WO2019009164A1 - Autonomous travel system - Google Patents

Autonomous travel system Download PDF

Info

Publication number
WO2019009164A1
WO2019009164A1 PCT/JP2018/024456 JP2018024456W WO2019009164A1 WO 2019009164 A1 WO2019009164 A1 WO 2019009164A1 JP 2018024456 W JP2018024456 W JP 2018024456W WO 2019009164 A1 WO2019009164 A1 WO 2019009164A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
traveling
target vehicle
reference position
shift
Prior art date
Application number
PCT/JP2018/024456
Other languages
French (fr)
Japanese (ja)
Inventor
良平 上田
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2019009164A1 publication Critical patent/WO2019009164A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B63/00Lifting or adjusting devices or arrangements for agricultural machines or implements
    • A01B63/02Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors
    • A01B63/10Lifting or adjusting devices or arrangements for agricultural machines or implements for implements mounted on tractors operated by hydraulic or pneumatic means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an autonomous traveling system.
  • An autonomous traveling system has been developed which causes a traveling vehicle to autonomously travel along a predetermined traveling route.
  • vehicle speed control may be employed to decrease or increase the traveling speed of a traveling vehicle when the traveling vehicle reaches a shift reference position set on a traveling route.
  • Patent Document 1 discloses vehicle speed control for controlling the traveling speed of a traveling vehicle in accordance with the work load of the working machine when the traveling machine is mounted with a work machine.
  • the detection unit provided in the work machine detects the work load of the work machine, and the work machine side control unit controls the control signal to decrease or increase the traveling speed of the traveling vehicle according to the degree of the work load. Send to the traveling vehicle.
  • a main object of the present invention is to provide an autonomous control system capable of performing optimum vehicle speed control when a control signal is given from a work machine in a configuration in which a traveling vehicle autonomously travels.
  • the present invention is an autonomous traveling system for autonomously traveling a traveling vehicle along a preset traveling route, wherein the first traveling route and the first section are located on the downstream side in the traveling direction relative to the first section on the traveling route.
  • a reference vehicle speed setting unit that sets a reference vehicle speed to each of the two sections; a work machine side control unit that outputs a predetermined control signal when the work machine attached to the traveling vehicle is in a specific work state;
  • a target vehicle speed setting unit configured to set a target vehicle speed of the traveling vehicle autonomously traveling along the traveling route; and a vehicle speed of the traveling vehicle such that the vehicle speed of the traveling vehicle becomes the target vehicle speed set by the target vehicle speed setting unit
  • the target vehicle speed setting unit when it reaches the shift reference position specified on the travel route, the reference vehicle speed of the first section and the reference vehicle speed of the second section Target car among
  • the target vehicle speed setting unit calculates a specific target vehicle speed based on the position of the traveling vehicle with respect to the shift reference position when the predetermined control signal is output, and the specific
  • the specific target vehicle speed can be changed according to the position of the traveling vehicle with respect to the shift reference position. Therefore, even if the vehicle speed control when the traveling vehicle reaches the shift reference position and the vehicle speed control due to the control signal being output from the work machine are executed in a short time, acceleration and deceleration are short.
  • the target vehicle speed can be set so as not to be repeated in time. Therefore, when the control signal is output from the work machine, the optimum vehicle speed control can be performed. Thereby, the fuel consumption of the traveling vehicle can be improved. Furthermore, when the user gets on the traveling vehicle, the discomfort given to the user can be reduced.
  • the predetermined control signal includes a deceleration signal requesting deceleration of the traveling vehicle
  • the target vehicle speed setting unit is configured to position the traveling vehicle in the first section, and When the separation distance between the current position of the traveling vehicle located in the first section and the shift reference position is less than a predetermined distance when the reference vehicle speed of the first section is smaller than the reference vehicle speed of the second section
  • the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
  • the target vehicle speed setting unit when the traveling vehicle is located in the first section and the predetermined control signal is the deceleration signal, the target vehicle speed setting unit is configured to set the reference vehicle speed of the first section or A vehicle speed obtained by multiplying the reference vehicle speed of the second section by a predetermined deceleration rate is set as the specific target vehicle speed.
  • the predetermined control signal includes a deceleration release signal requesting release of a state in which the vehicle speed of the traveling vehicle is controlled based on the deceleration signal, and the target vehicle speed setting unit
  • the separation distance between the current position of the traveling vehicle and the shift reference position when the traveling vehicle is located in the first section and the reference vehicle speed of the first section is greater than the reference vehicle speed of the second interval.
  • the target vehicle speed setting unit is configured such that the traveling vehicle is located in the first section, and a separation distance between a current position of the traveling vehicle and the shift reference position is less than a predetermined distance. At this time, when the predetermined control signal is output, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
  • the target vehicle speed is based on the reference vehicle speed of the second section. Is set. Therefore, it is suppressed that the change of the vehicle speed of the traveling vehicle according to the predetermined control signal from the work machine side control unit and the change of the vehicle speed of the traveling vehicle due to the traveling vehicle reaching the shift reference position are performed in a short time.
  • the target vehicle speed can be appropriately set based on the reference vehicle speed of the predetermined second section.
  • the display control unit further controls a display control unit that controls image display by the display unit, and a route generation unit capable of generating the travel route, and the display control unit causes the display unit to display the travel route. It is possible to display, and a predetermined image indicating the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit is displayed on the traveling route displayed on the display unit.
  • the route generation unit can generate another traveling route passing through the predetermined image displayed in plurality on the display unit.
  • the route generation unit separates the other travel route passing the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit separately from the traveling route for autonomously traveling the traveling vehicle. Can be generated.
  • the work passing through the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit after the end of the autonomous traveling is performed, the work can be efficiently performed.
  • FIG. 1 is a side view of a tractor to which an autonomous traveling system according to a first embodiment of the present invention is applied.
  • FIG. 2 is a plan view of the tractor of FIG.
  • FIG. 3 is a plan view showing various operating devices disposed around the seat of the tractor of FIG.
  • FIG. 4 is a block diagram showing an electrical configuration of the tractor of FIG.
  • FIG. 5 is a schematic view showing an example of the autonomous traveling route.
  • FIG. 6 is a schematic view of the vicinity of the connection route of the autonomous traveling route.
  • FIG. 7 is a graph for explaining a change in the vehicle speed of the tractor traveling near the shift reference position when a predetermined control signal is not output from the work machine side control unit.
  • FIG. 1 is a side view of a tractor to which an autonomous traveling system according to a first embodiment of the present invention is applied.
  • FIG. 2 is a plan view of the tractor of FIG.
  • FIG. 3 is a plan view showing various operating devices disposed around the seat of the tractor of FIG.
  • FIG. 8A is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration signal is output while traveling on the autonomous work path of the autonomous traveling path at the same speed.
  • FIG. 8B is a graph for explaining a change in the vehicle speed of the tractor when the deceleration signal is output during the shift of the tractor due to the target vehicle speed being switched from the first reference vehicle speed to the second reference vehicle speed. It is.
  • FIG. 8C is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration signal is output while traveling at a constant speed on the connection path of the autonomous traveling route.
  • FIG. 8A is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration signal is output while traveling on the autonomous work path of the autonomous traveling path at the same speed.
  • FIG. 8B is a graph for explaining a change in the vehicle speed of the tractor when the deceleration signal is output during the shift of the tractor due to the target vehicle speed being switched from the first reference vehicle speed to the second
  • FIG. 8D is a graph for explaining a change in the vehicle speed of the tractor when the deceleration signal is output during the shift of the tractor due to the target vehicle speed being switched from the second reference vehicle speed to the first reference vehicle speed.
  • FIG. 9A is a graph for explaining a change in the vehicle speed of the tractor when the deceleration release signal is output while traveling on the autonomous work path of the autonomous traveling path at a constant speed.
  • FIG. 9B shows that the target vehicle speed is switched from the speed obtained by multiplying the first reference vehicle speed by the deceleration rate to the speed obtained by multiplying the second reference vehicle speed by the deceleration rate. It is a graph for demonstrating the change of the vehicle speed of a tractor at the time of being carried out.
  • FIG. 9A is a graph for explaining a change in the vehicle speed of the tractor when the deceleration release signal is output while traveling on the autonomous work path of the autonomous traveling path at a constant speed.
  • FIG. 9B shows that the target vehicle speed is switched from the speed obtained by
  • FIG. 9C is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration release signal is output while traveling at a constant speed on the connection path of the autonomous traveling route.
  • FIG. 9D shows that the target vehicle speed is switched from the speed obtained by multiplying the second reference vehicle speed by the deceleration rate to the speed obtained by multiplying the first reference vehicle speed by the deceleration rate. It is a graph for demonstrating the change of the vehicle speed of a tractor at the time of being carried out.
  • FIG. 10 is a flowchart for explaining an example of a vehicle speed control process by the autonomous traveling system.
  • FIG. 11 is a flow chart for explaining the process performed when the vehicle speed is controlled based on the deceleration signal in the vehicle speed control process by the autonomous traveling system shown in FIG. FIG.
  • FIG. 12 is a flowchart for explaining an example of calculation processing of a specific target vehicle speed based on a deceleration signal.
  • FIG. 13 is a flowchart for explaining an example of calculation processing of a specific target vehicle speed based on the deceleration cancellation signal.
  • FIG. 14 is a diagram for explaining an image displayed on the display unit of the wireless communication terminal during autonomous traveling.
  • FIG. 15 is a view for explaining an image displayed on the display unit of the wireless communication terminal after the tractor has finished traveling on the autonomous traveling route.
  • FIG. 16 is a flowchart showing an example of calculation processing of a specific target vehicle speed based on a deceleration signal by the autonomous traveling system according to the second embodiment.
  • FIG. 17 is a flowchart showing an example of calculation processing of a specific target vehicle speed based on a deceleration cancellation signal by the autonomous traveling system according to the second embodiment.
  • a tractor having a traveling vehicle equipped with a work machine will be described as an example.
  • the work vehicle may be a riding type work vehicle such as a rice transplanter, a combine, a civil engineering / construction work vehicle, a snow removal vehicle, or the like other than a tractor, or may be a walking type work vehicle.
  • the autonomous traveling means that the tractor travels along a predetermined route while the traveling mechanism of the tractor is controlled by a control unit (ECU) included in the tractor.
  • the autonomous work means that the work machine performs work at a work position preset on the autonomous traveling route by automatically controlling the work machine.
  • manual traveling and manual work mean that each mechanism provided in the tractor is operated by the user and traveling and work are performed.
  • FIG. 1 is a side view of a tractor 1 to which an autonomous traveling system according to a first embodiment of the present invention is applied.
  • FIG. 2 is a plan view of the tractor 1.
  • the tractor 1 is capable of manual traveling and autonomous traveling (automatic traveling).
  • the tractor 1 may be configured to perform autonomous traveling according to the autonomous traveling route (route) generated by the route generation system in a state where the user does not board.
  • the tractor 1 may be configured to be able to run autonomously while the user is on board.
  • the tractor 1 includes a traveling body 2 as a traveling vehicle that autonomously travels in a field.
  • various work machines such as a roll baler, a cultivator (management machine), a plow, a fertilizer applicator, a mower, and a planter can be selectively attached to the traveling machine body 2.
  • a roll baler as the work machine 3 is attached to the traveling machine body 2 will be described.
  • the working machine 3 is connected to the traveling machine body 2 via a connecting rod 6. Therefore, the working machine 3 is towed when the traveling machine body 2 travels.
  • Work implement 3 includes a work implement mechanism 82 and a forming chamber 81.
  • the work machine mechanism unit 82 operates by the driving force transmitted from the traveling machine body 2.
  • the working machine mechanism unit 82 may include a pickup device 80 for picking up a material to be molded such as grass in the field, and a cutting unit (not shown) for cutting the material to be molded such as grass picked up by the pickup device 80. Good.
  • the molding chamber 81 accommodates the molding material picked up by the pickup device 80, and compression molding the molding material into a cylindrical roll bale (not shown).
  • the work machine 3 may be configured to hold a covering material such as a net material wound around a compression-formed roll bale so as to be able to be drawn out into the forming chamber 81.
  • the work machine 3 may be configured to open the rear side of the forming chamber 81 and discharge the roll bale after the covering material is wound around the roll bale in the forming chamber 81.
  • the traveling body 2 of the tractor 1 is supported at its front portion by a pair of left and right front wheels 7 and at its rear portion by a pair of left and right rear wheels 8.
  • a bonnet 9 is disposed at the front of the traveling vehicle 2.
  • an engine 10 or the like which is a drive source of the tractor 1 is accommodated in the bonnet 9.
  • the engine 10 may be configured by, for example, a diesel engine, or may be configured by, for example, a gasoline engine.
  • another drive source such as an electric motor may be employed.
  • a cabin 11 may be disposed behind the hood 9 for the user to board. Inside the cabin 11, a steering handle 12 for the user to steer and operate, a seat 13 on which the user can sit, and various operation devices for the user to perform various operations are provided.
  • the tractor 1 is not limited to the one with the cabin 11, and may have a configuration without the cabin 11.
  • a chassis 20 of the tractor 1 is provided at a lower part of the traveling body 2.
  • the chassis 20 includes an airframe 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
  • the airframe frame 21 is a support member at the front of the tractor 1 and supports the engine 10 directly or via a vibration isolation member or the like.
  • the transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24.
  • the front axle 23 transmits the power input from the transmission 22 to the front wheels 7.
  • the rear axle 24 transmits the power input from the transmission 22 to the rear wheel 8.
