclosed in Patent Document 1, for example.
  • the agricultural work vehicle of Patent Document 1 is provided with a work machine lifting position sensor that autonomously travels a vehicle body based on a direction sensor and a GPS receiver and stores a lowering operation of the work machine mounted on the vehicle body.
  • the target tillage start position is configured to coincide with the end position of the lowering operation.
  • Patent Document 1 assumes that this configuration makes it possible to easily perform good tillage work without occurrence of residual tillage or the like.
  • Patent Document 1 takes into account the lowering operation of the work implement, but does not fully consider the raising operation of the work implement.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to describe a state in which a work body performs work in a work vehicle in consideration of a position where the work body actually performs work on a work machine. It is to control the switching between the states that are not good.
  • a work vehicle having the following configuration.
  • the work vehicle includes a vehicle body portion, a command output portion, a work implement control portion, a vehicle speed control portion, a setting portion, and a distance acquisition portion.
  • the vehicle body part can be equipped with a work machine.
  • the command output unit outputs a work command for controlling the work machine to a working state and a non-work command for controlling the work machine to a non-working state.
  • the work machine control unit controls a work state of the work machine according to the work command or the non-work command.
  • the vehicle speed control unit can switch and control the vehicle speed of the work vehicle.
  • the setting unit sets a reference position at which a work state of the work implement is switched by control by the work implement control unit.
  • the distance acquisition unit acquires a distance from a work center position of the work implement to the reference position.
  • the vehicle speed control unit switches the vehicle speed of the work vehicle from a first vehicle speed to a second vehicle speed according to the non-work command, and changes the vehicle speed of the work vehicle from the second vehicle speed to the first vehicle speed according to the work command. Switch to.
  • the command output unit controls the output timing of the non-work command based on the first vehicle speed and the distance.
  • the command output unit controls the output timing of the work command based on the second vehicle speed, a speed change rate from the second vehicle speed to the first vehicle speed, and the distance.
  • the command output unit can output the non-work command and the work command at appropriate timings when the work machine is switched from the work state to the non-work state and when the work machine is switched from the non-work state to the work state. Thereby, the error of the boundary between the part which is worked by the working machine and the part which is not made can be reduced.
  • the work vehicle has the following configuration. That is, the vehicle speed control unit switches from the first vehicle speed to the second vehicle speed after the work machine control unit switches the work machine from the work state to the non-work state in response to the non-work command. Start control. The vehicle speed control unit starts switching control from the second vehicle speed to the first vehicle speed before the work machine control unit switches the work machine from the non-working state to the working state in response to the work command. To do.
  • this work vehicle includes a measurement unit and a required time storage unit.
  • the measuring unit measures a time required to switch the working machine from the non-working state to the working state.
  • the required time storage unit stores the required time measured by the measuring unit.
  • the command output unit controls the output timing of the work command based on the stored contents of the required time storage unit.
  • the required time storage unit stores an initially set time.
  • the storage content of the required time storage unit is updated to a measured value.
  • the time required for switching the work implement from the non-working state to the working state is measured and stored, and the work command is output at an appropriate timing by controlling the timing of outputting the work command based on the measured time. be able to.
  • the measurement value is not obtained in advance, but the command output unit issues a work command at a generally good timing by initializing an appropriate time. Can be output.
  • the work vehicle has the following configuration. That is, the setting of the first vehicle speed and the second vehicle speed can be changed by an operation on the vehicle speed setting unit.
  • the command output unit is configured to execute the work command or the non-work command based on the changed first vehicle speed and / or the second vehicle speed. To control the output timing.
  • the command output unit can output the work command and the non-work command at an appropriate timing while changing the vehicle speed according to the user's request.
  • the work vehicle has the following configuration.
  • the work vehicle includes an autonomous travel control unit that can autonomously travel the work vehicle by switching between the first mode and the second mode.
  • the first mode is a mode in which autonomous traveling can be terminated without stopping the work vehicle in accordance with an operation on the speed change operation tool.
  • the second mode is a mode in which the working vehicle is stopped in accordance with an operation on the speed change operation tool to end the autonomous traveling.
  • the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in the work vehicle.
  • the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in a wireless communication device that performs wireless communication with the work vehicle. is there.
  • the vehicle speed setting unit on the work vehicle side a user who has boarded the work vehicle operates the vehicle speed setting unit on the work vehicle side
  • a user outside the work vehicle operates the vehicle speed setting unit of the wireless communication device.
  • the vehicle speed can be changed.
  • the work vehicle has the following configuration. That is, the work vehicle includes a position information acquisition unit, an operation unit, and an autonomous travel control unit.
  • the position information acquisition unit acquires position information of the vehicle body part.
  • the operation unit is disposed on the vehicle body.
  • the autonomous traveling control unit autonomously travels the vehicle body unit along a predetermined route.
  • the work implement control unit is associated with the operation command or the non-work command output by the command output unit or the operation of the operation unit when the autonomous travel control unit is autonomously driving the vehicle body unit.
  • the working state of the work implement is controlled based on the operation unit command output.
  • the work machine control unit controls the work state of the work machine by prioritizing the operation unit command over the work command or the non-work command.
  • the control based on the autonomous traveling is performed first, the control according to the user's intention can be performed in such a form that the control is stopped.
  • the tractor which concerns on one Embodiment of this invention WHEREIN: The side view which shows a mode that the mounted working machine is a non-working state.
  • the block diagram which shows the main electrical structures of a tractor.
  • the schematic diagram which shows the example of the autonomous running route in case a tractor carries out autonomous running and autonomous work.
  • the figure explaining the relationship of the control timing in the case of switching a working machine from a working state to a non-working state at the time of autonomous running and autonomous work.
  • the present invention relates to a work vehicle that can run by one or a plurality of vehicles in a predetermined field and can perform all or part of the farm work in the field.
  • a tractor will be described as an example of a work vehicle.
  • a padded work machine such as a rice transplanter, a combiner, a civil engineering / construction work device, a snowplow, a walking work A machine is also included.
  • autonomous traveling means that a configuration related to traveling provided by the tractor is controlled by a control unit (ECU) provided in the tractor, and the tractor travels along a predetermined route.
  • ECU control unit
  • control unit included in the tractor controls the configuration related to the work included in the tractor, so that the tractor performs the work along a predetermined route.
  • manual running / manual work means that each component provided in the tractor is operated by the user to run / work.
  • a tractor that performs autonomous traveling / autonomous work may be referred to as an “autonomous traveling tractor”, and a tractor that performs manual traveling / manual work may be referred to as a “manual traveling tractor”.
  • the autonomous running / autonomous work includes a case where the user rides on the tractor and a case where the user performs without boarding. On the other hand, when performing manual travel / manual work, the user gets on the tractor.
  • FIG. 1 is a side view showing a state where a mounted work machine 3 is in a non-working state in a tractor 1 according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the tractor 1.
  • FIG. 3 is a plan view showing various operation devices arranged around the seat 13.
  • FIG. 4 is a block diagram showing the main electrical configuration of the tractor 1.
  • the tractor 1 can be used as a manual traveling tractor, but has a function as an autonomous traveling tractor and is autonomous traveling generated by the route generation system in a state where the user is on board. It is configured to perform autonomous traveling and autonomous work according to a route (route). However, the tractor 1 can also perform autonomous traveling / autonomous work without a user boarding. First, the tractor 1 will be described mainly with reference to FIGS. 1 and 2.
  • the tractor 1 includes a traveling machine body 2 as a vehicle body that autonomously travels in the field.
  • various working machines such as a tiller (management machine), a plow, a fertilizer machine, a mowing machine, and a sowing machine can be selected and mounted on the traveling machine body 2.
  • the working machine 3 is a rotary tiller.
  • the traveling machine body 2 of the tractor 1 is supported at its front part by a pair of left and right front wheels 7 and 7 and at its rear part by a pair of left and right rear wheels 8 and 8.
  • a bonnet 9 is arranged at the front of the traveling machine body 2.
  • an engine 10 or the like that is a drive source of the tractor 1 is accommodated in the bonnet 9.
  • this engine 10 can be comprised, for example with a diesel engine, it is not restricted to this, For example, you may comprise with a gasoline engine.
  • an electric motor may be employed as a drive source in addition to or instead of the engine 10.
  • the fuel tank may be disposed outside the bonnet 9.
  • a cabin 11 for the user to board is arranged behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for a user to steer, a seat 13 on which a user can be seated, and various operation devices for performing various operations.
  • the work vehicle is not limited to the one with the cabin 11 and may be configured without the cabin 11.
  • the monitor device 70 As the operation device, the monitor device 70, the throttle lever 15, the reverser lever 26, the main transmission lever (transmission operation tool) 27, the speed rotation number selection changeover switch 29, the speed rotation number setting change dial (vehicle speed setting) shown in FIG. Part) 14, dial setting changeover switch 16, auxiliary transmission lever 19, PTO switch 17, PTO transmission lever 18, work implement lift switch (operation unit) 28, work implement lowering speed adjustment knob 75, and the like. .
  • These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
  • the monitor device 70 is configured to be able to display various information of the tractor 1.
  • the monitor device 70 is provided with input members such as buttons and dials, and various instructions can be input to the tractor 1 by operating the input members by the user.
  • the throttle lever 15 is an operating tool for setting the output rotation speed of the engine 10.
  • the reverser lever 26 is an operation tool for switching the tractor 1 between forward, reverse, and stop.
  • the main speed change lever 27 is an operating tool for steplessly changing the speed at which the tractor 1 travels in the direction indicated by the reverser lever 26.
  • the speed / revolution selection switch 29 is a mode in which the tractor 1 that performs manual travel / manual operation selects a combination of the vehicle speed and the rotational speed of the engine 10 in advance and travels (hereinafter referred to as setting). This is an operating tool for switching the selection alternately when it is referred to as a selection travel mode.
  • the speed rotation speed setting change dial 14 is an operating tool for adjusting the setting values of the vehicle speed of the tractor 1 and the rotation speed of the engine 10 for each of the two types of settings selected in the setting selection travel mode.
  • the dial setting changeover switch 16 is an operating tool for switching whether the speed / revolution setting changing dial 14 changes the setting value of the vehicle speed of the tractor 1 or the setting value of the rotation speed of the engine 10.
  • the speed rotation speed setting change dial 14 and the dial setting changeover switch 16 are used to set the vehicle speed and the number of engines during work and non-work to be described later when the user performs autonomous traveling / autonomous work while riding on the tractor 1. Also used to instruct settings.
  • the auxiliary transmission lever 19 is an operating tool for switching the gear ratio of the traveling auxiliary transmission gear mechanism in the transmission 22.
  • the PTO switch 17 is an operating tool for switching the transmission / cutoff of power to a PTO shaft (power transmission shaft) (not shown) protruding from the rear end of the transmission 22.
  • the PTO speed change lever 18 is an operating tool for performing a speed change operation of the rotational speed of the PTO shaft.
  • the work implement raising / lowering switch 28 is an operating tool for raising and lowering the height of the work implement 3 attached to the traveling machine body 2 within a predetermined range.
  • the work implement lowering speed adjustment knob 75 is an operation tool for adjusting the speed when the work implement 3 is lowered.
  • the seat 13 is provided with a seating sensor (detection unit) 13a for detecting that the user is sitting on the seat.
  • the seating sensor 13a can be configured to use a membrane switch, for example.
  • a chassis 20 of the tractor 1 is provided at the lower part of the traveling machine body 2.
  • the chassis 20 includes a body frame 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
  • the fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member.
  • the transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24.
  • the front axle 23 is configured to transmit the power input from the transmission 22 to the front wheels 7.
  • the rear axle 24 is configured to transmit the power input from the transmission 22 to the rear wheel 8.
  • the tractor 1 includes a control unit 4 for controlling the operation of the traveling machine body 2 (forward, reverse, stop, turn, etc.) and the operation of the work machine 3 (elevation, drive, stop, etc.).
  • the control unit 4 includes a CPU, a ROM, a RAM, an I / O, and the like (not shown), and the CPU can read various programs from the ROM and execute them.
  • the ROM stores operation programs, application programs, and various data.
  • the control unit 4 can be operated as the storage unit 38, the route generation unit (route generation system) 39, the autonomous traveling control unit 32, and the like.
  • the tractor by providing the tractor with various configurations such as the positioning antenna 6, it is possible to cause the tractor to perform autonomous traveling and autonomous work.
  • the controller 4 is electrically connected to a controller or the like for controlling each component (for example, the engine 10 or the like) included in the tractor 1.
  • the tractor 1 includes at least an engine controller (not shown), a vehicle speed controller, a steering controller, a lift controller, and a PTO controller. Each controller can control each component of the tractor 1 in accordance with an electrical signal from the control unit 4.
  • the engine controller controls the rotational speed of the engine 10 and the like.
  • the engine controller is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 10.
  • the common rail device 41 injects fuel into each cylinder of the engine 10.
  • the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close, high-pressure fuel pumped from the fuel tank to the common rail device 41 by the fuel supply pump is injected from each injector to each cylinder of the engine 10.
  • the injection pressure, injection timing, and injection period (injection amount) of fuel supplied from each injector are controlled with high accuracy.
  • the engine controller can stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the common rail device 41, for example.
  • the vehicle speed controller controls the vehicle speed of the tractor 1.
  • the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic continuously variable transmission.
  • the vehicle speed controller can change the gear ratio of the transmission 22 and change to the desired vehicle speed by changing the angle of the swash plate of the transmission 42 with an actuator (not shown).
  • the steering controller controls the turning angle of the steering handle 12.
  • a steering actuator 43 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 12.
  • the control unit 4 sets an appropriate rotation angle of the steering handle 12 so that the tractor 1 travels along the route.
  • the control signal is transmitted to the steering controller so that the calculated rotation angle is obtained.
  • the steering controller drives the steering actuator 43 based on the control signal input from the control unit 4 and controls the rotation angle of the steering handle 12.
  • the steering controller may adjust the steering angle of the front wheel 7 of the tractor 1 instead of adjusting the rotation angle of the steering handle 12. In that case, the steering handle 12 does not rotate even if the vehicle turns.
  • the elevating controller controls the elevating of the work machine 3.
  • the tractor 1 includes a lift actuator 44 formed of a known hydraulic lift cylinder in the vicinity of a three-point link mechanism that connects the work machine 3 to the traveling machine body 2.
  • the elevating controller drives the lift cylinder by opening and closing an unillustrated electromagnetic valve based on a control signal input from the control unit 4 and appropriately drives the work implement 3 to elevate.
  • the lift cylinder is a single-acting type, and is configured such that the working machine 3 is raised by supplying hydraulic oil to the cylinder, and the working machine 3 is lowered by its own weight by discharging the hydraulic oil from the cylinder. .
  • a known descending speed adjusting valve is disposed in the hydraulic oil discharge path from the cylinder, and the user operates the opening degree of the descending speed adjusting valve with the work implement descending speed adjusting knob 75 in FIG. Thus, the speed when the work machine 3 descends can be adjusted.
  • the work controller 3 can be supported at a desired height such as a non-working height at which work is not performed and a work height at which work is performed by the lifting controller having the above-described configuration.
  • a desired height such as a non-working height at which work is not performed and a work height at which work is performed by the lifting controller having the above-described configuration.
  • the working machine 3 attached to the traveling machine body 2 is configured as a rotary tiller in the present embodiment, the work by the working machine 3 means a tilling work.
  • the PTO controller controls the rotation of the PTO shaft.
  • the tractor 1 includes a PTO clutch 45 for switching between transmission / cutoff of power to a PTO shaft (power transmission shaft).
  • the PTO controller can switch the PTO clutch 45 based on a control signal input from the control unit 4 to rotate and stop the work machine 3 via the PTO shaft.
  • the plurality of controllers (not shown) control each part of the engine 10 and the like based on a signal input from the control part 4, so that the control part 4 substantially controls each part. I can grasp it.
  • the tractor 1 including the control unit 4 as described above has a function as a manual travel tractor.
  • each unit of the tractor 1 is controlled by the control unit 4.
  • a traveling machine body 2, a work machine 3, etc. are controlled so that farm work can be performed while traveling in the field.
  • the tractor of the first embodiment has various configurations for functioning as an autonomous traveling tractor.
  • the tractor 1 includes a positioning antenna 6 and the like necessary for acquiring position information of itself (the traveling machine body 2) based on the positioning system.
  • the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field (in a specific area).
  • the tractor 1 of the present embodiment includes a positioning antenna 6 in addition to the control unit 4 described above.
  • the positioning antenna 6 receives signals from positioning satellites that constitute a satellite positioning system (GNSS). As shown in FIG. 1, the positioning antenna 6 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1. The positioning signal received by the positioning antenna 6 is input to the position information calculation unit (position information acquisition unit) 49 shown in FIG. The position information calculation unit 49 calculates the position information of the traveling machine body 2 (strictly speaking, the positioning antenna 6) of the tractor 1 as latitude / longitude information, for example. The position information acquired by the position information calculation unit 49 is used for autonomous traveling by the control unit 4.
  • GNSS satellite positioning system
  • a high-accuracy satellite positioning system using the GNSS-RTK method is used.
  • the present invention is not limited to this, and other positioning systems may be used.
  • DGPS relative positioning method
  • SBAS geostationary satellite type satellite navigation augmentation system
  • the tractor 1 includes an inertial measurement device (not shown).
  • This inertial measurement device has a known configuration including an angular velocity sensor and an acceleration sensor, and is configured to be able to acquire the position of the tractor 1 even when the above GNSS positioning cannot be performed due to radio wave reception or the like. Yes.
  • a radio communication antenna 48 is provided at an appropriate position outside the cabin 11 of the tractor 1.
  • the radio communication antenna 48 is electrically connected to the radio communication unit 40 of the tractor 1.
  • the wireless communication antenna 48 is used for exchanging instructions and information with a remote control device owned by the user when autonomous running / autonomous work is performed without the user getting on the tractor 1. The details of this remote control device will be described later.
  • FIG. 5 is a schematic diagram illustrating an example of the autonomous traveling route P when the tractor 1 performs autonomous traveling / autonomous work.
  • a path P can be generated.
  • the autonomous traveling route P is generated so as to connect the work start position S and the work end position E specified in advance.
  • This autonomous traveling path P is a straight or broken line-shaped autonomous work path (linear path on which autonomous work is performed) P1 and a U-shaped connection path (turning / turning back operation) that connects the ends of the autonomous work path P1. And a circular circuit including arc-shaped portions) P2 and P2 are alternately connected.
  • a headland and a non-cultivated land are set as a non-work area 62 in which work by the work machine 3 is not performed in the target farm field.
  • the area excluding the non-work area 62 becomes the work area 61.
  • a plurality of the autonomous work paths (routes) P1, P1,... Are arranged side by side in the work area 61, and the connection paths P2, P2,... are arranged in the non-work area 62 (headlands). Is generated as follows.
  • an area obtained by combining the non-work area 62 and the work area 61 may be referred to as a specific area 60.
  • the autonomous work paths P1, P1,... are generated in a straight line, and the connection paths P2, P2,. Further, each of the autonomous work paths P1, P1,... Is arranged so as to pass through the work area 61, and the connection path P2 is an end of P1, P1 adjacent to each other in the headland that is the non-work area 62. Arranged to connect each other. In the autonomous traveling route P created in this way, the direction change of 180 ° is performed in each connection route P2. Therefore, the traveling direction of the tractor 1 is an autonomous work route P1 and an autonomous work route P1 adjacent thereto. Will be opposite to each other.
  • the information on the autonomous traveling route P is obtained by using data generated by an external computer (may be a wireless communication terminal 81 described later) as appropriate for communication or the like. It can also be taken into the control unit 4 by means. Thereafter, when the user performs a predetermined operation on the tractor 1, the control unit 4 (autonomous traveling control unit 32) controls the tractor 1 and autonomously travels along the autonomous traveling route P. Thus, the farm work can be performed by the work machine 3 along the autonomous work path P1.
  • an external computer may be a wireless communication terminal 81 described later
  • FIG. 6 is a side view showing a state where the work machine 3 is lowered from the state of FIG. 1 and is in a working state.
  • a work machine 3 is mounted on the rear part of the traveling machine body 2 of the tractor 1. As described above, a part of the driving force of the engine 10 is transmitted to the work machine 3 through the PTO shaft, and the work machine 3 can be driven to perform the tilling work.
  • a plurality of tilling claws (work bodies) 25 that are rotationally driven around a horizontally disposed shaft are provided at the lower portion of the work machine 3.
  • the rotation axis 25c of the tilling claw 25 is shown in FIGS.
  • the rotating tillage claw 25 comes into contact with the soil, and the farming work at a predetermined depth corresponding to the working height can be performed. Further, the tilling work can be stopped by stopping the rotation of the tilling claws 25 or raising the working machine 3 to the non-working height shown in FIG.
  • the work machine 3 can be lifted and lowered by the user operating the work machine lift switch 28, and can be automatically controlled by the work machine control unit 34.
  • the “working state” of the work machine 3 means a state in which the work machine 3 is lowered to the work height and the tilling claw 25 is rotating.
  • the “non-working state” means a state other than the above-described working state, for example, in a state where the work implement 3 is raised to the non-working height and the tilling claw 25 is stopped rotating. is there.
  • the tractor 1 of the present embodiment presets the vehicle speed of the tractor 1 and the rotational speed of the engine 10 for each of the working state and the non-working state of the work implement 3 when performing autonomous traveling and autonomous work. be able to.
  • This setting is performed by a speed rotation speed setting change dial 14 and a dial setting changeover switch 16.
  • the work machine 3 switches between the working state and the non-working state while the tractor 1 is autonomously traveling and working, the vehicle speed of the tractor 1 and the rotational speed of the engine 10 are also linked. , And control to switch between the above settings.
  • the vehicle speed of the tractor 1 and the rotation speed of the engine 10 in the working state and the non-working state are set not only when the tractor 1 is stopped, but also when the tractor 1 is performing autonomous running / autonomous work. It can be changed by the user operating the number setting change dial 14 or the like.
  • control unit 4 includes the storage unit 38, the route generation unit 39, and the autonomous traveling control unit 32.
  • the storage unit 38 stores various information necessary for the tractor 1 to run autonomously and work autonomously. Details of the contents stored in the storage unit 38 will be described later.
  • the route generation unit 39 generates an autonomous traveling route P on which the tractor 1 autonomously travels and works based on various information stored in the storage unit 38. Information on the autonomous traveling route P generated by the route generating unit 39 is stored in the storage unit 38.
  • the autonomous traveling control unit 32 performs overall control related to autonomous traveling and autonomous work.
  • the autonomous running control unit 32 includes a manned autonomous running mode (first mode) in which autonomous running / autonomous work is performed in a state where the user is boarded, and an unmanned autonomous running mode (in which autonomous running / autonomous work is performed in a state in which the user is not boarded) (
  • the tractor 1 is configured to be able to autonomously travel along the autonomous traveling route P stored in the storage unit 38.
  • the autonomous traveling control unit 32 includes a command output unit 33, a work implement control unit 34, a vehicle speed control unit 35, a steering control unit 36, and a remaining distance acquisition unit (distance acquisition unit) 37.
  • the command output unit 33 performs the work by the work implement 3 on the portion corresponding to the work area 61 in the process of the tractor 1 traveling along the autonomous traveling route P in the farm field (specific area 60) shown in FIG.
  • a work command for controlling the work machine 3 to a work state and a non-work command for controlling the work machine 3 to a non-work state are output at appropriate timing.
  • the work machine control unit 34 shown in FIG. 4 switches the work machine 3 from the non-working state to the working state or changes from the working state to the non-working state in accordance with the work command or the non-working command output from the command output unit 33. Control to switch. Specifically, the work machine control unit 34 sends a signal to the PTO clutch 45 to control switching of transmission / cutoff of power to the PTO shaft, and sends a signal to the lift actuator 44 to raise and lower the work machine 3. To do.
  • the vehicle speed control unit 35 controls the vehicle speed of the traveling machine body 2 by sending a control signal to the transmission 42 and the like.
  • the vehicle speed control unit 35 switches the vehicle speed of the traveling machine body 2 from the vehicle speed during non-working to the vehicle speed during work according to the work command or non-work command output by the command output unit 33, or from the vehicle speed during work. Control to switch to vehicle speed when not working.
  • the vehicle speed at the time of work (first vehicle speed) is the vehicle speed when the work machine 3 is in the working state
  • the vehicle speed at the time of non-work (second vehicle speed) is the speed when the work machine 3 is in the non-working state.
  • the vehicle speed during work and the vehicle speed during non-work are set by the speed rotation number setting change dial 14 as described above.
  • the steering control unit 36 performs automatic steering so that the traveling machine body 2 travels along the autonomous traveling route P by sending a control signal to the steering actuator 43.
  • the remaining distance acquisition unit 37 acquires the distance between the rotation axis 25c of the tilling claw 25 of the work implement 3 and a switching target position described later, and outputs the distance to the command output unit 33. Details of the remaining distance acquisition unit 37 will be described later.
  • the timing at which the working machine 3 is switched from the working state or the non-working state to the non-working state or the working state when the tractor 1 is autonomously run and the work machine 3 performs work It is conceivable that at the timing when the traveling tractor 1 enters the work area 61 from the non-work area 62, the tilling claw 25 is rotated and the work implement 3 is lowered to the work height. Further, at the timing when the tractor 1 exits from the work area 61 to the non-work area 62, it is conceivable that the rotation of the tilling claw 25 is stopped and the work implement 3 is raised from the work height.
  • the position information of the own aircraft is acquired using the satellite positioning system (from the position information calculation unit 49 in FIG. 4).
  • the position of the tillage claw 25 of the work implement 3 (the position of the rotation axis 25 c) in the tractor 1 is arranged behind the position where the positioning antenna 6 is attached. Accordingly, there may be a gap between the timing when the positioning antenna 6 enters and exits the work area 61 and the timing when the tilling claw 25 that actually works on the soil and enters and exits the work area 61.
  • the direction in which the tractor 1 travels between the two autonomous work paths P1 and P1 adjacent to each other is reversed.
  • the work implement 3 starts the tilling work when the position of the positioning antenna 6 enters the work area 61, and stops the tilling work when the position of the positioning antenna 6 comes out of the work area 61. If the operation is performed, there is a possibility that the end of the area where the plowing work is actually performed by the work machine 3 is not aligned between the adjacent autonomous work paths P1 and P1. In that case, it looked bad, and it took time and effort for the subsequent finishing process.
  • the control unit 4 provided in the tractor 1 of the present embodiment controls the start / stop timing of the tilling work based on the position of the rotation axis 25c of the tilling claw 25 where the tilling work is performed as follows. is doing.
  • This nail axis position divides the front-and-rear direction region where the tilling claw 25 actually acts on the soil and performs the tilling work into two equal parts, so it can be said that it is the work center position in the work machine 3. .
  • the storage unit 38 includes a work machine distance storage unit (work machine distance acquisition unit) 51, an area storage unit 52, a route storage unit 53, a work margin distance storage unit 54, and a vehicle speed setting storage. Unit 55 and a descent required time storage unit (required time storage unit) 56.
  • the work machine distance storage unit 51 stores the work machine horizontal distance L (that is, the horizontal distance from the position of the rotation axis 25c of the tillage claw 25 to the position of the positioning antenna 6) shown in FIGS.
  • the position of the rotation axis 25c of the tilling claw 25 may be referred to as a claw axis position
  • the position of the positioning antenna 6 may be referred to as an antenna position.
  • the work implement horizontal distance L is input by the user before the autonomous traveling of the tractor 1 starts. Specifically, when the user inputs the distance between the rotation axis 25 c of the tilling claw 25 and the positioning antenna 6 using the monitor device 70, for example, the work machine distance storage unit 51 sets the value of the distance as the work machine horizontal distance L.
  • the work machine distance storage unit 51 sets the value of the distance as the work machine horizontal distance L.
  • the work machine that can be mounted on the traveling machine body 2 and the work center position of the work machine are stored in the control unit 4 or the like in association with each other, and the user can specify the model name of the work machine in the monitor device 70, for example. If the construction machine horizontal distance L is automatically set only by selection, the convenience can be improved.
  • the area storage unit 52 shown in FIG. 4 includes information on the work area 61 set in advance by the user (specifically, information on the position and shape of the work area 61) and the non-work area 62 that is the remaining area. Information.
  • the information on the work area 61 can be set, for example, by the user appropriately operating the monitor device 70 before the start of autonomous running / autonomous work.
  • the route storage unit 53 stores information on an autonomous traveling route P that is a route on which the tractor 1 autonomously travels and works autonomously.
  • the work margin distance storage unit 54 is configured so that an end portion of the work area 61 (the boundary between the work area 61 and the non-work area 62 is not detected) even if an error occurs in the lifting / lowering of the work implement 3.
  • the margin distance M for performing extra work on the non-work area 62 along the connection path P2 is stored before and after work on the autonomous work path P1 so that work leakage does not occur in the vicinity).
  • the upstream end and the downstream end in other words, the boundary between the work area 61 and the non-work area 62).
  • the work margin distance storage unit 54 is a setting unit for setting the switching target position.
  • the setting value of the margin distance M stored in the work margin distance storage unit 54 may be changed by the user operating, for example, the monitor device 70 of the tractor 1. Further, the margin distance M may be configured to be unchangeable from a set value at the time of factory shipment, for example.
  • the margin distance M is the same between the switching target position set before entering the work area 61 from the non-work area 62 and the switching target position set after exiting from the work area 61 to the non-work area 62. . Furthermore, although many switching target positions are set in the autonomous traveling route P, the margin distance M is constant throughout the autonomous traveling route P. Therefore, for example, when the work area 61 is set in a rectangular shape as shown in FIG. 5, the work is actually performed between a stroke of traveling the tractor 1 in a certain direction and a stroke of traveling in the opposite direction. Control can be performed so that the ends of the portions are aligned, and a good appearance can be realized.
  • the vehicle speed setting storage unit 55 stores the values set by the speed rotation number setting change dial 14 for the vehicle speed at the time of working and the vehicle speed at the time of non-working.
  • the descent required time storage unit 56 stores the time from the start of the descent of the work machine 3 at the non-working height until the work height is reached.
  • the command output unit 33 stores the position of the positioning antenna 6 calculated by the position information calculation unit 49 and the work machine distance so that the work machine control unit 34 controls the work machine 3 to move up and down at an appropriate timing.
  • the claw axis position is calculated based on the work implement horizontal distance L stored in the unit 51.
  • the command output unit 33 is configured so that the obtained pawl axis position reaches the switching target position before entering the work area 61. 3 is lowered to the working height and the tilling claw 25 is rotated (the working machine 3 is in the above-described working state), the lifting actuator 44 and the like via the work machine control unit 34 To control. Further, when the tractor 1 exits from the work area 61 to the non-work area 62, the command output unit 33 is at a timing when the obtained claw axis position reaches the switching target position after exiting the non-work area 62. The lift actuator 44 and the like via the work machine control unit 34 so that the rotation of the tilling claw 25 stops and the work machine 3 starts to rise from the work height (the work machine 3 is in the non-working state described above). To control.
  • the switching target position includes information on the work area 61 stored in the area storage unit 52, information on the autonomous travel route P stored in the route storage unit 53, a margin distance M stored in the work margin distance storage unit 54, Can be obtained by calculation.
  • FIG. 7 is a diagram illustrating the relationship of the control timing when the work machine 3 is switched from the non-working state to the working state during autonomous running / autonomous work.
  • connection path P2 connection path P2
  • a non-working height specifically, a maximum raising height
  • the plow claws 25 are not rotated because the PTO clutch 45 is disengaged (non-working state).
  • the work machine control unit 34 is in a mode for maintaining the non-working height (lift-up mode). Therefore, the tilling claw 25 is stationary without touching the ground, and no tilling work is performed.
  • a control signal (work command) is output from the command output unit 33 to the work machine control unit 34 and the vehicle speed control unit 35. The details of the timing at which the command output unit 33 outputs the work command will be described later.
  • the work machine control unit 34 transmits a signal to the PTO clutch 45 instructing to cancel the PTO stop, as shown in FIG. However, at this time, the work machine control unit 34 is configured to transmit a PTO stop release instruction after waiting for a certain period of time after the work command is input, for example, for securing a control preparation time. .
  • the standby time TW1 may be a predetermined time between 50 and 500 milliseconds, for example.
  • the work machine control unit 34 controls the work machine 3 to be lowered at the same time as the PTO stop release instruction. Specifically, by opening the solenoid valve (not shown) to discharge the pressure oil of the lifting actuator 44 (lift cylinder), the work implement 3 starts to descend by its own weight as shown in FIG. Since the tilling claw 25 has already started rotating, the work implement 3 enters the working state when the work implement 3 descends and reaches the work height. In order for the work machine 3 that has been at the non-working height to descend and reach the working height, a corresponding time is required.
  • the lowering speed of the work machine 3 varies depending on the opening degree of the lowering speed adjusting valve, the weight of the work machine 3, and the like, the time required for the work machine 3 to descend and reach the work height (required lowering time) TR1) varies depending on the situation.
  • the weight of the work machine 3 varies depending on the adhesion of soil, etc. Since the tractor 1 of the present embodiment does not include a sensor that directly detects the weight of the work machine 3, the estimation accuracy of the required descent time TR1 is not necessarily high. Absent. On the other hand, although not shown, the tractor 1 is provided with a work implement height sensor (for example, a potentiometer) that detects the support height of the work implement 3, so that a work is performed using a timer circuit (measurement unit) not shown. It is possible to measure the time from when the machine 3 starts to descend until it actually reaches the working height.
  • a work implement height sensor for example, a potentiometer
  • the command output unit 33 actually measures the descent time TR1 when the work machine 3 is lowered and stores it in the descent time storage unit 56, and the next time the work machine 3 is lowered.
  • the accuracy is improved.
  • a predetermined initial value (initially set time) is stored in the required descent time storage unit 56. Used for initial estimation. The initial setting of this time may be appropriately performed by examining the average required time for descent.
  • the stored content of the required descent time storage unit 56 is updated from the initial value to the measured value. Thereafter, the stored contents of the required descent time storage unit 56 are updated as needed with the latest measured values.
  • the vehicle speed control unit 35 immediately sets the vehicle speed of the tractor 1 to the current vehicle speed (normally, non-working vehicle speed setting) when a work command is input from the command output unit 33.
  • the acceleration / deceleration is started so as to approach the set value of the vehicle speed at the time of work.
  • the vehicle speed change control is started almost simultaneously with the output of the work command by the command output unit 33, the vehicle speed of the tractor 1 is set at an appropriate time before the work implement 3 reaches the work height. It is equal to the set value of the vehicle speed during work.
  • how the vehicle speed changes in the process from the vehicle speed at the time of non-working to the vehicle speed at the time of working can be determined as appropriate, for example, it may change linearly, It may change.
  • the timing at which the claw shaft position of the work implement 3 reaches the switching target position is the distance from the current claw shaft position to the switching target position (hereinafter, remaining distance).
  • the vehicle speed of the traveling machine body 2 can be estimated.
  • the remaining distance is calculated by the remaining distance acquisition unit 37 based on the position information of the traveling machine body 2 (strictly, the positioning antenna 6), the work machine horizontal distance L, and the switching target position. Can be obtained.
  • the vehicle speed of the traveling machine body 2 (the tractor 1) is set from the set value of the vehicle speed when the tractor 1 is not working until the claw shaft position of the work machine 3 reaches the switching target position. Changes to value. Therefore, the command output unit 33 sets the remaining distance, the set value of the vehicle speed during non-operation, and the non-work so that the work machine 3 enters the working state at the timing when the claw shaft position of the work machine 3 reaches the switching target position.
  • the timing for outputting the work command is calculated by taking into consideration the speed change rate that changes from the set value of the vehicle speed during work to the set value of the vehicle speed during work, the standby time TW1, and the required descent time TR1. .
  • the output timing of the work command will be earlier, and the vehicle speed during work will be greater than the vehicle speed during non-work.
  • the output timing of the work command is delayed.
  • increase or decrease initially from the non-working vehicle speed at a large rate of change, and small changes after approaching the working vehicle speed The output timing of the work command differs depending on whether the rate increases or decreases.
  • the command output unit 33 When the command output unit 33 outputs the work command at such timing, the work by the work machine 3 (cultivation claw 25) can be started from the switching target position. Moreover, in this embodiment, since it controls on the basis of the nail
  • the switching target position is set so as to be located slightly on the near side from the boundary between the non-work area 62 and the work area 61 when viewed from the tractor 1 traveling on the connection path P2. Due to this margin, it is possible to prevent an unworked portion from occurring in the work area 61 even when the lowering timing of the work machine 3 is delayed.
  • the work implement control unit 34 switches from the lift-up mode to the auto rotary mode and performs control for maintaining the work height. Do. Thereafter, the claw axis position of the work machine 3 enters the work area 61.
  • the tractor 1 travels on the work area 61 along the autonomous work path P1 at a speed set as the vehicle speed at the time of work while performing the work with the tilling claws 25 of the work machine 3.
  • FIG. 8 is a diagram for explaining the relationship of control timing when the work machine 3 is switched from the working state to the non-working state during autonomous running / autonomous work.
  • the traveling machine body 2 finishes traveling along the autonomous work path P1 and the working machine 3 approaches the switching target position, the working machine 3 is switched to the non-working state as shown in FIG. Is output from the command output unit 33 to the work implement control unit 34 and the vehicle speed control unit 35. Details of the timing at which the non-work command is transmitted will be described later.
  • the work machine control unit 34 transmits a signal instructing to stop the PTO to the PTO clutch 45 as illustrated in FIG.
  • the work machine control unit 34 is configured to transmit a PTO stop instruction after waiting for a predetermined time after the non-work command is input.
  • the standby time TW2 may be a fixed time between 50 and 500 milliseconds, for example. Further, the standby time TW2 in the case of the non-work command may be the same as or different from the standby time TW1 in the case of the work command, but the standby time TW1 is longer than the standby time TW2. It is desirable to be.
  • the work machine control unit 34 transmits a PTO stop instruction to the PTO clutch 45, and at the same time, switches from the auto rotary mode to the lift-up mode as shown in FIG. Further, the work implement control unit 34 controls the work implement 3 to be raised by supplying hydraulic oil to the hydraulic cylinder after waiting for a delay time TD described later from the instruction to stop the PTO.
  • This delay time TD is for preventing the soil from rising due to the rise of the work implement 3. That is, if the working machine 3 starts to be lifted at the same time as the rotation of the tilling claw 25 is stopped, the stopped tilling claw 25 lifts the soil, so that the soil soil rises locally. Therefore, in this embodiment, the work implement 3 is not immediately raised even after the rotation of the tillage claw 25 is stopped, so that such soil swell is not formed and the appearance is improved. .
  • the work machine 3 After the delay time TD has elapsed, the work machine 3 starts to rise. Therefore, the work machine 3 is in a non-working state at this time. Although it takes a certain amount of time for the work implement 3 to rise from the work height to reach the non-work height, the supply speed of the hydraulic oil to the hydraulic cylinder is constant. Is constant unlike the case of descending. Therefore, the time required for the work machine 3 to rise to reach the non-working height (rising required time TR2) is a constant value.
  • the vehicle speed control unit 35 does not switch the vehicle speed when a non-work command is input from the command output unit 33, as shown in FIG.
  • the vehicle speed control unit 35 determines that the vehicle speed of the tractor 1 is the current vehicle speed (usually the vehicle speed at the time of work) at a timing when a predetermined time TC has elapsed since the work implement control unit 34 transmitted a PTO stop instruction to the PTO clutch 45.
  • the acceleration / deceleration is started so as to be close to the setting value of the vehicle speed when not working from approximately the setting value.
  • the predetermined time TC is longer than the delay time TD.
  • how the vehicle speed changes in the process from the vehicle speed at the time of working to the vehicle speed at the time of non-working can be determined as appropriate. For example, it may change linearly, It may change.
  • the timing at which the claw axis position of the work machine 3 reaches the switching target position is the distance from the current claw axis position to the switching target position (the above-mentioned remaining distance), the vehicle speed of the traveling machine body 2, and Can be estimated.
  • the vehicle speed of the traveling machine body 2 (the tractor 1) is a value that is equal to the set value of the vehicle speed during the operation of the tractor 1 until the claw shaft position of the work machine 3 reaches the switching target position, and is substantially constant. is there. Accordingly, the command output unit 33 sets the remaining distance and the set value of the vehicle speed at the time of work so that the work machine 3 changes from the working state to the non-working state when the claw shaft position of the working machine 3 reaches the switching target position. In consideration of the waiting time TW2 and the delay time TD, the timing for outputting the non-work command is obtained by calculation. When the command output unit 33 outputs the non-work command at the timing obtained in this way, the work by the work machine 3 (cultivation claw 25) can be finished at the switching target position, and the work looks good.
  • the switching target position is set so as to be located slightly beyond the boundary between the work area 61 and the non-work area 62 when viewed from the tractor 1 traveling on the autonomous work path P1. With this margin, it is possible to prevent an unworked portion from occurring in the work area 61 even when the rising timing of the work machine 3 is advanced.
  • the work machine control unit 34 Since the work machine control unit 34 is in the lift-up mode, when the work machine 3 reaches the non-working height, the work machine control unit 34 performs control for maintaining the non-working height. Further, the vehicle speed of the tractor 1 is substantially equal to the set value of the vehicle speed during non-working before and after the work machine 3 reaches the non-working height. The tractor 1 travels in the non-working area 62 along the connection path P2 at a speed set as a vehicle speed during non-working in a state where the work machine 3 does not perform work.
  • the command output unit 33 controls the timing at which the work machine control unit 34 raises and lowers the work machine 3 based on the claw shaft position, so that the work machine 3 performs the operation on each autonomous work path P1.
  • the ends of the sections actually cultivated (with a predetermined tilling depth) can be aligned between the plurality of autonomous work paths P1. As a result, a good-looking finish can be realized.
  • FIG. 7A shows the timing at which the work command is output.
  • the timing is an appropriate time point before that (for example, the time point indicated by Tx) at the time point Tx. It is calculated by the command output unit 33 based on the set value of the vehicle speed during non-working and working.
  • the user operates the speed rotation speed setting change dial 14 to change the vehicle speed during non-work and the vehicle speed during work. It is assumed that an instruction to change at least one of the settings is given.
  • the tractor 1 moves from the non-working area to the working area, as shown in FIG. 7 (f)
  • the tractor 1 starts from the vehicle speed during non-working before the claw shaft position reaches the switching target position.
  • the vehicle speed of the tractor 1 is controlled so as to be the vehicle speed at the time of operation until the change to the vehicle speed at the time of operation and the position of the pawl shaft reaches the switching target position. Therefore, if the vehicle speed during non-working or the vehicle speed during work is changed as instructed by the user, the timing at which the claw axis position arrives at the switching target position shown in FIG. Change from.
  • the timing at which the claw axis position reaches the switching target position is either forward or backward depending on the content of the user's instruction to change the vehicle speed. If at least one of the vehicle speed during non-working and the vehicle speed during work is increased, the above timing is likely to be advanced.
  • the work command should be delayed by that amount. Even when the above timing changes ahead, if the work can be absorbed with sufficient time, the work command may be advanced by that amount.
  • the timing of the work command may be changed so that the timing at which the work machine 3 enters the working state is in time after temporarily controlling the vehicle speed to be a temporary vehicle different from the user's instruction.
  • FIG. 8A shows the timing of outputting the non-work command. As described above, this timing is an appropriate time point before that (for example, the time point indicated by Tx) at the time point Tx.
  • the command output unit 33 calculates the vehicle speed based on the set value of the vehicle speed during the operation.
  • the user operates the speed rotation speed setting change dial 14 so that the vehicle speed during work and the vehicle speed during non-work Assume that an instruction to change at least one of the settings is issued.
  • the tractor 1 moves from the work area to the non-work area, as shown in FIG. 8 (f)
  • the tractor 1 travels at the vehicle speed during work before the pawl shaft position reaches the switching target position.
  • the tractor 1 is switched so that the vehicle speed of the tractor 1 becomes the vehicle speed during non-working at a timing slightly after the claw shaft position reaches the switching target position.
  • the timing at which the claw axis position reaches the switching target position is either forward or backward depending on the content of the user's instruction to change the vehicle speed. If the vehicle speed at the time of work is increased, the above timing is brought forward, and if it is reduced, the timing is pushed backward.
  • the non-work command may be delayed by that amount. Even when the above-mentioned timing changes ahead of time, if it can be absorbed with a time margin, the non-work command may be advanced by that amount.
  • the above timing is advanced and the time margin is insufficient.
  • two kinds of control are conceivable as in the case of the above-described work command.
  • the first is to accept a delay in timing when the work machine 3 enters a non-working state, but to immediately output a non-working command in order to minimize the delay. In this case, it is possible to secure the responsiveness of the vehicle speed changing operation and to suppress the deterioration of the appearance.
  • the change of the set value of the vehicle speed at the time of work is suspended regardless of the user's operation, and the vehicle speed is controlled by the set value before the change for the switching to the non-work state performed this time.
  • the timing of the non-work command may be changed so that the timing when the work machine 3 enters the non-work state is in time. .
  • the control shown in FIGS. 7 and 8 requires the rotational driving of the tilling claws 25 via the PTO shaft as in the rotary tiller used in the present embodiment, and the lifting and lowering of the working machine 3. This is applied when control is required.
  • Some work machines do not require driving of the work body or do not require lifting control. Therefore, in the tractor 1 according to the present embodiment, the type of the work machine is set before the autonomous running / autonomous work is started. Is input to the user (for example, to the monitor device 70 or the wireless communication terminal 81 described later), and the PTO control and the elevation control as shown in FIGS. 7 and 8 are performed only when necessary.
  • the timing for switching from the non-working state in which work is not performed by the work body included in the work machine to the work state in which work is performed by the work body is The time until the work center position of the work body reaches the switching target position is the switching preparation time (the time corresponding to the above-described waiting time TW1) from when the work command is output until the actual switching to the working state is started. ), And a timing substantially equal to the total time required for switching from the start of switching to the working state to the completion of switching (that is, to the working state) (the above-described descent required time TR1). .
  • the work center position of the work body is the switching target position. Is approximately equal to the switching preparation time (the time corresponding to the sum of the waiting time TW2 and the delay time TD described above) from when the work command is output to when the switching to the non-working state is actually started. The timing is controlled.
  • FIG. 9 is a flowchart for explaining processing performed by the work machine control unit 34.
  • the work machine control unit 34 monitors the input of a work command or a non-work command from the command output unit 33 described above, and at the same time, the work machine control unit 34 is operated in response to the operation of the work machine lift switch 28. Is also monitored for a control signal (elevating command as an operation unit command).
  • a control signal elevating command as an operation unit command.
  • the work implement control unit 34 first determines whether or not a work command or a non-work command output from the command output unit 33 is input (step S101).
  • the work implement control unit 34 determines whether a lift command associated with the operation of the work implement lift switch 28 is input (step S101). S102).
  • step S102 If it is determined in step S102 that an elevation command has been input, the work implement control unit 34 performs control to raise or lower the work implement 3 according to the elevation command, not the work command or the non-work command (step S103). That is, the work machine control unit 34 gives priority to the lift command over the work command or the non-work command, and performs the lift control of the work machine 3 based on the lift command. Thereafter, the process returns to step S101.
  • step S102 If it is determined in step S102 that the elevation command has not been input, the work implement control unit 34 performs control to raise or lower the work implement 3 in accordance with the input work command or non-work command (step S104). Thereafter, the process returns to step S101.
  • step S101 If it is determined in step S101 that no work command or non-work command has been input, the work machine control unit 34 determines whether a lift command based on the operation of the work machine lift switch 28 is input (step S101). S105).
  • step S105 If it is determined in step S105 that an elevation command has been input, the work implement control unit 34 performs control to raise or lower the work implement 3 in accordance with the elevation command (step S103). Thereafter, the process returns to step S101. If the elevation command has not been input, the process of step S103 is not performed, and the process returns to step S101.
  • a non-work command is input from the command output unit 33 to the work machine control unit 34, and the work machine 3 starts to rise as shown in FIG.
  • the ascent control is stopped and the work implement control unit 34 immediately performs the lowering control of the work implement 3.
  • the tractor 1 performs switching between the working state and the non-working state of the work machine 3 in a manner in accordance with the user's intention while performing autonomous running / autonomous work in principle. Can do.
  • step S103 when the work implement 3 is controlled to be lifted / lowered based on the lift / lower command based on the operation of the work implement lift switch 28 instead of the work command or the non-work command output by the command output unit 33, For example, a message to that effect may be displayed on a display (display unit) included in the monitor device 70 or a lamp or a buzzer may be used to notify the user of that fact.
  • a display display unit
  • FIG. 10 is a diagram showing a wireless communication terminal 81 used when the user performs autonomous traveling / autonomous work without riding on the tractor 1.
  • FIG. 11 is a diagram illustrating a display example of the autonomous traveling monitoring screen 100 on the display 83 of the wireless communication terminal 81.
  • the autonomous traveling control unit 32 included in the tractor 1 includes the manned autonomous traveling mode in which autonomous traveling / autonomous work is performed while the user is on board, and the unmanned autonomous traveling in which autonomous traveling / autonomous work is performed without the user being on board. Switching between modes can be performed autonomously. This mode can be switched by the user operating the monitor device 70, for example.
  • the autonomous traveling / autonomous work of the tractor 1 in the manned autonomous traveling mode cannot be started unless the seating sensor 13a shown in FIG. 3 detects the seating of the user.
  • the autonomous traveling / autonomous work of the tractor 1 in the unmanned autonomous traveling mode cannot be started when the seating sensor 13a detects the seating of the user.
  • the control by the autonomous traveling control unit 32 ends.
  • the traveling machine body 2 is not stopped and can be shifted to manual traveling / manual operation as it is.
  • the tractor 1 when the tractor 1 is performing autonomous traveling / autonomous work in the unmanned autonomous traveling mode, it is not assumed that the above-described operation device provided in the tractor 1 is used. Therefore, in the unmanned autonomous traveling mode, the operation of the speed rotation speed setting change dial 14 shown in FIG. 3 is invalidated.
  • the control by the autonomous traveling control unit 32 ends, and accordingly, the tractor 1 Is immediately stopped. The user shifts from the state where the traveling machine body 2 is stopped to manual traveling / manual operation.
  • the tractor 1 when the tractor 1 is performing autonomous traveling / autonomous work in the unmanned autonomous traveling mode, when the work implement lifting switch 28 is operated by the user, the control by the autonomous traveling control unit 32 is terminated. Thus, the tractor 1 is immediately stopped. At this time, in the radio communication terminal 81 described later, the fact that the autonomous running is stopped is notified by displaying a message or the like. In addition, in the tractor 1, notification may be performed using the monitor device 70, for example. Thereafter, the user needs to shift to manual travel / manual work by performing a predetermined operation from the state in which the traveling machine body 2 is stopped.
  • the user uses the wireless communication terminal (wireless communication device) 81 shown in FIG. 10 as a remote control device to instruct the tractor 1 from the outside. I do.
  • the wireless communication terminal 81 is configured as a tablet computer having a touch panel 82 as shown in FIG.
  • the user can confirm by referring to information displayed on the display (display unit) 83 of the wireless communication terminal 81.
  • the user operates the hardware key 84 or the like disposed in the vicinity of the touch panel 82 or the display 83 to transmit a control signal for controlling the tractor 1 to the control unit 4 of the tractor 1.
  • a control signal output from the wireless communication terminal 81 to the control unit 4 a signal related to an autonomous traveling / autonomous work route, an autonomous traveling / autonomous work start signal, and a stop signal may be considered, but the control signal is not limited thereto.
  • the wireless communication terminal 81 is not limited to a tablet computer, and may be configured with, for example, a notebook computer instead. Moreover, you may comprise so that not the tractor 1 but the radio
  • the display screen of the display 83 is switched to the autonomous traveling monitoring screen 100 shown in FIG.
  • a traveling state display unit 103 that displays image data including an autonomous traveling route on which the tractor 1 is traveling is disposed.
  • the image data displayed on the traveling state display unit 103 displays the shape of the farm field and the shape of the work area superimposed on the map data, and the traveling of the tractor 1 thereon.
  • the locus can be indicated by hatching.
  • a start / pause button 105 for starting or pausing autonomous running is displayed on the leftmost side on the upper side of the autonomous running monitoring screen 100.
  • a control signal instructing to start autonomous driving is transmitted from the wireless communication terminal 81 to the control unit 4 of the tractor 1.
  • the autonomous traveling of the tractor 1 can be paused or resumed.
  • a vehicle speed display unit 106 On the autonomous travel monitoring screen 100, on the right side of the start / pause button 105, a vehicle speed display unit 106, an engine speed display unit 107, and a hitch height adjustment unit (operation unit) 108 are arranged vertically. ing.
  • the vehicle speed display unit 106 displays the current vehicle speed of the tractor 1 acquired based on data transmitted from a vehicle speed sensor (not shown).
  • the engine speed display unit 107 displays the current speed of the engine 10 acquired based on data sent from an unillustrated engine speed sensor.
  • the hitch height adjusting unit 108 displays the numerical value of the height of the work implement 3 acquired based on the data sent from the above work implement height sensor. Up and down buttons are arranged on the right side of the displayed numerical value. By operating these buttons, an instruction to raise and lower the work machine 3 can be given. By operating the hitch height adjusting unit 108, the wireless communication terminal 81 outputs an elevation command to the tractor 1.
  • a setting adjustment unit that can adjust the setting of the vehicle speed and the engine speed of the tractor 1 for each of the above-described working state and non-working state is arranged.
  • a working vehicle speed adjusting unit (vehicle speed setting unit) 111, a working engine speed adjusting unit 112, and a non-working vehicle speed adjustment.
  • Part (vehicle speed setting part) 113 and non-working engine speed adjusting part 114 are arranged.
  • the set value of the vehicle speed (vehicle speed at work) of the tractor 1 when the work implement 3 is in the working state is displayed in the work vehicle speed adjustment unit 111 as a number.
  • a setting value of the engine speed when the work implement 3 is in a working state is displayed in numerals.
  • up and down buttons are arranged on the right side of the displayed set value. By operating these buttons, the set value is increased or decreased. can do.
  • the set value of the vehicle speed of the tractor 1 (vehicle speed during non-working) when the work implement 3 is in a non-working state is displayed in the non-working vehicle speed adjustment unit 113 as a number.
  • the non-working engine speed adjustment unit 114 displays a numerical value of the set value of the speed of the engine 10 when the work machine 3 is in a non-working state.
  • the upper and lower buttons next to the numerical values are operated.
  • the setting value can be increased or decreased with.
  • the working vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113 have the same functions as the speed rotation speed setting change dial 14 provided in the tractor 1, and the hitch height adjusting unit 108 is
  • the working machine lift switch 28 provided in the tractor 1 has the same function.
  • the output timing of the work command or the non-working command is controlled in substantially the same manner as the above-described manned autonomous traveling mode.
  • the unmanned autonomous travel mode if the work command or non-work command output by the command output unit 33 and the elevation command output based on the operation of the hitch height adjustment unit 108 conflict, As with the mode, the elevation command is given priority.
  • the various messages described above are displayed on the display of the wireless communication terminal 81 instead of the monitor device 70 in principle.
  • the tractor 1 includes the traveling machine body 2, the command output unit 33, the work machine control unit 34, the vehicle speed control unit 35, the work margin distance storage unit 54, and the remaining distance acquisition.
  • Unit 37 The traveling machine body 2 can be mounted with the work machine 3.
  • the command output unit 33 outputs a work command for controlling the work machine 3 to a working state and a non-work command for controlling the work machine 3 to a non-working state.
  • the work machine control unit 34 controls the work state of the work machine 3 according to the work command or the non-work command.
  • the vehicle speed control unit 35 can switch and control the vehicle speed of the tractor 1.
  • the work margin distance storage unit 54 sets a switching target position at which the switching of the work state of the work machine 3 by the work machine control unit 34 is executed.
  • the remaining distance acquisition unit 37 acquires a remaining distance that is a distance from the claw axis position of the work machine 3 to the switching target position.
  • the vehicle speed control unit 35 switches the vehicle speed of the tractor 1 from the vehicle speed at the time of working to the vehicle speed at the time of non-working according to the non-work command, and changes the vehicle speed of the tractor 1 from the vehicle speed at the time of non-working to the time of working. Switch to vehicle speed.
  • the command output unit 33 controls the output timing of the non-work command based on the vehicle speed and the remaining distance during work.
  • the command output unit 33 outputs a work command as shown in FIG. 7, the non-working vehicle speed, the speed change rate from the non-working vehicle speed to the working vehicle speed, and the remaining distance Based on this, the output timing of the work command is controlled.
  • the command output unit 33 can output the non-work command and the work command at appropriate timings when the work machine 3 is switched from the work state to the non-work state and when the work machine 3 is switched from the non-work state to the work state. it can. Thereby, the error of the boundary between the part by which the work machine 3 works and the part which is not made can be made small.
  • the vehicle speed control unit 35 switches the work implement 3 from the working state to the non-working state in response to the non-working command, as shown in FIG. Later, switching control from the vehicle speed at the time of work to the vehicle speed at the time of non-work is started. Further, as shown in FIG. 7 (f), the vehicle speed control unit 35 operates from the vehicle speed during non-working before the work machine control unit 34 switches the work machine 3 from the non-working state to the working state according to the work command. Starts switching control to the vehicle speed at the time.
  • the tractor 1 of this embodiment includes a timer circuit (not shown) and a descent time storage unit 56.
  • the timer circuit measures the time required for switching the work machine 3 from the non-working state to the working state (required time TR1).
  • the required descent time storage unit 56 stores the required time measured by the timer circuit.
  • the command output unit 33 controls the output timing of the work command based on the stored contents of the required descent time storage unit 56.
  • the descent required time storage unit 56 stores the initially set time.
  • the stored content of the required descent time storage unit 56 is updated to the measured value.
  • the time required for switching the work machine 3 from the non-working state to the working state is measured and stored, and the work command is output at an appropriate timing by controlling the timing of outputting the work command based on the measured time. can do.
  • the command output unit 33 can set the work command at a generally good timing by initializing an appropriate time. Can be output.
  • the setting of the vehicle speed during work and the vehicle speed during non-work is performed by operating the speed rotation speed setting change dial 14 or the operation of the work vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113. It is possible to change by.
  • the command output unit 33 receives the work command or the non-work command based on the vehicle speed at the time of working after the change / vehicle speed at the time of non-working. Control the output timing.
  • the command output unit 33 can output the work command and the non-work command at an appropriate timing while changing the vehicle speed according to the user's request.
  • the tractor 1 of the present embodiment includes an autonomous traveling control unit 32 that can switch the tractor 1 between a manned autonomous traveling mode and an unmanned autonomous traveling mode to autonomously travel.
  • the manned autonomous traveling mode is a mode in which the autonomous traveling can be terminated without stopping the tractor 1 with the operation on the main transmission lever 27.
  • the unmanned autonomous traveling mode is a mode in which the tractor 1 is stopped in accordance with an operation on the main transmission lever 27 and the autonomous traveling is terminated.
  • the autonomous traveling control unit 32 is in the manned autonomous traveling mode, the setting of the vehicle speed during work and the vehicle speed during non-work can be changed according to the operation on the speed rotation speed setting change dial 14 provided in the tractor 1. .
  • the autonomous traveling control unit 32 When the autonomous traveling control unit 32 is in the unmanned autonomous traveling mode, according to operations on the working vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113 included in the wireless communication terminal 81 that performs wireless communication with the tractor 1, The setting of the vehicle speed and the vehicle speed when not working can be changed.
  • the user who has boarded the tractor 1 operates the speed rotation speed setting change dial 14, and in the unmanned autonomous traveling mode, the user outside the tractor 1 can operate the vehicle speed of the wireless communication terminal 81.
  • the vehicle speed can be changed by operating the adjusting unit 111 and the non-working vehicle speed adjusting unit 113.
  • the tractor 1 of the present embodiment includes a position information calculation unit 49, a work implement lifting switch 28, and an autonomous traveling control unit 32.
  • the position information calculation unit 49 acquires the position information of the traveling machine body 2.
  • the work machine up / down switch 28 is disposed on the traveling machine body 2.
  • the autonomous traveling control unit 32 causes the traveling machine body 2 to autonomously travel along a predetermined autonomous traveling route P.
  • the work machine control unit 34 is accompanied by a work command or non-work command output by the command output unit 33 and an operation of the work machine lifting switch 28 when the autonomous running control unit 32 causes the traveling machine body 2 to travel autonomously.
  • the work state of the work implement 3 is controlled based on the lift command output.
  • the work machine control unit 34 controls the work state of the work machine 3 by prioritizing the lift command over the work command or the non-work command.
  • the work machine control unit 34 controls the work state when a work command or a non-work command is input while controlling the work state of the work machine 3 based on the lifting command.
  • the work state of the work implement 3 is not controlled based on the command or the non-work command.
  • the work implement control unit 34 moves up and down when an up / down command is input while controlling the work state of the work implement 3 based on the work command or the non-work command.
  • the work state of the work machine 3 is controlled based on the command.
  • the control based on the autonomous traveling is performed first, the control according to the user's intention can be performed in such a form that the control is stopped.
  • the tractor 1 of this embodiment is provided with the seating sensor 13a which detects whether a user exists in the traveling body 2 or not.
  • the autonomous traveling control unit 32 can autonomously travel the traveling machine body 2 along the autonomous traveling route P by switching between the manned autonomous traveling mode and the unmanned autonomous traveling mode.
  • the work machine control unit 34 is based on a work command or non-work command output from the command output unit 33, or based on a lift command output based on an operation of the work machine lift switch 28. The working state of the work machine 3 is switched.
  • the work machine control unit 34 switches the work state of the work machine 3 based on the work command or the non-work command output by the command output unit 33, while the work machine control unit 34 outputs in response to the operation of the work machine lift switch 28.
  • the work state of the work implement 3 is not switched based on the lift command to be performed.
  • control according to the situation can be realized by ignoring the operation of the work implement lifting switch 28.
  • the autonomous traveling control unit 32 operates when the work implement lifting switch 28 is operated while the traveling aircraft 2 is autonomously traveling in the manned autonomous traveling mode. Do not stop autonomous driving. On the other hand, when the work implement lifting switch 28 is operated while the traveling machine body 2 is autonomously traveling in the unmanned autonomous traveling mode, the autonomous traveling of the traveling machine body 2 is stopped.
  • the work implement control unit 34 performs priority control for controlling the work state of the work implement 3 with priority given to the lift command over the work command or the non-work command. If this happens, a message to that effect is displayed on the monitor device 70.
  • the work implement control unit 34 performs priority control, a message to that effect is displayed on the wireless communication terminal 81.
  • the autonomous traveling of the traveling machine body 2 is stopped based on the operation of the work equipment lift switch 28 in the unmanned autonomous traveling mode, a message to that effect is displayed on the wireless communication terminal 81.
  • the situation can be appropriately notified to the user in both the manned autonomous driving mode and the unmanned autonomous driving mode.
  • the setting of the work implement horizontal distance L, the setting of the margin distance M, and the like may be performed by the wireless communication terminal 81 instead of or in addition to the monitoring apparatus 70 of the tractor 1.
  • the autonomous running monitoring screen 100 displayed on the display 83 is not limited to that shown in FIG. 11, and the layout of the screen can be arbitrarily changed.
  • special lifting control may be performed. For example, it is conceivable that the ascending / descending control of the work implement 3 is started forward than usual or started backward. Alternatively, instead of or in addition to that, special vehicle speed control may be performed. For example, it is conceivable that the switching between the non-working speed and the working speed is started forward than usual or started backward.
  • control is performed to descend by a work command and to rise by a non-work command, similarly to the rotary tiller described in the above embodiment.
  • the switching between the working state and the non-working state may not be accompanied by elevation.
  • the work machine control unit 34 performs spraying / spraying stop control instead of the lifting control.
  • the user gives an instruction to switch the working state of the work implement not by the work implement lift switch 28 but by an appropriate operation unit (not shown) provided in the cabin 11. Therefore, the operation unit command is output with the operation of the operation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Soil Working Implements (AREA)
  • Harvester Elements (AREA)