  • FIG. 3 is a plan view showing various operation devices disposed around the seat 13. As shown in FIG.
  • the operation device includes monitor 36, accelerator lever 15, reverser lever 26, main shift lever 27, speed / rotational speed selection switch 29, speed / rotational speed setting change dial 14, dial setting changeover switch 16.
  • the auxiliary transmission lever 19, the PTO switch 17, the PTO transmission lever 18, the work implement lift switch 28, the work implement lowering speed adjustment knob 25 and the like can be mentioned as an example.
  • These operating devices are disposed near the seat 13 or near the steering wheel 12.
  • the monitor device 36 is configured to be able to display various information of the tractor 1. Further, the monitor device 36 is provided with signal input members such as buttons and dials, and the user can input various instruction signals to the tractor 1 by operating the signal input members.
  • signal input members such as buttons and dials
  • the accelerator lever 15 is an operating tool for setting the output rotational speed of the engine 10.
  • the reverser lever 26 is an operation tool for switching the forward, reverse, and stop of the tractor 1.
  • the main shift lever 27 is an operation tool for steplessly changing the speed (vehicle speed) at which the tractor 1 travels in the direction indicated by the reverser lever 26.
  • the speed / rotational speed selection switch 29 is an operating tool for the tractor 1 performing manual traveling to alternately switch the combination of the vehicle speed and the rotation speed of the engine 10 in two combinations set in advance.
  • the speed / rotational speed setting change dial 14 is an operating tool for adjusting the set value of the vehicle speed of the tractor 1 (the vehicle speed of the traveling vehicle 2) and the rotational speed of the engine 10 for each of the two types of combinations.
  • the dial setting change switch 16 is an operating tool for switching whether the speed / rotational speed setting change dial 14 changes the set value of the vehicle speed of the tractor 1 or changes the set value of the rotational speed of the engine 10.
  • the auxiliary transmission lever 19 is an operating tool for switching the transmission ratio of the traveling auxiliary transmission gear mechanism in the transmission 22.
  • the PTO switch 17 is an operating tool for switching transmission / disconnection of power to a PTO shaft (power transmission shaft (not shown)) protruding from the rear end of the transmission 22.
  • the PTO shift lever 18 is an operating tool for shifting the rotational speed of the PTO shaft.
  • the work implement raising and lowering switch 28 is an operating tool for raising and lowering the height of the work implement attached to the traveling machine body 2 within a predetermined range.
  • the work implement lowering speed adjustment knob 25 is an operating tool for adjusting the speed when the work implement is lowered.
  • the satellite signal receiving antenna 46 is an antenna used to detect the position information of the traveling body 2.
  • the wireless communication antenna 48 is an antenna for communicating with the wireless communication terminal 100 (see FIG. 4 described later).
  • the wireless communication terminal 100 creates an autonomous traveling route, communicates with the tractor 1, and the like.
  • the wireless communication terminal 100 is an example configured of a tablet personal computer (tablet PC), but the present invention is not limited to this.
  • the seat 13 may be provided with a seating sensor 13a that detects that the user is sitting in the seat.
  • the seating sensor 13a may have, for example, a configuration using a membrane switch.
  • FIG. 4 is a block diagram showing the main electrical configuration of the tractor 1.
  • the tractor 1 controls the operation of the traveling machine body 2 (forward, reverse, stop and turn, etc.) and the operation of the working machine mounted on the traveling machine body 2 (lifting, driving, stop etc.)
  • the control unit 4 is provided.
  • the control unit 4 is electrically connected to a plurality of controllers for controlling the respective units of the tractor 1.
  • the plurality of controllers include an engine controller 31, a vehicle speed controller 32, a steering controller 33, an elevation controller 34, and a PTO controller 35.
  • the engine controller 31 controls the number of rotations of the engine 10 and the like.
  • the engine controller 31 is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 10.
  • the common rail device 41 injects fuel into each cylinder of the engine 10.
  • the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close, so that high-pressure fuel pressure-fed from the fuel tank to the common rail device 41 by the fuel supply pump is injected from each injector to each cylinder of the engine 10
  • the injection pressure, injection timing, and injection period (injection amount) of the fuel supplied from each injector are controlled with high accuracy.
  • the engine controller 31 controls the common rail device 41 to control the number of rotations of the engine 10 and the like.
  • the engine controller 31 can also stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the common rail device 41.
  • the vehicle speed controller 32 controls the vehicle speed of the tractor 1.
  • the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic stepless transmission.
  • the vehicle speed controller 32 can change the transmission ratio of the transmission 22 by changing the angle of the swash plate of the transmission 42 by an actuator (not shown), and can realize a desired vehicle speed.
  • the control unit 4 an autonomous traveling control unit 50 described later
  • the vehicle speed controller 32 controls the transmission 42 so that the vehicle speed of the tractor 1 becomes the target vehicle speed.
  • the steering controller 33 controls the turning angle of the front wheel 7. Specifically, a steering actuator 43 is provided in the middle of the rotation shaft (steering shaft) of the steering handle 12. During autonomous traveling, the control unit 4 calculates a target turning angle for causing the tractor 1 to travel along a predetermined autonomous traveling route, and sets the steering angle in the steering controller 33. The steering controller 33 controls the steering actuator 43 so that the rotation angle of the steering wheel 12 becomes the target turning angle. Thereby, the turning angle of the front wheel 7 of the tractor 1 is controlled.
  • the steering actuator may change the turning angle of the front wheel 7 of the tractor 1 without adjusting the turning angle of the steering wheel 12.
  • the control unit 4 calculates a target turning angle for causing the tractor 1 to travel along a predetermined autonomous traveling route, and sets the steering angle in the steering controller 33.
  • the steering controller 33 controls the steering actuator so that the turning angle of the front wheels 7 becomes the target turning angle. In that case, the steering handle 12 does not rotate even if a cornering movement is performed.
  • the elevation controller 34 controls elevation of the working machine.
  • the tractor 1 is provided with a lift actuator 44 composed of a known hydraulic lift cylinder in the vicinity of the portion connecting the work machine to the traveling machine body 2.
  • the elevation controller 34 raises and lowers the work machine appropriately by driving the lift cylinder by opening and closing a solenoid valve (not shown) based on the control signal input from the control unit 4.
  • the lift cylinder is single acting.
  • the lift cylinder raises the working machine by supplying hydraulic oil to the cylinder.
  • the lift cylinder is configured such that the working machine is lowered by its own weight by discharging the hydraulic oil from the cylinder.
  • a well-known descent speed adjusting valve is disposed in the discharge path of the hydraulic fluid from the cylinder.
  • the user can adjust the opening speed of the lowering speed adjusting valve with the work machine lowering speed adjusting knob 25 (see FIG. 3) to adjust the speed when the working machine is lowered.
  • the lift controller 34 can support the work machine at a desired height such as a non-work height at which work is not performed and a work height at which the work is performed.
  • the PTO controller 35 controls the rotation of the PTO shaft.
  • the tractor 1 is provided with a PTO clutch 45 for switching transmission / disconnection of power to the PTO shaft.
  • the PTO controller 35 can rotationally drive the work machine 3 via the PTO shaft or stop the rotational drive by switching the PTO clutch 45 based on the control signal input from the control unit 4 .
  • the “working state” of the work machine 3 means a state in which the pickup device 80 of the work machine 3 is driven by the driving force from the PTO shaft.
  • non-working state means a state other than the above working state.
  • the non-operation state is, for example, a state in which the pickup device 80 is stopped.
  • a satellite signal reception antenna 46 is electrically connected to the control unit 4.
  • a radio communication antenna 48 is electrically connected to the control unit 4 via the radio communication unit 47.
  • the wireless communication unit 47 may be configured by a wireless LAN router (Wi-Fi router), for example.
  • a monitor device 36 is electrically connected to the control unit 4.
  • a traveling machine side communication unit 37 which is an interface for communicating with the work machine 3, is electrically connected to the control unit 4.
  • the satellite signal receiving antenna 46 receives a signal from a positioning satellite that constitutes a satellite positioning system (GNSS).
  • the positioning signal received by the satellite signal reception antenna 46 is input to a position information calculation unit (position information acquisition unit) 49.
  • the position information calculation unit 49 calculates position information of the traveling body 2 (strictly speaking, the satellite signal receiving antenna 46) of the tractor 1 as, for example, latitude and longitude information.
  • the satellite positioning system is a high precision satellite positioning system using the GNSS-RTK method.
  • the satellite positioning system is not limited to this, and another positioning system may be used.
  • DGPS relative positioning system
  • SBAS geosynchronous satellite navigation augmentation system
  • a combination of these systems may be used.
  • the control unit 4 may be connected to an inertial measurement device (not shown).
  • This inertial measurement device is a known configuration provided with an angular velocity sensor and an acceleration sensor. This inertial measurement device is configured to be able to acquire the position of the tractor 1 even when the GNSS positioning described above can not be performed due to radio wave reception and the like.
  • the control unit 4 has a function of controlling the tractor 1 and the work machine 3 based on various operations of the user who got into the cabin 11, and causes the tractor 1 to automatically travel along the autonomous traveling route created in advance. However, it has an autonomous traveling function and the like for automatically controlling the work machine 3. The autonomous traveling function will be described in detail below.
  • the control unit 4 includes a microcomputer.
  • the microcomputer includes a CPU and a storage unit (ROM, RAM, non-volatile memory, hard disk, etc.) 60.
  • the storage unit 60 stores programs and various data.
  • the microcomputer functions as a plurality of function processing units by executing a predetermined program stored in the storage unit 60.
  • the plurality of function processing units include an autonomous traveling control unit 50 and the like.
  • the autonomous traveling control unit 50 performs overall control on autonomous traveling.
  • the autonomous traveling control unit 50 includes a manned autonomous traveling mode (first mode) in which autonomous traveling is performed in a state where the user is on board and an unmanned autonomous traveling mode (second mode) in which autonomous traveling is performed in a state where the user is not on board. It is possible to switch and allow the tractor 1 to travel autonomously along the autonomous traveling route.
  • the autonomous traveling control unit 50 causes the tractor 1 to autonomously travel along the autonomous traveling route generated in advance or stops autonomous traveling by controlling the respective controllers 31 to 35.
  • the autonomous traveling control unit 50 includes a target vehicle speed setting unit 51 that sets a predetermined target vehicle speed VT in the vehicle speed controller 32.
  • the autonomous traveling control unit 50 outputs a control signal to control the vehicle speed controller 32 such that the vehicle speed of the tractor 1 becomes the target vehicle speed VT. That is, when the vehicle speed of the tractor 1 is different from the target vehicle speed VT, the vehicle speed of the tractor 1 is increased or decreased to match the target vehicle speed VT.
  • a reference vehicle speed which is a vehicle speed serving as a reference of the target vehicle speed VT of the tractor 1 is set in the autonomous traveling route generated in advance. If the specific control signal from the work machine side control unit 84 is not input to the control unit 4 during autonomous traveling, the reference vehicle speed is set as the target vehicle speed VT of the tractor 1.
  • a plurality of reference vehicle speeds can be set in accordance with the position of the tractor 1 on the autonomous traveling route. For example, two types of reference vehicle speeds (a first reference vehicle speed V1 and a second reference vehicle speed V2) are set. This setting is performed, for example, using the wireless communication terminal 100 (see FIG. 4 described later). Thus, the wireless communication terminal 100 has a function as a reference vehicle speed setting unit.
  • the work machine 3 which is a roll baler includes the work machine mechanism unit 82 described above, a detection unit 83, a work machine side control unit 84, and a work machine side communication unit 85.
  • the detection unit 83 detects that the work machine 3 is in a specific work state.
  • the work machine side control unit 84 outputs a predetermined control signal (specific control signal) when the specific work state is reached or when the specific work state is cancelled.
  • the working machine side communication unit 85 is an interface for communicating with the control unit 4 via the traveling machine side communication unit 37.
  • the work machine side control unit 84 and the control unit 4 can communicate via the work machine side communication unit 85 and the traveling machine body communication unit 37. Therefore, the predetermined control signal (specific control signal) output by the work machine side control unit 84 is input to the control unit 4 via the work machine side communication unit 85 and the traveling machine body side communication unit 37.
  • the types of specific control signals include a deceleration signal, a stop signal, a deceleration release signal, and a stop release signal.
  • the deceleration signal is a signal that requests the tractor 1 to decelerate.
  • the stop signal is a signal requesting stop of the traveling of the tractor 1.
  • the target vehicle speed VT is set to a speed obtained by multiplying the first reference vehicle speed V1 or the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5).
  • the target vehicle speed VT is set to 0 km / h.
  • the deceleration release signal is a signal for requesting release of the deceleration of the tractor 1 by the deceleration signal.
  • the stop release signal is a signal requesting release of the stop of the traveling of the tractor 1 by the stop signal. In other words, it can be said that the stop release signal is a signal substantially requesting resumption of traveling of the tractor 1.
  • the timing at which the work machine 3 is in the following work state may be mentioned as the timing at which each specific control signal is output.
  • the deceleration signal indicates that the amount of the material to be molded in the molding chamber 81 reaches a predetermined ratio (for example, 80%) of the volume of the molding chamber 81 by the material to be molded being sent to the molding chamber 81 Occasionally, it may be output, for example, when the work machine mechanism 82 of the work machine 3 is clogged and the amount of material to be molded that can be picked up by the work machine 3 decreases per unit time.
  • the deceleration release signal may be output, for example, when the roll bale is discharged from the forming chamber 81 and the forming chamber 81 becomes empty, or when the clogging of the working machine mechanism unit 82 is resolved.
  • the stop signal may be output, for example, when the roll bale is formed in the forming chamber 81, or when the tractor 1 finishes traveling on the autonomous traveling route.
  • the stop release signal may be output when the roll bale is discharged from the forming chamber 81 and the forming chamber 81 becomes empty.
  • the wireless communication terminal 100 includes a route generation unit 101, a display unit 102, a display control unit 103, a wireless communication unit 104, and a wireless communication antenna 105.
  • the route generation unit 101 generates an autonomous traveling route.
  • the display unit 102 displays various data and receives an operation by a user.
  • the display unit 102 is configured by a touch panel display.
  • the display control unit 103 controls the display content of the display unit 102. Specifically, the display control unit 103 causes the display unit 102 to display an autonomous traveling route, or causes the display unit 102 to display a predetermined image indicating the position of the traveling vehicle 2 on the autonomous traveling route. can do.
  • the wireless communication unit 104 and the wireless communication antenna 105 are devices used to perform wireless communication with the control unit 4 of the tractor 1.
  • the wireless communication antenna 105 may include a wireless LAN adapter (Wi-Fi adapter).
  • the wireless communication antenna 105 is connected to the path generation unit 101 and the display control unit 103 via the wireless communication unit 104.
  • the autonomous traveling route generated by the route generation unit 101 is transmitted from the wireless communication terminal 100 to the control unit 4 of the tractor 1 and stored in the storage unit 60 as route data.
  • FIG. 5 is a schematic view showing an example of the autonomous traveling route.
  • the autonomous traveling route P is generated so as to connect the work start position S specified in advance and the work end position E.
  • the autonomous traveling route P is set in the work area W, and is set in a linear or polygonal autonomous working path (a linear path on which the autonomous work is performed) P1 and a non-work area N.
  • the connection path P2 which is a path connecting the end portions of the two, is alternately connected.
  • the work area W means an area where the autonomous work is performed
  • the non-work area N means an area where the autonomous work is not performed.
  • “travel” means autonomous travel
  • work means autonomous work.
  • the autonomous work path P1 is a path on which the work by the work machine 3 is performed.
  • the connection path P2 is a rotary circuit including an arc-like portion where the turning and turning back operation is performed.
  • the autonomous work path P1 is generated linearly, and the connection path P2 is generated U-shaped.
  • the connection path P2 is disposed to connect the end portions of the autonomous work paths P1 adjacent to each other.
  • a direction change of 180 ° is performed in each connecting route P2, so that the traveling direction of the tractor 1 is an autonomous work route P1 and its neighboring autonomous work route P1.
  • the tractor 1 travels on the autonomous traveling route P.
  • the front in the traveling direction of the tractor 1 is also referred to as “the traveling direction downstream side", and the rear in the traveling direction of the tractor 1 is also referred to as the “traveling direction upstream side” .
  • the autonomous work path P1 and the connection path P2 are alternately arranged along the traveling direction.
  • the boundary between the autonomous work path P1 and the connection path P2 on the downstream side in the traveling direction of the autonomous work path P1 is referred to as a first boundary position B1.
  • the boundary between the connection path P2 and the autonomous work path P1 on the downstream side in the traveling direction of the connection path P2 is referred to as a second boundary position B2.
  • FIG. 6 is a schematic view of the vicinity of the connection path P2 of the autonomous traveling path P. As shown in FIG.
  • a reference vehicle speed V is set for the autonomous traveling route P.
  • the first reference vehicle speed V1 is set to the autonomous work path P1
  • the second reference vehicle speed V2 is set to the connection path P2.
  • the target vehicle speed setting unit 51 sets the target vehicle speed VT to the first reference vehicle speed V1 when the tractor 1 travels the autonomous work path P1 when the specific control signal is not output, and the tractor 1 travels the connection path P2.
  • the target vehicle speed VT is set to the second reference vehicle speed V2.
  • the target vehicle speed setting unit 51 includes a first setting unit 52 that switches the target vehicle speed VT between the first reference vehicle speed V1 and the second reference vehicle speed V2.
  • the first setting unit 52 sets the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed when the traveling airframe 2 moves from the autonomous work path P1 to the connection path P2 downstream of the autonomous work path P1 in the traveling direction. Switch to V2.
  • the first setting unit 52 sets the target vehicle speed VT from the second reference vehicle speed V2 to the first reference vehicle speed V1 when the traveling airframe 2 moves from the connection path P2 to the autonomous work path P1 on the downstream side in the traveling direction of the connection path P2. Switch to
  • a shift reference position R on which the target vehicle speed setting unit 51 switches the target vehicle speed VT is set (specified) on the autonomous traveling route P.
  • a control signal for controlling the vehicle speed controller 32 is output from the autonomous traveling control unit 50.
  • the autonomous traveling control unit 50 further includes a shift reference position setting unit 54 (see also FIG. 4).
  • the shift reference position setting unit 54 sets the next shift reference position R in the traveling direction downstream of the current position of the traveling vehicle body 2 in response to the vehicle speed switching control for the target vehicle speed VT being started by the vehicle speed controller 32. Do. Further, when the target vehicle speed VT is changed according to the specific control signal, the shift reference position setting unit 54 can set the shift reference position R accordingly.
  • the shift reference position R serving as a reference when switching the target vehicle speed VT is also the first shift reference position R1.
  • the shift reference position R serving as a reference when switching the target vehicle speed VT when the traveling body 2 moves from the connection path P2 to the autonomous work path P1 downstream of the connection path P2 in the traveling direction is also referred to as a second shift reference position R2. .
  • the shift reference position R is set based on the current position (whether it is the autonomous work path P1 or the connection path P2) and the reference vehicle speed V. Since the first shift reference position R1 is a position serving as a reference for switching the target vehicle speed VT when moving from the autonomous work path P1 to the connection path P2, the first shift reference position R1 is set at or near the first boundary position B1.
  • the second shift reference position R2 is a position serving as a reference for switching the target vehicle speed VT when moving from the connection path P2 to the autonomous work path P1, and therefore, is set at or near the second boundary position B2.
  • the work be performed equally over the entire area.
  • the tractor 1 travel on the autonomous work path P1 at substantially the same speed (without switching the target vehicle speed VT in the autonomous work path P1). Therefore, in the present embodiment, it is preferable that the shift reference position R be set so that the tractor 1 can travel on the autonomous work path P1 at substantially the same speed.
  • the shift reference position setting unit 54 selects the shift reference position R regardless of the value of the current target vehicle speed VT.
  • (First shift reference position R1) is set to the first boundary position B1.
  • the target vehicle speed VT is switched at the shift reference position R, and when the traveling body 2 moves from the shift reference position R by a predetermined distance L1, the vehicle speed of the tractor 1 reaches the target vehicle speed VT after switching.
  • the predetermined distance L1 is a distance necessary for the vehicle speed of the tractor 1 to reach the switched target vehicle speed VT, and is determined according to the current target vehicle speed VT and the magnitude of the acceleration or deceleration of the tractor 1.
  • the shift reference position setting unit 54 continues until the vehicle speed of the tractor 1 reaches the target vehicle speed VT after switching from the current target vehicle speed VT.
  • the shift reference position R is set on the upstream side of the second boundary position B2 in the traveling direction by a distance (predetermined distance L2) necessary for the second position.
  • the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT, the switched target vehicle speed VT, and the degree of acceleration or deceleration of the tractor 1, and the calculated predetermined distance L2
  • a shift reference position R (second shift reference position R2) is set upstream of the second boundary position B2 in the traveling direction.
  • the second shift reference position R2 is set in consideration of the current target vehicle speed VT.
  • FIG. 7 is a graph for explaining changes in the vehicle speed of the tractor 1 traveling near the shift reference position R when a specific control signal such as a deceleration signal is not output.
  • the horizontal axis indicates the position of the tractor 1 (traveling machine body 2), and the vertical axis indicates the vehicle speed of the tractor 1 (the same applies to FIGS. 8A to 9D described later).
  • the first setting unit 52 sets the target vehicle speed VT to the first reference vehicle speed V1.
  • the shift reference position setting unit 54 is a first boundary between the autonomous work path P1 where the traveling airframe 2 is currently located and the connection path P2 located downstream thereof (that is, the traveling airframe 2 passes next)
  • the shift reference position R is set to the boundary position B1.
  • the first setting unit 52 switches the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed V2. Therefore, deceleration of the tractor 1 starts.
  • the vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 reaches the second reference vehicle speed V2 when the traveling vehicle body 2 moves from the shift reference position R by a predetermined distance L1.
  • the shift reference position setting unit 54 sets the next shift reference position R.
  • the shift reference position setting unit 54 is based on the current target vehicle speed VT (second reference vehicle speed V2), the target vehicle speed VT after switching (first reference vehicle speed V1), and the acceleration or deceleration of the tractor 1
  • a predetermined distance L2 is calculated, and the next shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next. That is, the predetermined distance L2 is calculated so that the vehicle speed of the tractor 1 reaches the target vehicle speed VT when the traveling body 2 reaches the second boundary position B2.
  • the target vehicle speed VT is switched from the second reference vehicle speed V2 to the first reference vehicle speed V1, and acceleration of the tractor 1 starts.
  • the vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 reaches the first reference vehicle speed V1 when the traveling body 2 reaches the second boundary position B2.
  • the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 sets the next shift reference position R at a first boundary position B1 where the traveling vehicle body 2 passes next. Then, the setting of the target vehicle speed VT and the setting of the shift reference position R are repeated until the traveling body 2 reaches the work end position E.
  • the autonomous traveling control unit 50 outputs a work stop signal for stopping work by the work machine 3 to the work machine side control unit 84 when the traveling machine body 2 reaches the first boundary position B1.
  • the autonomous traveling control unit 50 outputs a work start signal for starting work by the work machine 3 to the work machine side control unit 84 when the traveling machine body 2 reaches the second boundary position B2.
  • the output timing of the work stop signal and the work start signal may be when the work machine 3 reaches the first boundary position B1 and the second boundary position B2.
  • the position of the working machine 3 is calculated based on the position of the traveling machine body 2 and the relative position of the working machine 3 with respect to the traveling machine body 2 determined in advance.
  • the PTO controller 35 switches the PTO clutch 45 according to the work stop signal and the work start signal to rotate the work machine mechanism 82 of the work machine 3 or Stop the rotation.
  • the lift controller 34 may raise or lower the work machine according to the work stop signal and the work start signal.
  • the traveling machine body 2 is performed during the predetermined preparation period. When the traveling body 2 reaches a position upstream of the first boundary position B1 or the second boundary position B2 by the preparation traveling distance, the operation stop signal or the operation start signal is output. It may be
  • the target vehicle speed VT may be changed by outputting a specific control signal (in particular, a deceleration signal or a deceleration release signal).
  • a specific control signal in particular, a deceleration signal or a deceleration release signal.
  • the target vehicle speed setting part 51 is comprised so that the target vehicle speed VT can be set based on the position of the traveling body 2 when a specific control signal is output.
  • the target vehicle speed setting unit 51 further includes a second setting unit 53 that sets the target vehicle speed VT based on a standard different from that of the first setting unit 52 (see FIG. 4). .
  • the first setting unit 52 is a setting unit that sets the target vehicle speed VT when the work machine 3 is not in a specific work state. On the other hand, after the work machine 3 is in the specific work state (after the specific control signal indicating that the specific work state is output), the second setting unit 53 continues until the specific work state is canceled. It is a setting unit that sets a target vehicle speed VT during a period (until a specific control signal indicating that a specific work state is canceled) is output.
  • the first setting unit 52 indicates that when the traveling machine body 2 reaches the shift reference position R when the work machine 3 is not in the specific work state, and that the specific work state of the work machine 3 is cancelled. It can be said that the setting unit sets the target vehicle speed VT when acquiring the specific control signal.
  • the second setting unit 53 acquires a specific control signal indicating that the traveling machine body 2 has reached the shift reference position R when the work machine 3 is in the specific work state, and that the specific work state is in progress. It can be said that the setting unit sets the target vehicle speed VT when it
  • the specific control signal indicates a specific control signal indicating that the specific work state has been cancelled, and the second setting unit 53 When the target vehicle speed VT is set, the specific control signal indicates a specific control signal indicating that the specific working state is in effect.
  • first setting unit 52 and second setting unit 53 execute traveling machine body 2 relative to shift reference position R currently set by shift reference position setting unit 54.
  • the specific target vehicle speed VS is calculated on the basis of the position of and the specific target vehicle speed VS is set as the target vehicle speed VT. Specifically, the specific target vehicle speed VS is changed based on whether or not the distance (separation distance) between the current position of the traveling airframe 2 and the current shift reference position R is less than a predetermined reference distance D. .
  • the first setting unit 52 and the second setting unit 53 output the specific control signal when the separation distance between the current position of the traveling vehicle body 2 and the shift reference position R is less than the reference distance D.
  • the specific target vehicle speed VS is calculated based on the reference vehicle speeds V1 and V2 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is currently located.
  • the first setting unit 52 and the second setting unit 53 When the specific control signal is output when the separation distance between the current position of the traveling machine body 2 and the shift reference position R is equal to or more than the reference distance D, the first setting unit 52 and the second setting unit 53 The specific target vehicle speed VS is calculated based on the reference vehicle speeds V1 and V2 of the routes P1 and P2 (first section) in which 2 is currently located. The first setting unit 52 and the second setting unit 53 cause the vehicle speed controller 32 to control the vehicle speed by setting the target vehicle speed VT when the specific control signal is output from the work machine side control unit 84.