Abstract

In the present invention, an instruction output unit (33) of a tractor (1) outputs a work instruction for controlling a work machine (3) to a working state and a non-work instruction for controlling the work machine (3) to a non-working state. A work margin distance storage unit (54) sets a target switching position at which a work machine control unit (34) performs control to switch the work state of the work machine (3). A vehicle speed control unit (35) switches the speed of the tractor (1) from a speed in the working state to a speed in the non-working state in response to the non-work instruction, and switches the speed from the speed in the non-working state to the speed in the working state in response to the work instruction. A remaining distance acquisition unit (37) acquires the remaining distance from the work center of the work machine (3) to the target switching position. The instruction output unit (33) controls the timing of output of the non-work instruction on the basis of the speed in the working state and the remaining distance. The instruction output unit (33) also controls the timing of output of the work instruction on the basis of the speed in the non-working state, the speed change rate from the speed in the non-working state to the speed in the working state, and the remaining distance.

Description

作業車両Work vehicle
 本発明は、装着された作業機を作業状態と非作業状態との間で切り換えながら走行し、作業を行うことが可能な作業車両に関する。 The present invention relates to a work vehicle capable of running while switching a mounted work machine between a working state and a non-working state.
 この種の作業車両は、例えば特許文献1に開示されている。特許文献1の農業用作業車両は、方位センサとGPS受信装置とに基づいて車体を自律走行させ、車体に装備される作業機の下げ動作を記憶する作業機昇降位置センサを設け、作業機の目標耕耘開始位置と下げ動作の終了位置を一致させるように構成されている。特許文献1は、この構成により、残耕等の発生のない良好な耕耘作業を容易に可能とさせるとする。 This type of work vehicle is disclosed in Patent Document 1, for example. The agricultural work vehicle of Patent Document 1 is provided with a work machine lifting position sensor that autonomously travels a vehicle body based on a direction sensor and a GPS receiver and stores a lowering operation of the work machine mounted on the vehicle body. The target tillage start position is configured to coincide with the end position of the lowering operation. Patent Document 1 assumes that this configuration makes it possible to easily perform good tillage work without occurrence of residual tillage or the like.
特開2002-354905号公報JP 2002-354905 A
 しかし、上記特許文献1の構成は、作業機の下げ動作については考慮されているが、作業機の上げ動作については十分に考慮されていない。 However, the configuration of Patent Document 1 takes into account the lowering operation of the work implement, but does not fully consider the raising operation of the work implement.
 従って、従来の構成では、ある領域を所定の方向で往復しながら作業機での作業を行う経路が設定されている場合において、作業車両をある方向に走行させる行程と、逆向きに走行させる行程と、の間で、所定の深さで耕耘作業が行われる区間の端部にズレが生じる場合があり、より見栄えの良い仕上がりを実現する観点から改善の余地が残されていた。 Therefore, in the conventional configuration, when a route for performing work on the work machine while reciprocating in a certain area is set, a process of traveling the work vehicle in a certain direction and a process of traveling in the opposite direction are performed. In some cases, the end of the section where the plowing work is performed at a predetermined depth may be displaced, leaving room for improvement from the viewpoint of realizing a more attractive finish.
 本発明は以上の事情に鑑みてされたものであり、その目的は、作業車両において、作業機で作業体が実際に作業を行う位置を考慮して、作業体が作業を行う状態と、そうでない状態とを良好に切換制御することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to describe a state in which a work body performs work in a work vehicle in consideration of a position where the work body actually performs work on a work machine. It is to control the switching between the states that are not good.
課題を解決するための手段及び効果Means and effects for solving the problems
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。 The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.
 本発明の観点によれば、以下の構成の作業車両が提供される。即ち、この作業車両は、車体部と、指令出力部と、作業機制御部と、車速制御部と、設定部と、距離取得部と、を備える。前記車体部は、作業機を装着可能である。前記指令出力部は、前記作業機を作業状態に制御する作業指令及び前記作業機を非作業状態に制御する非作業指令を出力する。前記作業機制御部は、前記作業指令又は前記非作業指令に応じて前記作業機の作業状態を制御する。前記車速制御部は、作業車両の車速を切換制御可能である。前記設定部は、前記作業機制御部による制御によって前記作業機の作業状態が切り換えられる基準位置を設定する。前記距離取得部は、前記作業機の作業中心位置から前記基準位置までの距離を取得する。前記車速制御部は前記非作業指令に応じて前記作業車両の車速を第1車速から第2車速に切り換えるとともに、前記作業指令に応じて前記作業車両の車速を前記第2車速から前記第1車速に切り換える。前記指令出力部は、前記第1車速と前記距離とに基づいて非作業指令の出力タイミングを制御する。前記指令出力部は、前記第2車速と、前記第2車速から前記第1車速への速度変化率と、前記距離と、に基づいて、前記作業指令の出力タイミングを制御する。 According to an aspect of the present invention, a work vehicle having the following configuration is provided. In other words, the work vehicle includes a vehicle body portion, a command output portion, a work implement control portion, a vehicle speed control portion, a setting portion, and a distance acquisition portion. The vehicle body part can be equipped with a work machine. The command output unit outputs a work command for controlling the work machine to a working state and a non-work command for controlling the work machine to a non-working state. The work machine control unit controls a work state of the work machine according to the work command or the non-work command. The vehicle speed control unit can switch and control the vehicle speed of the work vehicle. The setting unit sets a reference position at which a work state of the work implement is switched by control by the work implement control unit. The distance acquisition unit acquires a distance from a work center position of the work implement to the reference position. The vehicle speed control unit switches the vehicle speed of the work vehicle from a first vehicle speed to a second vehicle speed according to the non-work command, and changes the vehicle speed of the work vehicle from the second vehicle speed to the first vehicle speed according to the work command. Switch to. The command output unit controls the output timing of the non-work command based on the first vehicle speed and the distance. The command output unit controls the output timing of the work command based on the second vehicle speed, a speed change rate from the second vehicle speed to the first vehicle speed, and the distance.
 これにより、作業機を作業状態から非作業状態に切り換える場合と、非作業状態から作業状態に切り換える場合とで、指令出力部が適切なタイミングで非作業指令及び作業指令を出力することができる。これにより、作業機によって作業がされる部分とされない部分との間の境界の誤差を小さくすることができる。 Thus, the command output unit can output the non-work command and the work command at appropriate timings when the work machine is switched from the work state to the non-work state and when the work machine is switched from the non-work state to the work state. Thereby, the error of the boundary between the part which is worked by the working machine and the part which is not made can be reduced.
 前記の作業車両においては、以下の構成とすることが好ましい。即ち、前記車速制御部は、前記非作業指令に応じて前記作業機制御部が前記作業機を前記作業状態から前記非作業状態に切り換えた後に、前記第1車速から前記第2車速への切換制御を開始する。前記車速制御部は、前記作業指令に応じて前記作業機制御部が前記作業機を前記非作業状態から前記作業状態に切り換える前に、前記第2車速から前記第1車速への切換制御を開始する。 It is preferable that the work vehicle has the following configuration. That is, the vehicle speed control unit switches from the first vehicle speed to the second vehicle speed after the work machine control unit switches the work machine from the work state to the non-work state in response to the non-work command. Start control. The vehicle speed control unit starts switching control from the second vehicle speed to the first vehicle speed before the work machine control unit switches the work machine from the non-working state to the working state in response to the work command. To do.
 これにより、作業機が作業状態になっている間において、第1車速を保持することができる。 This makes it possible to maintain the first vehicle speed while the work implement is in the working state.
 前記の作業車両においては、以下の構成とすることが好ましい。即ち、この作業車両は、計測部と、所要時間記憶部と、を備える。前記計測部は、前記作業機を前記非作業状態から前記作業状態に切り換えるのに要した所要時間を計測する。前記所要時間記憶部は、前記計測部により計測された所要時間を記憶する。前記指令出力部は、前記所要時間記憶部の記憶内容に基づいて前記作業指令の出力タイミングを制御する。前記計測部により前記所要時間が計測されていない場合、前記所要時間記憶部は、初期設定された時間を記憶する。前記計測部により前記所要時間が計測された場合、前記所要時間記憶部の記憶内容が計測値に更新される。 It is preferable that the work vehicle has the following configuration. That is, this work vehicle includes a measurement unit and a required time storage unit. The measuring unit measures a time required to switch the working machine from the non-working state to the working state. The required time storage unit stores the required time measured by the measuring unit. The command output unit controls the output timing of the work command based on the stored contents of the required time storage unit. When the required time is not measured by the measuring unit, the required time storage unit stores an initially set time. When the required time is measured by the measuring unit, the storage content of the required time storage unit is updated to a measured value.
 これにより、作業機を非作業状態から作業状態に切り換えるための所要時間を計測して記憶し、これに基づいて作業指令を出力するタイミングを制御することで、適切なタイミングで作業指令を出力することができる。また、例えば初回に非作業状態から作業状態に切り換えるときは、計測値が事前に得られないが、適切な時間を初期設定しておくことで、概ね良好なタイミングで指令出力部が作業指令を出力することができる。 As a result, the time required for switching the work implement from the non-working state to the working state is measured and stored, and the work command is output at an appropriate timing by controlling the timing of outputting the work command based on the measured time. be able to. In addition, for example, when switching from the non-working state to the working state for the first time, the measurement value is not obtained in advance, but the command output unit issues a work command at a generally good timing by initializing an appropriate time. Can be output.
 前記の作業車両においては、以下の構成とすることが好ましい。即ち、前記第1車速及び前記第2車速の設定は、車速設定部に対する操作により変更することが可能である。前記指令出力部は、前記第1車速及び/又は前記第2車速の設定が変更された場合、変更後の前記第1車速及び/又は前記第2車速に基づいて前記作業指令又は前記非作業指令の出力タイミングを制御する。 It is preferable that the work vehicle has the following configuration. That is, the setting of the first vehicle speed and the second vehicle speed can be changed by an operation on the vehicle speed setting unit. When the setting of the first vehicle speed and / or the second vehicle speed is changed, the command output unit is configured to execute the work command or the non-work command based on the changed first vehicle speed and / or the second vehicle speed. To control the output timing.
 これにより、ユーザの要望に応じて車速を変更しつつ、指令出力部が適切なタイミングで作業指令及び非作業指令を出力することができる。 Thus, the command output unit can output the work command and the non-work command at an appropriate timing while changing the vehicle speed according to the user's request.
 前記の作業車両においては、以下の構成とすることが好ましい。即ち、この作業車両は、前記作業車両を第1モードと第2モードとの間で切り換えて自律走行させることが可能な自律走行制御部を備える。前記第1モードは、変速操作具に対する操作に伴って当該作業車両を停止させずに自律走行を終了させることが可能なモードである。前記第2モードは、前記変速操作具に対する操作に伴って当該作業車両を停止させて自律走行を終了させるモードである。前記作業車両が前記第1モードであるときは、前記作業車両に設けられる前記車速設定部に対する操作に応じて前記第1車速及び前記第2車速の設定を変更可能である。前記作業車両が前記第2モードであるときは、前記作業車両と無線通信を行う無線通信装置が備える前記車速設定部に対する操作に応じて前記第1車速及び前記第2車速の設定を変更可能である。 It is preferable that the work vehicle has the following configuration. In other words, the work vehicle includes an autonomous travel control unit that can autonomously travel the work vehicle by switching between the first mode and the second mode. The first mode is a mode in which autonomous traveling can be terminated without stopping the work vehicle in accordance with an operation on the speed change operation tool. The second mode is a mode in which the working vehicle is stopped in accordance with an operation on the speed change operation tool to end the autonomous traveling. When the work vehicle is in the first mode, the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in the work vehicle. When the work vehicle is in the second mode, the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in a wireless communication device that performs wireless communication with the work vehicle. is there.
 これにより、第1モードでは、作業車両に搭乗したユーザが作業車両側の車速設定部を操作することで、第2モードでは、作業車両の外部のユーザが無線通信装置の車速設定部を操作することで、車速を変更することができる。 Thus, in the first mode, a user who has boarded the work vehicle operates the vehicle speed setting unit on the work vehicle side, and in the second mode, a user outside the work vehicle operates the vehicle speed setting unit of the wireless communication device. Thus, the vehicle speed can be changed.
 前記の作業車両においては、以下の構成とすることが好ましい。即ち、この作業車両は、位置情報取得部と、操作部と、自律走行制御部と、を備える。前記位置情報取得部は、前記車体部の位置情報を取得する。前記操作部は、前記車体部に配置される。前記自律走行制御部は、予め定められた経路に沿って前記車体部を自律走行させる。前記作業機制御部は、前記自律走行制御部が前記車体部を自律走行させているときに、前記指令出力部が出力する前記作業指令若しくは前記非作業指令、又は、前記操作部の操作に伴って出力される操作部指令に基づいて、前記作業機の作業状態を制御する。前記作業機制御部は、前記作業指令又は前記非作業指令よりも前記操作部指令を優先して、前記作業機の作業状態を制御する。 It is preferable that the work vehicle has the following configuration. That is, the work vehicle includes a position information acquisition unit, an operation unit, and an autonomous travel control unit. The position information acquisition unit acquires position information of the vehicle body part. The operation unit is disposed on the vehicle body. The autonomous traveling control unit autonomously travels the vehicle body unit along a predetermined route. The work implement control unit is associated with the operation command or the non-work command output by the command output unit or the operation of the operation unit when the autonomous travel control unit is autonomously driving the vehicle body unit. The working state of the work implement is controlled based on the operation unit command output. The work machine control unit controls the work state of the work machine by prioritizing the operation unit command over the work command or the non-work command.
 これにより、作業機の作業状態と非作業状態の切換に関して、ユーザの意図を優先した制御を行うことができる。 Thereby, it is possible to perform control giving priority to the user's intention regarding the switching between the working state and the non-working state of the work machine.
 前記の作業車両においては、前記作業機制御部は、前記操作部指令に基づいて前記作業機の作業状態を制御しているときに前記作業指令又は前記非作業指令が入力された場合は、当該作業指令又は非作業指令に基づいて前記作業機の作業状態を制御しないことが好ましい。 In the work vehicle, when the work command or the non-work command is input when the work machine control unit is controlling the work state of the work machine based on the operation unit command, It is preferable not to control the working state of the working machine based on a work command or a non-work command.
 これにより、ユーザの意図に応じた制御が妨げられないようにすることができる。 This can prevent the control according to the user's intention from being hindered.
 前記の作業車両においては、前記作業機制御部は、前記作業指令又は前記非作業指令に基づいて前記作業機の作業状態を制御しているときに前記操作部指令が入力された場合は、当該操作部指令に基づいて前記作業機の作業状態を制御することが好ましい。 In the work vehicle, when the operation unit command is input when the work machine control unit is controlling the work state of the work machine based on the work command or the non-work command, It is preferable to control the working state of the working machine based on an operation unit command.
 これにより、自律走行に基づく制御を先に行っていた場合は、当該制御を中止する形で、ユーザの意図に応じた制御を行うことができる。 Thereby, when the control based on the autonomous traveling is performed first, the control according to the user's intention can be performed in such a form that the control is stopped.
本発明の一実施形態に係るトラクタにおいて、装着された作業機が非作業状態である様子を示す側面図。The tractor which concerns on one Embodiment of this invention WHEREIN: The side view which shows a mode that the mounted working machine is a non-working state. トラクタの平面図。The top view of a tractor. 座席の周囲に配置される各種の操作装置を示す平面図。The top view which shows the various operation apparatuses arrange | positioned around a seat. トラクタの主要な電気的構成を示すブロック図。The block diagram which shows the main electrical structures of a tractor. トラクタが自律走行・自律作業をする場合の自律走行経路の例を示す模式図。The schematic diagram which shows the example of the autonomous running route in case a tractor carries out autonomous running and autonomous work. 図1の状態から作業機が下降し、作業状態となっている様子を示す側面図。The side view which shows a mode that a working machine descend | descends from the state of FIG. 1, and is in a working state. 自律走行・自律作業時に作業機を非作業状態から作業状態に切り換える場合の制御タイミングの関係を説明する図。The figure explaining the relationship of the control timing in the case of switching a working machine from a non-working state to a working state at the time of autonomous running and autonomous work. 自律走行・自律作業時に作業機を作業状態から非作業状態に切り換える場合の制御タイミングの関係を説明する図。The figure explaining the relationship of the control timing in the case of switching a working machine from a working state to a non-working state at the time of autonomous running and autonomous work. 作業機制御部で行われる処理を説明するフローチャート。The flowchart explaining the process performed by a working machine control part. ユーザがトラクタに搭乗しない状態で自律走行・自律作業を行う場合に使用される無線通信端末を示す図。The figure which shows the radio | wireless communication terminal used when a user performs autonomous driving | running | working / autonomous work in the state which does not board a tractor. 無線通信端末のディスプレイにおける自律走行監視画面の表示例を示す図。The figure which shows the example of a display of the autonomous running monitoring screen in the display of a radio | wireless communication terminal.
 次に、図面を参照して本発明の実施の形態を説明する。以下では、図面の各図において同一の部材には同一の符号を付し、重複する説明を省略することがある。また、同一の符号に対応する部材等の名称が、簡略的に言い換えられたり、上位概念又は下位概念の名称で言い換えられたりすることがある。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following, the same members are denoted by the same reference symbols in the drawings, and redundant description may be omitted. In addition, names of members and the like corresponding to the same reference may be simply rephrased, or may be rephrased with a superordinate concept or a subordinate concept name.
 本発明は、予め定められた圃場内で1台又は複数台で走行して、圃場内における農作業の全部又は一部を行うことが可能な作業車両に関する。本実施形態では、作業車両としてトラクタを例に説明するが、作業車両としては、トラクタの他、田植機、コンバイン、土木・建設作業装置、除雪車等、乗用型作業機に加え、歩行型作業機も含まれる。本明細書において自律走行とは、トラクタが備える制御部(ECU)によりトラクタが備える走行に関する構成が制御されて、予め定められた経路に沿ってトラクタが走行することを意味し、自律作業とは、トラクタが備える制御部によりトラクタが備える作業に関する構成が制御されて、予め定められた経路に沿ってトラクタが作業を行うことを意味する。これに対して、手動走行・手動作業とは、トラクタが備える各構成がユーザにより操作され、走行・作業が行われることを意味する。 The present invention relates to a work vehicle that can run by one or a plurality of vehicles in a predetermined field and can perform all or part of the farm work in the field. In this embodiment, a tractor will be described as an example of a work vehicle. However, as a work vehicle, in addition to a tractor, a padded work machine such as a rice transplanter, a combiner, a civil engineering / construction work device, a snowplow, a walking work A machine is also included. In this specification, autonomous traveling means that a configuration related to traveling provided by the tractor is controlled by a control unit (ECU) provided in the tractor, and the tractor travels along a predetermined route. This means that the control unit included in the tractor controls the configuration related to the work included in the tractor, so that the tractor performs the work along a predetermined route. On the other hand, manual running / manual work means that each component provided in the tractor is operated by the user to run / work.
 以下の説明では、自律走行・自律作業が行われるトラクタを「自律走行トラクタ」と称することがあり、手動走行・手動作業が行われるトラクタを「手動走行トラクタ」と称することがある。自律走行・自律作業には、トラクタにユーザが搭乗して行われる場合と、搭乗しないで行われる場合と、が含まれる。一方、手動走行・手動作業を行う場合、トラクタにユーザが搭乗することになる。 In the following description, a tractor that performs autonomous traveling / autonomous work may be referred to as an “autonomous traveling tractor”, and a tractor that performs manual traveling / manual work may be referred to as a “manual traveling tractor”. The autonomous running / autonomous work includes a case where the user rides on the tractor and a case where the user performs without boarding. On the other hand, when performing manual travel / manual work, the user gets on the tractor.
 次に、図面を参照して本発明の実施の形態を説明する。図1は、本発明の一実施形態に係るトラクタ1において、装着された作業機3が非作業状態である様子を示す側面図である。図2は、トラクタ1の平面図である。図3は、座席13の周囲に配置される各種の操作装置を示す平面図である。図4は、トラクタ1の主要な電気的構成を示すブロック図である。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing a state where a mounted work machine 3 is in a non-working state in a tractor 1 according to an embodiment of the present invention. FIG. 2 is a plan view of the tractor 1. FIG. 3 is a plan view showing various operation devices arranged around the seat 13. FIG. 4 is a block diagram showing the main electrical configuration of the tractor 1.
 本発明の一実施形態に係るトラクタ1は、手動走行トラクタとして使用することができるが、自律走行トラクタとしての機能を有しており、ユーザが搭乗した状態で、経路生成システムが生成した自律走行経路(経路)に従って自律走行・自律作業を行うように構成されている。ただし、このトラクタ1は、ユーザが搭乗しない状態で自律走行・自律作業を行うこともできる。初めに、このトラクタ1について、主として図1及び図2を参照して説明する。 The tractor 1 according to an embodiment of the present invention can be used as a manual traveling tractor, but has a function as an autonomous traveling tractor and is autonomous traveling generated by the route generation system in a state where the user is on board. It is configured to perform autonomous traveling and autonomous work according to a route (route). However, the tractor 1 can also perform autonomous traveling / autonomous work without a user boarding. First, the tractor 1 will be described mainly with reference to FIGS. 1 and 2.
 トラクタ1は、圃場内を自律走行する車体部としての走行機体2を備える。走行機体2には、例えば、耕耘機(管理機)、プラウ、施肥機、草刈機、播種機等の種々の作業機を選択して装着することができるが、本実施形態においては、作業機3としてロータリ耕耘機が装着されている。 The tractor 1 includes a traveling machine body 2 as a vehicle body that autonomously travels in the field. For example, various working machines such as a tiller (management machine), a plow, a fertilizer machine, a mowing machine, and a sowing machine can be selected and mounted on the traveling machine body 2. In this embodiment, the working machine 3 is a rotary tiller.
 以下、トラクタ1の構成をより詳細に説明する。トラクタ1の走行機体2は、図1に示すように、その前部が左右1対の前輪7,7で支持され、その後部が左右1対の後輪8,8で支持されている。 Hereinafter, the configuration of the tractor 1 will be described in more detail. As shown in FIG. 1, the traveling machine body 2 of the tractor 1 is supported at its front part by a pair of left and right front wheels 7 and 7 and at its rear part by a pair of left and right rear wheels 8 and 8.
 走行機体2の前部にはボンネット9が配置されている。本実施形態では、このボンネット9内に、トラクタ1の駆動源であるエンジン10等が収容されている。このエンジン10は、例えばディーゼルエンジンにより構成することができるが、これに限るものではなく、例えばガソリンエンジンにより構成してもよい。また、駆動源としてエンジン10に加えて、又は代えて電気モータを採用してもよい。更に、前記燃料タンクはボンネット9の外部に配置されてもよい。 A bonnet 9 is arranged at the front of the traveling machine body 2. In the present embodiment, an engine 10 or the like that is a drive source of the tractor 1 is accommodated in the bonnet 9. Although this engine 10 can be comprised, for example with a diesel engine, it is not restricted to this, For example, you may comprise with a gasoline engine. Further, an electric motor may be employed as a drive source in addition to or instead of the engine 10. Furthermore, the fuel tank may be disposed outside the bonnet 9.
 ボンネット9の後方には、ユーザが搭乗するためのキャビン11が配置されている。このキャビン11の内部には、ユーザが操向操作するためのステアリングハンドル12と、ユーザが着座可能な座席13と、各種の操作を行うための様々な操作装置と、が主として設けられている。ただし、作業車両は、キャビン11付きのものに限られず、キャビン11を備えない構成であってもよい。 A cabin 11 for the user to board is arranged behind the hood 9. Inside the cabin 11, there are mainly provided a steering handle 12 for a user to steer, a seat 13 on which a user can be seated, and various operation devices for performing various operations. However, the work vehicle is not limited to the one with the cabin 11 and may be configured without the cabin 11.
 上記の操作装置としては、図3に示すモニタ装置70、スロットルレバー15、リバーサレバー26、主変速レバー(変速操作具)27、速度回転数選択切換スイッチ29、速度回転数設定変更ダイアル(車速設定部)14、ダイアル設定切換スイッチ16、副変速レバー19、PTOスイッチ17、PTO変速レバー18、作業機昇降スイッチ(操作部)28、及び作業機下降速度調整ノブ75等を例として挙げることができる。これらの操作装置は、座席13の近傍、又はステアリングハンドル12の近傍に配置されている。 As the operation device, the monitor device 70, the throttle lever 15, the reverser lever 26, the main transmission lever (transmission operation tool) 27, the speed rotation number selection changeover switch 29, the speed rotation number setting change dial (vehicle speed setting) shown in FIG. Part) 14, dial setting changeover switch 16, auxiliary transmission lever 19, PTO switch 17, PTO transmission lever 18, work implement lift switch (operation unit) 28, work implement lowering speed adjustment knob 75, and the like. . These operating devices are arranged in the vicinity of the seat 13 or in the vicinity of the steering handle 12.
 モニタ装置70は、トラクタ1の様々な情報を表示可能に構成されている。また、モニタ装置70にはボタン及びダイアル等の入力部材が備えられており、この入力部材をユーザが操作することにより、トラクタ1に各種の指示を入力することができる。 The monitor device 70 is configured to be able to display various information of the tractor 1. The monitor device 70 is provided with input members such as buttons and dials, and various instructions can be input to the tractor 1 by operating the input members by the user.
 スロットルレバー15は、エンジン10の出力回転数を設定するための操作具である。 The throttle lever 15 is an operating tool for setting the output rotation speed of the engine 10.
 リバーサレバー26は、トラクタ1の前進、後進、及び停止を切り換えるための操作具である。主変速レバー27は、リバーサレバー26で指示した方向にトラクタ1が走行する速度を無段階で変更するための操作具である。 The reverser lever 26 is an operation tool for switching the tractor 1 between forward, reverse, and stop. The main speed change lever 27 is an operating tool for steplessly changing the speed at which the tractor 1 travels in the direction indicated by the reverser lever 26.
 速度回転数選択切換スイッチ29は、手動走行・手動作業を行うトラクタ1が、その車速とエンジン10の回転数の組合せを予め2種類設定している中から選択して走行するモード(以下、設定選択走行モードという。)となっている場合に、当該選択を交互に切り換えるための操作具である。速度回転数設定変更ダイアル14は、前記の設定選択走行モードで選択される2種類の設定のそれぞれに関して、トラクタ1の車速及びエンジン10の回転数の設定値を調整するための操作具である。ダイアル設定切換スイッチ16は、速度回転数設定変更ダイアル14が、トラクタ1の車速の設定値を変更するか、エンジン10の回転数の設定値を変更するか、を切り換えるための操作具である。 The speed / revolution selection switch 29 is a mode in which the tractor 1 that performs manual travel / manual operation selects a combination of the vehicle speed and the rotational speed of the engine 10 in advance and travels (hereinafter referred to as setting). This is an operating tool for switching the selection alternately when it is referred to as a selection travel mode. The speed rotation speed setting change dial 14 is an operating tool for adjusting the setting values of the vehicle speed of the tractor 1 and the rotation speed of the engine 10 for each of the two types of settings selected in the setting selection travel mode. The dial setting changeover switch 16 is an operating tool for switching whether the speed / revolution setting changing dial 14 changes the setting value of the vehicle speed of the tractor 1 or the setting value of the rotation speed of the engine 10.
 ただし、速度回転数設定変更ダイアル14及びダイアル設定切換スイッチ16は、ユーザがトラクタ1に搭乗した状態で自律走行・自律作業を行う場合に、後述の作業時及び非作業時における車速及びエンジン数の設定を指示するためにも用いられる。 However, the speed rotation speed setting change dial 14 and the dial setting changeover switch 16 are used to set the vehicle speed and the number of engines during work and non-work to be described later when the user performs autonomous traveling / autonomous work while riding on the tractor 1. Also used to instruct settings.
 副変速レバー19は、トランスミッション22内の走行副変速ギア機構の変速比を切り換えるための操作具である。 The auxiliary transmission lever 19 is an operating tool for switching the gear ratio of the traveling auxiliary transmission gear mechanism in the transmission 22.
 PTOスイッチ17は、トランスミッション22の後端から突出した図略のPTO軸(動力伝達軸)への動力の伝達/遮断を切換操作するための操作具である。PTO変速レバー18は、PTO軸の回転速度の変速操作を行うための操作具である。 The PTO switch 17 is an operating tool for switching the transmission / cutoff of power to a PTO shaft (power transmission shaft) (not shown) protruding from the rear end of the transmission 22. The PTO speed change lever 18 is an operating tool for performing a speed change operation of the rotational speed of the PTO shaft.
 作業機昇降スイッチ28は、走行機体2に装着された作業機3の高さを所定範囲内で昇降操作するための操作具である。作業機下降速度調整ノブ75は、作業機3が下降するときの速度を調整するための操作具である。 The work implement raising / lowering switch 28 is an operating tool for raising and lowering the height of the work implement 3 attached to the traveling machine body 2 within a predetermined range. The work implement lowering speed adjustment knob 75 is an operation tool for adjusting the speed when the work implement 3 is lowered.
 図3に示すように、座席13には、ユーザが座席に座っていることを検知する着座センサ(検知部)13aが設けられている。この着座センサ13aは、例えば、メンブレンスイッチを利用した構成とすることができる。 As shown in FIG. 3, the seat 13 is provided with a seating sensor (detection unit) 13a for detecting that the user is sitting on the seat. The seating sensor 13a can be configured to use a membrane switch, for example.
 図1に示すように、走行機体2の下部には、トラクタ1のシャーシ20が設けられている。当該シャーシ20は、機体フレーム21、トランスミッション22、フロントアクスル23、及びリアアクスル24等から構成されている。 As shown in FIG. 1, a chassis 20 of the tractor 1 is provided at the lower part of the traveling machine body 2. The chassis 20 includes a body frame 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
 機体フレーム21は、トラクタ1の前部における支持部材であって、直接、又は防振部材等を介してエンジン10を支持している。トランスミッション22は、エンジン10からの動力を変化させてフロントアクスル23及びリアアクスル24に伝達する。フロントアクスル23は、トランスミッション22から入力された動力を前輪7に伝達するように構成されている。リアアクスル24は、トランスミッション22から入力された動力を後輪8に伝達するように構成されている。 The fuselage frame 21 is a support member at the front portion of the tractor 1 and supports the engine 10 directly or via a vibration isolation member. The transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24. The front axle 23 is configured to transmit the power input from the transmission 22 to the front wheels 7. The rear axle 24 is configured to transmit the power input from the transmission 22 to the rear wheel 8.