  • the predetermined reference distance D is, for example, a predetermined fixed distance.
  • the predetermined reference distance D is a travel distance required for the vehicle speed of the tractor 1 to reach the target vehicle speed VT Distance required to The travel distance required for shifting changes depending on the current vehicle speed of the tractor 1 and the acceleration (deceleration) of the tractor 1.
  • the travel distance required for shifting may be calculated appropriately and set as the reference distance D.
  • the reference distance D may be a distance obtained by adding a margin to the travel distance required for shifting.
  • the reference distance D is set for each of the first shift reference position R1 and the second shift reference position R2.
  • the reference distance D may be changed according to the type of the specific control signal.
  • the shift reference position setting unit 54 sets the shift reference position R based on the current target vehicle speed VT and the current position of the traveling vehicle 2 with respect to the current shift reference position R when the specific control signal is output. can do. That is, when the vehicle speed controller 32 performs the vehicle speed switching control in response to the specific target vehicle speed VS being set as the target vehicle speed VT by the first setting unit 52 or the second setting unit 53, the shift reference position setting unit 54 The shift reference position R is changed to the current position of the traveling body 2. Then, after the vehicle speed switching control by the vehicle speed controller 32 is started, the shift reference position setting unit 54 sets the next shift reference position R.
  • the storage unit 60 includes a route storage unit 61, an area storage unit 62, a shift reference position storage unit 63, a reference vehicle speed storage unit 64, and a reference distance storage unit 65 (see FIG. 4).
  • the route storage unit 61 stores information of the autonomous traveling route P (the autonomous work route P1 and the connection route P2).
  • the area storage unit 62 stores information on a preset work area W (specifically, information on the position, shape, and the like of the work area W) and information on a non-work area N which is the remaining area.
  • the information of the work area W can be set, for example, by the user appropriately operating the wireless communication terminal 100 before starting the autonomous traveling.
  • the shift reference position storage unit 63 stores the shift reference position R set on the autonomous traveling route P.
  • the shift reference position R stored in the shift reference position storage unit 63 is set every time the shift reference position setting unit 54 sets the shift reference position R.
  • the reference vehicle speed storage unit 64 stores the reference vehicle speed (the first reference vehicle speed V1 and the second reference vehicle speed V2) of the tractor 1 during autonomous traveling.
  • the reference distance storage unit 65 stores a reference distance D with respect to the shift reference position R.
  • FIG. 8A is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration signal is output while traveling on the autonomous work path P1 at the same speed (first reference vehicle speed V1).
  • FIG. 8B shows that when the target vehicle speed VT is switched from the first reference vehicle speed V1 to the second reference vehicle speed V2, the deceleration signal is output while the tractor 1 is decelerating (during deceleration). It is a graph for demonstrating the change of the vehicle speed.
  • FIG. 8A is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration signal is output while traveling on the autonomous work path P1 at the same speed (first reference vehicle speed V1).
  • FIG. 8B shows that when the target vehicle speed VT is switched from the first reference vehicle speed V1 to the second reference vehicle speed V2, the deceleration signal is output while the tractor 1 is decelerating (during deceleration). It is a graph for demonstrating the change of the vehicle speed.
  • FIG. 8C is a graph for illustrating changes in the vehicle speed of the tractor 1 when the deceleration signal is output while traveling on the connection path P2 at a constant speed (second reference vehicle speed V2).
  • FIG. 8D shows that when the target vehicle speed VT is switched from the second reference vehicle speed V2 to the first reference vehicle speed V1, the deceleration signal is output while the tractor 1 is accelerating (during acceleration). It is a graph for demonstrating the change of the vehicle speed.
  • FIGS. 8A to 8D changes in the vehicle speed of the tractor 1 when the specific control signal is not output are indicated by solid lines.
  • FIGS. 8A to 8D changes in the vehicle speed of the tractor 1 after the deceleration signal is output are indicated by alternate long and short dash lines.
  • FIGS. 8A to 8D the position of the traveling airframe 2 when the deceleration signal is output is indicated by a downward arrow.
  • the reference distance D when the shift reference position R is the first shift reference position R1 and the specific control signal is the deceleration signal is referred to as a first reference distance D1 (see FIG. 8A).
  • the reference distance D when the shift reference position R is the second shift reference position R2 and the specific control signal is the deceleration signal is referred to as a second reference distance D2 (see FIG. 8C).
  • the first reference distance D1 is set to a value larger than the second reference distance D2.
  • the first setting unit 52 sets the current target vehicle speed VT to the first reference vehicle speed V1.
  • the shift reference position setting unit 54 sets the shift reference position R (first shift reference position R1) at the first boundary position B1 where the traveling body 2 passes next.
  • the second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section).
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is decelerated until the vehicle speed of the tractor 1 changes to (1/2) V1.
  • the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 continues to the first boundary position B1 regardless of the target vehicle speed VT.
  • the shift reference position R (first shift reference position R1) is set.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, the specific control signal is Until it is output, it is maintained at (1/2) V1.
  • deceleration is performed when the distance between the current position of traveling body 2 and shift reference position R (first shift reference position R1) is less than first reference distance D1.
  • the second setting unit 53 sets the reference vehicle speed of the connection path P2 (second section) on the downstream side in the traveling direction of the autonomous work path P1 (first section) in which the traveling machine body 2 is currently positioned
  • the specific target vehicle speed VS is calculated based on the second reference vehicle speed V2).
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is decelerated until the vehicle speed of the tractor 1 changes to (1/2) V2.
  • the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2), and the second boundary position B2 at which the traveling vehicle body 2 passes next is calculated. The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2.
  • the predetermined distance L2 is smaller when the current target vehicle speed VT is (1/2) V2 than when the target vehicle speed VT is the second reference vehicle speed V2.
  • the second shift reference position R2 when the current target vehicle speed VT is (1/2) V2 is compared to the second shift reference position R2 when the current target vehicle speed VT is the second reference vehicle speed V2. It is set to the traveling direction downstream side (position close to the second boundary position B2).
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
  • shift reference position R causes traveling body 2 to pass next.
  • a predetermined distance L2 is set upstream of the second boundary position B2 to be traveled (see the solid line in FIG. 8B). Therefore, referring to the two-dot chain line in FIG. 8B, the decelerating signal is output when the distance between the position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than second reference distance D2. Then, even if the tractor 1 is decelerating, the second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section).
  • the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, referring to the two-dot chain line in FIG.
  • the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2) of the traveling airframe 2;
  • the next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
  • target vehicle speed VT is set to second reference vehicle speed V2.
  • the shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
  • the deceleration signal is generated when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than second reference distance D2.
  • the second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) in which the traveling body 2 is currently positioned.
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is decelerated until the vehicle speed of the tractor 1 becomes (1/2) V2.
  • the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control in which the vehicle speed of the traveling vehicle body 2 is set to (1/2) V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2) of the traveling airframe 2, and the second boundary at which the traveling airframe 2 passes next The next shift reference position R (second shift reference position R2) is set upstream of the position B2 by a predetermined distance L2 in the traveling direction (not shown).
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
  • the second setting unit 53 sets the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (second section) downstream in the traveling direction of the connection path P2 where the traveling body 2 is currently located.
  • the specific target vehicle speed VS is calculated based on.
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is accelerated until the vehicle speed of the tractor 1 changes to (1/2) V1.
  • the second setting unit 53 sets the target vehicle speed VT to (1/2) V1 immediately after the deceleration signal is output.
  • the target vehicle speed VT may not be set until the traveling body 2 reaches the shift reference position R (second shift reference position R2).
  • the second setting unit 53 may set the target vehicle speed to (1/2) V1.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 determines the first boundary position B1 where the traveling vehicle 2 passes next. Next shift reference position R (first shift reference position R1) is set.
  • the vehicle speed of the traveling vehicle 2 is between (1) the vehicle speed reaching (1/2) V1 and the next shift reference position R (first shift reference position R1), or until a specific control signal is output next Is maintained at (1/2) V1.
  • transmission reference position R causes traveling body 2 to pass next. Is set to a first boundary position B1. Therefore, when the deceleration signal is output when the distance between the position of the traveling vehicle body 2 and the shift reference position R (first shift reference position R1) is equal to or greater than the first reference distance D1, the tractor 1 is accelerating.
  • the second setting unit 53 is an autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section) where the traveling body 2 is currently positioned.
  • the specific target vehicle speed VS is calculated based on the reference vehicle speed (first reference vehicle speed V1).
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, as shown by a two-dot chain line in FIG. 8D, the shift reference position setting unit 54 The next shift reference position R (first shift reference position R1) is set at the boundary position B1.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, the specific control signal is Until it is output, it is maintained at (1/2) V1.
  • FIG. 9A is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration release signal is output while traveling on the autonomous work path P1 at a constant speed ((1/2) V1).
  • FIG. 9B shows that when the target vehicle speed VT is switched from (1/2) V1 to (1/2) V2, the deceleration cancel signal is output while the tractor 1 is being decelerated (during deceleration), It is a graph for demonstrating the change of the vehicle speed of the tractor 1.
  • FIG. 9C is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration release signal is output while traveling on the connection path P2 at a constant speed ((1/2) V2).
  • FIG. 9D shows that when the target vehicle speed VT is switched from (1/2) V2 to (1/2) V1, the deceleration release signal is output while the tractor 1 is being accelerated (during acceleration), It is a graph for demonstrating the change of the vehicle speed of the traveling body 2.
  • the change in vehicle speed of the tractor 1 traveling in the vicinity of the shift reference position R in a state of being decelerated by the output of the decelerating signal is indicated by a solid line.
  • a predetermined deceleration rate for example, 0.5
  • the reference distance D when the shift reference position R is the first shift reference position R1 and the specific control signal is the deceleration cancellation signal is referred to as a third reference distance D3 (see FIG. 9A).
  • the reference distance D when the shift reference position R is the second shift reference position R2 and the specific control signal is the deceleration release signal is referred to as a fourth reference distance D4 (see FIG. 9C).
  • the third reference distance D3 is set to a distance different from the first reference distance D1, but may be the same distance as the first reference distance D1.
  • the fourth reference distance D4 is set to a distance different from the second reference distance D2, but may be the same distance as the second reference distance D2.
  • the second setting unit 53 sets the current target vehicle speed VT to (1/2) V1 when the traveling airframe 2 is positioned on the autonomous work path P1 while the vehicle speed control based on the deceleration signal is being executed. .
  • the shift reference position setting unit 54 sets the first shift reference position R1 based on the current target vehicle speed VT ((1/2) V1).
  • the deceleration release signal is output.
  • the first setting unit 52 calculates the specific target vehicle speed VS based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section).
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the first reference vehicle speed V1.
  • the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle speed V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 performs the next shift reference position R (first shift reference position R1). Is set to the first boundary position B1.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, a specific control signal is output
  • the first reference vehicle speed V1 is maintained until it is reset.
  • the deceleration is canceled when the distance between the current position of traveling body 2 and shift reference position R (first shift reference position R1) is less than third reference distance D3.
  • the first setting unit 52 sets the reference vehicle speed (second section) of the connection path P2 (second section) on the downstream side of the autonomous work path P1 (first section) in which the traveling machine body 2 is currently positioned.
  • the specific target vehicle speed VS is calculated based on the reference vehicle speed V2).
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is decelerated until the vehicle speed of the tractor 1 becomes the second reference vehicle speed V2.
  • the first setting unit 52 sets the target vehicle speed VT to the second reference vehicle speed V2 immediately after the deceleration cancellation signal is output.
  • the target vehicle speed VT may not be set until the traveling vehicle body 2 reaches the shift reference position R (first shift reference position R1).
  • the first setting unit 52 may set the target vehicle speed to the second reference vehicle speed V2.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (the second reference vehicle speed V2), and is more predetermined than the second boundary position B2 at which the traveling vehicle body 2 passes next. The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by the distance L2.
  • the predetermined distance L2 is smaller than the case where the current target vehicle speed VT is the second reference vehicle speed V2 when the current target vehicle speed VT is (1/2) V2. Becomes smaller. Therefore, the second shift reference position R2 is set on the upstream side in the traveling direction (a position farther from the second boundary position B2) than when the current target vehicle speed VT is (1/2) V2.
  • the target vehicle speed VT is maintained at the second reference vehicle speed V2 until the traveling vehicle body 2 reaches the shift reference position R or until the specific control signal is output next.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, as shown by a two-dot chain line in FIG. 9B, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (second reference vehicle speed V2) of the traveling airframe 2 and travels. The next shift reference position R (second shift reference position R2) is set upstream of the second boundary position B2 where the machine body 2 passes next by a predetermined distance L2 in the traveling direction.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the second reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, a specific control signal is output
  • the second reference vehicle speed V2 is maintained until it is reset.
  • target vehicle speed VT is set to (1/2) V2.
  • the shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
  • the deceleration is canceled when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than fourth reference distance D4.
  • the first setting unit 52 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) in which the traveling body 2 is currently positioned.
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the second reference vehicle speed V2.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (second reference vehicle speed V2) of the traveling airframe 2, and the second boundary position where the traveling airframe 2 passes next The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2 from B2 (not shown).
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the second reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, a specific control signal is output
  • the second reference vehicle speed V2 is maintained until it is reset.
  • the first setting unit 52 sets the reference vehicle speed of the autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section) where the traveling machine body 2 is currently located.
  • the specific target vehicle speed VS is calculated based on (first reference vehicle speed V1).
  • the vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting.
  • the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the first reference vehicle speed V1.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle velocity V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the first boundary position B1 where the traveling vehicle 2 passes next. The next shift reference position R (first shift reference position R1) is set.
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V1 until when the next shift reference position R (first shift reference position R1) is reached, or until the specific control signal is output next In the meantime, the vehicle is maintained at the first reference vehicle speed V1.
  • the first setting unit 52 sets the reference vehicle speed of the autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section).
  • the specific target vehicle speed VS is calculated based on 1 reference vehicle speed V1).
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle speed V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 shifts the first boundary position B1 to the shift reference position R (first shift Set the reference position R1).
  • the vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, a specific control signal is output
  • the first reference vehicle speed V1 is maintained until it is reset.
  • the above-described vehicle speed control processing is realized by performing the calculation of the specific target vehicle speed VS, the setting of the target vehicle speed VT, and the setting of the shift reference position R according to the flowcharts shown in FIGS.
  • FIG. 10 is a flowchart for explaining an example of a vehicle speed control process by the autonomous traveling system.
  • FIG. 11 is a flow chart for explaining the process performed when the vehicle speed is controlled based on the deceleration signal in the vehicle speed control process by the autonomous traveling system shown in FIG.
  • FIG. 12 is a flowchart for explaining an example of the calculation process of the specific target vehicle speed VS based on the deceleration signal.
  • FIG. 13 is a flow chart for explaining an example of the calculation processing of the specific target vehicle speed VS based on the deceleration release signal.
  • first setting unit 52 sets target vehicle speed VT to first reference vehicle speed V1 or second reference vehicle speed V2 (step S1). Specifically, when traveling machine body 2 is positioned on autonomous work path P1, target vehicle speed VT is set to first reference vehicle speed V1. When traveling body 2 is positioned on connection path P2, target vehicle speed VT is set to second reference vehicle speed V2. When the target vehicle speed VT is set (when the vehicle speed switching control to the target vehicle speed VT by the vehicle speed controller 32 is started), the shift reference position setting unit 54 sets the shift reference position R (step S2).
  • shift reference position R first shift reference position R1
  • first boundary position B1 where the traveling body 2 passes next.
  • shift reference position R second shift reference position R2
  • L2 is on the traveling direction upstream side by a predetermined distance L2 from second boundary position B2 where traveling body 2 passes next. It is set.
  • the autonomous traveling control unit 50 determines whether or not the vehicle speed control is being performed based on the deceleration signal (step S3).
  • vehicle speed control based on the deceleration signal is when the deceleration signal is output and the target vehicle speed VT based on the deceleration signal is set. That is, during the vehicle speed control based on the deceleration signal, the deceleration signal is output, but after that, the deceleration release signal or the stop signal is not yet output.
  • step S3: NO If the vehicle speed control based on the deceleration signal is not in progress (step S3: NO), whether the deceleration signal is output (step S4), whether the stop signal is output (step S5), and the current speed of the traveling vehicle 2 It is monitored whether the position is the shift reference position R (step S6).
  • step S3: YES When the vehicle speed control based on the deceleration signal is being executed (step S3: YES), referring to FIG. 11, whether or not the deceleration cancellation signal is output (step S7), the stop signal is output (step S7) S8) and whether or not the current position of the traveling body 2 is the shift reference position R (step S9) is monitored.
  • the first setting unit 52 When the current position of the traveling vehicle body 2 reaches the shift reference position R during monitoring performed when the vehicle speed control based on the deceleration signal is not being performed (step S3: NO), the first setting unit 52 The present target vehicle speed VT is set to the first reference vehicle speed V1 or the second reference vehicle speed V2 (step S10). Specifically, when the shift reference position R is the first shift reference position R1, the first setting unit 52 switches the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed V2. When the shift reference position R is the second shift reference position R2, the first setting unit 52 switches the target vehicle speed VT from the second reference vehicle speed V2 to the first reference vehicle speed V1.
  • the shift reference position setting unit 54 sets the shift reference position R (step S11). Specifically, the shift reference position R is set at a position upstream of the second boundary position B2 by a predetermined distance L2 or in the first boundary position B1 (see the description of FIG. 7). Thereafter, the process returns to step S3.
  • step S5 When the stop signal is output during monitoring performed when the vehicle speed control based on the deceleration signal is not being performed (step S3: NO) (step S5: YES), the traveling of the tractor 1 is stopped (step S12). Between the output of the stop signal and the output of the stop release signal, autonomous traveling of the tractor 1 is stopped (step S13: NO).
  • step S13: NO When the stop release signal is output (step S13: YES), the target vehicle speed VT is set to the reference vehicle speeds V1 and V2 (step S1), and the traveling of the tractor 1 is resumed.
  • the stop signal is also output when the tractor 1 reaches the work end position E of the autonomous traveling route P, and the autonomous traveling of the tractor 1 is ended.
  • step S4 YES
  • the autonomous traveling control unit 50 determines the specific target vehicle speed VS based on the deceleration signal.
  • the arithmetic processing of is executed (step S14).
  • the target vehicle speed VT is set to the specific target vehicle speed VS (step S15).
  • the shift reference position R is set at the current position of the traveling body 2, and the vehicle speed controller 32 starts the vehicle speed switching control to set the vehicle speed of the traveling body 2 to the specific target vehicle speed VS.
  • step S16 When the vehicle speed switching control in which the vehicle speed of the traveling vehicle 2 is set to the specific target vehicle speed VS is started, the next shift reference position R is set (step S16) (see the description of FIGS. 8A to 8D). Thereafter, the process returns to step S3.
  • the autonomous traveling control unit 50 determines the type of the current shift reference position R (step S30).
  • the current shift reference position R is the first shift reference position R1 (step S30: first shift reference position R1)
  • the separation distance between the position of the traveling body 2 and the shift reference position R is less than the first reference distance D1.
  • the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the first reference vehicle speed V1 (reference vehicle speed V of the first section). To the speed multiplied by (step S32).
  • the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the second reference vehicle speed V2 (the reference vehicle speed V of the second section). To the speed multiplied by (step S33). Thus, the calculation processing of the specific target vehicle speed VS based on the deceleration signal is completed.
  • step S30 second shift reference position R2
  • step S34 the separation distance between the position of the traveling body 2 and the shift reference position R is the second reference distance D2. It is determined whether it is less than (step S34).
  • step S34 the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the second reference vehicle speed V2 (reference vehicle speed V of the first section). To the speed multiplied by (step S35).
  • the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the first reference vehicle speed V1 (the reference vehicle speed V in the second section). To the speed multiplied by (step S36). Thus, the calculation processing of the specific target vehicle speed VS based on the deceleration signal is completed.
  • the second setting unit 53 sets the current target vehicle speed VT to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate, or to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate Are set (step S17).
  • the target vehicle speed VT is switched to a speed obtained by multiplying the second reference vehicle speed V2 by the deceleration rate from a speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate.
  • the target vehicle speed VT is switched to a speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate from a speed obtained by multiplying the second reference vehicle speed V2 by the deceleration rate.
  • the shift reference position setting unit 54 sets the shift reference position R (step S18). Specifically, the shift reference position R is set at a position upstream of the second boundary position B2 by a predetermined distance L2 in the traveling direction or at the first boundary position B1. Thereafter, the process returns to step S3.
  • step S3 YES
  • step S8 YES
  • the stop signal is output when the vehicle speed control based on the deceleration signal is not in progress
  • step S5 YES
  • step S3 When the vehicle speed control based on the deceleration signal is being executed (step S3: YES) and the deceleration cancellation signal is output during monitoring (step S7: YES), the autonomous traveling control unit 50 generates the deceleration cancellation signal
  • step S19 After the calculation process of the specific target vehicle speed VS, the target vehicle speed VT is set to the specific target vehicle speed VS (step S20). Then, the shift reference position R is set based on the current target vehicle speed VT and the position of the traveling body 2 with respect to the current shift reference position R (step S21). Thereafter, the process returns to step S3.
  • the autonomous traveling control unit 50 first determines the type of the current shift reference position R (step S40).
  • the shift reference position R is the first shift reference position R1 (step S40: first shift reference position R1)
  • the separation distance between the position of the traveling body 2 and the shift reference position R is less than the third reference distance D3. It is determined whether there is any (step S41). If the separation distance is equal to or greater than the third reference distance D3 (step S41: NO), the specific target vehicle speed VS is set to the first reference vehicle speed V1 (the reference vehicle speed V of the first section) (step S42).
  • step S41: YES If the separation distance is less than the third reference distance D3 (step S41: YES), the specific target vehicle speed VS is set to the second reference vehicle speed V2 (the reference vehicle speed V of the second section) (step S43). Thereby, the calculation processing of the specific target vehicle speed VS based on the deceleration release signal is completed.
  • step S44 the distance between the position of the traveling body 2 and the first shift reference position R1 to which the traveling body 2 reaches next Is determined to be less than the fourth reference distance D4 (step S44).
  • step S44: NO the separation distance is equal to or greater than the fourth reference distance D4 (step S44: NO)
  • the specific target vehicle speed VS is set to the second reference vehicle speed V2 (the reference vehicle speed V of the first section) (step S45). If the separation distance is less than the fourth reference distance D4 (step S44: YES), the specific target vehicle speed VS is set to the first reference vehicle speed V1 (the reference vehicle speed V of the second section) (step S46). Thereby, the calculation processing of the specific target vehicle speed VS based on the deceleration release signal is completed.
  • the autonomous travel system of the first embodiment includes the wireless communication terminal 100, the work machine side control unit 84, the target vehicle speed setting unit 51, and the vehicle speed controller 32.
  • the wireless communication terminal 100 sets the reference vehicle speed V to each of the autonomous work path P1 and the connection path P2.
  • the work machine side control unit 84 outputs a specific control signal.
  • Target vehicle speed setting unit 51 sets a target vehicle speed VT of the tractor traveling autonomously along autonomous traveling route P.
  • the vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 becomes the target vehicle speed VT.
  • the target vehicle speed setting unit 51 switches the target vehicle speed VT between the first reference vehicle speed V1 and the second reference vehicle speed V2 when the traveling vehicle body 2 reaches the shift reference position R specified on the autonomous traveling route P It is possible.
  • the target vehicle speed setting unit 51 calculates the specific target vehicle speed VS based on the position of the traveling body 2 with respect to the shift reference position R when the specific control signal is output, and sets the specific target vehicle speed VS as the target vehicle speed VT. .
  • the target vehicle speed VT can be set such that deceleration is not repeated in a short time. Therefore, when the specific control signal is output from the work implement 3, the optimum vehicle speed control can be performed. As a result, it is possible to improve the fuel consumption of the traveling airframe 2 and to reduce the inertial force (load) acting on the traveling airframe 2. Furthermore, when the user gets on the traveling machine body 2, the discomfort given to the user can be reduced.
  • the target vehicle speed setting unit 51 outputs the specific control signal when the separation distance between the current position of the traveling vehicle body 2 and the shift reference position R is less than the reference distance D.
  • the specific target vehicle speed VS is calculated based on the reference vehicle speeds V2 and V1 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is located.
  • the target vehicle speed The VT is set based on the reference vehicle speeds V2 and V1 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is currently positioned. Therefore, the change of the vehicle speed of the tractor 1 due to the deceleration signal or the deceleration release signal and the change of the vehicle speed of the tractor 1 due to the traveling body 2 reaching the shift reference position R are reliably suppressed in a short time. Can.
  • the target vehicle speed VT is properly set based on the reference vehicle speeds V1 and V2 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) can do.
  • the target vehicle speed setting unit 51 sets the first reference vehicle speed V1 or the second reference vehicle speed V2 to a predetermined deceleration ratio (for example, 0.5 Let the vehicle speed multiplied by) be the specific target vehicle speed VS.
  • the target vehicle speed setting unit 51 sets the first reference vehicle speed V1 or the second reference vehicle speed V2 as the specific target vehicle speed VS when the specific control signal is the deceleration cancellation signal. According to this configuration, in the configuration in which the deceleration signal and the deceleration release signal are output from the work machine 3, the target vehicle speed VT can be set appropriately.
  • FIG. 14 is a diagram for explaining an image displayed on the display unit 102 of the wireless communication terminal 100 during autonomous traveling.
  • the display control unit 103 (see FIG. 4) outputs the image 108 indicating the autonomous traveling route P, the image 109 indicating the current position of the tractor 1, and a specific control signal to the display unit 102 of the wireless communication terminal 100.
  • the display unit 102 displays a predetermined image 106 indicating the position of the traveling vehicle 2 at that time. By displaying the predetermined image 106, the user can easily recognize the position of the traveling machine body 2 when the specific control signal is output from the work machine side control unit 84.
  • any position on the autonomous traveling route P To determine if the roll bale has been discharged.
  • displaying a predetermined image indicating the position of the traveling machine body 2 when the deceleration signal is output from the work machine 3 on the display unit 102 for example, the position of the tractor 1 when the work machine 3 is clogged It can be identified.
  • the wireless communication terminal 100 may be configured to perform notification by sound or notification by light emission.
  • the user can know the timing at which the work control unit 84 outputs the specific control signal without visually recognizing the display unit 102.
  • FIG. 15 is a diagram for describing an image displayed on the display unit 102 of the wireless communication terminal 100 after the tractor 1 has finished traveling on the autonomous traveling route P.
  • the route generation unit 101 can generate a traveling route Q (another traveling route) passing through the image 106 of FIG.
  • the travel route Q is a travel route different from the autonomous travel route P.
  • the path generation unit 101 recovers the roll bale.