 図4に示すように、トラクタ1は、走行機体2の動作(前進、後進、停止及び旋回等)、及び作業機3の動作(昇降、駆動及び停止等)を制御するための制御部4を備える。制御部4は、図示しないCPU、ROM、RAM、I/O等を備えて構成されており、CPUは、各種プログラム等をROMから読み出して実行することができる。ROMには、オペレーションプログラムやアプリケーションプログラムや各種データが記憶されている。上記のハードウェアとソフトウェアの協働により、制御部4を、記憶部38、経路生成部(経路生成システム)39、及び自律走行制御部32等として動作させることができる。これと併せて測位アンテナ6等の各種の構成をトラクタに設けることにより、このトラクタに自律走行・自律作業を行わせることが可能となる。 As shown in FIG. 4, the tractor 1 includes a control unit 4 for controlling the operation of the traveling machine body 2 (forward, reverse, stop, turn, etc.) and the operation of the work machine 3 (elevation, drive, stop, etc.). Prepare. The control unit 4 includes a CPU, a ROM, a RAM, an I / O, and the like (not shown), and the CPU can read various programs from the ROM and execute them. The ROM stores operation programs, application programs, and various data. Through the cooperation of the above hardware and software, the control unit 4 can be operated as the storage unit 38, the route generation unit (route generation system) 39, the autonomous traveling control unit 32, and the like. In addition, by providing the tractor with various configurations such as the positioning antenna 6, it is possible to cause the tractor to perform autonomous traveling and autonomous work.
 制御部4には、トラクタ1が備える各構成(例えば、エンジン10等)を制御するためのコントローラ等がそれぞれ電気的に接続されている。 The controller 4 is electrically connected to a controller or the like for controlling each component (for example, the engine 10 or the like) included in the tractor 1.
 上記のコントローラとして、トラクタ1は少なくとも、図略のエンジンコントローラ、車速コントローラ、操向コントローラ、昇降コントローラ及びPTOコントローラを備える。それぞれのコントローラは、制御部4からの電気信号に応じて、トラクタ1の各構成を制御することができる。 As the above controller, the tractor 1 includes at least an engine controller (not shown), a vehicle speed controller, a steering controller, a lift controller, and a PTO controller. Each controller can control each component of the tractor 1 in accordance with an electrical signal from the control unit 4.
 エンジンコントローラは、エンジン10の回転数等を制御するものである。エンジンコントローラは、エンジン10に設けられる燃料噴射装置としてのコモンレール装置41と電気的に接続されている。コモンレール装置41は、エンジン10の各気筒に燃料を噴射するものである。この場合、エンジン10の各気筒に対するインジェクタの燃料噴射バルブが開閉制御されることによって、燃料供給ポンプによって燃料タンクからコモンレール装置41に圧送された高圧の燃料が各インジェクタからエンジン10の各気筒に噴射され、各インジェクタから供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。エンジンコントローラは、コモンレール装置41を制御することで、例えばエンジン10への燃料の供給を停止させ、エンジン10の駆動を停止させることができる。 The engine controller controls the rotational speed of the engine 10 and the like. The engine controller is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 10. The common rail device 41 injects fuel into each cylinder of the engine 10. In this case, when the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close, high-pressure fuel pumped from the fuel tank to the common rail device 41 by the fuel supply pump is injected from each injector to each cylinder of the engine 10. Thus, the injection pressure, injection timing, and injection period (injection amount) of fuel supplied from each injector are controlled with high accuracy. The engine controller can stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the common rail device 41, for example.
 車速コントローラは、トラクタ1の車速を制御するものである。具体的には、トランスミッション22には、例えば可動斜板式の油圧式無段変速装置である変速装置42が設けられている。車速コントローラは、変速装置42の斜板の角度を図略のアクチュエータによって変更することで、トランスミッション22の変速比を変更し、所望の車速を実現することができる。 The vehicle speed controller controls the vehicle speed of the tractor 1. Specifically, the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic continuously variable transmission. The vehicle speed controller can change the gear ratio of the transmission 22 and change to the desired vehicle speed by changing the angle of the swash plate of the transmission 42 with an actuator (not shown).
 操向コントローラは、ステアリングハンドル12の回動角度を制御するものである。具体的には、ステアリングハンドル12の回転軸(ステアリングシャフト)の中途部には、操向アクチュエータ43が設けられている。この構成で、予め定められた経路をトラクタ1が(自律走行トラクタとして)走行する場合、制御部4は、当該経路に沿ってトラクタ1が走行するようにステアリングハンドル12の適切な回動角度を計算し、得られた回動角度となるように操向コントローラに制御信号を送信する。操向コントローラは、制御部4から入力された制御信号に基づいて操向アクチュエータ43を駆動し、ステアリングハンドル12の回動角度を制御する。なお、操向コントローラはステアリングハンドル12の回動角度を調整するものではなくトラクタ1の前輪7の操舵角を調整するものであってもよい。その場合、旋回走行を行ったとしてもステアリングハンドル12は回動しない。 The steering controller controls the turning angle of the steering handle 12. Specifically, a steering actuator 43 is provided in the middle of the rotating shaft (steering shaft) of the steering handle 12. With this configuration, when the tractor 1 travels on a predetermined route (as an autonomous traveling tractor), the control unit 4 sets an appropriate rotation angle of the steering handle 12 so that the tractor 1 travels along the route. The control signal is transmitted to the steering controller so that the calculated rotation angle is obtained. The steering controller drives the steering actuator 43 based on the control signal input from the control unit 4 and controls the rotation angle of the steering handle 12. The steering controller may adjust the steering angle of the front wheel 7 of the tractor 1 instead of adjusting the rotation angle of the steering handle 12. In that case, the steering handle 12 does not rotate even if the vehicle turns.
 昇降コントローラは、作業機3の昇降を制御するものである。具体的には、トラクタ1は、作業機3を走行機体2に連結している3点リンク機構の近傍に、公知の油圧式のリフトシリンダからなる昇降アクチュエータ44を備えている。この構成で、昇降コントローラは、制御部4から入力された制御信号に基づいて図略の電磁弁を開閉することによりリフトシリンダを駆動し、作業機3を適宜に昇降駆動させる。リフトシリンダは単動式とされており、シリンダに作動油を供給することで作業機3を上昇させ、シリンダから作動油を排出することで作業機3が自重で下降するように構成されている。図示しないが、シリンダからの作動油の排出経路には公知の下降速度調整弁が配置されており、この下降速度調整弁の開度をユーザが図3の作業機下降速度調整ノブ75によって操作することで、作業機3が下降する場合の速度を調整することができる。 The elevating controller controls the elevating of the work machine 3. Specifically, the tractor 1 includes a lift actuator 44 formed of a known hydraulic lift cylinder in the vicinity of a three-point link mechanism that connects the work machine 3 to the traveling machine body 2. With this configuration, the elevating controller drives the lift cylinder by opening and closing an unillustrated electromagnetic valve based on a control signal input from the control unit 4 and appropriately drives the work implement 3 to elevate. The lift cylinder is a single-acting type, and is configured such that the working machine 3 is raised by supplying hydraulic oil to the cylinder, and the working machine 3 is lowered by its own weight by discharging the hydraulic oil from the cylinder. . Although not shown, a known descending speed adjusting valve is disposed in the hydraulic oil discharge path from the cylinder, and the user operates the opening degree of the descending speed adjusting valve with the work implement descending speed adjusting knob 75 in FIG. Thus, the speed when the work machine 3 descends can be adjusted.
 上記の構成の昇降コントローラにより、作業機3を、作業を行わない非作業高さ、及び、作業を行う作業高さ等の所望の高さで支持することができる。なお、本実施形態において走行機体2に装着されている作業機3はロータリ耕耘機として構成されているので、作業機3による作業は耕耘作業を意味する。 The work controller 3 can be supported at a desired height such as a non-working height at which work is not performed and a work height at which work is performed by the lifting controller having the above-described configuration. In addition, since the working machine 3 attached to the traveling machine body 2 is configured as a rotary tiller in the present embodiment, the work by the working machine 3 means a tilling work.
 PTOコントローラは、前記PTO軸の回転を制御するものである。具体的には、トラクタ1は、PTO軸(動力伝達軸)への動力の伝達/遮断を切り換えるためのPTOクラッチ45を備えている。この構成で、PTOコントローラは、制御部4から入力された制御信号に基づいてPTOクラッチ45を切り換えて、PTO軸を介して作業機3を回転駆動したり停止させたりすることができる。 The PTO controller controls the rotation of the PTO shaft. Specifically, the tractor 1 includes a PTO clutch 45 for switching between transmission / cutoff of power to a PTO shaft (power transmission shaft). With this configuration, the PTO controller can switch the PTO clutch 45 based on a control signal input from the control unit 4 to rotate and stop the work machine 3 via the PTO shaft.
 なお、上述した図略の複数のコントローラは、制御部4から入力される信号に基づいてエンジン10等の各部を制御していることから、制御部4が実質的に各部を制御していると把握することができる。 Note that the plurality of controllers (not shown) control each part of the engine 10 and the like based on a signal input from the control part 4, so that the control part 4 substantially controls each part. I can grasp it.
 上述のような制御部4を備えるトラクタ1は、手動走行トラクタとしての機能を有しており、ユーザがキャビン11内に搭乗して各種操作をすることにより、当該制御部4によりトラクタ1の各部(走行機体2、作業機3等)を制御して、圃場内を走行しながら農作業を行うことができるように構成されている。 The tractor 1 including the control unit 4 as described above has a function as a manual travel tractor. When the user gets into the cabin 11 and performs various operations, each unit of the tractor 1 is controlled by the control unit 4. (A traveling machine body 2, a work machine 3, etc.) are controlled so that farm work can be performed while traveling in the field.
 加えて、本実施形態1のトラクタは、図4等に示すように、自律走行トラクタとして機能するための各種の構成を備えている。例えば、トラクタ1は、測位システムに基づいて自ら(走行機体2)の位置情報を取得するために必要な測位アンテナ6等を備えている。このような構成により、トラクタ1は、測位システムに基づいて自らの位置情報を取得して圃場上(特定領域内)を自律的に走行することが可能となっている。 In addition, as shown in FIG. 4 and the like, the tractor of the first embodiment has various configurations for functioning as an autonomous traveling tractor. For example, the tractor 1 includes a positioning antenna 6 and the like necessary for acquiring position information of itself (the traveling machine body 2) based on the positioning system. With such a configuration, the tractor 1 can acquire its own position information based on the positioning system and can autonomously travel on the field (in a specific area).
 次に、自律走行・自律作業を可能とするためにトラクタ1が備える構成について説明する。具体的には、本実施形態のトラクタ1は、図4に示すように、前述の制御部4のほか、測位アンテナ6を備える。 Next, the configuration of the tractor 1 for enabling autonomous traveling and autonomous work will be described. Specifically, as shown in FIG. 4, the tractor 1 of the present embodiment includes a positioning antenna 6 in addition to the control unit 4 described above.
 測位アンテナ6は、衛星測位システム(GNSS)を構成する測位衛星からの信号を受信するものである。図1に示すように、測位アンテナ6は、トラクタ1のキャビン11が備えるルーフ5の上面に取り付けられている。測位アンテナ6で受信された測位信号は、図4に示す位置情報算出部(位置情報取得部)49に入力される。位置情報算出部49は、トラクタ1の走行機体2(厳密には、測位アンテナ6)の位置情報を、例えば緯度・経度情報として算出する。当該位置情報算出部49で取得された位置情報は、制御部4による自律走行に利用される。 The positioning antenna 6 receives signals from positioning satellites that constitute a satellite positioning system (GNSS). As shown in FIG. 1, the positioning antenna 6 is attached to the upper surface of the roof 5 provided in the cabin 11 of the tractor 1. The positioning signal received by the positioning antenna 6 is input to the position information calculation unit (position information acquisition unit) 49 shown in FIG. The position information calculation unit 49 calculates the position information of the traveling machine body 2 (strictly speaking, the positioning antenna 6) of the tractor 1 as latitude / longitude information, for example. The position information acquired by the position information calculation unit 49 is used for autonomous traveling by the control unit 4.
 なお、本実施形態ではGNSS-RTK法を利用した高精度の衛星測位システムが用いられているが、これに限られるものではなく、他の測位システムを用いてもよい。例えば、相対測位方式(DGPS)、又は静止衛星型衛星航法補強システム(SBAS)を使用することが考えられる。 In this embodiment, a high-accuracy satellite positioning system using the GNSS-RTK method is used. However, the present invention is not limited to this, and other positioning systems may be used. For example, it is conceivable to use a relative positioning method (DGPS) or a geostationary satellite type satellite navigation augmentation system (SBAS).
 更に、トラクタ1は、図示しない慣性計測装置を備える。この慣性計測装置は角速度センサ及び加速度センサを備える公知の構成であり、上記のGNSS測位が電波受信等の事情でできなくなった場合においてもトラクタ1の位置を取得することができるように構成されている。 Furthermore, the tractor 1 includes an inertial measurement device (not shown). This inertial measurement device has a known configuration including an angular velocity sensor and an acceleration sensor, and is configured to be able to acquire the position of the tractor 1 even when the above GNSS positioning cannot be performed due to radio wave reception or the like. Yes.
 トラクタ1のキャビン11の外側の適宜の位置には、無線通信用アンテナ48が設けられている。この無線通信用アンテナ48は、トラクタ1が有する無線通信部40に対し、電気的に接続されている。無線通信用アンテナ48は、トラクタ1にユーザが搭乗しない状態で自律走行・自律作業を行う場合に、ユーザが有する遠隔操作装置と指示及び情報をやり取りするために用いられる。なお、この遠隔操作装置の詳細は後述する。 A radio communication antenna 48 is provided at an appropriate position outside the cabin 11 of the tractor 1. The radio communication antenna 48 is electrically connected to the radio communication unit 40 of the tractor 1. The wireless communication antenna 48 is used for exchanging instructions and information with a remote control device owned by the user when autonomous running / autonomous work is performed without the user getting on the tractor 1. The details of this remote control device will be described later.
 次に、トラクタ1が自律走行・自律作業を行う場合に走行する経路である自律走行経路について説明する。図5は、トラクタ1が自律走行・自律作業をする場合の自律走行経路Pの例を示す模式図である。 Next, an autonomous traveling route that is a route traveled when the tractor 1 performs autonomous traveling and autonomous work will be described. FIG. 5 is a schematic diagram illustrating an example of the autonomous traveling route P when the tractor 1 performs autonomous traveling / autonomous work.
 ユーザは、トラクタ1に搭乗した状態でトラクタ1に自律走行・自律作業を行わせたい場合、図3に示すモニタ装置70を操作し、各種設定を行うことにより、図5に示すような自律走行経路Pを生成することができる。 When the user wants the tractor 1 to perform autonomous running / autonomous work while riding on the tractor 1, the user operates the monitor device 70 shown in FIG. 3 and performs various settings to perform autonomous running as shown in FIG. 5. A path P can be generated.
 自律走行経路Pは、予め指定された作業開始位置Sと、作業終了位置Eと、を結ぶように生成される。この自律走行経路Pは、直線又は折れ線状の自律作業路(自律作業が行われる線状の経路)P1と、当該自律作業路P1の端同士を繋ぐU字状の接続路(旋回・切返し操作が行われる円弧状部分を含む旋回路)P2と、を交互に繋いだ構成となっている。 The autonomous traveling route P is generated so as to connect the work start position S and the work end position E specified in advance. This autonomous traveling path P is a straight or broken line-shaped autonomous work path (linear path on which autonomous work is performed) P1 and a U-shaped connection path (turning / turning back operation) that connects the ends of the autonomous work path P1. And a circular circuit including arc-shaped portions) P2 and P2 are alternately connected.
 図5に示すように、自律走行経路Pを生成するにあたっては、対象となる圃場に、作業機3による作業が行われない非作業領域62として枕地及び非耕作地(サイドマージン)が設定され、この非作業領域62を除いた領域が作業領域61となる。上記の自律作業路(経路)P1,P1,・・・は、この作業領域61に並んで複数配置され、接続路P2,P2,・・・は非作業領域62(枕地)に配置されるように生成される。なお、本実施形態では、非作業領域62と作業領域61とを合わせた領域を特定領域60と呼ぶ場合がある。 As shown in FIG. 5, in generating the autonomous traveling route P, a headland and a non-cultivated land (side margin) are set as a non-work area 62 in which work by the work machine 3 is not performed in the target farm field. The area excluding the non-work area 62 becomes the work area 61. A plurality of the autonomous work paths (routes) P1, P1,... Are arranged side by side in the work area 61, and the connection paths P2, P2,... Are arranged in the non-work area 62 (headlands). Is generated as follows. In the present embodiment, an area obtained by combining the non-work area 62 and the work area 61 may be referred to as a specific area 60.
 図5の例では、自律作業路P1,P1,・・・は直線状に生成され、接続路P2,P2,・・・はU字状に生成される。また、それぞれの自律作業路P1,P1,・・・は作業領域61を通過するように配置され、接続路P2は、非作業領域62である枕地において、互いに隣接するP1,P1の端部同士を接続するように配置される。このように作成された自律走行経路Pにおいては、それぞれの接続路P2において180°の方向転換が行われるので、トラクタ1の走行方向は、ある自律作業路P1と、それに隣接する自律作業路P1との間で、互いに逆を向くことになる。 In the example of FIG. 5, the autonomous work paths P1, P1,... Are generated in a straight line, and the connection paths P2, P2,. Further, each of the autonomous work paths P1, P1,... Is arranged so as to pass through the work area 61, and the connection path P2 is an end of P1, P1 adjacent to each other in the headland that is the non-work area 62. Arranged to connect each other. In the autonomous traveling route P created in this way, the direction change of 180 ° is performed in each connection route P2. Therefore, the traveling direction of the tractor 1 is an autonomous work route P1 and an autonomous work route P1 adjacent thereto. Will be opposite to each other.
 上記の自律走行経路Pの情報は、経路生成部39によって生成される代わりに、外部のコンピュータ(後述の無線通信端末81であっても良い。)によって生成されたデータを、通信等の適宜の手段によって制御部4に取り込むこともできる。その後、ユーザがトラクタ1に対して所定の操作をすることにより、制御部4(自律走行制御部32)によりトラクタ1を制御して、当該トラクタ1を自律走行経路Pに沿って自律的に走行させながら、自律作業路P1に沿って作業機3により農作業を行わせることができる。 Instead of being generated by the route generation unit 39, the information on the autonomous traveling route P is obtained by using data generated by an external computer (may be a wireless communication terminal 81 described later) as appropriate for communication or the like. It can also be taken into the control unit 4 by means. Thereafter, when the user performs a predetermined operation on the tractor 1, the control unit 4 (autonomous traveling control unit 32) controls the tractor 1 and autonomously travels along the autonomous traveling route P. Thus, the farm work can be performed by the work machine 3 along the autonomous work path P1.
 次に、作業機3の昇降に関して図1及び図6等を参照して説明する。図6は、図1の状態から作業機3が下降し、作業状態となっている様子を示す側面図である。 Next, raising and lowering of the work machine 3 will be described with reference to FIGS. FIG. 6 is a side view showing a state where the work machine 3 is lowered from the state of FIG. 1 and is in a working state.
 図1に示すように、トラクタ1の走行機体2の後部には作業機3が装着されている。前述したとおり、作業機3にはエンジン10の駆動力の一部が前記PTO軸を介して伝達され、作業機3を駆動して耕耘作業を行うことができる。作業機3の下部には、水平に配置された軸を中心に回転駆動される耕耘爪(作業体)25が複数設けられている。 As shown in FIG. 1, a work machine 3 is mounted on the rear part of the traveling machine body 2 of the tractor 1. As described above, a part of the driving force of the engine 10 is transmitted to the work machine 3 through the PTO shaft, and the work machine 3 can be driven to perform the tilling work. A plurality of tilling claws (work bodies) 25 that are rotationally driven around a horizontally disposed shaft are provided at the lower portion of the work machine 3.
 耕耘爪25の回転軸線25cが図1及び図2等に示されている。この作業機3を図6に示す作業高さまで下降させることで、回転する耕耘爪25が土壌に接触し、当該作業高さに対応する所定深さでの圃場の耕耘作業を行うことができる。また、耕耘爪25の回転を停止したり、作業機3を図1に示す非作業高さまで上昇させたりすることで、耕耘作業を停止させることができる。作業機3の昇降は、ユーザが前記作業機昇降スイッチ28を操作することにより行うことができ、また、作業機制御部34が自動制御することもできる。 The rotation axis 25c of the tilling claw 25 is shown in FIGS. By lowering the working machine 3 to the working height shown in FIG. 6, the rotating tillage claw 25 comes into contact with the soil, and the farming work at a predetermined depth corresponding to the working height can be performed. Further, the tilling work can be stopped by stopping the rotation of the tilling claws 25 or raising the working machine 3 to the non-working height shown in FIG. The work machine 3 can be lifted and lowered by the user operating the work machine lift switch 28, and can be automatically controlled by the work machine control unit 34.
 ここで、本実施形態では、作業機3の「作業状態」とは、作業機3が作業高さにまで下降し、かつ、耕耘爪25が回転している状態を意味する。また、「非作業状態」とは、上記の作業状態以外の状態を意味し、例えば、作業機3が非作業高さにまで上昇し、かつ、耕耘爪25が回転を停止している状態である。 Here, in this embodiment, the “working state” of the work machine 3 means a state in which the work machine 3 is lowered to the work height and the tilling claw 25 is rotating. Further, the “non-working state” means a state other than the above-described working state, for example, in a state where the work implement 3 is raised to the non-working height and the tilling claw 25 is stopped rotating. is there.
 そして、本実施形態のトラクタ1は、自律走行・自律作業を行う場合に、作業機3の作業状態と非作業状態とのそれぞれについて、トラクタ1の車速とエンジン10の回転数とを予め設定することができる。この設定は、速度回転数設定変更ダイアル14及びダイアル設定切換スイッチ16により行われる。そして、トラクタ1が自律走行・自律作業を行っているときに作業機3が作業状態と非作業状態との間で切り換わると、それに連動して、トラクタ1の車速とエンジン10の回転数も、上記の設定の間で切り換わるように制御される。 The tractor 1 of the present embodiment presets the vehicle speed of the tractor 1 and the rotational speed of the engine 10 for each of the working state and the non-working state of the work implement 3 when performing autonomous traveling and autonomous work. be able to. This setting is performed by a speed rotation speed setting change dial 14 and a dial setting changeover switch 16. When the work machine 3 switches between the working state and the non-working state while the tractor 1 is autonomously traveling and working, the vehicle speed of the tractor 1 and the rotational speed of the engine 10 are also linked. , And control to switch between the above settings.
 なお、作業状態及び非作業状態におけるトラクタ1の車速とエンジン10の回転数の設定は、トラクタ1の停止中だけでなく、トラクタ1が自律走行・自律作業を行っている途中においても、速度回転数設定変更ダイアル14等をユーザが操作することにより変更することができる。 The vehicle speed of the tractor 1 and the rotation speed of the engine 10 in the working state and the non-working state are set not only when the tractor 1 is stopped, but also when the tractor 1 is performing autonomous running / autonomous work. It can be changed by the user operating the number setting change dial 14 or the like.
 次に、図4を参照して、制御部4について説明する。上述したとおり、制御部4は、記憶部38と、経路生成部39と、自律走行制御部32と、を備える。 Next, the control unit 4 will be described with reference to FIG. As described above, the control unit 4 includes the storage unit 38, the route generation unit 39, and the autonomous traveling control unit 32.
 記憶部38は、トラクタ1を自律走行・自律作業させるために必要な様々な情報を記憶する。なお、この記憶部38が記憶する内容の詳細については後述する。 The storage unit 38 stores various information necessary for the tractor 1 to run autonomously and work autonomously. Details of the contents stored in the storage unit 38 will be described later.
 経路生成部39は、記憶部38に記憶された各種の情報に基づいて、トラクタ1が自律走行・自律作業する自律走行経路Pを生成する。経路生成部39により生成された自律走行経路Pの情報は、記憶部38に記憶される。 The route generation unit 39 generates an autonomous traveling route P on which the tractor 1 autonomously travels and works based on various information stored in the storage unit 38. Information on the autonomous traveling route P generated by the route generating unit 39 is stored in the storage unit 38.
 自律走行制御部32は、自律走行・自律作業に関する統括的な制御を行う。この自律走行制御部32は、ユーザが搭乗した状態で自律走行・自律作業を行う有人自律走行モード(第1モード)と、ユーザが搭乗しない状態で自律走行・自律作業を行う無人自律走行モード(第2モード)と、の間で切り換えて、トラクタ1を、記憶部38に記憶された自律走行経路Pに沿って自律走行させることが可能に構成されている。 The autonomous traveling control unit 32 performs overall control related to autonomous traveling and autonomous work. The autonomous running control unit 32 includes a manned autonomous running mode (first mode) in which autonomous running / autonomous work is performed in a state where the user is boarded, and an unmanned autonomous running mode (in which autonomous running / autonomous work is performed in a state in which the user is not boarded) ( The tractor 1 is configured to be able to autonomously travel along the autonomous traveling route P stored in the storage unit 38.
 自律走行制御部32は、指令出力部33と、作業機制御部34と、車速制御部35と、操向制御部36と、残存距離取得部(距離取得部)37と、を備える。 The autonomous traveling control unit 32 includes a command output unit 33, a work implement control unit 34, a vehicle speed control unit 35, a steering control unit 36, and a remaining distance acquisition unit (distance acquisition unit) 37.
 指令出力部33は、図5に示す圃場(特定領域60)をトラクタ1が自律走行経路Pに沿って走行する過程で、作業領域61に相当する部分について作業機3による作業を行うために、作業機3を作業状態に制御する作業指令と、作業機3を非作業状態に制御する非作業指令と、を適宜のタイミングで出力する。 The command output unit 33 performs the work by the work implement 3 on the portion corresponding to the work area 61 in the process of the tractor 1 traveling along the autonomous traveling route P in the farm field (specific area 60) shown in FIG. A work command for controlling the work machine 3 to a work state and a non-work command for controlling the work machine 3 to a non-work state are output at appropriate timing.
 図4に示す作業機制御部34は、指令出力部33が出力する作業指令又は非作業指令に応じて、作業機3を非作業状態から作業状態に切り換え、又は、作業状態から非作業状態に切り換えるように制御する。具体的には、作業機制御部34は、PTOクラッチ45に信号を送ってPTO軸への動力の伝達/遮断を切換制御し、また、昇降アクチュエータ44に信号を送って作業機3を昇降制御する。 The work machine control unit 34 shown in FIG. 4 switches the work machine 3 from the non-working state to the working state or changes from the working state to the non-working state in accordance with the work command or the non-working command output from the command output unit 33. Control to switch. Specifically, the work machine control unit 34 sends a signal to the PTO clutch 45 to control switching of transmission / cutoff of power to the PTO shaft, and sends a signal to the lift actuator 44 to raise and lower the work machine 3. To do.
 車速制御部35は、変速装置42等に制御信号を送ることにより、走行機体2の車速を制御する。車速制御部35は、指令出力部33が出力する作業指令又は非作業指令に応じて、走行機体2の車速を、非作業時の車速から作業時の車速に切り換え、又は、作業時の車速から非作業時の車速に切り換えるように制御する。なお、作業時の車速(第1車速)とは、作業機3が作業状態のときの車速であり、非作業時の車速(第2車速)とは、作業機3が非作業状態のときの車速である。作業時の車速及び非作業時の車速は、上述したとおり、速度回転数設定変更ダイアル14によって設定される。 The vehicle speed control unit 35 controls the vehicle speed of the traveling machine body 2 by sending a control signal to the transmission 42 and the like. The vehicle speed control unit 35 switches the vehicle speed of the traveling machine body 2 from the vehicle speed during non-working to the vehicle speed during work according to the work command or non-work command output by the command output unit 33, or from the vehicle speed during work. Control to switch to vehicle speed when not working. The vehicle speed at the time of work (first vehicle speed) is the vehicle speed when the work machine 3 is in the working state, and the vehicle speed at the time of non-work (second vehicle speed) is the speed when the work machine 3 is in the non-working state. The vehicle speed. The vehicle speed during work and the vehicle speed during non-work are set by the speed rotation number setting change dial 14 as described above.
 操向制御部36は、操向アクチュエータ43に制御信号を送ることにより、自律走行経路Pに沿って走行機体2が走行するように自動操舵を行う。 The steering control unit 36 performs automatic steering so that the traveling machine body 2 travels along the autonomous traveling route P by sending a control signal to the steering actuator 43.
 残存距離取得部37は、作業機3が有する耕耘爪25の回転軸線25cと、後述の切換目標位置との距離を取得し、指令出力部33に出力する。なお、残存距離取得部37についての詳細は後述する。 The remaining distance acquisition unit 37 acquires the distance between the rotation axis 25c of the tilling claw 25 of the work implement 3 and a switching target position described later, and outputs the distance to the command output unit 33. Details of the remaining distance acquisition unit 37 will be described later.
 次に、自律走行・自律作業時における作業機3の作業状態/非作業状態の切換タイミングについて説明する。 Next, the switching timing of the working state / non-working state of the work machine 3 during autonomous traveling and autonomous work will be described.
 トラクタ1を自律走行させて作業機3による作業を行う場合に作業機3を作業状態又は非作業状態から非作業状態又は作業状態に切り換えるタイミングについては、例えば図5の自律走行経路Pに沿って走行するトラクタ1が非作業領域62から作業領域61に入るタイミングで、耕耘爪25を回転させるとともに作業機3を作業高さに下降させることが考えられる。また、トラクタ1が作業領域61から非作業領域62へ出るタイミングで、耕耘爪25の回転を停止させるとともに作業機3を作業高さから上昇させることが考えられる。 For example, along the autonomous traveling path P in FIG. 5, the timing at which the working machine 3 is switched from the working state or the non-working state to the non-working state or the working state when the tractor 1 is autonomously run and the work machine 3 performs work. It is conceivable that at the timing when the traveling tractor 1 enters the work area 61 from the non-work area 62, the tilling claw 25 is rotated and the work implement 3 is lowered to the work height. Further, at the timing when the tractor 1 exits from the work area 61 to the non-work area 62, it is conceivable that the rotation of the tilling claw 25 is stopped and the work implement 3 is raised from the work height.
 ところで、上述したように、トラクタ1が自律走行する場合は、自機の位置情報を、衛星測位システムを用いて(図4の位置情報算出部49から)取得する。しかしながら、例えば図1に示すように、トラクタ1において作業機3の耕耘爪25の位置(回転軸線25cの位置)は、測位アンテナ6が取り付けられる位置より後方に配置されている。従って、測位アンテナ6が作業領域61に出入りするタイミングと、実際に土壌に作用して作業を行う耕耘爪25が作業領域61に出入りするタイミングとの間に、ズレが生じうる。しかも、上述したように、互いに隣接する2つの自律作業路P1,P1の間でトラクタ1が走行する向きが逆になっている。従って、仮に、単純に測位アンテナ6の位置が作業領域61に入ったタイミングで作業機3が耕耘作業を開始し、測位アンテナ6の位置が作業領域61から出たタイミングで耕耘作業を停止させる制御を行うと、作業機3により実際に耕耘作業が行われた領域の端部が、隣接する自律作業路P1,P1の間で揃わなくなる可能性がある。その場合、見栄えが悪く、後の仕上げ工程に手間が掛かってしまっていた。 Incidentally, as described above, when the tractor 1 travels autonomously, the position information of the own aircraft is acquired using the satellite positioning system (from the position information calculation unit 49 in FIG. 4). However, for example, as shown in FIG. 1, the position of the tillage claw 25 of the work implement 3 (the position of the rotation axis 25 c) in the tractor 1 is arranged behind the position where the positioning antenna 6 is attached. Accordingly, there may be a gap between the timing when the positioning antenna 6 enters and exits the work area 61 and the timing when the tilling claw 25 that actually works on the soil and enters and exits the work area 61. Moreover, as described above, the direction in which the tractor 1 travels between the two autonomous work paths P1 and P1 adjacent to each other is reversed. Therefore, suppose that the work implement 3 starts the tilling work when the position of the positioning antenna 6 enters the work area 61, and stops the tilling work when the position of the positioning antenna 6 comes out of the work area 61. If the operation is performed, there is a possibility that the end of the area where the plowing work is actually performed by the work machine 3 is not aligned between the adjacent autonomous work paths P1 and P1. In that case, it looked bad, and it took time and effort for the subsequent finishing process.
 また、測位アンテナ6ではなく、作業機3の後端が作業領域61に出入りするタイミングを基準にして、耕耘作業の開始/停止のタイミングを制御することも考えられる。しかしながら、この場合も、前後長の大きい作業機(例えば、プラウ)を用いる場合は、実際に作業が行われる領域が、隣接する自律作業路P1,P1の間で大きくズレてしまう場合があった。 It is also conceivable to control the start / stop timing of the tilling work based on the timing at which the rear end of the work implement 3 enters and exits the work area 61 instead of the positioning antenna 6. However, also in this case, when using a working machine having a large longitudinal length (for example, a plow), the area where the work is actually performed may be greatly displaced between the adjacent autonomous work paths P1 and P1. .
 そこで、本実施形態のトラクタ1に備えられる制御部4は、以下のようにして、耕耘作業が行われる耕耘爪25の回転軸線25cの位置を基準にして耕耘作業の開始/停止のタイミングを制御している。この爪軸位置は、耕耘爪25が土壌に実際に作用して耕耘作業を行う機体前後方向の領域を2等分するものであることから、作業機3における作業中心位置であるということができる。 Therefore, the control unit 4 provided in the tractor 1 of the present embodiment controls the start / stop timing of the tilling work based on the position of the rotation axis 25c of the tilling claw 25 where the tilling work is performed as follows. is doing. This nail axis position divides the front-and-rear direction region where the tilling claw 25 actually acts on the soil and performs the tilling work into two equal parts, so it can be said that it is the work center position in the work machine 3. .
 まず、記憶部38が記憶する情報について詳細に説明する。図4に示すように、記憶部38は、作業機距離記憶部(作業機距離取得部)51と、領域記憶部52と、経路記憶部53と、作業マージン距離記憶部54と、車速設定記憶部55と、下降必要時間記憶部(所要時間記憶部)56と、を備える。 First, the information stored in the storage unit 38 will be described in detail. As shown in FIG. 4, the storage unit 38 includes a work machine distance storage unit (work machine distance acquisition unit) 51, an area storage unit 52, a route storage unit 53, a work margin distance storage unit 54, and a vehicle speed setting storage. Unit 55 and a descent required time storage unit (required time storage unit) 56.
 作業機距離記憶部51は、図1及び図2等に示す作業機水平距離L(即ち、耕耘爪25の回転軸線25cの位置から測位アンテナ6の位置までの水平距離)を記憶する。なお、以下の説明では、耕耘爪25の回転軸線25cの位置を爪軸位置と呼び、測位アンテナ6の位置をアンテナ位置と呼ぶことがある。作業機水平距離Lは、トラクタ1の自律走行開始前にユーザによって入力される。具体的には、耕耘爪25の回転軸線25cと測位アンテナ6との距離をユーザが例えばモニタ装置70を用いて入力すると、作業機距離記憶部51が当該距離の値を作業機水平距離Lとして記憶する。 The work machine distance storage unit 51 stores the work machine horizontal distance L (that is, the horizontal distance from the position of the rotation axis 25c of the tillage claw 25 to the position of the positioning antenna 6) shown in FIGS. In the following description, the position of the rotation axis 25c of the tilling claw 25 may be referred to as a claw axis position, and the position of the positioning antenna 6 may be referred to as an antenna position. The work implement horizontal distance L is input by the user before the autonomous traveling of the tractor 1 starts. Specifically, when the user inputs the distance between the rotation axis 25 c of the tilling claw 25 and the positioning antenna 6 using the monitor device 70, for example, the work machine distance storage unit 51 sets the value of the distance as the work machine horizontal distance L. Remember.
 ただし、走行機体2に装着可能な作業機と、当該作業機における作業中心位置と、を対応付けて制御部4等に記憶しておき、ユーザが例えばモニタ装置70において作業機の機種名等を選択するだけで作業機水平距離Lを自動的に設定するように構成すると、利便性を高めることができる。 However, the work machine that can be mounted on the traveling machine body 2 and the work center position of the work machine are stored in the control unit 4 or the like in association with each other, and the user can specify the model name of the work machine in the monitor device 70, for example. If the construction machine horizontal distance L is automatically set only by selection, the convenience can be improved.
 図4に示す領域記憶部52は、ユーザによって予め設定された作業領域61の情報(具体的には、作業領域61の位置及び形状等に関する情報)と、残りの領域である非作業領域62の情報と、を記憶する。作業領域61の情報は、例えば、自律走行・自律作業の開始前にユーザがモニタ装置70を適宜操作することで設定することができる。 The area storage unit 52 shown in FIG. 4 includes information on the work area 61 set in advance by the user (specifically, information on the position and shape of the work area 61) and the non-work area 62 that is the remaining area. Information. The information on the work area 61 can be set, for example, by the user appropriately operating the monitor device 70 before the start of autonomous running / autonomous work.
 経路記憶部53は、トラクタ1が自律走行・自律作業する経路である自律走行経路Pの情報を記憶する。 The route storage unit 53 stores information on an autonomous traveling route P that is a route on which the tractor 1 autonomously travels and works autonomously.
 作業マージン距離記憶部54は、トラクタ1が自律走行・自律作業を行う場合に、作業機3の昇降等に誤差が発生しても作業領域61の端の部分(非作業領域62との境界の近傍)において作業漏れが生じないように、自律作業路P1での作業前及び作業後に接続路P2に沿って非作業領域62について余分に作業を行うマージン距離Mを記憶するものである。図5に示すように、作業領域61に並べて配置される自律作業路P1のそれぞれについて、その上流側の端部及び下流側の端部(言い換えれば、作業領域61と非作業領域62との境界)から、接続路P2に沿って非作業領域62側にマージン距離Mだけ離れた点が、作業機3を作業状態と非作業状態との間で切り換えるべき点である切換目標位置(基準位置)として設定される。従って、作業マージン距離記憶部54は、切換目標位置を設定する設定部であるということができる。 When the tractor 1 performs autonomous running / autonomous work, the work margin distance storage unit 54 is configured so that an end portion of the work area 61 (the boundary between the work area 61 and the non-work area 62 is not detected) even if an error occurs in the lifting / lowering of the work implement 3. The margin distance M for performing extra work on the non-work area 62 along the connection path P2 is stored before and after work on the autonomous work path P1 so that work leakage does not occur in the vicinity). As shown in FIG. 5, for each of the autonomous work paths P1 arranged side by side in the work area 61, the upstream end and the downstream end (in other words, the boundary between the work area 61 and the non-work area 62). ) Is a point at which the work machine 3 should be switched between the working state and the non-working state at a point separated by a margin distance M on the non-working region 62 side along the connection path P2. Set as Therefore, it can be said that the work margin distance storage unit 54 is a setting unit for setting the switching target position.
 作業マージン距離記憶部54が記憶するマージン距離Mの設定値は、ユーザがトラクタ1の例えばモニタ装置70を操作することで変更することが可能であってよい。また、マージン距離Mは、例えば工場出荷時の設定値から変更不能に構成しても良い。 The setting value of the margin distance M stored in the work margin distance storage unit 54 may be changed by the user operating, for example, the monitor device 70 of the tractor 1. Further, the margin distance M may be configured to be unchangeable from a set value at the time of factory shipment, for example.
 マージン距離Mは、非作業領域62から作業領域61に入る手前で設定される切換目標位置と、作業領域61から非作業領域62に出た後で設定される切換目標位置とで、同一である。更に言えば、切換目標位置は自律走行経路Pに多数設定されるが、当該マージン距離Mは、自律走行経路Pの全体を通じて一定である。従って、例えば図5のように作業領域61が矩形状に設定された場合において、トラクタ1をある方向に走行させる行程と、逆向きに走行させる行程と、の間で、実際に作業が行われる部分の端を揃えるように制御することができ、良好な見栄えを実現することができる。 The margin distance M is the same between the switching target position set before entering the work area 61 from the non-work area 62 and the switching target position set after exiting from the work area 61 to the non-work area 62. . Furthermore, although many switching target positions are set in the autonomous traveling route P, the margin distance M is constant throughout the autonomous traveling route P. Therefore, for example, when the work area 61 is set in a rectangular shape as shown in FIG. 5, the work is actually performed between a stroke of traveling the tractor 1 in a certain direction and a stroke of traveling in the opposite direction. Control can be performed so that the ends of the portions are aligned, and a good appearance can be realized.
 車速設定記憶部55は、前述の作業時の車速と、非作業時の車速と、について、速度回転数設定変更ダイアル14によって設定された値を記憶する。 The vehicle speed setting storage unit 55 stores the values set by the speed rotation number setting change dial 14 for the vehicle speed at the time of working and the vehicle speed at the time of non-working.
 下降必要時間記憶部56は、非作業高さにある作業機3の下降を開始してから作業高さに到達するまでの時間を記憶する。 The descent required time storage unit 56 stores the time from the start of the descent of the work machine 3 at the non-working height until the work height is reached.
 この構成で、指令出力部33は、作業機制御部34に作業機3を適切なタイミングで昇降制御させるために、位置情報算出部49で算出された測位アンテナ6の位置と、作業機距離記憶部51で記憶されている作業機水平距離Lと、に基づいて爪軸位置を計算する。 With this configuration, the command output unit 33 stores the position of the positioning antenna 6 calculated by the position information calculation unit 49 and the work machine distance so that the work machine control unit 34 controls the work machine 3 to move up and down at an appropriate timing. The claw axis position is calculated based on the work implement horizontal distance L stored in the unit 51.
 そして、指令出力部33は、トラクタ1が非作業領域62から作業領域61に入るときは、得られた爪軸位置が、作業領域61に入る前の前記切換目標位置に到達するタイミングで作業機3が作業高さにまで下降し、かつ、耕耘爪25が回転している状態となる(作業機3が前述の作業状態となる)ように、作業機制御部34を介して昇降アクチュエータ44等を制御する。また、指令出力部33は、トラクタ1が作業領域61から非作業領域62に出るときは、得られた爪軸位置が、非作業領域62に出た後の切換目標位置に到達するタイミングで、耕耘爪25の回転が停止し、作業機3が作業高さからの上昇を開始する(作業機3が前述の非作業状態となる)ように、作業機制御部34を介して昇降アクチュエータ44等を制御する。 Then, when the tractor 1 enters the work area 61 from the non-work area 62, the command output unit 33 is configured so that the obtained pawl axis position reaches the switching target position before entering the work area 61. 3 is lowered to the working height and the tilling claw 25 is rotated (the working machine 3 is in the above-described working state), the lifting actuator 44 and the like via the work machine control unit 34 To control. Further, when the tractor 1 exits from the work area 61 to the non-work area 62, the command output unit 33 is at a timing when the obtained claw axis position reaches the switching target position after exiting the non-work area 62. The lift actuator 44 and the like via the work machine control unit 34 so that the rotation of the tilling claw 25 stops and the work machine 3 starts to rise from the work height (the work machine 3 is in the non-working state described above). To control.
 なお、切換目標位置は、領域記憶部52が記憶する作業領域61の情報と、経路記憶部53が記憶する自律走行経路Pの情報と、作業マージン距離記憶部54が記憶するマージン距離Mと、により計算で得ることができる。 The switching target position includes information on the work area 61 stored in the area storage unit 52, information on the autonomous travel route P stored in the route storage unit 53, a margin distance M stored in the work margin distance storage unit 54, Can be obtained by calculation.
 次に、走行機体2及び作業機3が非作業領域から作業領域へ移動する場合の、自律走行制御部32及び作業機制御部34が行う制御を説明する。図7は、自律走行・自律作業時に作業機3を非作業状態から作業状態へ切り換える場合の制御タイミングの関係を説明する図である。 Next, the control performed by the autonomous traveling control unit 32 and the working machine control unit 34 when the traveling machine body 2 and the working machine 3 move from the non-working area to the working area will be described. FIG. 7 is a diagram illustrating the relationship of the control timing when the work machine 3 is switched from the non-working state to the working state during autonomous running / autonomous work.
 上述したように、トラクタ1が自律走行・自律作業を行っており、走行機体2及び作業機3が非作業領域62(接続路P2)を走行するとき、図1に示すように、作業機3は非作業高さ(具体的には、最上げ高さ)まで上昇し、かつ、PTOクラッチ45が切断されているために耕耘爪25が回転しない状態となっている(非作業状態)。また、このとき、作業機制御部34は、上記の非作業高さを維持するモード(リフトアップモード)となっている。従って、耕耘爪25は地面に接触しない状態で静止しており、耕耘作業は行われない。 As described above, when the tractor 1 performs autonomous traveling / autonomous work and the traveling machine body 2 and the work machine 3 travel on the non-working area 62 (connection path P2), as shown in FIG. Is raised to a non-working height (specifically, a maximum raising height), and the plow claws 25 are not rotated because the PTO clutch 45 is disengaged (non-working state). At this time, the work machine control unit 34 is in a mode for maintaining the non-working height (lift-up mode). Therefore, the tilling claw 25 is stationary without touching the ground, and no tilling work is performed.
 走行機体2が接続路P2に沿った走行をほぼ終え、作業機3が切換目標位置に近づいたタイミングで、図7(a)に示すように、作業機3の作業状態への切換を指示する制御信号(作業指令)が指令出力部33から作業機制御部34及び車速制御部35に出力される。なお、指令出力部33が作業指令を出力するタイミングの詳細については後述する。 At the timing when the traveling machine body 2 has almost finished traveling along the connection path P2 and the work machine 3 has approached the switching target position, as shown in FIG. 7A, the switching of the work machine 3 to the working state is instructed. A control signal (work command) is output from the command output unit 33 to the work machine control unit 34 and the vehicle speed control unit 35. The details of the timing at which the command output unit 33 outputs the work command will be described later.
 作業機制御部34は、作業指令が入力されると、図7(b)に示すように、PTOの停止を解除する旨を指示する信号をPTOクラッチ45に送信する。ただし、このとき作業機制御部34は、制御の準備時間を確保する等の理由で、作業指令が入力されてから一定時間だけ待機した後にPTO停止解除の指示を送信するように構成されている。この待機時間TW1は、例えば、50~500ミリ秒の間の所定時間とすることが考えられる。PTOクラッチ45は、PTO停止解除の指示を受信すると接続状態となり、これに伴って耕耘爪25が回転を開始する。 When the work command is input, the work machine control unit 34 transmits a signal to the PTO clutch 45 instructing to cancel the PTO stop, as shown in FIG. However, at this time, the work machine control unit 34 is configured to transmit a PTO stop release instruction after waiting for a certain period of time after the work command is input, for example, for securing a control preparation time. . The standby time TW1 may be a predetermined time between 50 and 500 milliseconds, for example. When the PTO clutch 45 receives an instruction to cancel the PTO stop, the PTO clutch 45 enters a connected state, and the tillage claw 25 starts rotating accordingly.
 作業機制御部34は、PTO停止解除の指示と同時に、作業機3を下降させるように制御する。具体的には、図示しない電磁弁を開くことにより昇降アクチュエータ44(リフトシリンダ)の圧油を排出させることで、図7(d)に示すように作業機3が自重によって下降し始める。既に耕耘爪25は回転を開始しているので、作業機3が下降して作業高さに到達した時点で、作業機3が作業状態になる。非作業高さにあった作業機3が下降して作業高さに到達するには、相応の時間が必要である。作業機3の下降速度は、前述の下降速度調整弁の開度、及び作業機3の重量等によって変化するので、作業機3が下降して作業高さに到達するまでの時間(下降必要時間TR1)は状況に応じて様々である。 The work machine control unit 34 controls the work machine 3 to be lowered at the same time as the PTO stop release instruction. Specifically, by opening the solenoid valve (not shown) to discharge the pressure oil of the lifting actuator 44 (lift cylinder), the work implement 3 starts to descend by its own weight as shown in FIG. Since the tilling claw 25 has already started rotating, the work implement 3 enters the working state when the work implement 3 descends and reaches the work height. In order for the work machine 3 that has been at the non-working height to descend and reach the working height, a corresponding time is required. Since the lowering speed of the work machine 3 varies depending on the opening degree of the lowering speed adjusting valve, the weight of the work machine 3, and the like, the time required for the work machine 3 to descend and reach the work height (required lowering time) TR1) varies depending on the situation.
 作業機3の重量は土の付着等により変動するものであり、本実施形態のトラクタ1は作業機3の重量を直接検出するセンサを備えていないため、下降必要時間TR1の推定精度は必ずしも高くない。一方、図示しないが、トラクタ1は、作業機3の支持高さを検出する作業機高さセンサ(例えば、ポテンショメータ)を備えているので、図略のタイマ回路(計測部)を用いて、作業機3の下降を開始してから実際に作業高さに到達するまでの時間を計測することが可能である。そこで、指令出力部33は、作業機3を下降させたときの下降必要時間TR1を実際に測定して下降必要時間記憶部56に記憶しておき、次回に作業機3を下降させたときの下降必要時間TR1の推定に、下降必要時間記憶部56の記憶内容を用いることで、精度の向上を図っている。ただし、例えば新しい作業機3を走行機体2に装着した場合は、下降必要時間が不明であるので、その場合は所定の初期値(初期設定された時間)が下降必要時間記憶部56に記憶され、初回の推定に用いられる。この時間の初期設定は、平均的な下降必要時間を調べる等して適宜行えば良い。いったん下降必要時間TR1が測定されると、下降必要時間記憶部56の記憶内容が初期値から測定値に更新される。その後は、下降必要時間記憶部56の記憶内容は最新の測定値によって随時更新される。 The weight of the work machine 3 varies depending on the adhesion of soil, etc. Since the tractor 1 of the present embodiment does not include a sensor that directly detects the weight of the work machine 3, the estimation accuracy of the required descent time TR1 is not necessarily high. Absent. On the other hand, although not shown, the tractor 1 is provided with a work implement height sensor (for example, a potentiometer) that detects the support height of the work implement 3, so that a work is performed using a timer circuit (measurement unit) not shown. It is possible to measure the time from when the machine 3 starts to descend until it actually reaches the working height. Therefore, the command output unit 33 actually measures the descent time TR1 when the work machine 3 is lowered and stores it in the descent time storage unit 56, and the next time the work machine 3 is lowered. By using the stored contents of the required descent time storage unit 56 to estimate the required descent time TR1, the accuracy is improved. However, for example, when a new work machine 3 is mounted on the traveling machine body 2, the required descent time is unknown, and in this case, a predetermined initial value (initially set time) is stored in the required descent time storage unit 56. Used for initial estimation. The initial setting of this time may be appropriately performed by examining the average required time for descent. Once the required descent time TR1 is measured, the stored content of the required descent time storage unit 56 is updated from the initial value to the measured value. Thereafter, the stored contents of the required descent time storage unit 56 are updated as needed with the latest measured values.
 一方、車速制御部35は、図7(f)に示すように、指令出力部33から作業指令が入力されると直ちに、トラクタ1の車速が現在の車速(通常、非作業時の車速の設定値にほぼ一致する。)から作業時の車速の設定値に近づけるように増速/減速を開始する。このように、指令出力部33が作業指令を出力するのとほぼ同時に車速の変更制御が開始されるので、作業機3が作業高さに到達する前の適宜の時点で、トラクタ1の車速は、作業時の車速の設定値と等しくなっている。なお、非作業時の車速から作業時の車速となるまでの過程において車速がどのように変化するかは適宜定めることができ、例えば直線的に変化しても良いし、折れ線的又は曲線的に変化しても良い。 On the other hand, as shown in FIG. 7 (f), the vehicle speed control unit 35 immediately sets the vehicle speed of the tractor 1 to the current vehicle speed (normally, non-working vehicle speed setting) when a work command is input from the command output unit 33. The acceleration / deceleration is started so as to approach the set value of the vehicle speed at the time of work. Thus, since the vehicle speed change control is started almost simultaneously with the output of the work command by the command output unit 33, the vehicle speed of the tractor 1 is set at an appropriate time before the work implement 3 reaches the work height. It is equal to the set value of the vehicle speed during work. In addition, how the vehicle speed changes in the process from the vehicle speed at the time of non-working to the vehicle speed at the time of working can be determined as appropriate, for example, it may change linearly, It may change.
 ところで、トラクタ1が接続路P2を走行しているときに、切換目標位置に作業機3の爪軸位置が到達するタイミングは、現在の爪軸位置から切換目標位置までの距離(以下、残存距離と呼ぶことがある。)と、走行機体2の車速と、に基づいて推定することができる。上記の残存距離は、残存距離取得部37が、走行機体2(厳密には、測位アンテナ6)の位置情報と、上述の作業機水平距離Lと、切換目標位置と、に基づいて計算することにより得ることができる。 By the way, when the tractor 1 is traveling on the connection path P2, the timing at which the claw shaft position of the work implement 3 reaches the switching target position is the distance from the current claw shaft position to the switching target position (hereinafter, remaining distance). And the vehicle speed of the traveling machine body 2 can be estimated. The remaining distance is calculated by the remaining distance acquisition unit 37 based on the position information of the traveling machine body 2 (strictly, the positioning antenna 6), the work machine horizontal distance L, and the switching target position. Can be obtained.
 また、走行機体2(トラクタ1)の車速は、切換目標位置に作業機3の爪軸位置が到達するまでの間に、トラクタ1の非作業時の車速の設定値から作業時の車速の設定値まで変化する。従って、指令出力部33は、切換目標位置に作業機3の爪軸位置が到達したタイミングで作業機3が作業状態となるように、残存距離と、非作業時の車速の設定値と、非作業時の車速の設定値から作業時の車速の設定値に変化する速度変化率と、前記待機時間TW1と、下降必要時間TR1と、を考慮して、作業指令を出力するタイミングを計算により求める。これにより、仮に非作業時の車速が同じだったとしても、非作業時の車速よりも作業時の車速が大きい場合は作業指令の出力タイミングが早くなり、非作業時の車速よりも作業時の車速が小さい場合は作業指令の出力タイミングが遅くなる。また、例えば、非作業時の車速から作業時の車速まで一定の変化率で増減する場合と、非作業時の車速から初めは大きな変化率で増減し、作業時の車速に近づいてから小さな変化率で増減する場合とで、作業指令の出力タイミングが異なることになる。このようなタイミングで指令出力部33が作業指令を出力することにより、切換目標位置のところから作業機3(耕耘爪25)による作業を開始することができる。また、本実施形態では、作業機3の爪軸位置を基準に制御しているので、意図する深さで耕耘爪25が作用する領域の端と、切換目標位置と、を精度良く一致させることができる。従って、作業の見栄えが良好になる。 The vehicle speed of the traveling machine body 2 (the tractor 1) is set from the set value of the vehicle speed when the tractor 1 is not working until the claw shaft position of the work machine 3 reaches the switching target position. Changes to value. Therefore, the command output unit 33 sets the remaining distance, the set value of the vehicle speed during non-operation, and the non-work so that the work machine 3 enters the working state at the timing when the claw shaft position of the work machine 3 reaches the switching target position. The timing for outputting the work command is calculated by taking into consideration the speed change rate that changes from the set value of the vehicle speed during work to the set value of the vehicle speed during work, the standby time TW1, and the required descent time TR1. . As a result, even if the vehicle speed during non-working is the same, if the vehicle speed during work is greater than the vehicle speed during non-work, the output timing of the work command will be earlier, and the vehicle speed during work will be greater than the vehicle speed during non-work. When the vehicle speed is low, the output timing of the work command is delayed. Also, for example, when increasing or decreasing at a constant rate from non-working vehicle speed to working vehicle speed, increase or decrease initially from the non-working vehicle speed at a large rate of change, and small changes after approaching the working vehicle speed The output timing of the work command differs depending on whether the rate increases or decreases. When the command output unit 33 outputs the work command at such timing, the work by the work machine 3 (cultivation claw 25) can be started from the switching target position. Moreover, in this embodiment, since it controls on the basis of the nail | claw axis | shaft position of the working machine 3, the edge of the area | region where the tilling nail | claw 25 acts by the intended depth and the switching target position are made to correspond accurately. Can do. Therefore, the appearance of the work is improved.
 また、切換目標位置は、接続路P2を走行するトラクタ1から見たときに、非作業領域62と作業領域61の間の境界から少し手前側に位置するように設定される。このマージンにより、作業機3の下降タイミング等が遅れた場合でも、作業領域61で未作業部分が発生するのを防止することができる。 Further, the switching target position is set so as to be located slightly on the near side from the boundary between the non-work area 62 and the work area 61 when viewed from the tractor 1 traveling on the connection path P2. Due to this margin, it is possible to prevent an unworked portion from occurring in the work area 61 even when the lowering timing of the work machine 3 is delayed.
 作業機3が作業高さにまで到達すると、図7(c)に示すように作業機制御部34はリフトアップモードからオートロータリモードに切り換わって、当該作業高さを維持するための制御を行う。その後、作業機3の爪軸位置は作業領域61に入る。トラクタ1は、作業機3の耕耘爪25により作業を行わせながら、作業時の車速として設定された速度で、自律作業路P1に沿って作業領域61を走行する。 When the work implement 3 reaches the work height, as shown in FIG. 7C, the work implement control unit 34 switches from the lift-up mode to the auto rotary mode and performs control for maintaining the work height. Do. Thereafter, the claw axis position of the work machine 3 enters the work area 61. The tractor 1 travels on the work area 61 along the autonomous work path P1 at a speed set as the vehicle speed at the time of work while performing the work with the tilling claws 25 of the work machine 3.
 次に、上記とは逆に、走行機体2及び作業機3が作業領域61から非作業領域62へ移動する場合の制御を説明する。図8は、自律走行・自律作業時に作業機3を作業状態から非作業状態へ切り換える場合の制御タイミングの関係を説明する図である。 Next, contrary to the above, the control when the traveling machine body 2 and the work machine 3 move from the work area 61 to the non-work area 62 will be described. FIG. 8 is a diagram for explaining the relationship of control timing when the work machine 3 is switched from the working state to the non-working state during autonomous running / autonomous work.
 トラクタ1が自律走行・自律作業を行っており、走行機体2及び作業機3が作業領域61(自律作業路P1)を走行するとき、作業機3は作業高さで作業を行っており、かつ、PTOクラッチが接続されているために耕耘爪25が回転する状態となっている(作業状態)。また、このとき、作業機制御部34は、上記の作業高さを維持する制御を行うモード(オートロータリモード)となっている。これにより、回転する耕耘爪25により、作業高さに対応する深さでの耕耘作業が行われる。 When the tractor 1 performs autonomous traveling / autonomous work, and the traveling machine body 2 and the work machine 3 travel on the work area 61 (autonomous work path P1), the work machine 3 is working at a work height, and Since the PTO clutch is connected, the tilling claw 25 is in a rotating state (working state). At this time, the work implement control unit 34 is in a mode (auto-rotary mode) in which control is performed to maintain the work height. Thereby, the tilling operation | work by the depth corresponding to work height is performed by the rotation nail | claw 25 which rotates.
 走行機体2が自律作業路P1に沿った走行を終え、作業機3が切換目標位置に近づいた適宜のタイミングで、図8(a)に示すように、作業機3の非作業状態への切換を指示する制御信号(非作業指令)が指令出力部33から作業機制御部34及び車速制御部35に出力される。なお、非作業指令が送信されるタイミングの詳細については後述する。 When the traveling machine body 2 finishes traveling along the autonomous work path P1 and the working machine 3 approaches the switching target position, the working machine 3 is switched to the non-working state as shown in FIG. Is output from the command output unit 33 to the work implement control unit 34 and the vehicle speed control unit 35. Details of the timing at which the non-work command is transmitted will be described later.
 作業機制御部34は、非作業指令が入力されると、図8(b)に示すように、PTOを停止させる旨を指示する信号をPTOクラッチ45に送信する。ただし、前述の作業指令が入力された場合と同様に、作業機制御部34は、非作業指令が入力されてから所定時間だけ待機した後にPTO停止の指示を送信するように構成されている。この待機時間TW2は、例えば、50~500ミリ秒の間の一定時間とすることが考えられる。また、非作業指令の場合の待機時間TW2は、前記の作業指令の場合の待機時間TW1と同一であっても良いし、異なっても良いが、待機時間TW1が待機時間TW2よりも長い時間であることが望ましい。PTOクラッチ45は、PTO停止の指示を受信すると切断状態となり、少しして、耕耘爪25の回転が停止する。 When the non-work command is input, the work machine control unit 34 transmits a signal instructing to stop the PTO to the PTO clutch 45 as illustrated in FIG. However, similarly to the case where the above-described work command is input, the work machine control unit 34 is configured to transmit a PTO stop instruction after waiting for a predetermined time after the non-work command is input. The standby time TW2 may be a fixed time between 50 and 500 milliseconds, for example. Further, the standby time TW2 in the case of the non-work command may be the same as or different from the standby time TW1 in the case of the work command, but the standby time TW1 is longer than the standby time TW2. It is desirable to be. When the PTO clutch 45 receives an instruction to stop PTO, the PTO clutch 45 enters a disconnected state, and after a while, the rotation of the tilling claw 25 stops.
 作業機制御部34は、PTO停止の指示をPTOクラッチ45に送信するのと同時に、図8(c)に示すようにオートロータリモードからリフトアップモードに切り換わる。また、作業機制御部34は、PTO停止の指示から後述の遅延時間TDだけ待機した後、油圧シリンダに作動油を供給して作業機3を上昇させるように制御する。 The work machine control unit 34 transmits a PTO stop instruction to the PTO clutch 45, and at the same time, switches from the auto rotary mode to the lift-up mode as shown in FIG. Further, the work implement control unit 34 controls the work implement 3 to be raised by supplying hydraulic oil to the hydraulic cylinder after waiting for a delay time TD described later from the instruction to stop the PTO.
 この遅延時間TDは、作業機3の上昇に伴う土の盛り上がりを防止するためのものである。即ち、仮に耕耘爪25の回転を停止させるのと同時に作業機3を上昇させ始めると、停止した耕耘爪25が土を持ち上げることにより、土壌の土が局所的に盛り上がってしまう。そこで、本実施形態では、耕耘爪25の回転を停止させた後も作業機3を直ちに上昇させないでおくことで、そのような土の盛り上がりが形成されないようにして、見栄えの向上を図っている。 This delay time TD is for preventing the soil from rising due to the rise of the work implement 3. That is, if the working machine 3 starts to be lifted at the same time as the rotation of the tilling claw 25 is stopped, the stopped tilling claw 25 lifts the soil, so that the soil soil rises locally. Therefore, in this embodiment, the work implement 3 is not immediately raised even after the rotation of the tillage claw 25 is stopped, so that such soil swell is not formed and the appearance is improved. .
 この遅延時間TDが経過した後、作業機3が上昇を開始する。従って、この時点で作業機3が非作業状態になる。作業機3が作業高さから上昇して非作業高さに到達するには相応の時間が必要であるが、油圧シリンダへの作動油の供給速度は一定であるため、作業機3の上昇速度は、下降する場合と異なり一定である。従って、作業機3が上昇して非作業高さに到達するまでの時間(上昇必要時間TR2)は、一定の値となる。 After the delay time TD has elapsed, the work machine 3 starts to rise. Therefore, the work machine 3 is in a non-working state at this time. Although it takes a certain amount of time for the work implement 3 to rise from the work height to reach the non-work height, the supply speed of the hydraulic oil to the hydraulic cylinder is constant. Is constant unlike the case of descending. Therefore, the time required for the work machine 3 to rise to reach the non-working height (rising required time TR2) is a constant value.