  • the image 107 indicating the current position of the work vehicle
  • the autonomous traveling system according to the second embodiment differs from the autonomous traveling system according to the first embodiment in that, as shown in FIG. 16 and FIG.
  • the target vehicle speed VT is set in consideration of the magnitude relationship with the reference vehicle speed V2.
  • FIG. 16 is a flowchart showing an example of calculation processing of a specific target vehicle speed VS based on a deceleration signal by the autonomous traveling system according to the second embodiment.
  • FIG. 17 is a flowchart showing an example of calculation processing of the specific target vehicle speed VS based on the deceleration release signal by the autonomous traveling system according to the second embodiment.
  • the second embodiment only portions different from the first embodiment will be mainly described, and the same members as the members described so far will be denoted with the same reference numerals, and the description thereof will be omitted.
  • the current shift reference position R is the first shift reference position R1 (step S30: first shift reference position R1), and the traveling airframe
  • step S30: first shift reference position R1 the traveling airframe
  • step S31: YES the separation distance between the current position 2 and the shift reference position R (first shift reference position R1) is less than the first reference distance D1 (step S31: YES)
  • step S50 the magnitude relationship between the reference vehicle speeds V1 and V2 is determined.
  • Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is equal to or higher than the second reference vehicle speed V2 (step S50: V1) V2), the specific target vehicle speed VS is calculated based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) Ru. Specifically, the first reference vehicle speed V1 is multiplied by a predetermined deceleration rate (for example, 0.5) (step S51).
  • a predetermined deceleration rate for example, 0.5
  • Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1
  • the specific target vehicle speed VS is calculated based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (second section).
  • the second reference vehicle speed V2 is multiplied by a predetermined deceleration rate (for example, 0.5) (step S52).
  • step S31: NO If the separation distance between the current position of the traveling airframe 2 and the shift reference position R (first shift reference position R1) is not less than the first reference distance D1 (step S31: NO), as in the first embodiment described above
  • the specific target vehicle speed VS is set to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (step S32).
  • the current shift reference position R is the second shift reference position R2 (step S30: second shift reference position R2), and the current position of the traveling body 2 and the shift reference position R (second shift reference position R2) Also when the separation distance is less than the second reference distance D2 (step S34: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined (step S53).
  • the specific target vehicle speed VS is smaller than the reference vehicle speed of the first vehicle (the first reference vehicle velocity V1) (step S53: V1> V2)
  • the reference vehicle speed (the first reference vehicle velocity V1) of the autonomous work path P1 (second section) Calculated based on.
  • the specific target vehicle speed VS is set to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (step S54).
  • the autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the vehicle speed is higher than the first reference vehicle speed (first reference vehicle speed V1) (step S53: V1 ⁇ V2), the specific target vehicle speed VS is based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section). Calculated. Specifically, the specific target vehicle speed VS is set to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (step S55).
  • a predetermined deceleration rate for example, 0.5
  • step S34 If the separation distance between the current position of the traveling airframe 2 and the shift reference position R (second shift reference position R2) is equal to or greater than the second reference distance D2 (step S34: NO), as in the first embodiment described above
  • the specific target vehicle speed VS is set to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (step S35).
  • the specific target vehicle speed VS is a route P1, P2 (first section) on which the traveling body 2 is currently located. Calculated based on the reference vehicle speed (reference vehicle speed V1, V2).
  • the specific target vehicle speed VS is the route P1, P2 on which the traveling body 2 is currently located. It may be calculated based on the reference vehicle speed (reference vehicle speed V2, V1) of the route P2, P1 (second region) on the downstream side of the (first interval).
  • step S50 if V1> V2, the specific target vehicle speed VS is the speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate (step S51). If V1 ⁇ V2, the specific target vehicle speed VS is the second reference The vehicle speed V2 may be multiplied by the deceleration rate (step S52). On the other hand, in step S53, if V1 ⁇ V2, the specific target vehicle speed VS is set to the speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate (step S54). If V1 ⁇ V2, the specific target vehicle speed VS is the second reference The vehicle speed V2 may be multiplied by the deceleration rate (step S55).
  • the current shift reference position R is the first shift reference position R1 (step S40: first shift reference position R1), and the traveling airframe
  • step S40 first shift reference position R1
  • step S41 first shift reference position R1
  • step S41 YES
  • Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is higher than the second reference vehicle speed V2) (step S60: V1> V2), the specific target vehicle speed VS is set to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (second section) (step S61).
  • Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is less than the second reference vehicle speed V2) (step S60: V1 ⁇ V2), the specific target vehicle speed VS is set to the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) (step S62).
  • step S41: NO identification is performed as in the above embodiment.
  • the target vehicle speed VS is set to the first reference vehicle speed V1 (step S42).
  • the current shift reference position R is the second shift reference position R2 (step S40: second shift reference position R2), and the current position of the traveling body 2 and the shift reference position R (second shift reference position R2) Also in the case where the separation distance is smaller than the fourth reference distance D4 (step S44: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined (step S63).
  • step S63 V1.gtoreq.V2
  • step S64 V1.gtoreq.V2
  • the autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the specific target vehicle speed VS is higher than the reference vehicle speed (first reference vehicle speed V1) (step S63: V1 ⁇ V2), the reference vehicle speed (first reference vehicle speed V1) for the autonomous work path P1 (second section) (Step S65).
  • step S44 NO
  • the specific target vehicle speed VS is set to the second reference vehicle speed V2 (step S45).
  • the specific target vehicle speed VS is a route P1, P2 (first section) on which the traveling body 2 is currently located. Calculated based on the reference vehicle speed (reference vehicle speed V1, V2).
  • the specific target vehicle speed VS is the route P1, P2 on which the traveling body 2 is currently located. It may be calculated based on the reference vehicle speed (reference vehicle speed V2, V1) of the route P2, P1 (second region) on the downstream side of the (first interval).
  • step S60 if V1 ⁇ V2, the specific target vehicle speed VS may be set to the second reference vehicle speed V2 (step S61), and if V1 ⁇ V2, the specific target vehicle speed VS may be set to the first reference vehicle speed V1 Step S62).
  • step S63 if V1> V2, the specific target vehicle speed VS may be set to the second reference vehicle speed V2 (step S64), and if V1 ⁇ V2, the specific target vehicle speed VS may be set to the first reference vehicle speed V1. (Step S65).
  • the magnitude relationship between the first reference vehicle speed V1 and the second reference vehicle speed V2 is also considered in setting the shift reference position R.
  • shift reference position setting unit 54 sets shift reference position R at the current position of traveling machine body 2 in step S16 (see FIG. 10) thereafter.
  • the next shift reference position R (first shift reference position R1) is set to the first boundary position B1.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then predetermined by the second boundary position B2.
  • the next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then sets the first boundary position B1.
  • the next shift reference position R (first shift reference position R1) is set.
  • the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then predetermined by the second boundary position B2.
  • the next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2.
  • step S60 the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2 in the subsequent step S18, and then from the second boundary position B2. Also, the next shift reference position R (second shift reference position R2) is set on the upstream side by a predetermined distance L2. On the other hand, if V1 ⁇ V2 in step S60, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S18 (see FIG. 11). The next shift reference position R (first shift reference position R1) is set to B1.
  • step S63 the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in step S18, and then the predetermined position is more than the second boundary position B2.
  • the next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2.
  • V1 ⁇ V2 in step S63 the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2, and then shifts to the first boundary position B1 to the next shift reference position R 1 Set the shift reference position R1).
  • the optimum vehicle speed control can be performed.
  • the tractor is more likely to execute deceleration and acceleration in a short time than when the deceleration is repeated only in a short time or acceleration is repeated in a short time.
  • the degree of deterioration of the fuel efficiency in 1 and the load on the traveling vehicle 2 are large, and the user is likely to feel uncomfortable. Therefore, there is a need to prevent vehicle speed control in which deceleration and acceleration are performed in a short time.
  • the tractor 1 is decelerated immediately after being decelerated or the tractor 1 is accelerated immediately after being accelerated. It is prevented that the vehicle is accelerated immediately thereafter or decelerated immediately after the tractor 1 is accelerated. Therefore, such needs can be met. Further, in a configuration in which the deceleration signal and the deceleration release signal are output from the work machine 3, the target vehicle speed VT can be set more appropriately.
  • the specific control signal includes the deceleration signal, the stop signal, the deceleration release signal, and the stop release signal.
  • the specific control signal requires an acceleration signal requesting acceleration of the tractor 1 and an acceleration request requesting release of a state in which the vehicle speed of the tractor 1 is controlled based on the acceleration signal.
  • a release signal may be included.
  • the calculation of the specific target vehicle speed VS when the specific control signal is an acceleration signal is substantially the same as the calculation of the specific target vehicle speed VS when the specific control signal is a deceleration signal (see FIG. 12), but is partially different .
  • the first reference vehicle speed V1 is set to the predetermined acceleration rate.
  • the multiplied vehicle speed is set as the specific target vehicle speed VS.
  • the second reference vehicle speed V2 is determined by multiplying the second reference vehicle speed V2 by the predetermined acceleration rate.
  • the target vehicle speed VS is set.
  • the calculation of the specific target vehicle speed VS when the specific control signal is the acceleration release signal is substantially the same as the calculation of the specific target vehicle speed VS when the specific control signal is the deceleration release signal (see FIG. 13).
  • optimal vehicle speed control is performed when the specific control signal is output from the work machine 3 Can.
  • the target vehicle speed VT can be set appropriately.
  • the calculation of the specific target vehicle speed VS when the specific control signal is the acceleration signal is performed when the specific control signal is the deceleration signal
  • the calculation is substantially the same as the calculation of the specific target vehicle speed VS (see FIG. 16), but is partially different.
  • the specific target vehicle speed VS is the speed obtained by multiplying the second reference vehicle speed V2 by a predetermined acceleration rate
  • steps S52 and S55 in FIG. The speed is obtained by multiplying the first reference vehicle speed V1 by a predetermined speed increase rate.
  • the specific control signal is the deceleration cancellation signal. It is almost the same as the calculation of the specific target vehicle speed VS at a given time (see FIG. 17), but a part is different. Specifically, the specific target vehicle speed VS is set to the first reference vehicle speed V1 in steps S61 and S64 in FIG. 17, and the specific target vehicle speed VS is set to the second reference vehicle speed V2 in steps S62 and S65 in FIG.
  • the tractor 1 When the magnitude relationship between the first reference vehicle speed V1 and the second reference vehicle speed V2 is taken into consideration, the tractor 1 is decelerated immediately after being decelerated, or the tractor 1 is accelerated immediately after acceleration as in the embodiment described above. While being allowed to be, it is prevented that the tractor 1 is accelerated immediately after being decelerated or that the tractor 1 is accelerated immediately after being accelerated. Therefore, it is possible to meet the need to prevent vehicle speed control in which deceleration and acceleration are performed in a short time.
  • the reference distance D when the specific control signal is the acceleration signal or the acceleration release signal is the reference distance D1, D2 when the specific control signal is the deceleration signal, or the reference distance when the specific control signal is the deceleration signal D3. It may be the same distance as D4 or a different distance from these.
  • the vehicle speed control (see FIGS. 12 and 16) when the specific control signal is the deceleration signal or the vehicle speed control when the deceleration release signal (FIG. 13 and FIG. It is possible to execute the same vehicle speed control as in 17).
  • the stop signal is output, depending on whether the distance between the position of the traveling body 2 when the tractor 1 starts traveling and the shift reference position R is less than a predetermined reference distance D.
  • the target vehicle speed VT can be changed.
  • the reference distance D when the specific control signal is the stop release signal is the reference distances D1 and D2 when the specific control signal is the deceleration signal, and the reference distance D3 when the specific control signal is the deceleration signal. It may be the same distance as D4 or a different distance from these.
  • the first setting unit 52 and the second setting unit 53 perform specific control when the distance between the current position of the traveling body 2 and the shift reference position R is less than the reference distance D1 to D4.
  • the target vehicle speed VT is set immediately after the specific control signal is output.
  • the separation distance between the current position of the traveling airframe 2 and the shift reference position R through which the traveling airframe 2 passes next is the reference distance D1 to Immediately after the specific control signal is output when it is less than D4, the setting of the target vehicle speed VT based on the specific control signal may not be performed. That is, the specific control signal may be ignored.
  • the target vehicle speed VT is set when the traveling airframe 2 reaches the shift reference position R.
  • the target vehicle speed VT is set based on the specific control signal output before the traveling body 2 reaches the shift reference position R. Be done.
  • the target vehicle speed VT is changed from the first reference vehicle speed V1 (for example 10 km / h) to the speed (for example 2 km / h) obtained by multiplying the second reference vehicle speed V2 (for example 4 km / h) by the deceleration rate
  • the target vehicle speed VT is changed from the first reference vehicle speed V1 (for example, 10 km / h) to the second reference vehicle speed V2 (for example 4 km / h)
  • the amount of change in the vehicle speed of the tractor 1 can be reduced. Therefore, the discomfort given to the user can be further reduced.
  • Such vehicle speed control is particularly useful in a manned autonomous traveling mode (first mode) in which autonomous traveling is performed in a state where the user is on board.
  • the work machine 3 is a roll baler as in the above-described embodiment
  • the work machine mechanism unit 82 is clogged and the work can not be continued (when the work continues to cause damage to the roll baler) It can be assumed that a signal is output. In such a case, it is necessary to set the target vehicle speed VT to 0 km / h immediately after the stop signal is output without neglecting the stop signal.
  • the route generation unit 101, the display unit 102, and the display control unit 103 are provided in the wireless communication terminal 100.