 一方、車速制御部35は、図8(f)に示すように、指令出力部33から非作業指令が入力された時点では車速の切換は行わない。車速制御部35は、作業機制御部34がPTO停止の指示をPTOクラッチ45に送信してから所定時間TCだけ経過したタイミングで、トラクタ1の車速が現在の車速(通常、作業時の車速の設定値にほぼ一致する。)から非作業時の車速の設定値に近づけるように増速/減速を開始する。この所定時間TCは、遅延時間TDより長い時間となっている。なお、作業時の車速から非作業時の車速となるまでの過程において車速がどのように変化するかは適宜定めることができ、例えば直線的に変化しても良いし、折れ線的又は曲線的に変化しても良い。 On the other hand, the vehicle speed control unit 35 does not switch the vehicle speed when a non-work command is input from the command output unit 33, as shown in FIG. The vehicle speed control unit 35 determines that the vehicle speed of the tractor 1 is the current vehicle speed (usually the vehicle speed at the time of work) at a timing when a predetermined time TC has elapsed since the work implement control unit 34 transmitted a PTO stop instruction to the PTO clutch 45. The acceleration / deceleration is started so as to be close to the setting value of the vehicle speed when not working from approximately the setting value. The predetermined time TC is longer than the delay time TD. In addition, how the vehicle speed changes in the process from the vehicle speed at the time of working to the vehicle speed at the time of non-working can be determined as appropriate. For example, it may change linearly, It may change.
 ところで、上述したとおり、切換目標位置に作業機3の爪軸位置が到達するタイミングは、現在の爪軸位置から切換目標位置までの距離(上述の残存距離)と、走行機体2の車速と、に基づいて推定することができる。 As described above, the timing at which the claw axis position of the work machine 3 reaches the switching target position is the distance from the current claw axis position to the switching target position (the above-mentioned remaining distance), the vehicle speed of the traveling machine body 2, and Can be estimated.
 また、走行機体2(トラクタ1)の車速は、切換目標位置に作業機3の爪軸位置が到達するまでの間、トラクタ1の作業時の車速の設定値と等しい値であり、ほぼ一定である。従って、指令出力部33は、切換目標位置に作業機3の爪軸位置が到達したタイミングで作業機3が作業状態から非作業状態になるように、残存距離と、作業時の車速の設定値と、前記待機時間TW2と、遅延時間TDと、を考慮して、非作業指令を出力するタイミングを計算により求める。こうして得られたタイミングで指令出力部33が非作業指令を出力することにより、切換目標位置で作業機3(耕耘爪25)による作業を終了することができ、作業の見栄えが良好になる。 The vehicle speed of the traveling machine body 2 (the tractor 1) is a value that is equal to the set value of the vehicle speed during the operation of the tractor 1 until the claw shaft position of the work machine 3 reaches the switching target position, and is substantially constant. is there. Accordingly, the command output unit 33 sets the remaining distance and the set value of the vehicle speed at the time of work so that the work machine 3 changes from the working state to the non-working state when the claw shaft position of the working machine 3 reaches the switching target position. In consideration of the waiting time TW2 and the delay time TD, the timing for outputting the non-work command is obtained by calculation. When the command output unit 33 outputs the non-work command at the timing obtained in this way, the work by the work machine 3 (cultivation claw 25) can be finished at the switching target position, and the work looks good.
 また、切換目標位置は、自律作業路P1を走行するトラクタ1から見たときに、作業領域61と非作業領域62の間の境界から少し向こう側に位置するように設定される。このマージンにより、作業機3の上昇タイミング等が早まった場合でも、作業領域61で未作業部分が発生するのを防止することができる。 Further, the switching target position is set so as to be located slightly beyond the boundary between the work area 61 and the non-work area 62 when viewed from the tractor 1 traveling on the autonomous work path P1. With this margin, it is possible to prevent an unworked portion from occurring in the work area 61 even when the rising timing of the work machine 3 is advanced.
 作業機制御部34はリフトアップモードになっているので、作業機3が非作業高さにまで到達すると、作業機制御部34は、当該非作業高さを維持するための制御を行う。また、作業機3が非作業高さに到達するのと前後して、トラクタ1の車速は、非作業時の車速の設定値とほぼ等しくなっている。トラクタ1は、作業機3により作業を行わせない状態で、非作業時の車速として設定された速度で、接続路P2に沿って非作業領域62を走行する。 Since the work machine control unit 34 is in the lift-up mode, when the work machine 3 reaches the non-working height, the work machine control unit 34 performs control for maintaining the non-working height. Further, the vehicle speed of the tractor 1 is substantially equal to the set value of the vehicle speed during non-working before and after the work machine 3 reaches the non-working height. The tractor 1 travels in the non-working area 62 along the connection path P2 at a speed set as a vehicle speed during non-working in a state where the work machine 3 does not perform work.
 このように、本実施形態では、作業機制御部34が作業機3を昇降させるタイミングを爪軸位置に基づいて指令出力部33が制御することによって、それぞれの自律作業路P1において作業機3によって(所定の耕耘深さで)実際に耕耘される区間の端を、複数の自律作業路P1の間で揃えることができる。その結果、見栄えの良い仕上がりを実現することができる。 As described above, in this embodiment, the command output unit 33 controls the timing at which the work machine control unit 34 raises and lowers the work machine 3 based on the claw shaft position, so that the work machine 3 performs the operation on each autonomous work path P1. The ends of the sections actually cultivated (with a predetermined tilling depth) can be aligned between the plurality of autonomous work paths P1. As a result, a good-looking finish can be realized.
 次に、非作業領域から作業領域に移動する過程で車速の設定値が変更される場合の作業機3の昇降制御について説明する。 Next, raising / lowering control of the work machine 3 when the set value of the vehicle speed is changed in the process of moving from the non-working area to the working area will be described.
 図7(a)には作業指令を出力するタイミングが示されているが、前述したとおり、当該タイミングは、それより前の適宜の時点(例えば符号Txで示す時点)で、その時点Txでの非作業時及び作業時の車速の設定値に基づいて、指令出力部33によって計算される。 FIG. 7A shows the timing at which the work command is output. As described above, the timing is an appropriate time point before that (for example, the time point indicated by Tx) at the time point Tx. It is calculated by the command output unit 33 based on the set value of the vehicle speed during non-working and working.
 しかし、作業指令を出力するタイミングがTxの時点で計算された後、当該タイミングが訪れる前に、ユーザが速度回転数設定変更ダイアル14を操作して、非作業時の車速及び作業時の車速のうち少なくとも何れかの設定を変更する指示が行われたとする。ここで、トラクタ1が非作業領域から作業領域へ移動する場合、図7(f)に示すように、トラクタ1は、切換目標位置に爪軸位置が到達する前から、非作業時の車速から作業時の車速に変化し始め、切換目標位置に爪軸位置が到達するまでにトラクタ1の車速が作業時の車速になっているように制御される。従って、ユーザの指示どおり仮に非作業時の車速又は作業時の車速を変更すると、図7(e)に示す切換目標位置に爪軸位置が到達するタイミングが、Txの時点で推定していたタイミングから変化する。 However, after the timing at which the work command is output is calculated at time Tx, before the timing comes, the user operates the speed rotation speed setting change dial 14 to change the vehicle speed during non-work and the vehicle speed during work. It is assumed that an instruction to change at least one of the settings is given. Here, when the tractor 1 moves from the non-working area to the working area, as shown in FIG. 7 (f), the tractor 1 starts from the vehicle speed during non-working before the claw shaft position reaches the switching target position. The vehicle speed of the tractor 1 is controlled so as to be the vehicle speed at the time of operation until the change to the vehicle speed at the time of operation and the position of the pawl shaft reaches the switching target position. Therefore, if the vehicle speed during non-working or the vehicle speed during work is changed as instructed by the user, the timing at which the claw axis position arrives at the switching target position shown in FIG. Change from.
 切換目標位置に爪軸位置が到達するタイミングが前倒しになるか、後ろ倒しになるかは、ユーザの車速変更の指示の内容に応じて異なる。非作業時の車速及び作業時の車速のうち少なくとも何れかが増加されれば、上記のタイミングは、前倒しになる可能性が高い。 The timing at which the claw axis position reaches the switching target position is either forward or backward depending on the content of the user's instruction to change the vehicle speed. If at least one of the vehicle speed during non-working and the vehicle speed during work is increased, the above timing is likely to be advanced.
 切換目標位置に爪軸位置が到達するタイミングが後ろ倒しに変化する場合、その分だけ作業指令を遅らせれば良い。上記のタイミングが前倒しに変化する場合も、時間的な余裕で吸収できるのであれば、その分だけ作業指令を早めれば良い。 If the timing at which the claw axis position reaches the switching target position changes backward, the work command should be delayed by that amount. Even when the above timing changes ahead, if the work can be absorbed with sufficient time, the work command may be advanced by that amount.
 しかしながら、上記のタイミングが前倒しになって、かつ、時間的な余裕が不足する場合も考えられる。この場合、制御としては2通り考えられる。第1は、作業機3が作業状態になるタイミングの遅れを容認するが、遅れをできるだけ小さくするため、即座に作業指令を出力するというものである。この場合、車速変更操作の応答性を確保するとともに、見栄えの低下を抑制することができる。第2は、非作業時の車速又は作業時の車速の設定値の変更をユーザの操作にかかわらず保留し、今回行われる作業状態への切換については変更前の設定値で車速を制御して、作業指令はタイミングを変更することなく出力して、切換目標位置に爪軸位置が到達した後に車速の設定値を実際に変更するというものである。この場合、作業の見栄えを良好にすることができる。また、ユーザの指示とは異なる暫定的な車速となるように一時的に制御した上で、作業機3が作業状態になるタイミングが間に合うように、作業指令のタイミングを変更しても良い。 However, there may be a case where the above timing is advanced and the time margin is insufficient. In this case, two types of control can be considered. The first is to accept a delay in timing when the work machine 3 enters the working state, but to immediately output a work command in order to minimize the delay. In this case, it is possible to secure the responsiveness of the vehicle speed changing operation and to suppress the deterioration of the appearance. Second, the change in the set value of the vehicle speed during non-working or the vehicle speed during work is suspended regardless of the user's operation, and the vehicle speed is controlled by the set value before the change for switching to the work state performed this time. The work command is output without changing the timing, and the set value of the vehicle speed is actually changed after the claw shaft position reaches the switching target position. In this case, the appearance of the work can be improved. In addition, the timing of the work command may be changed so that the timing at which the work machine 3 enters the working state is in time after temporarily controlling the vehicle speed to be a temporary vehicle different from the user's instruction.
 次に、作業領域から非作業領域に移動する過程でユーザの操作により車速の設定値が変更される場合の制御について説明する。 Next, control when the set value of the vehicle speed is changed by a user operation in the process of moving from the work area to the non-work area will be described.
 図8(a)には非作業指令を出力するタイミングが示されているが、前述したとおり、当該タイミングは、それより前の適宜の時点(例えば符号Txで示す時点)で、その時点Txでの作業時の車速の設定値に基づいて、指令出力部33によって計算される。 FIG. 8A shows the timing of outputting the non-work command. As described above, this timing is an appropriate time point before that (for example, the time point indicated by Tx) at the time point Tx. The command output unit 33 calculates the vehicle speed based on the set value of the vehicle speed during the operation.
 しかし、非作業指令を出力するタイミングがTxの時点で計算された後、当該タイミングが訪れる前に、ユーザが速度回転数設定変更ダイアル14を操作して、作業時の車速及び非作業時の車速のうち少なくとも何れかの設定を変更する指示が行われたとする。ここで、トラクタ1が作業領域から非作業領域へ移動する場合、図8(f)に示すように、トラクタ1は、切換目標位置に爪軸位置が到達する前は作業時の車速で走行し、切換目標位置に爪軸位置が到達した少し後のタイミングで、トラクタ1の車速が非作業時の車速になるように切り換えられる。従って、非作業時の車速の設定が変更された場合は、図8(e)に示す切換目標位置に爪軸位置が到達するタイミングに変化はないが、作業時の車速の設定が変更された場合は、仮にユーザの指示どおり変更すると、切換目標位置に爪軸位置が到達するタイミングが、Txの時点で推定していたタイミングから変化する。 However, after the timing at which the non-work command is output is calculated at the time Tx, before the time arrives, the user operates the speed rotation speed setting change dial 14 so that the vehicle speed during work and the vehicle speed during non-work Assume that an instruction to change at least one of the settings is issued. Here, when the tractor 1 moves from the work area to the non-work area, as shown in FIG. 8 (f), the tractor 1 travels at the vehicle speed during work before the pawl shaft position reaches the switching target position. The tractor 1 is switched so that the vehicle speed of the tractor 1 becomes the vehicle speed during non-working at a timing slightly after the claw shaft position reaches the switching target position. Therefore, when the setting of the vehicle speed during non-working is changed, there is no change in the timing at which the claw shaft position reaches the switching target position shown in FIG. 8 (e), but the setting of the vehicle speed during working is changed. In this case, if it is changed as instructed by the user, the timing at which the claw axis position reaches the switching target position changes from the timing estimated at the time of Tx.
 切換目標位置に爪軸位置が到達するタイミングが前倒しになるか、後ろ倒しになるかは、ユーザの車速変更の指示の内容に応じて異なる。作業時の車速が増加されれば、上記のタイミングは前倒しになり、減少されれば、タイミングは後ろ倒しになる。 The timing at which the claw axis position reaches the switching target position is either forward or backward depending on the content of the user's instruction to change the vehicle speed. If the vehicle speed at the time of work is increased, the above timing is brought forward, and if it is reduced, the timing is pushed backward.
 切換目標位置に爪軸位置が到達するタイミングが後ろ倒しに変化する場合、その分だけ非作業指令を遅らせれば良い。上記のタイミングが前倒しに変化する場合も、時間的な余裕で吸収できるのであれば、その分だけ非作業指令を早めれば良い。 When the timing at which the claw axis position reaches the switching target position changes backward, the non-work command may be delayed by that amount. Even when the above-mentioned timing changes ahead of time, if it can be absorbed with a time margin, the non-work command may be advanced by that amount.
 しかしながら、上記のタイミングが前倒しになって、かつ、時間的な余裕が不足する場合も考えられる。この場合の制御としては、上述の作業指令の場合と同様に、2通り考えられる。第1は、作業機3が非作業状態になるタイミングの遅れを容認するが、遅れをできるだけ小さくするため、即座に非作業指令を出力するというものである。この場合、車速変更操作の応答性を確保するとともに、見栄えの低下を抑制することができる。第2は、作業時の車速の設定値の変更をユーザの操作にかかわらず保留し、今回行われる非作業状態への切換については変更前の設定値で車速を制御し、非作業指令はタイミングを変更することなく出力して、切換目標位置に爪軸位置が到達した後に車速の設定値を実際に変更するというものである。この場合、作業の見栄えを良好にすることができる。また、ユーザの指示とは異なる暫定的な車速となるように一時的に制御した上で、作業機3が非作業状態になるタイミングが間に合うように、非作業指令のタイミングを変更しても良い。 However, there may be a case where the above timing is advanced and the time margin is insufficient. As control in this case, two kinds of control are conceivable as in the case of the above-described work command. The first is to accept a delay in timing when the work machine 3 enters a non-working state, but to immediately output a non-working command in order to minimize the delay. In this case, it is possible to secure the responsiveness of the vehicle speed changing operation and to suppress the deterioration of the appearance. Second, the change of the set value of the vehicle speed at the time of work is suspended regardless of the user's operation, and the vehicle speed is controlled by the set value before the change for the switching to the non-work state performed this time. Is output without changing, and the set value of the vehicle speed is actually changed after the pawl shaft position reaches the switching target position. In this case, the appearance of the work can be improved. Further, after temporarily controlling the vehicle speed to be a provisional vehicle speed different from the user's instruction, the timing of the non-work command may be changed so that the timing when the work machine 3 enters the non-work state is in time. .
 なお、図7及び図8に示すような制御は、本実施形態で用いられたロータリ耕耘機のように、PTO軸を介した耕耘爪25の回転駆動が必要であるとともに、作業機3の昇降制御が必要な場合に適用されるものである。作業機の中には、作業体の駆動が不要であったり、昇降制御が不要な構成もあるので、本実施形態のトラクタ1においては、自律走行・自律作業を開始する前に作業機の種類をユーザに(例えばモニタ装置70又は後述の無線通信端末81に)入力させ、必要な場合にのみ、図7及び図8に示すようなPTO制御及び昇降制御を行うように構成されている。 Note that the control shown in FIGS. 7 and 8 requires the rotational driving of the tilling claws 25 via the PTO shaft as in the rotary tiller used in the present embodiment, and the lifting and lowering of the working machine 3. This is applied when control is required. Some work machines do not require driving of the work body or do not require lifting control. Therefore, in the tractor 1 according to the present embodiment, the type of the work machine is set before the autonomous running / autonomous work is started. Is input to the user (for example, to the monitor device 70 or the wireless communication terminal 81 described later), and the PTO control and the elevation control as shown in FIGS. 7 and 8 are performed only when necessary.
 即ち、所定の作業機において、当該作業機が備える作業体により作業が行われない非作業状態から、作業体により作業が行われる作業状態に切り換えるタイミング(上述した作業指令を出力するタイミング)は、作業体の作業中心位置が切換目標位置に至るまでの時間が、当該作業指令が出力されてから現に作業状態への切換が開始されるまでの切換準備時間(上述した待機時間TW1に相当する時間)、及び、作業状態への切換が開始されてから切換が完了する(即ち作業状態となる)までの切換所要時間(上述した下降必要時間TR1)の合計時間と略等しくなるタイミングに制御される。一方、作業体により作業が行われる作業状態から作業体により作業が行われない非作業状態に切り換えるタイミング(上述した非作業指令を出力するタイミング)は、作業体の作業中心位置が切換目標位置に至るまでの時間が、当該作業指令が出力されてから現に非作業状態への切換が開始されるまでの切換準備時間(上述した待機時間TW2と遅延時間TDの合計に相当する時間)と略等しくなるタイミングに制御される。 That is, in a predetermined work machine, the timing for switching from the non-working state in which work is not performed by the work body included in the work machine to the work state in which work is performed by the work body (timing for outputting the above-described work command) is The time until the work center position of the work body reaches the switching target position is the switching preparation time (the time corresponding to the above-described waiting time TW1) from when the work command is output until the actual switching to the working state is started. ), And a timing substantially equal to the total time required for switching from the start of switching to the working state to the completion of switching (that is, to the working state) (the above-described descent required time TR1). . On the other hand, at the timing of switching from the working state in which the work is performed to the non-working state in which the work is not performed (timing for outputting the above-described non-work command), the work center position of the work body is the switching target position. Is approximately equal to the switching preparation time (the time corresponding to the sum of the waiting time TW2 and the delay time TD described above) from when the work command is output to when the switching to the non-working state is actually started. The timing is controlled.
 次に、ユーザがトラクタ1に搭乗した状態で自律走行・自律作業を行っている途中に、ユーザが図3の作業機昇降スイッチ28を操作した場合の制御について説明する。図9は、作業機制御部34で行われる処理を説明するフローチャートである。 Next, the control when the user operates the work implement lift switch 28 in FIG. 3 while the user is performing autonomous running / autonomous work while riding on the tractor 1 will be described. FIG. 9 is a flowchart for explaining processing performed by the work machine control unit 34.
 作業機制御部34は、前述の指令出力部33から作業指令又は非作業指令が入力されるのを監視するのと同時に、作業機昇降スイッチ28が操作されたことに伴って作業機制御部34に入力される制御信号(操作部指令としての昇降指令)についても監視している。そして、指令出力部33からの作業指令又は非作業指令と、作業機昇降スイッチ28の操作に基づく昇降指令と、が競合する場合、オペレータの意思に反した制御を防止するために、作業機制御部34は昇降指令を常に優先して昇降アクチュエータ44等を制御する。 The work machine control unit 34 monitors the input of a work command or a non-work command from the command output unit 33 described above, and at the same time, the work machine control unit 34 is operated in response to the operation of the work machine lift switch 28. Is also monitored for a control signal (elevating command as an operation unit command). When the work command or non-work command from the command output unit 33 and the lift command based on the operation of the work implement lift switch 28 conflict, the work implement control is performed in order to prevent control contrary to the operator's intention. The unit 34 always gives priority to the lifting command to control the lifting actuator 44 and the like.
 図9のフローチャートに従って説明すると、作業機制御部34は、最初に、指令出力部33が出力する作業指令又は非作業指令が入力されているか否かを判定する(ステップS101)。 9, the work implement control unit 34 first determines whether or not a work command or a non-work command output from the command output unit 33 is input (step S101).
 ステップS101の判断で、作業指令又は非作業指令が入力されている場合、作業機制御部34は更に、作業機昇降スイッチ28の操作に伴う昇降指令が入力されているか否かを判定する(ステップS102)。 If a work command or a non-work command is input in the determination in step S101, the work implement control unit 34 further determines whether a lift command associated with the operation of the work implement lift switch 28 is input (step S101). S102).
 ステップS102の判断で、昇降指令が入力されていた場合は、作業機制御部34は、作業指令又は非作業指令ではなく、昇降指令に従って、作業機3を昇降させる制御を行う(ステップS103)。即ち、作業機制御部34は作業指令又は非作業指令よりも昇降指令を優先し、昇降指令に基づいて作業機3の昇降制御を行うことになる。その後、処理がステップS101に戻る。 If it is determined in step S102 that an elevation command has been input, the work implement control unit 34 performs control to raise or lower the work implement 3 according to the elevation command, not the work command or the non-work command (step S103). That is, the work machine control unit 34 gives priority to the lift command over the work command or the non-work command, and performs the lift control of the work machine 3 based on the lift command. Thereafter, the process returns to step S101.
 ステップS102の判断で、昇降指令が入力されていなかった場合は、作業機制御部34は、入力された作業指令又は非作業指令に従って、作業機3を昇降させる制御を行う(ステップS104)。その後、処理がステップS101に戻る。 If it is determined in step S102 that the elevation command has not been input, the work implement control unit 34 performs control to raise or lower the work implement 3 in accordance with the input work command or non-work command (step S104). Thereafter, the process returns to step S101.
 ステップS101の判断で、作業指令又は非作業指令が入力されていなかった場合、作業機制御部34は、作業機昇降スイッチ28の操作に基づく昇降指令が入力されているか否かを判定する(ステップS105)。 If it is determined in step S101 that no work command or non-work command has been input, the work machine control unit 34 determines whether a lift command based on the operation of the work machine lift switch 28 is input (step S101). S105).
 ステップS105の判断で、昇降指令が入力されていた場合は、作業機制御部34は、当該昇降指令に従って作業機3を昇降させる制御を行う(ステップS103)。その後、処理がステップS101に戻る。昇降指令が入力されていなかった場合は、ステップS103の処理は行われず、処理がステップS101に戻る。 If it is determined in step S105 that an elevation command has been input, the work implement control unit 34 performs control to raise or lower the work implement 3 in accordance with the elevation command (step S103). Thereafter, the process returns to step S101. If the elevation command has not been input, the process of step S103 is not performed, and the process returns to step S101.
 以上の処理を行うことにより、例えば、指令出力部33から作業機制御部34に作業指令が入力された場合でも、その時点でユーザが作業機昇降スイッチ28を上昇側に操作していた場合は、図7(d)のように作業機3を下降する制御は行われず、作業機3は非作業高さを維持することになる。 By performing the above processing, for example, even when a work command is input from the command output unit 33 to the work implement control unit 34, if the user has operated the work implement lift switch 28 to the up side at that time, The control for lowering the work machine 3 as shown in FIG. 7D is not performed, and the work machine 3 maintains the non-working height.
 また、例えば、指令出力部33から作業機制御部34に非作業指令が入力され、それに応じて図8(d)のように作業機3の上昇を開始したものの、その上昇の途中でユーザが作業機昇降スイッチ28を下降側に操作した場合は、上昇制御は中止され、作業機制御部34は直ちに作業機3の下降制御を行う。 In addition, for example, a non-work command is input from the command output unit 33 to the work machine control unit 34, and the work machine 3 starts to rise as shown in FIG. When the work implement raising / lowering switch 28 is operated to the lowering side, the ascent control is stopped and the work implement control unit 34 immediately performs the lowering control of the work implement 3.
 このような構成により、本実施形態のトラクタ1は、原則的には自律走行・自律作業を行いつつ、ユーザの意思に沿った形で作業機3の作業状態及び非作業状態の切換を行うことができる。 With such a configuration, the tractor 1 according to the present embodiment performs switching between the working state and the non-working state of the work machine 3 in a manner in accordance with the user's intention while performing autonomous running / autonomous work in principle. Can do.
 なお、ステップS103で説明したように、指令出力部33が出力した作業指令又は非作業指令ではなく、作業機昇降スイッチ28の操作に基づく昇降指令に基づいて作業機3を昇降制御した場合は、例えば、モニタ装置70が備えるディスプレイ(表示部)にその旨のメッセージを表示したり、ランプ又はブザーを用いる等して、ユーザにその旨を報知しても良い。 As described in step S103, when the work implement 3 is controlled to be lifted / lowered based on the lift / lower command based on the operation of the work implement lift switch 28 instead of the work command or the non-work command output by the command output unit 33, For example, a message to that effect may be displayed on a display (display unit) included in the monitor device 70 or a lamp or a buzzer may be used to notify the user of that fact.
 次に、ユーザがトラクタ1に搭乗しない状態で自律走行・自律作業を行う場合について説明する。図10は、ユーザがトラクタ1に搭乗しない状態で自律走行・自律作業を行う場合に使用される無線通信端末81を示す図である。図11は、無線通信端末81のディスプレイ83における自律走行監視画面100の表示例を示す図である。 Next, a case where the user performs autonomous traveling / autonomous work without riding on the tractor 1 will be described. FIG. 10 is a diagram showing a wireless communication terminal 81 used when the user performs autonomous traveling / autonomous work without riding on the tractor 1. FIG. 11 is a diagram illustrating a display example of the autonomous traveling monitoring screen 100 on the display 83 of the wireless communication terminal 81.
 上述したとおり、トラクタ1が備える自律走行制御部32は、ユーザが搭乗した状態で自律走行・自律作業を行う有人自律走行モードと、ユーザが搭乗しない状態で自律走行・自律作業を行う無人自律走行モードと、の間で切り換えて、自律走行を行うことができる。このモードの切換は、ユーザが例えばモニタ装置70を操作することで行うことができる。 As described above, the autonomous traveling control unit 32 included in the tractor 1 includes the manned autonomous traveling mode in which autonomous traveling / autonomous work is performed while the user is on board, and the unmanned autonomous traveling in which autonomous traveling / autonomous work is performed without the user being on board. Switching between modes can be performed autonomously. This mode can be switched by the user operating the monitor device 70, for example.
 有人自律走行モードでのトラクタ1の自律走行・自律作業は、図3に示す着座センサ13aがユーザの着座を検出しないと、開始することができない。一方、無人自律走行モードでのトラクタ1の自律走行・自律作業は、着座センサ13aがユーザの着座を検出した場合は、開始することができない。ただし、無人自律走行モードにおいて、着座センサ13aがユーザの着座を検出した状態でも自律走行・自律作業を開始できるように構成してもよい。 The autonomous traveling / autonomous work of the tractor 1 in the manned autonomous traveling mode cannot be started unless the seating sensor 13a shown in FIG. 3 detects the seating of the user. On the other hand, the autonomous traveling / autonomous work of the tractor 1 in the unmanned autonomous traveling mode cannot be started when the seating sensor 13a detects the seating of the user. However, in the unmanned autonomous traveling mode, it may be configured such that autonomous traveling / autonomous work can be started even when the seating sensor 13a detects the seating of the user.
 なお、有人自律走行モードでトラクタ1が自律走行・自律作業を行っているときに、搭乗するユーザが図3の主変速レバー27を操作した場合、自律走行制御部32による制御は終了するが、走行機体2は停止されず、そのまま手動走行・手動作業に移行することができる。 When the occupant operates the main speed change lever 27 in FIG. 3 while the tractor 1 is performing autonomous traveling / autonomous work in the manned autonomous traveling mode, the control by the autonomous traveling control unit 32 ends. The traveling machine body 2 is not stopped and can be shifted to manual traveling / manual operation as it is.
 一方、無人自律走行モードでトラクタ1が自律走行・自律作業を行っているときは、トラクタ1に備えられる上述の操作装置が使用されることは想定されていない。従って、無人自律走行モードでは、図3に示す速度回転数設定変更ダイアル14等の操作は無効化される。また、無人自律走行モードでトラクタ1が自律走行・自律作業を行っているときに、主変速レバー27が操作された場合は、自律走行制御部32による制御が終了し、これに伴ってトラクタ1が直ちに停止される。ユーザは、走行機体2が停止した状態から手動走行・手動作業に移行することになる。 On the other hand, when the tractor 1 is performing autonomous traveling / autonomous work in the unmanned autonomous traveling mode, it is not assumed that the above-described operation device provided in the tractor 1 is used. Therefore, in the unmanned autonomous traveling mode, the operation of the speed rotation speed setting change dial 14 shown in FIG. 3 is invalidated. In addition, when the main shift lever 27 is operated while the tractor 1 is performing autonomous traveling / autonomous work in the unmanned autonomous traveling mode, the control by the autonomous traveling control unit 32 ends, and accordingly, the tractor 1 Is immediately stopped. The user shifts from the state where the traveling machine body 2 is stopped to manual traveling / manual operation.
 また、無人自律走行モードでトラクタ1が自律走行・自律作業を行っているときに、ユーザによって作業機昇降スイッチ28が操作された場合も、自律走行制御部32による制御が終了し、これに伴ってトラクタ1が直ちに停止される。このとき、後述の無線通信端末81において、自律走行を停止した旨がメッセージの表示等により報知される。加えて、トラクタ1において、例えばモニタ装置70を用いて報知が行われても良い。その後、ユーザは、走行機体2が停止した状態から、所定の操作を行うことにより、手動走行・手動作業に移行する必要がある。 In addition, when the tractor 1 is performing autonomous traveling / autonomous work in the unmanned autonomous traveling mode, when the work implement lifting switch 28 is operated by the user, the control by the autonomous traveling control unit 32 is terminated. Thus, the tractor 1 is immediately stopped. At this time, in the radio communication terminal 81 described later, the fact that the autonomous running is stopped is notified by displaying a message or the like. In addition, in the tractor 1, notification may be performed using the monitor device 70, for example. Thereafter, the user needs to shift to manual travel / manual work by performing a predetermined operation from the state in which the traveling machine body 2 is stopped.
 無人自律走行モードでトラクタ1に自律走行・自律作業を行わせる場合、ユーザは、図10に示す無線通信端末(無線通信装置)81を遠隔操作装置として用いて、トラクタ1に対して外部から指示を行う。 When the tractor 1 performs autonomous traveling / autonomous work in the unmanned autonomous traveling mode, the user uses the wireless communication terminal (wireless communication device) 81 shown in FIG. 10 as a remote control device to instruct the tractor 1 from the outside. I do.
 無線通信端末81は、図10に示すように、タッチパネル82を備えるタブレット型のコンピュータとして構成される。ユーザは、無線通信端末81のディスプレイ(表示部)83に表示された情報を参照して確認することができる。また、ユーザは、上記のタッチパネル82、又はディスプレイ83の近傍に配置されたハードウェアキー84等を操作して、トラクタ1の制御部4に、トラクタ1を制御するための制御信号を送信することができる。ここで、無線通信端末81が制御部4に出力する制御信号としては、自律走行・自律作業の経路に関する信号や自律走行・自律作業の開始信号、停止信号が考えられるが、これに限定されない。 The wireless communication terminal 81 is configured as a tablet computer having a touch panel 82 as shown in FIG. The user can confirm by referring to information displayed on the display (display unit) 83 of the wireless communication terminal 81. In addition, the user operates the hardware key 84 or the like disposed in the vicinity of the touch panel 82 or the display 83 to transmit a control signal for controlling the tractor 1 to the control unit 4 of the tractor 1. Can do. Here, as the control signal output from the wireless communication terminal 81 to the control unit 4, a signal related to an autonomous traveling / autonomous work route, an autonomous traveling / autonomous work start signal, and a stop signal may be considered, but the control signal is not limited thereto.