  • the images shown in FIGS. 14 and 15 may be configured to be displayed on the monitor device 36.
  • the control unit 4 may include a display control unit 38 that controls image display by the monitor device 36, and a route generation unit 39 capable of generating an autonomous traveling route P (see two-dot chain line in FIG. 4). ).
  • the stop release signal is output from the work machine side control unit 84 of the work machine 3.
  • the stop release signal is not included in the specific control signal (the work release unit 3 does not output the stop release signal), and the user operates the wireless communication terminal 100 to operate the tractor. The stopping of the traveling of 1 may be released.
  • the first reference vehicle speed V1 and the second reference vehicle speed V2 are set by the wireless communication terminal 100, but the first reference vehicle speed V1 and the second reference vehicle speed V1 are changed
  • the second reference vehicle speed V2 may be set.
  • the setting of the vehicle speed of the tractor 1 and the rotational speed of the engine 10 is performed by the user operating the speed / rotational speed setting change dial 14 etc. not only when the tractor 1 is stopping but also while the tractor 1 is traveling autonomously. It can be changed by doing.
  • it may be determined by the mode of the tractor 1 whether the setting is made by the speed / rotation number setting change dial 14 set by the wireless communication terminal 100. For example, when the tractor 1 is in the first mode, it may be set by the speed / rotational speed setting change dial 14, and when the tractor 1 is in the second mode, it may be set by the wireless communication terminal 100.
  • the shift reference position setting unit 54 sets the shift reference position R so that the tractor 1 can travel on the autonomous work path P1 at a constant speed when the specific control signal is not output.
  • the shift reference position setting unit 54 sets the shift reference position R so that the tractor 1 can travel the connection path P2 at a constant speed when the specific control signal is not output. Good.
  • the shift reference position setting unit 54 sets the first shift reference position R1 by a distance (a predetermined distance L1) necessary for the vehicle speed of the tractor 1 to reach the target vehicle speed VT after switching from the current target vehicle speed VT.
  • the travel direction is set upstream of the first boundary position B1.
  • the shift reference position setting unit 54 sets the second shift reference position R2 to the second boundary position B2 regardless of the value of the current target vehicle speed VT.
  • the shift reference position setting unit 54 sets the first shift reference position R1 upstream in the traveling direction by the predetermined distance L1 from the first boundary position B1, and the second boundary position.
  • the second shift reference position R2 may be set on the upstream side in the traveling direction by a predetermined distance L2 from B2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Lifting Devices For Agricultural Implements (AREA)

Abstract

This autonomous travel system includes: a reference vehicle speed setting unit that sets a reference vehicle speed for each of a first section and a second section, which is located further downstream in the travel direction than the first section, of a travel path; a work machine-side control unit that outputs a prescribed control signal when a work machine mounted on a travel vehicle enters a specific work state; a target vehicle speed setting unit that sets a target vehicle speed of the travel vehicle, which travels autonomously along the travel path; and a vehicle speed control unit that controls the vehicle speed of the travel vehicle such that the vehicle speed of the travel vehicle achieves the target vehicle speed set by the target vehicle speed setting unit. When a specified speed change reference position is reached on the travel path, the target vehicle speed setting unit can switch the target vehicle speed between the reference vehicle speed of the first section and the reference vehicle speed of the second section. When the prescribed control signal is output, the target vehicle speed setting unit calculates a specific target vehicle speed on the basis of the position of the travel vehicle with respect to the speed change reference position, and sets the specific target vehicle speed as the target vehicle speed.

Description

自律走行システムAutonomous traveling system
 本発明は、自律走行システムに関する。 The present invention relates to an autonomous traveling system.
 予め定められた走行経路に沿って走行車を自律走行させる自律走行システムが開発されている。自律走行システムでは、走行経路上に設定された変速基準位置に走行車が達する際に、走行車の走行速度を減少または増大させる車速制御が採用されることがある。一方、下記特許文献1には、走行車に作業機を装着した場合において、作業機の作業負荷に応じて、走行車の走行速度を制御する車速制御が開示されている。具体的には、作業機に備えられた検出部が作業機の作業負荷を検出し、作業負荷の度合に応じて、走行車の走行速度を減少または増大させる制御信号を作業機側制御部が走行車に送信する。 An autonomous traveling system has been developed which causes a traveling vehicle to autonomously travel along a predetermined traveling route. In an autonomous travel system, vehicle speed control may be employed to decrease or increase the traveling speed of a traveling vehicle when the traveling vehicle reaches a shift reference position set on a traveling route. On the other hand, Patent Document 1 below discloses vehicle speed control for controlling the traveling speed of a traveling vehicle in accordance with the work load of the working machine when the traveling machine is mounted with a work machine. Specifically, the detection unit provided in the work machine detects the work load of the work machine, and the work machine side control unit controls the control signal to decrease or increase the traveling speed of the traveling vehicle according to the degree of the work load. Send to the traveling vehicle.
特開2016-067244号公報JP, 2016-067244, A
 特許文献1に開示された車速制御の技術を自律走行システムに適用すると、作業機側制御部から送信される制御信号により行われる車速制御と、走行車が変速基準位置に達したことにより行われる車速制御とが、短時間の間に切り換えて実行されることが起こり得る。これでは、短時間の間に加速や減速が繰り返され、走行車の燃費が悪くなるおそれがある。また、走行車にユーザが搭乗する場合、ユーザに不快感を与えるおそれがある。 When the technology of vehicle speed control disclosed in Patent Document 1 is applied to an autonomous traveling system, the vehicle speed control performed by the control signal transmitted from the work machine side control unit and the traveling vehicle reach the shift reference position It may happen that the vehicle speed control is switched and executed in a short time. In this case, acceleration and deceleration may be repeated in a short time, and the fuel efficiency of the traveling vehicle may be deteriorated. In addition, when the user gets on the traveling vehicle, the user may feel uncomfortable.
 そこで、この発明の主たる目的は、走行車を自律走行させる構成において、作業機から制御信号が与えられた際に最適な車速制御を行うことができる自律制御システムを提供することである。 Therefore, a main object of the present invention is to provide an autonomous control system capable of performing optimum vehicle speed control when a control signal is given from a work machine in a configuration in which a traveling vehicle autonomously travels.
 この発明は、予め設定された走行経路に沿って走行車を自律走行させる自律走行システムであって、前記走行経路において、第1区間、および前記第1区間よりも走行方向下流側に位置する第2区間のそれぞれに基準車速を設定する基準車速設定部と、前記走行車に装着された作業機が特定の作業状態になったときに所定の制御信号を出力する作業機側制御部と、前記走行経路に沿って自律走行する前記走行車の目標車速を設定する目標車速設定部と、前記走行車の車速が前記目標車速設定部によって設定される目標車速になるように、前記走行車の車速を制御する車速制御部とを含み、前記目標車速設定部は、前記走行経路上で特定された変速基準位置に達したときに、前記第1区間の基準車速と前記第2区間の基準車速との間で目標車速を切り換え可能であり、前記目標車速設定部は、前記所定の制御信号が出力されたときに、前記変速基準位置に対する前記走行車の位置に基づいて特定目標車速を演算して、前記特定目標車速を目標車速として設定する、自律走行システムを提供する。 The present invention is an autonomous traveling system for autonomously traveling a traveling vehicle along a preset traveling route, wherein the first traveling route and the first section are located on the downstream side in the traveling direction relative to the first section on the traveling route. A reference vehicle speed setting unit that sets a reference vehicle speed to each of the two sections; a work machine side control unit that outputs a predetermined control signal when the work machine attached to the traveling vehicle is in a specific work state; A target vehicle speed setting unit configured to set a target vehicle speed of the traveling vehicle autonomously traveling along the traveling route; and a vehicle speed of the traveling vehicle such that the vehicle speed of the traveling vehicle becomes the target vehicle speed set by the target vehicle speed setting unit And the target vehicle speed setting unit, when it reaches the shift reference position specified on the travel route, the reference vehicle speed of the first section and the reference vehicle speed of the second section Target car among The target vehicle speed setting unit calculates a specific target vehicle speed based on the position of the traveling vehicle with respect to the shift reference position when the predetermined control signal is output, and the specific target vehicle speed can be switched. An autonomous traveling system is provided, which sets the vehicle speed as a target vehicle speed.
 この構成によれば、変速基準位置に対する走行車の位置に応じて、特定目標車速を変更することができる。したがって、走行車が変速基準位置に達したことによる車速制御と作業機から制御信号が出力されたことによる車速制御とが短時間の間に実行された場合であっても、加速や減速が短時間で繰り返されないように目標車速を設定することができる。したがって、作業機から制御信号が出力された際に、最適な車速制御を行うことができる。これにより、走行車の燃費を向上させることができる。さらに、走行車にユーザが搭乗する場合、ユーザに与える不快感を低減することができる。 According to this configuration, the specific target vehicle speed can be changed according to the position of the traveling vehicle with respect to the shift reference position. Therefore, even if the vehicle speed control when the traveling vehicle reaches the shift reference position and the vehicle speed control due to the control signal being output from the work machine are executed in a short time, acceleration and deceleration are short. The target vehicle speed can be set so as not to be repeated in time. Therefore, when the control signal is output from the work machine, the optimum vehicle speed control can be performed. Thereby, the fuel consumption of the traveling vehicle can be improved. Furthermore, when the user gets on the traveling vehicle, the discomfort given to the user can be reduced.
 この発明の一実施形態では、前記所定の制御信号は、前記走行車の減速を要求する減速信号を含み、前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記第1区間の基準車速が前記第2区間の基準車速よりも小さい場合に、前記第1区間に位置する前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに前記減速信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する。 In one embodiment of the present invention, the predetermined control signal includes a deceleration signal requesting deceleration of the traveling vehicle, and the target vehicle speed setting unit is configured to position the traveling vehicle in the first section, and When the separation distance between the current position of the traveling vehicle located in the first section and the shift reference position is less than a predetermined distance when the reference vehicle speed of the first section is smaller than the reference vehicle speed of the second section When the deceleration signal is output, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
 この構成によれば、走行車が減速された直後に加速されることが防止される。短時間の間で減速のみが繰り返されたり、短時間の間で加速のみが繰り返されたりする場合よりも、短時間の間で減速と加速とが実行される場合の方が、走行車の燃費の悪化度合が大きい上にユーザが不快に感じやすい。そのため、短時間の間で減速と加速とが実行される車速制御を防止したいというニーズがある。したがって、このようなニーズに対応することができる。 According to this configuration, it is possible to prevent the traveling vehicle from being accelerated immediately after being decelerated. The fuel economy of a traveling vehicle is more likely to occur when deceleration and acceleration are performed in a short time than when only deceleration is repeated in a short time or acceleration is repeated in a short time. The degree of deterioration of is large and the user is likely to feel uncomfortable. Therefore, there is a need to prevent vehicle speed control in which deceleration and acceleration are performed in a short time. Therefore, such needs can be addressed.
 この発明の一実施形態では、前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記所定の制御信号が前記減速信号であるときには、前記第1区間の基準車速または前記第2区間の基準車速に所定の減速率を乗じた車速を前記特定目標車速とする。    In one embodiment of the present invention, when the traveling vehicle is located in the first section and the predetermined control signal is the deceleration signal, the target vehicle speed setting unit is configured to set the reference vehicle speed of the first section or A vehicle speed obtained by multiplying the reference vehicle speed of the second section by a predetermined deceleration rate is set as the specific target vehicle speed.
 この構成によれば、減速信号が作業機から出力される構成において、適切に目標車速を設定することができる。 According to this configuration, it is possible to appropriately set the target vehicle speed in the configuration in which the deceleration signal is output from the work machine.
 この発明の一実施形態では、前記所定の制御信号は、前記減速信号に基づいて前記走行車の車速が制御されている状態の解除を要求する減速解除信号を含み、前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記第1区間の基準車速が前記第2区間の基準車速よりも大きい場合に、前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに前記減速解除信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する。 In one embodiment of the present invention, the predetermined control signal includes a deceleration release signal requesting release of a state in which the vehicle speed of the traveling vehicle is controlled based on the deceleration signal, and the target vehicle speed setting unit The separation distance between the current position of the traveling vehicle and the shift reference position when the traveling vehicle is located in the first section and the reference vehicle speed of the first section is greater than the reference vehicle speed of the second interval. When the deceleration release signal is output when the distance is less than a predetermined distance, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
 この構成によれば、走行車が加速された直後に減速されることが防止される。したがって、減速解除信号が作業機から出力される構成において、短時間で減速と加速とが実行される車速制御を防止したいというニーズに対応することができる。 According to this configuration, it is possible to prevent the traveling vehicle from being decelerated immediately after being accelerated. Therefore, in the configuration in which the deceleration cancellation signal is output from the work machine, it is possible to meet the need to prevent the vehicle speed control in which the deceleration and the acceleration are performed in a short time.
 この発明の一実施形態では、前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに、前記所定の制御信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する。 In one embodiment of the present invention, the target vehicle speed setting unit is configured such that the traveling vehicle is located in the first section, and a separation distance between a current position of the traveling vehicle and the shift reference position is less than a predetermined distance. At this time, when the predetermined control signal is output, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
 この構成によれば、走行車の現在位置と変速基準位置との離間距離が所定の距離未満であるときに所定の制御信号が出力された場合、目標車速は、第2区間の基準車速に基づいて設定される。したがって、作業機側制御部からの所定の制御信号による走行車の車速の変化と、走行車が変速基準位置に達したことによる走行車の車速の変化とが短時間で行われることを抑制しつつ、目標車速を所定の第2区間の基準車速に基づいて適切に設定することができる。 According to this configuration, when the predetermined control signal is output when the separation distance between the current position of the traveling vehicle and the shift reference position is less than the predetermined distance, the target vehicle speed is based on the reference vehicle speed of the second section. Is set. Therefore, it is suppressed that the change of the vehicle speed of the traveling vehicle according to the predetermined control signal from the work machine side control unit and the change of the vehicle speed of the traveling vehicle due to the traveling vehicle reaching the shift reference position are performed in a short time. However, the target vehicle speed can be appropriately set based on the reference vehicle speed of the predetermined second section.