 なお、無線通信端末81はタブレット型のコンピュータに限るものではなく、これに代えて、例えばノート型のコンピュータで構成することも可能である。また、自律走行経路Pの生成機能を、トラクタ1でなく無線通信端末81が有するように構成しても良い。 Note that the wireless communication terminal 81 is not limited to a tablet computer, and may be configured with, for example, a notebook computer instead. Moreover, you may comprise so that not the tractor 1 but the radio | wireless communication terminal 81 may have the production | generation function of the autonomous running route P. FIG.
 次に、トラクタ1が自律走行・自律作業を行うにあたって無線通信端末81に表示される画面について、図11を参照して説明する。 Next, a screen displayed on the wireless communication terminal 81 when the tractor 1 performs autonomous traveling and autonomous work will be described with reference to FIG.
 自律走行制御部32が無人自律走行モードとなっている状態で、トラクタ1の自律走行・自律作業が開始されると、ディスプレイ83の表示画面が図11に示す自律走行監視画面100に切り換わる。 When the autonomous traveling control unit 32 is in the unmanned autonomous traveling mode and the autonomous traveling / autonomous operation of the tractor 1 is started, the display screen of the display 83 is switched to the autonomous traveling monitoring screen 100 shown in FIG.
 自律走行監視画面100の右側には、トラクタ1が走行している自律走行経路を含む画像データを表示する走行状態表示部103が配置されている。走行状態表示部103に表示される画像データは、例えば図11に示すように、地図データに、圃場の形状と、作業領域の形状と、を重ね合わせて表示し、その上にトラクタ1の走行軌跡をハッチングで示したものとすることができる。 On the right side of the autonomous traveling monitoring screen 100, a traveling state display unit 103 that displays image data including an autonomous traveling route on which the tractor 1 is traveling is disposed. For example, as shown in FIG. 11, the image data displayed on the traveling state display unit 103 displays the shape of the farm field and the shape of the work area superimposed on the map data, and the traveling of the tractor 1 thereon. The locus can be indicated by hatching.
 自律走行監視画面100の上側の一番左には、自律走行を開始したり、一時停止したりするための開始/一時停止ボタン105が表示されている。ユーザがトラクタ1を自律走行の開始位置まで手動で移動させて開始/一時停止ボタン105に触れることにより、自律走行を開始する旨を指示する制御信号が無線通信端末81からトラクタ1の制御部4に送信されて、トラクタ1の自律走行を開始することができる。また、トラクタ1が自律走行を行っている状態で開始/一時停止ボタン105に触れることにより、トラクタ1の自律走行を一時停止したり、再開したりすることができる。 A start / pause button 105 for starting or pausing autonomous running is displayed on the leftmost side on the upper side of the autonomous running monitoring screen 100. When the user manually moves the tractor 1 to the starting position of autonomous driving and touches the start / pause button 105, a control signal instructing to start autonomous driving is transmitted from the wireless communication terminal 81 to the control unit 4 of the tractor 1. To start autonomous traveling of the tractor 1. Further, by touching the start / pause button 105 while the tractor 1 is traveling autonomously, the autonomous traveling of the tractor 1 can be paused or resumed.
 自律走行監視画面100において、開始/一時停止ボタン105の右側には、車速表示部106と、エンジン回転数表示部107と、ヒッチ高さ調整部(操作部)108と、が上下に並べて配置されている。 On the autonomous travel monitoring screen 100, on the right side of the start / pause button 105, a vehicle speed display unit 106, an engine speed display unit 107, and a hitch height adjustment unit (operation unit) 108 are arranged vertically. ing.
 車速表示部106には、図略の車速センサから送信されてきたデータに基づいて取得された、トラクタ1の現在の車速が表示される。 The vehicle speed display unit 106 displays the current vehicle speed of the tractor 1 acquired based on data transmitted from a vehicle speed sensor (not shown).
 エンジン回転数表示部107には、図略のエンジン回転数センサから送られてきたデータに基づいて取得された、エンジン10の現在の回転数が表示される。 The engine speed display unit 107 displays the current speed of the engine 10 acquired based on data sent from an unillustrated engine speed sensor.
 ヒッチ高さ調整部108には、上述の作業機高さセンサから送られてきたデータに基づいて取得された、作業機3の高さが数値で表示されている。表示されている数値の右側には上下のボタンが配置されており、このボタンを操作することで、作業機3を昇降する指示を行うことができる。ヒッチ高さ調整部108に対する操作により、無線通信端末81は昇降指令をトラクタ1に対して出力する。 The hitch height adjusting unit 108 displays the numerical value of the height of the work implement 3 acquired based on the data sent from the above work implement height sensor. Up and down buttons are arranged on the right side of the displayed numerical value. By operating these buttons, an instruction to raise and lower the work machine 3 can be given. By operating the hitch height adjusting unit 108, the wireless communication terminal 81 outputs an elevation command to the tractor 1.
 車速表示部106及びエンジン回転数表示部107の右側には、上述の作業状態と非作業状態のそれぞれについて、トラクタ1の車速及びエンジン回転数の設定を調整可能な設定調整部が配置されている。 On the right side of the vehicle speed display unit 106 and the engine speed display unit 107, a setting adjustment unit that can adjust the setting of the vehicle speed and the engine speed of the tractor 1 for each of the above-described working state and non-working state is arranged. .
 具体的に説明すると、車速表示部106及びエンジン回転数表示部107の右側には、作業時車速調整部(車速設定部)111と、作業時エンジン回転数調整部112と、非作業時車速調整部(車速設定部)113と、非作業時エンジン回転数調整部114と、が配置されている。 More specifically, on the right side of the vehicle speed display unit 106 and the engine speed display unit 107, a working vehicle speed adjusting unit (vehicle speed setting unit) 111, a working engine speed adjusting unit 112, and a non-working vehicle speed adjustment. Part (vehicle speed setting part) 113 and non-working engine speed adjusting part 114 are arranged.
 作業時車速調整部111には、作業機3が作業状態であるときのトラクタ1の車速(作業時の車速)の設定値が数字で表示されている。作業時エンジン回転数調整部112には、作業機3が作業状態であるときのエンジン10の回転数の設定値が数字で表示されている。作業時車速調整部111及び作業時エンジン回転数調整部112の何れにおいても、表示される設定値の右側には上下のボタンが配置されており、このボタンを操作することで、設定値を増減することができる。 The set value of the vehicle speed (vehicle speed at work) of the tractor 1 when the work implement 3 is in the working state is displayed in the work vehicle speed adjustment unit 111 as a number. In the engine speed adjusting unit 112 at the time of operation, a setting value of the engine speed when the work implement 3 is in a working state is displayed in numerals. In both the working vehicle speed adjusting unit 111 and the working engine speed adjusting unit 112, up and down buttons are arranged on the right side of the displayed set value. By operating these buttons, the set value is increased or decreased. can do.
 非作業時車速調整部113には、作業機3が非作業状態であるときのトラクタ1の車速(非作業時の車速)の設定値が数字で表示されている。非作業時エンジン回転数調整部114には、作業機3が非作業状態であるときのエンジン10の回転数の設定値が数字で表示されている。非作業時車速調整部113及び非作業時エンジン回転数調整部114においても、作業時車速調整部111及び作業時エンジン回転数調整部112と同様に、数値の横の上下のボタンを操作することで設定値を増減することができる。 The set value of the vehicle speed of the tractor 1 (vehicle speed during non-working) when the work implement 3 is in a non-working state is displayed in the non-working vehicle speed adjustment unit 113 as a number. The non-working engine speed adjustment unit 114 displays a numerical value of the set value of the speed of the engine 10 when the work machine 3 is in a non-working state. In the non-working vehicle speed adjusting unit 113 and the non-working engine speed adjusting unit 114, as with the working vehicle speed adjusting unit 111 and the working engine speed adjusting unit 112, the upper and lower buttons next to the numerical values are operated. The setting value can be increased or decreased with.
 この無人自律走行モードにおいて、作業時車速調整部111及び非作業時車速調整部113は、トラクタ1に設けられる速度回転数設定変更ダイアル14と同様の機能を有し、ヒッチ高さ調整部108は、トラクタ1に設けられる作業機昇降スイッチ28と同様の機能を有する。 In this unmanned autonomous traveling mode, the working vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113 have the same functions as the speed rotation speed setting change dial 14 provided in the tractor 1, and the hitch height adjusting unit 108 is The working machine lift switch 28 provided in the tractor 1 has the same function.
 無人自律走行モードにおいても、作業指令又は非作業指令の出力タイミングは、上述の有人自律走行モードと実質的に同様に制御される。また、無人自律走行モードにおいて、指令出力部33が出力する作業指令又は非作業指令と、ヒッチ高さ調整部108の操作に基づいて出力される昇降指令と、が競合した場合は、有人自律走行モードと同様に昇降指令が優先されることになる。ただし、ユーザはトラクタ1に搭乗していないので、上記で説明した各種のメッセージは、原則として、モニタ装置70ではなく無線通信端末81のディスプレイに表示される。 Also in the unmanned autonomous traveling mode, the output timing of the work command or the non-working command is controlled in substantially the same manner as the above-described manned autonomous traveling mode. In the unmanned autonomous travel mode, if the work command or non-work command output by the command output unit 33 and the elevation command output based on the operation of the hitch height adjustment unit 108 conflict, As with the mode, the elevation command is given priority. However, since the user is not on the tractor 1, the various messages described above are displayed on the display of the wireless communication terminal 81 instead of the monitor device 70 in principle.
 以上に説明したように、本実施形態のトラクタ1は、走行機体2と、指令出力部33と、作業機制御部34と、車速制御部35と、作業マージン距離記憶部54と、残存距離取得部37と、を備える。走行機体2は、作業機3を装着可能である。指令出力部33は、作業機3を作業状態に制御する作業指令及び作業機3を非作業状態に制御する非作業指令を出力する。作業機制御部34は、作業指令又は前記非作業指令に応じて作業機3の作業状態を制御する。車速制御部35は、トラクタ1の車速を切換制御可能である。作業マージン距離記憶部54は、マージン距離Mを設定することにより、作業機制御部34による作業機3の作業状態の切換制御が実行される切換目標位置を設定する。残存距離取得部37は、作業機3の爪軸位置から切換目標位置までの距離である残存距離を取得する。車速制御部35は、非作業指令に応じてトラクタ1の車速を作業時の車速から非作業時の車速に切り換えるとともに、作業指令に応じてトラクタ1の車速を非作業時の車速から作業時の車速に切り換える。指令出力部33は、図8に示すように非作業指令を出力する場合は、作業時の車速と残存距離とに基づいて当該非作業指令の出力タイミングを制御する。指令出力部33は、図7に示すように作業指令を出力する場合は、非作業時の車速と、当該非作業時の車速から作業時の車速への速度変化率と、残存距離と、に基づいて、作業指令の出力タイミングを制御する。 As described above, the tractor 1 according to this embodiment includes the traveling machine body 2, the command output unit 33, the work machine control unit 34, the vehicle speed control unit 35, the work margin distance storage unit 54, and the remaining distance acquisition. Unit 37. The traveling machine body 2 can be mounted with the work machine 3. The command output unit 33 outputs a work command for controlling the work machine 3 to a working state and a non-work command for controlling the work machine 3 to a non-working state. The work machine control unit 34 controls the work state of the work machine 3 according to the work command or the non-work command. The vehicle speed control unit 35 can switch and control the vehicle speed of the tractor 1. By setting the margin distance M, the work margin distance storage unit 54 sets a switching target position at which the switching of the work state of the work machine 3 by the work machine control unit 34 is executed. The remaining distance acquisition unit 37 acquires a remaining distance that is a distance from the claw axis position of the work machine 3 to the switching target position. The vehicle speed control unit 35 switches the vehicle speed of the tractor 1 from the vehicle speed at the time of working to the vehicle speed at the time of non-working according to the non-work command, and changes the vehicle speed of the tractor 1 from the vehicle speed at the time of non-working to the time of working. Switch to vehicle speed. When outputting a non-work command as shown in FIG. 8, the command output unit 33 controls the output timing of the non-work command based on the vehicle speed and the remaining distance during work. When the command output unit 33 outputs a work command as shown in FIG. 7, the non-working vehicle speed, the speed change rate from the non-working vehicle speed to the working vehicle speed, and the remaining distance Based on this, the output timing of the work command is controlled.
 これにより、作業機3を作業状態から非作業状態に切り換える場合と、非作業状態から作業状態に切り換える場合とで、指令出力部33が適切なタイミングで非作業指令及び作業指令を出力することができる。これにより、作業機3によって作業がされる部分とされない部分との間の境界の誤差を小さくすることができる。 Thereby, the command output unit 33 can output the non-work command and the work command at appropriate timings when the work machine 3 is switched from the work state to the non-work state and when the work machine 3 is switched from the non-work state to the work state. it can. Thereby, the error of the boundary between the part by which the work machine 3 works and the part which is not made can be made small.
 また、本実施形態のトラクタ1において、車速制御部35は図8(f)に示すように、非作業指令に応じて作業機制御部34が作業機3を作業状態から非作業状態に切り換えた後に、作業時の車速から非作業時の車速への切換制御を開始する。また、車速制御部35は図7(f)に示すように、作業指令に応じて作業機制御部34が作業機3を非作業状態から作業状態に切り換える前に、非作業時の車速から作業時の車速への切換制御を開始する。 Further, in the tractor 1 of the present embodiment, the vehicle speed control unit 35 switches the work implement 3 from the working state to the non-working state in response to the non-working command, as shown in FIG. Later, switching control from the vehicle speed at the time of work to the vehicle speed at the time of non-work is started. Further, as shown in FIG. 7 (f), the vehicle speed control unit 35 operates from the vehicle speed during non-working before the work machine control unit 34 switches the work machine 3 from the non-working state to the working state according to the work command. Starts switching control to the vehicle speed at the time.
 これにより、作業機3が作業状態になっている間において、作業時の車速を保持することができる。 This makes it possible to maintain the vehicle speed during work while the work implement 3 is in the working state.
 また、本実施形態のトラクタ1は、図略のタイマ回路と、下降必要時間記憶部56と、を備える。タイマ回路は、作業機3を非作業状態から作業状態に切り換えるのに要した所要時間(下降必要時間TR1)を計測する。下降必要時間記憶部56は、タイマ回路により計測された所要時間を記憶する。指令出力部33は、下降必要時間記憶部56の記憶内容に基づいて、作業指令の出力タイミングを制御する。タイマ回路により所要時間が計測されていない場合は、下降必要時間記憶部56は、初期設定された時間を記憶する。タイマ回路により所要時間が計測された場合は、下降必要時間記憶部56の記憶内容が計測値に更新される。 Further, the tractor 1 of this embodiment includes a timer circuit (not shown) and a descent time storage unit 56. The timer circuit measures the time required for switching the work machine 3 from the non-working state to the working state (required time TR1). The required descent time storage unit 56 stores the required time measured by the timer circuit. The command output unit 33 controls the output timing of the work command based on the stored contents of the required descent time storage unit 56. When the required time is not measured by the timer circuit, the descent required time storage unit 56 stores the initially set time. When the required time is measured by the timer circuit, the stored content of the required descent time storage unit 56 is updated to the measured value.
 これにより、作業機3を非作業状態から作業状態に切り換えるための所要時間を計測して記憶し、これに基づいて作業指令を出力するタイミングを制御することで、適切なタイミングで作業指令を出力することができる。また、例えば初回に非作業状態から作業状態に切り換えるときは、計測値が事前に得られないが、適切な時間を初期設定しておくことで、概ね良好なタイミングで指令出力部33が作業指令を出力することができる。 As a result, the time required for switching the work machine 3 from the non-working state to the working state is measured and stored, and the work command is output at an appropriate timing by controlling the timing of outputting the work command based on the measured time. can do. Further, for example, when switching from the non-working state to the working state for the first time, the measurement value is not obtained in advance, but the command output unit 33 can set the work command at a generally good timing by initializing an appropriate time. Can be output.
 また、本実施形態のトラクタ1において、作業時の車速及び非作業時の車速の設定は、速度回転数設定変更ダイアル14、又は、作業時車速調整部111及び非作業時車速調整部113に対する操作により変更することが可能である。指令出力部33は、作業時の車速及び/又は非作業時の車速の設定が変更された場合、変更後の作業時の車速/非作業時の車速に基づいて、作業指令又は非作業指令の出力タイミングを制御する。 Further, in the tractor 1 of the present embodiment, the setting of the vehicle speed during work and the vehicle speed during non-work is performed by operating the speed rotation speed setting change dial 14 or the operation of the work vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113. It is possible to change by. When the setting of the vehicle speed at work and / or the vehicle speed at non-working is changed, the command output unit 33 receives the work command or the non-work command based on the vehicle speed at the time of working after the change / vehicle speed at the time of non-working. Control the output timing.
 これにより、ユーザの要望に応じて車速を変更しつつ、指令出力部33が適切なタイミングで作業指令及び非作業指令を出力することができる。 Thereby, the command output unit 33 can output the work command and the non-work command at an appropriate timing while changing the vehicle speed according to the user's request.
 また、本実施形態のトラクタ1は、当該トラクタ1を有人自律走行モードと無人自律走行モードとの間で切り換えて自律走行させることが可能な自律走行制御部32を備える。有人自律走行モードは、主変速レバー27に対する操作に伴ってトラクタ1を停止させずに自律走行を終了させることが可能なモードである。無人自律走行モードは、主変速レバー27に対する操作に伴ってトラクタ1を停止させて自律走行を終了させるモードである。自律走行制御部32が有人自律走行モードであるときは、トラクタ1に設けられる速度回転数設定変更ダイアル14に対する操作に応じて、作業時の車速及び非作業時の車速の設定を変更可能である。自律走行制御部32が無人自律走行モードであるときは、トラクタ1と無線通信を行う無線通信端末81が備える作業時車速調整部111及び非作業時車速調整部113に対する操作に応じて、作業時の車速及び非作業時の車速の設定を変更可能である。 Further, the tractor 1 of the present embodiment includes an autonomous traveling control unit 32 that can switch the tractor 1 between a manned autonomous traveling mode and an unmanned autonomous traveling mode to autonomously travel. The manned autonomous traveling mode is a mode in which the autonomous traveling can be terminated without stopping the tractor 1 with the operation on the main transmission lever 27. The unmanned autonomous traveling mode is a mode in which the tractor 1 is stopped in accordance with an operation on the main transmission lever 27 and the autonomous traveling is terminated. When the autonomous traveling control unit 32 is in the manned autonomous traveling mode, the setting of the vehicle speed during work and the vehicle speed during non-work can be changed according to the operation on the speed rotation speed setting change dial 14 provided in the tractor 1. . When the autonomous traveling control unit 32 is in the unmanned autonomous traveling mode, according to operations on the working vehicle speed adjusting unit 111 and the non-working vehicle speed adjusting unit 113 included in the wireless communication terminal 81 that performs wireless communication with the tractor 1, The setting of the vehicle speed and the vehicle speed when not working can be changed.
 これにより、有人自律走行モードでは、トラクタ1に搭乗したユーザが速度回転数設定変更ダイアル14を操作することで、無人自律走行モードでは、トラクタ1の外部のユーザが無線通信端末81の作業時車速調整部111及び非作業時車速調整部113を操作することで、車速を変更することができる。 Thereby, in the manned autonomous traveling mode, the user who has boarded the tractor 1 operates the speed rotation speed setting change dial 14, and in the unmanned autonomous traveling mode, the user outside the tractor 1 can operate the vehicle speed of the wireless communication terminal 81. The vehicle speed can be changed by operating the adjusting unit 111 and the non-working vehicle speed adjusting unit 113.
 また、本実施形態のトラクタ1は、位置情報算出部49と、作業機昇降スイッチ28と、自律走行制御部32と、を備える。位置情報算出部49は、走行機体2の位置情報を取得する。作業機昇降スイッチ28は、走行機体2に配置される。自律走行制御部32は、予め定められた自律走行経路Pに沿って走行機体2を自律走行させる。作業機制御部34は、自律走行制御部32が走行機体2を自律走行させているときに、指令出力部33が出力する作業指令又は非作業指令、及び、作業機昇降スイッチ28の操作に伴って出力される昇降指令に基づいて、作業機3の作業状態を制御する。作業機制御部34は、作業指令又は非作業指令よりも昇降指令を優先して、作業機3の作業状態を制御する。 Further, the tractor 1 of the present embodiment includes a position information calculation unit 49, a work implement lifting switch 28, and an autonomous traveling control unit 32. The position information calculation unit 49 acquires the position information of the traveling machine body 2. The work machine up / down switch 28 is disposed on the traveling machine body 2. The autonomous traveling control unit 32 causes the traveling machine body 2 to autonomously travel along a predetermined autonomous traveling route P. The work machine control unit 34 is accompanied by a work command or non-work command output by the command output unit 33 and an operation of the work machine lifting switch 28 when the autonomous running control unit 32 causes the traveling machine body 2 to travel autonomously. The work state of the work implement 3 is controlled based on the lift command output. The work machine control unit 34 controls the work state of the work machine 3 by prioritizing the lift command over the work command or the non-work command.
 これにより、作業機3の作業状態と非作業状態の切換に関して、ユーザの意図を優先した制御を行うことができる。 Thereby, with regard to switching between the working state and the non-working state of the work machine 3, it is possible to perform control giving priority to the user's intention.
 また、本実施形態のトラクタ1において、作業機制御部34は、昇降指令に基づいて作業機3の作業状態を制御しているときに作業指令又は非作業指令が入力された場合は、当該作業指令又は非作業指令に基づいて作業機3の作業状態を制御しない。 In the tractor 1 of the present embodiment, the work machine control unit 34 controls the work state when a work command or a non-work command is input while controlling the work state of the work machine 3 based on the lifting command. The work state of the work implement 3 is not controlled based on the command or the non-work command.
 これにより、ユーザの意図に応じた制御が妨げられないようにすることができる。 This can prevent the control according to the user's intention from being hindered.
 また、本実施形態のトラクタ1において、作業機制御部34は、作業指令又は非作業指令に基づいて作業機3の作業状態を制御しているときに昇降指令が入力された場合は、当該昇降指令に基づいて作業機3の作業状態を制御する。 Further, in the tractor 1 of the present embodiment, the work implement control unit 34 moves up and down when an up / down command is input while controlling the work state of the work implement 3 based on the work command or the non-work command. The work state of the work machine 3 is controlled based on the command.
 これにより、自律走行に基づく制御を先に行っていた場合は、当該制御を中止する形で、ユーザの意図に応じた制御を行うことができる。 Thereby, when the control based on the autonomous traveling is performed first, the control according to the user's intention can be performed in such a form that the control is stopped.
 また、本実施形態のトラクタ1は、走行機体2にユーザが存在するか否かを検知する着座センサ13aを備える。自律走行制御部32は、有人自律走行モードと、無人自律走行モードと、を切り換えて、自律走行経路Pに沿って走行機体2を自律走行させることが可能である。有人自律走行モードでは、作業機制御部34は、指令出力部33が出力する作業指令又は非作業指令に基づいても、作業機昇降スイッチ28の操作に基づいて出力される昇降指令に基づいても、作業機3の作業状態を切り換える。無人自律走行モードでは、作業機制御部34は、指令出力部33が出力する作業指令又は非作業指令に基づいて作業機3の作業状態を切り換える一方、作業機昇降スイッチ28の操作に伴って出力される昇降指令に基づいて作業機3の作業状態を切り換えない。 Moreover, the tractor 1 of this embodiment is provided with the seating sensor 13a which detects whether a user exists in the traveling body 2 or not. The autonomous traveling control unit 32 can autonomously travel the traveling machine body 2 along the autonomous traveling route P by switching between the manned autonomous traveling mode and the unmanned autonomous traveling mode. In the manned autonomous travel mode, the work machine control unit 34 is based on a work command or non-work command output from the command output unit 33, or based on a lift command output based on an operation of the work machine lift switch 28. The working state of the work machine 3 is switched. In the unmanned autonomous traveling mode, the work machine control unit 34 switches the work state of the work machine 3 based on the work command or the non-work command output by the command output unit 33, while the work machine control unit 34 outputs in response to the operation of the work machine lift switch 28. The work state of the work implement 3 is not switched based on the lift command to be performed.
 これにより、ユーザの搭乗が想定されていない無人自律走行モードにおいては、作業機昇降スイッチ28の操作を無視することにより、状況に即した制御を実現できる。 Thus, in the unmanned autonomous traveling mode in which no user boarding is assumed, control according to the situation can be realized by ignoring the operation of the work implement lifting switch 28.
 また、本実施形態のトラクタ1において、自律走行制御部32は、有人自律走行モードにて走行機体2を自律走行させているときに作業機昇降スイッチ28が操作された場合は、走行機体2の自律走行を停止しない。一方、無人自律走行モードにて走行機体2を自律走行させているときに作業機昇降スイッチ28が操作された場合は、走行機体2の自律走行を停止する。 Further, in the tractor 1 of the present embodiment, the autonomous traveling control unit 32 operates when the work implement lifting switch 28 is operated while the traveling aircraft 2 is autonomously traveling in the manned autonomous traveling mode. Do not stop autonomous driving. On the other hand, when the work implement lifting switch 28 is operated while the traveling machine body 2 is autonomously traveling in the unmanned autonomous traveling mode, the autonomous traveling of the traveling machine body 2 is stopped.
 これにより、ユーザの搭乗が想定されていない無人自律走行モードにおいては、作業機昇降スイッチ28の操作に応じて自律走行を停止することで、想定外の状況に適切に対応することができる。 Thus, in the unmanned autonomous traveling mode in which no user boarding is assumed, it is possible to appropriately cope with an unexpected situation by stopping the autonomous traveling in accordance with the operation of the work implement lifting switch 28.
 また、本実施形態のトラクタ1において、有人自律走行モードでは、作業機制御部34が、作業指令又は非作業指令よりも昇降指令を優先して作業機3の作業状態を制御する優先制御を行った場合に、その旨がモニタ装置70に表示される。無人自律走行モードでは、作業機制御部34が優先制御を行った場合に、その旨が無線通信端末81に表示される。更には、無人自律走行モードにおいて作業機昇降スイッチ28が操作されたことに基づいて走行機体2の自律走行が停止された場合に、その旨が無線通信端末81に表示される。 Further, in the tractor 1 of the present embodiment, in the manned autonomous traveling mode, the work implement control unit 34 performs priority control for controlling the work state of the work implement 3 with priority given to the lift command over the work command or the non-work command. If this happens, a message to that effect is displayed on the monitor device 70. In the unmanned autonomous travel mode, when the work implement control unit 34 performs priority control, a message to that effect is displayed on the wireless communication terminal 81. Furthermore, when the autonomous traveling of the traveling machine body 2 is stopped based on the operation of the work equipment lift switch 28 in the unmanned autonomous traveling mode, a message to that effect is displayed on the wireless communication terminal 81.
 これにより、有人自律走行モード及び無人自律走行モードの何れにおいても、ユーザに状況を適切に報知することができる。 Thus, the situation can be appropriately notified to the user in both the manned autonomous driving mode and the unmanned autonomous driving mode.
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although a preferred embodiment of the present invention has been described above, the above configuration can be modified as follows, for example.
 作業機水平距離Lの設定、及びマージン距離Mの設定等は、トラクタ1のモニタ装置70によって行うことに代えて、又はそれに加えて、無線通信端末81によって行うように構成しても良い。 The setting of the work implement horizontal distance L, the setting of the margin distance M, and the like may be performed by the wireless communication terminal 81 instead of or in addition to the monitoring apparatus 70 of the tractor 1.
 速度回転数設定変更ダイアル14を2つ備え、作業時の車速と非作業時の車速を同時に変更できるように構成しても良い。 It is also possible to provide two speed rotation number setting change dials 14 so that the vehicle speed during work and the vehicle speed during non-work can be changed simultaneously.
 ディスプレイ83に表示される自律走行監視画面100は、図11に示されるものに限定されず、画面の配置等は任意に変更することができる。 The autonomous running monitoring screen 100 displayed on the display 83 is not limited to that shown in FIG. 11, and the layout of the screen can be arbitrarily changed.
 作業時の車速及び非作業時の車速が満たすべき範囲を予め定め、この範囲から外れる作業時の車速又は非作業時の車速が設定された場合、特別な昇降制御が行われても良い。例えば、作業機3の上昇制御/下降制御を通常より前倒しで開始したり、後ろ倒しで開始したりすることが考えられる。あるいは、それに代えて、又はそれに加えて、特別な車速制御が行われても良い。例えば、非作業時の速度と作業時の速度との切換を、通常より前倒しで開始したり、後ろ倒しで開始したりすることが考えられる。 When the vehicle speed at the time of work and the vehicle speed at the time of non-work are determined in advance and the vehicle speed at the time of work or the vehicle speed at the time of non-work outside the range is set, special lifting control may be performed. For example, it is conceivable that the ascending / descending control of the work implement 3 is started forward than usual or started backward. Alternatively, instead of or in addition to that, special vehicle speed control may be performed. For example, it is conceivable that the switching between the non-working speed and the working speed is started forward than usual or started backward.
 作業機としてプラウ、ハロー、モア、テッダー、又はスタブルカルチ等を用いる場合は、上記の実施形態で説明したロータリ耕耘機と同様に、作業指令によって下降し、非作業指令によって上昇する制御が行われる。ただし、作業状態と非作業状態の切換に昇降が伴わなくてもよい。例えば、作業機としてブロードキャスタ又はスプレーヤ等を用いる場合は、作業機制御部34は、昇降制御の代わりに散布/散布停止制御を行う。また、この場合は、ユーザは、作業機昇降スイッチ28ではなく、キャビン11に設けた図示しない適宜の操作部によって、作業機の作業状態の切換を指示する。従って、操作部指令は、当該操作部の操作に伴って出力される。 When using a plow, halo, mower, tedder, or stable cultivator, etc. as the work implement, control is performed to descend by a work command and to rise by a non-work command, similarly to the rotary tiller described in the above embodiment. However, the switching between the working state and the non-working state may not be accompanied by elevation. For example, when a broadcaster or a sprayer is used as a work machine, the work machine control unit 34 performs spraying / spraying stop control instead of the lifting control. In this case, the user gives an instruction to switch the working state of the work implement not by the work implement lift switch 28 but by an appropriate operation unit (not shown) provided in the cabin 11. Therefore, the operation unit command is output with the operation of the operation unit.
 1 トラクタ(作業車両)
 2 走行機体(車体部)
 3 作業機
 33 指令出力部
 34 作業機制御部
 35 車速制御部
 37 残存距離取得部
 54 作業マージン距離記憶部(設定部)
1 Tractor (work vehicle)
2 Traveling body (body part)
3 Work implement 33 Command output unit 34 Work implement control unit 35 Vehicle speed control unit 37 Remaining distance acquisition unit 54 Work margin distance storage unit (setting unit)

Claims (8)

  1.  作業機を装着可能な車体部と、
     前記作業機を作業状態に制御する作業指令及び前記作業機を非作業状態に制御する非作業指令を出力する指令出力部と、
     前記作業指令又は前記非作業指令に応じて前記作業機の作業状態を制御する作業機制御部と、
     作業車両の車速を切換制御可能な車速制御部と、
     前記作業機制御部による制御によって前記作業機の作業状態が切り換えられる基準位置を設定する設定部と、
     前記作業機の作業中心位置から前記基準位置までの距離を取得する距離取得部と、
    を備え、
     前記車速制御部は前記非作業指令に応じて前記作業車両の車速を第1車速から第2車速に切り換えるとともに、前記作業指令に応じて前記作業車両の車速を前記第2車速から前記第1車速に切り換え、
     前記指令出力部は、
     前記第1車速と前記距離とに基づいて非作業指令の出力タイミングを制御し、
     前記第2車速と、前記第2車速から前記第1車速への速度変化率と、前記距離と、に基づいて、前記作業指令の出力タイミングを制御することを特徴とする作業車両。
    A vehicle body part to which a work machine can be attached;
    A command output unit for outputting a work command for controlling the work machine to a working state and a non-working command for controlling the work machine to a non-working state;
    A work machine control unit that controls a work state of the work machine according to the work command or the non-work command;
    A vehicle speed control unit capable of switching and controlling the vehicle speed of the work vehicle;
    A setting unit for setting a reference position at which the working state of the working machine is switched by control by the working machine control unit;
    A distance acquisition unit for acquiring a distance from a work center position of the work implement to the reference position;
    With
    The vehicle speed control unit switches the vehicle speed of the work vehicle from a first vehicle speed to a second vehicle speed according to the non-work command, and changes the vehicle speed of the work vehicle from the second vehicle speed to the first vehicle speed according to the work command. Switch to
    The command output unit
    Control the output timing of the non-work command based on the first vehicle speed and the distance,
    A work vehicle that controls the output timing of the work command based on the second vehicle speed, a speed change rate from the second vehicle speed to the first vehicle speed, and the distance.
  2.  請求項1に記載の作業車両であって、
     前記車速制御部は、
     前記非作業指令に応じて前記作業機制御部が前記作業機を前記作業状態から前記非作業状態に切り換えた後に、前記第1車速から前記第2車速への切換制御を開始し、
     前記作業指令に応じて前記作業機制御部が前記作業機を前記非作業状態から前記作業状態に切り換える前に、前記第2車速から前記第1車速への切換制御を開始することを特徴とする作業車両。
    The work vehicle according to claim 1,
    The vehicle speed control unit
    In response to the non-work command, the work machine control unit switches the work machine from the work state to the non-work state, and then starts switching control from the first vehicle speed to the second vehicle speed,
    In response to the work command, the work machine control unit starts switching control from the second vehicle speed to the first vehicle speed before switching the work machine from the non-working state to the working state. Work vehicle.
  3.  請求項1又は2に記載の作業車両であって、
     前記作業機を前記非作業状態から前記作業状態に切り換えるのに要した所要時間を計測する計測部と、
     前記計測部により計測された所要時間を記憶する所要時間記憶部と、
    を備え、
     前記指令出力部は、前記所要時間記憶部の記憶内容に基づいて前記作業指令の出力タイミングを制御し、
     前記計測部により前記所要時間が計測されていない場合、前記所要時間記憶部は、初期設定された時間を記憶し、
     前記計測部により前記所要時間が計測された場合、前記所要時間記憶部の記憶内容が計測値に更新されることを特徴とする作業車両。
    The work vehicle according to claim 1 or 2,
    A measuring unit for measuring a time required to switch the working machine from the non-working state to the working state;
    A required time storage unit for storing the required time measured by the measurement unit;
    With
    The command output unit controls the output timing of the work command based on the storage content of the required time storage unit,
    If the required time is not measured by the measuring unit, the required time storage unit stores the initially set time,
    When the required time is measured by the measurement unit, the work content of the required time storage unit is updated to a measured value.
  4.  請求項1から3までの何れか一項に記載の作業車両であって、
     前記第1車速及び前記第2車速の設定は、車速設定部に対する操作により変更することが可能であり、
     前記指令出力部は、前記第1車速及び/又は前記第2車速の設定が変更された場合、変更後の前記第1車速及び/又は前記第2車速に基づいて前記作業指令又は前記非作業指令の出力タイミングを制御することを特徴とする作業車両。
    A work vehicle according to any one of claims 1 to 3,
    The setting of the first vehicle speed and the second vehicle speed can be changed by an operation on the vehicle speed setting unit,
    When the setting of the first vehicle speed and / or the second vehicle speed is changed, the command output unit is configured to execute the work command or the non-work command based on the changed first vehicle speed and / or the second vehicle speed. A work vehicle characterized by controlling the output timing.
  5.  請求項4に記載の作業車両であって、
     前記作業車両を第1モードと第2モードとの間で切り換えて自律走行させることが可能な自律走行制御部を備え、
     前記第1モードは、変速操作具に対する操作に伴って当該作業車両を停止させずに自律走行を終了させることが可能なモードであり、
     前記第2モードは、前記変速操作具に対する操作に伴って当該作業車両を停止させて自律走行を終了させるモードであり、
     前記作業車両が前記第1モードであるときは、前記作業車両に設けられる前記車速設定部に対する操作に応じて前記第1車速及び前記第2車速の設定を変更可能であり、
     前記作業車両が前記第2モードであるときは、前記作業車両と無線通信を行う無線通信装置が備える前記車速設定部に対する操作に応じて前記第1車速及び前記第2車速の設定を変更可能であることを特徴とする作業車両。
    The work vehicle according to claim 4,
    An autonomous running control unit capable of autonomously running the work vehicle by switching between the first mode and the second mode;
    The first mode is a mode in which the autonomous traveling can be terminated without stopping the work vehicle in accordance with an operation on the transmission operating tool.
    The second mode is a mode in which the work vehicle is stopped in accordance with an operation with respect to the speed change operation tool and the autonomous traveling is terminated.
    When the work vehicle is in the first mode, the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in the work vehicle.
    When the work vehicle is in the second mode, the setting of the first vehicle speed and the second vehicle speed can be changed according to an operation on the vehicle speed setting unit provided in a wireless communication device that performs wireless communication with the work vehicle. A work vehicle characterized by being.
  6.  請求項1から5までの何れか一項に記載の作業車両であって、
     前記車体部の位置情報を取得する位置情報取得部と、
     前記車体部に配置される操作部と、
     予め定められた経路に沿って前記車体部を自律走行させる自律走行制御部と、
    を備え、
     前記作業機制御部は、前記自律走行制御部が前記車体部を自律走行させているときに、前記指令出力部が出力する前記作業指令又は前記非作業指令、若しくは、前記操作部の操作に伴って出力される操作部指令に基づいて、前記作業機の作業状態を制御し、
     前記作業機制御部は、前記作業指令又は前記非作業指令よりも前記操作部指令を優先して、前記作業機の作業状態を制御することを特徴とする作業車両。
    A work vehicle according to any one of claims 1 to 5,
    A position information acquisition unit for acquiring position information of the vehicle body part;
    An operation unit disposed in the vehicle body,
    An autonomous traveling control unit that autonomously travels the vehicle body along a predetermined route;
    With
    The work implement control unit is associated with the operation command or the non-work command output from the command output unit or the operation of the operation unit when the autonomous travel control unit is causing the vehicle body unit to travel autonomously. Control the working state of the working machine based on the operation unit command output
    The work machine control unit prioritizes the operation unit command over the work command or the non-work command, and controls a work state of the work machine.
  7.  請求項6に記載の作業車両であって、
     前記作業機制御部は、前記操作部指令に基づいて前記作業機の作業状態を制御しているときに前記作業指令又は前記非作業指令が入力された場合は、当該作業指令又は非作業指令に基づいて前記作業機の作業状態を制御しないことを特徴とする作業車両。
    The work vehicle according to claim 6,
    When the work command or the non-work command is input when the work machine control unit is controlling the work state of the work machine based on the operation unit command, the work machine control unit sets the work command or the non-work command. A work vehicle that does not control a work state of the work machine based on the work vehicle.
  8.  請求項6又は7に記載の作業車両であって、
     前記作業機制御部は、前記作業指令又は前記非作業指令に基づいて前記作業機の作業状態を制御しているときに前記操作部指令が入力された場合は、当該操作部指令に基づいて前記作業機の作業状態を制御することを特徴とする作業車両。
    The work vehicle according to claim 6 or 7,
    When the operating unit command is input when the working unit control unit is controlling the working state of the working unit based on the work command or the non-working command, the working unit control unit is configured based on the operating unit command. A work vehicle that controls a work state of a work machine.
PCT/JP2018/011714 2017-03-24 2018-03-23 Work vehicle WO2018174249A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197021109A KR102325719B1 (en) 2017-03-24 2018-03-23 work vehicle
KR1020217036104A KR102413466B1 (en) 2017-03-24 2018-03-23 Work vehicle
KR1020237043367A KR20240000626A (en) 2017-03-24 2018-03-23 Work vehicle
CN202210201677.6A CN114527765A (en) 2017-03-24 2018-03-23 Autonomous travel work system and work vehicle
CN201880009614.2A CN110418570B (en) 2017-03-24 2018-03-23 Working vehicle
KR1020227020368A KR102616945B1 (en) 2017-03-24 2018-03-23 Work vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017060088A JP6663382B2 (en) 2017-03-24 2017-03-24 Work vehicle
JP2017-060088 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018174249A1 true WO2018174249A1 (en) 2018-09-27

Family

ID=63585798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011714 WO2018174249A1 (en) 2017-03-24 2018-03-23 Work vehicle

Country Status (4)

Country Link
JP (1) JP6663382B2 (en)
KR (4) KR20240000626A (en)
CN (2) CN114527765A (en)
WO (1) WO2018174249A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080736A (en) * 2018-11-26 2020-06-04 株式会社クボタ Agricultural implement
JP2020080735A (en) * 2018-11-26 2020-06-04 株式会社クボタ Agricultural implement
US20220089191A1 (en) * 2019-03-26 2022-03-24 Hitachi Construction Machinery Co., Ltd. Work Vehicle
US11529972B2 (en) * 2019-06-28 2022-12-20 Toyota Jidosha Kabushiki Kaisha Autonomous vehicle speed control device
US11731510B2 (en) 2019-06-28 2023-08-22 Toyota Jidosha Kabushiki Kaisha Autonomous vehicle operation device
EP4252506A1 (en) * 2022-03-31 2023-10-04 Yanmar Holdings Co., Ltd. Run control method, run control system, work vehicle, and run control program

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7324330B2 (en) * 2018-12-11 2023-08-09 ヤンマーパワーテクノロジー株式会社 Autonomous driving system
JP7146675B2 (en) 2019-03-14 2022-10-04 ヤンマーパワーテクノロジー株式会社 automatic driving system
JP7206176B2 (en) * 2019-10-24 2023-01-17 株式会社クボタ agricultural vehicle
JP7276073B2 (en) * 2019-10-29 2023-05-18 井関農機株式会社 work vehicle
US11650095B2 (en) 2019-10-30 2023-05-16 Cnh Industrial Canada, Ltd. System and method for identifying plugging of ground engaging tools based on tool weight
JP7275011B2 (en) * 2019-11-29 2023-05-17 株式会社クボタ agricultural machine
JP7223680B2 (en) * 2019-12-18 2023-02-16 株式会社クボタ work machine
JP7515261B2 (en) * 2020-01-14 2024-07-12 株式会社クボタ Route Management System
JP7235686B2 (en) 2020-01-14 2023-03-08 株式会社クボタ agricultural machine
KR20210091644A (en) * 2020-01-14 2021-07-22 가부시끼 가이샤 구보다 Travel route management system of working machine
JP7407600B2 (en) * 2020-01-14 2024-01-04 株式会社クボタ work equipment
JP7514306B2 (en) * 2020-05-28 2024-07-10 カワサキモータース株式会社 Utility Vehicles
JP2022131274A (en) * 2021-02-26 2022-09-07 株式会社クボタ harvester
JP7408597B2 (en) * 2021-04-27 2024-01-05 株式会社クボタ Work equipment monitoring system
WO2022230473A1 (en) * 2021-04-27 2022-11-03 株式会社クボタ Monitoring system for work machinery
JP7472075B2 (en) * 2021-04-27 2024-04-22 株式会社クボタ Work equipment monitoring system
JP7392700B2 (en) * 2021-10-06 2023-12-06 井関農機株式会社 work vehicle
JP7344453B2 (en) * 2021-11-15 2023-09-14 井関農機株式会社 work vehicle
KR102527799B1 (en) * 2022-11-07 2023-05-03 주식회사 긴트 Method for controlling the autonomous work function of a tractor connected to operational machine and apparatus thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737927Y2 (en) * 1978-12-30 1982-08-20
JPH08154419A (en) * 1994-12-12 1996-06-18 Yanmar Agricult Equip Co Ltd Ground working apparatus
JPH10234204A (en) * 1997-02-28 1998-09-08 Kubota Corp Assist device for traveling
JPH11288313A (en) * 1998-04-02 1999-10-19 Kubota Corp Guidance controller for moving vehicle
JP2002354905A (en) * 2001-05-31 2002-12-10 Yanmar Agricult Equip Co Ltd Agricultural working vehicle
JP2016095660A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Unmanned operation system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974876A (en) * 1995-09-07 1997-03-25 Kubota Corp Speed-controlling apparatus for reaping machine
DE102006025698A1 (en) * 2006-06-01 2007-12-06 Alois Pöttinger Maschinenfabrik Gmbh Method and device for controlling the tightening of an agricultural machine to a tractor
CN103141170B (en) * 2008-03-31 2016-08-17 株式会社久保田 The control device of Operation Van
JP5281460B2 (en) * 2009-03-31 2013-09-04 株式会社クボタ Plowing depth control structure of tilling machine
KR101524578B1 (en) * 2010-03-15 2015-06-01 얀마 가부시키가이샤 Agricultural work vehicle
DE102013005991B4 (en) * 2012-12-28 2020-01-23 Bomag Gmbh Method and device for determining the steering angle of a directionally controllable machine
KR102475681B1 (en) * 2014-02-06 2022-12-07 얀마 파워 테크놀로지 가부시키가이샤 Parallel travel work system
JPWO2015147149A1 (en) * 2014-03-28 2017-04-13 ヤンマー株式会社 Autonomous traveling work vehicle
CN111580529B (en) * 2014-06-30 2024-03-12 洋马动力科技有限公司 Operating system
CN104808660B (en) * 2015-03-04 2017-10-03 中南大学 Bumps mixing complex polygon farmland unmanned plane spraying operation path planning method
US9904290B2 (en) * 2015-04-19 2018-02-27 Deere & Company Geometry-based monitoring and control of coupled mobile machines
KR20170112444A (en) * 2016-03-31 2017-10-12 엘에스엠트론 주식회사 Control apparatus of hybrid system of working vehicle condering slip ratio

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737927Y2 (en) * 1978-12-30 1982-08-20
JPH08154419A (en) * 1994-12-12 1996-06-18 Yanmar Agricult Equip Co Ltd Ground working apparatus
JPH10234204A (en) * 1997-02-28 1998-09-08 Kubota Corp Assist device for traveling
JPH11288313A (en) * 1998-04-02 1999-10-19 Kubota Corp Guidance controller for moving vehicle
JP2002354905A (en) * 2001-05-31 2002-12-10 Yanmar Agricult Equip Co Ltd Agricultural working vehicle
JP2016095660A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Unmanned operation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080736A (en) * 2018-11-26 2020-06-04 株式会社クボタ Agricultural implement
JP2020080735A (en) * 2018-11-26 2020-06-04 株式会社クボタ Agricultural implement
JP7113726B2 (en) 2018-11-26 2022-08-05 株式会社クボタ agricultural machine
JP7117980B2 (en) 2018-11-26 2022-08-15 株式会社クボタ agricultural machine
US20220089191A1 (en) * 2019-03-26 2022-03-24 Hitachi Construction Machinery Co., Ltd. Work Vehicle
US11529972B2 (en) * 2019-06-28 2022-12-20 Toyota Jidosha Kabushiki Kaisha Autonomous vehicle speed control device
US11731510B2 (en) 2019-06-28 2023-08-22 Toyota Jidosha Kabushiki Kaisha Autonomous vehicle operation device
EP4252506A1 (en) * 2022-03-31 2023-10-04 Yanmar Holdings Co., Ltd. Run control method, run control system, work vehicle, and run control program

Also Published As

Publication number Publication date
KR20210136171A (en) 2021-11-16
CN110418570B (en) 2022-03-22
KR102413466B1 (en) 2022-06-24
CN110418570A (en) 2019-11-05
KR20190099263A (en) 2019-08-26
JP2018161085A (en) 2018-10-18
KR102325719B1 (en) 2021-11-11
KR20220088950A (en) 2022-06-28
JP6663382B2 (en) 2020-03-11
KR20240000626A (en) 2024-01-02
CN114527765A (en) 2022-05-24
KR102616945B1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
WO2018174249A1 (en) Work vehicle
JP7108096B2 (en) autonomous work vehicle
US12035647B2 (en) Automatic travel system for work vehicles
JP6564725B2 (en) Driving instruction device
KR102283927B1 (en) Task vehicle control system
KR102548019B1 (en) Path generation device and work vehicle
JP6726128B2 (en) Agricultural vehicle autonomous driving system
JP6807794B2 (en) Autonomous driving system for agricultural work vehicles
WO2019009164A1 (en) Autonomous travel system
JP2017135995A (en) Agricultural work vehicle
JP6840276B2 (en) Work vehicle
JP7019310B2 (en) Autonomous driving system
JP2021002389A (en) Work vehicle control device
WO2018139039A1 (en) Work vehicle
JP2017182375A (en) Route generation device
TW202045384A (en) Automatic travel system
JP7177198B2 (en) Autonomous working system
JP2017182374A (en) Service vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197021109

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772253

Country of ref document: EP

Kind code of ref document: A1