 この発明の一実施形態では、表示部による画像表示を制御する表示制御部と、前記走行経路を生成可能な経路生成部とをさらに含み、前記表示制御部は、前記表示部に前記走行経路を表示させることが可能であり、前記作業機側制御部から前記所定の制御信号が出力されたときの前記走行車の位置を示す所定画像を、前記表示部に表示された前記走行経路上に表示させることが可能であり、前記経路生成部は、前記表示部に複数表示された前記所定画像を通る他の走行経路を生成可能である。 In one embodiment of the present invention, the display control unit further controls a display control unit that controls image display by the display unit, and a route generation unit capable of generating the travel route, and the display control unit causes the display unit to display the travel route. It is possible to display, and a predetermined image indicating the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit is displayed on the traveling route displayed on the display unit. The route generation unit can generate another traveling route passing through the predetermined image displayed in plurality on the display unit.
 この構成によれば、経路生成部は、走行車を自律走行させる走行経路とは別に、作業機側制御部から所定の制御信号が出力されたときの走行車の位置を通る他の走行経路を生成することができる。自律走行の終了後に、作業機側制御部から所定の制御信号が出力されたときの走行車の位置を通る作業が行われる場合に、当該作業を効率的に行うことができる。 According to this configuration, the route generation unit separates the other travel route passing the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit separately from the traveling route for autonomously traveling the traveling vehicle. Can be generated. When the work passing through the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit after the end of the autonomous traveling is performed, the work can be efficiently performed.
 本発明における上述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above or further objects, features and effects of the present invention will be made clear by the description of the embodiments described below with reference to the accompanying drawings.
図1は、本発明の第1実施形態に係る自律走行システムが適用されるトラクタの側面図である。FIG. 1 is a side view of a tractor to which an autonomous traveling system according to a first embodiment of the present invention is applied. 図2は、図1のトラクタの平面図である。FIG. 2 is a plan view of the tractor of FIG. 図3は、図1のトラクタの座席の周囲に配置される各種の操作装置を示す平面図である。FIG. 3 is a plan view showing various operating devices disposed around the seat of the tractor of FIG. 図4は、図1のトラクタの電気的構成を示すブロック図である。FIG. 4 is a block diagram showing an electrical configuration of the tractor of FIG. 図5は、自律走行経路の一例を示す模式図である。FIG. 5 is a schematic view showing an example of the autonomous traveling route. 図6は、自律走行経路の接続路付近の模式図である。FIG. 6 is a schematic view of the vicinity of the connection route of the autonomous traveling route. 図7は、作業機側制御部から所定の制御信号が出力されない場合に、変速基準位置付近を走行するトラクタの車速の変化を説明するためのグラフである。FIG. 7 is a graph for explaining a change in the vehicle speed of the tractor traveling near the shift reference position when a predetermined control signal is not output from the work machine side control unit. 図8Aは、自律走行経路の自律作業路を等速で走行中に減速信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 8A is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration signal is output while traveling on the autonomous work path of the autonomous traveling path at the same speed. 図8Bは、目標車速が第1基準車速から第2基準車速に切り換えられたことによってトラクタが変速されている途中に、減速信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 8B is a graph for explaining a change in the vehicle speed of the tractor when the deceleration signal is output during the shift of the tractor due to the target vehicle speed being switched from the first reference vehicle speed to the second reference vehicle speed. It is. 図8Cは、自律走行経路の接続路を等速で走行中に減速信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 8C is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration signal is output while traveling at a constant speed on the connection path of the autonomous traveling route. 図8Dは、目標車速が第2基準車速から第1基準車速に切り換えられたことによってトラクタが変速されている途中に、減速信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 8D is a graph for explaining a change in the vehicle speed of the tractor when the deceleration signal is output during the shift of the tractor due to the target vehicle speed being switched from the second reference vehicle speed to the first reference vehicle speed. It is. 図9Aは、自律走行経路の自律作業路を等速で走行中に減速解除信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 9A is a graph for explaining a change in the vehicle speed of the tractor when the deceleration release signal is output while traveling on the autonomous work path of the autonomous traveling path at a constant speed. 図9Bは、目標車速が第1基準車速に減速率を乗じた速度から第2基準車速に減速率を乗じた速度に切り換えられたことによってトラクタが変速されている途中に、減速解除信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 9B shows that the target vehicle speed is switched from the speed obtained by multiplying the first reference vehicle speed by the deceleration rate to the speed obtained by multiplying the second reference vehicle speed by the deceleration rate. It is a graph for demonstrating the change of the vehicle speed of a tractor at the time of being carried out. 図9Cは、自律走行経路の接続路を等速で走行中に減速解除信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 9C is a graph for illustrating changes in the vehicle speed of the tractor when the deceleration release signal is output while traveling at a constant speed on the connection path of the autonomous traveling route. 図9Dは、目標車速が第2基準車速に減速率を乗じた速度から第1基準車速に減速率を乗じた速度に切り換えられたことによってトラクタが変速されている途中に、減速解除信号が出力されたときのトラクタの車速の変化を説明するためのグラフである。FIG. 9D shows that the target vehicle speed is switched from the speed obtained by multiplying the second reference vehicle speed by the deceleration rate to the speed obtained by multiplying the first reference vehicle speed by the deceleration rate. It is a graph for demonstrating the change of the vehicle speed of a tractor at the time of being carried out. 図10は、自律走行システムによる車速制御処理の一例を説明するためのフローチャートである。FIG. 10 is a flowchart for explaining an example of a vehicle speed control process by the autonomous traveling system. 図11は、図10に示す自律走行システムによる車速制御処理において、減速信号に基づいて車速が制御されているときに行われる処理を説明するためのフローチャートである。FIG. 11 is a flow chart for explaining the process performed when the vehicle speed is controlled based on the deceleration signal in the vehicle speed control process by the autonomous traveling system shown in FIG. 図12は、減速信号に基づく特定目標車速の演算処理の一例を説明するためのフローチャートである。FIG. 12 is a flowchart for explaining an example of calculation processing of a specific target vehicle speed based on a deceleration signal. 図13は、減速解除信号に基づく特定目標車速の演算処理の一例を説明するためのフローチャートである。FIG. 13 is a flowchart for explaining an example of calculation processing of a specific target vehicle speed based on the deceleration cancellation signal. 図14は、自律走行中に無線通信端末の表示部に表示される画像を説明するための図である。FIG. 14 is a diagram for explaining an image displayed on the display unit of the wireless communication terminal during autonomous traveling. 図15は、トラクタが自律走行経路を走行し終えた後に無線通信端末の表示部に表示される画像を説明するための図である。FIG. 15 is a view for explaining an image displayed on the display unit of the wireless communication terminal after the tractor has finished traveling on the autonomous traveling route. 図16は、第2実施形態に係る自律走行システムによる、減速信号に基づく特定目標車速の演算処理の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of calculation processing of a specific target vehicle speed based on a deceleration signal by the autonomous traveling system according to the second embodiment. 図17は、第2実施形態に係る自律走行システムによる、減速解除信号に基づく特定目標車速の演算処理の一例を示すフローチャートである。FIG. 17 is a flowchart showing an example of calculation processing of a specific target vehicle speed based on a deceleration cancellation signal by the autonomous traveling system according to the second embodiment.
 以下の実施形態では、作業車両として、作業機が装着された走行車を有するトラクタを例にとって説明する。作業車両は、トラクタの他、田植機、コンバイン、土木・建設作業車両、除雪車等、乗用型作業車両であってもよいし、歩行型作業車両であってもよい。また、以下の実施形態で、自律走行とは、トラクタが備える制御部(ECU)によりトラクタの走行機構が制御されて、予め定められた経路に沿ってトラクタが走行することをいう。自律作業とは、作業機が自動的に制御されることにより、自律走行経路に予め設定された作業位置において作業機が作業を行うことをいう。これに対して、手動走行・手動作業とは、トラクタが備える各機構がユーザにより操作され、走行および作業が行われることを意味する。 In the following embodiments, as a work vehicle, a tractor having a traveling vehicle equipped with a work machine will be described as an example. The work vehicle may be a riding type work vehicle such as a rice transplanter, a combine, a civil engineering / construction work vehicle, a snow removal vehicle, or the like other than a tractor, or may be a walking type work vehicle. In the following embodiments, the autonomous traveling means that the tractor travels along a predetermined route while the traveling mechanism of the tractor is controlled by a control unit (ECU) included in the tractor. The autonomous work means that the work machine performs work at a work position preset on the autonomous traveling route by automatically controlling the work machine. On the other hand, manual traveling and manual work mean that each mechanism provided in the tractor is operated by the user and traveling and work are performed.
 <第1実施形態>
 図1は、本発明の第1実施形態に係る自律走行システムが適用されるトラクタ1の側面図である。図2は、トラクタ1の平面図である。
First Embodiment
FIG. 1 is a side view of a tractor 1 to which an autonomous traveling system according to a first embodiment of the present invention is applied. FIG. 2 is a plan view of the tractor 1.
 トラクタ1は、手動走行および自律走行(自動走行)が可能にされている。この実施形態では、トラクタ1は、ユーザが搭乗しない状態で、経路生成システムが生成した自律走行経路(経路)に従って自律走行を行えるように構成されていてもよい。また、このトラクタ1は、ユーザが搭乗した状態で自律走行を行えるように構成されていてもよい。 The tractor 1 is capable of manual traveling and autonomous traveling (automatic traveling). In this embodiment, the tractor 1 may be configured to perform autonomous traveling according to the autonomous traveling route (route) generated by the route generation system in a state where the user does not board. In addition, the tractor 1 may be configured to be able to run autonomously while the user is on board.
 トラクタ1は、圃場内を自律走行する走行車としての走行機体2を備える。走行機体2には、例えば、ロールベーラ、耕耘機(管理機)、プラウ、施肥機、草刈機、播種機等の種々の作業機を選択的に装着することができる。本実施形態では、走行機体2に、作業機3としてロールベーラが装着されている例を説明する。 The tractor 1 includes a traveling body 2 as a traveling vehicle that autonomously travels in a field. For example, various work machines such as a roll baler, a cultivator (management machine), a plow, a fertilizer applicator, a mower, and a planter can be selectively attached to the traveling machine body 2. In the present embodiment, an example in which a roll baler as the work machine 3 is attached to the traveling machine body 2 will be described.
 作業機3は、連結桿6を介して、走行機体2に連結されている。そのため、作業機3は、走行機体2が走行する際にけん引される。作業機3は、作業機機構部82および成形室81を含む。作業機機構部82は、走行機体2から伝達される駆動力によって作動する。作業機機構部82は、圃場の牧草等の被成形材料を拾い上げるピックアップ装置80と、ピックアップ装置80で拾い上げた牧草などの被成形材料を切断する切断部(図示せず)とを含んでいてもよい。成形室81は、ピックアップ装置80が拾い上げた被成形材料を収容し、被成形材料を円柱状のロールベール(図示せず)に圧縮成形する。 The working machine 3 is connected to the traveling machine body 2 via a connecting rod 6. Therefore, the working machine 3 is towed when the traveling machine body 2 travels. Work implement 3 includes a work implement mechanism 82 and a forming chamber 81. The work machine mechanism unit 82 operates by the driving force transmitted from the traveling machine body 2. The working machine mechanism unit 82 may include a pickup device 80 for picking up a material to be molded such as grass in the field, and a cutting unit (not shown) for cutting the material to be molded such as grass picked up by the pickup device 80. Good. The molding chamber 81 accommodates the molding material picked up by the pickup device 80, and compression molding the molding material into a cylindrical roll bale (not shown).
 作業機3は、圧縮成形されたロールベールに巻きつけるネット材等の被覆材を、成形室81内に繰り出し可能に保持する構成であってもよい。作業機3は、成形室81内で被覆材をロールベールに巻き付けた後、成形室81の後方側を開いてロールベールを排出するように構成されていてもよい。 The work machine 3 may be configured to hold a covering material such as a net material wound around a compression-formed roll bale so as to be able to be drawn out into the forming chamber 81. The work machine 3 may be configured to open the rear side of the forming chamber 81 and discharge the roll bale after the covering material is wound around the roll bale in the forming chamber 81.
 トラクタ1の走行機体2は、図2に示すように、その前部が左右一対の前輪7で支持され、その後部が左右一対の後輪8で支持されている。 As shown in FIG. 2, the traveling body 2 of the tractor 1 is supported at its front portion by a pair of left and right front wheels 7 and at its rear portion by a pair of left and right rear wheels 8.
 走行機体2の前部にはボンネット9が配置されている。本実施形態では、このボンネット9内に、トラクタ1の駆動源であるエンジン10等が収容されている。このエンジン10は、例えばディーゼルエンジンにより構成されていてもよいし、例えばガソリンエンジンにより構成されていてもよい。また、エンジン10に加えて、または代えて、電気モータ等の他の駆動源を採用してもよい。 A bonnet 9 is disposed at the front of the traveling vehicle 2. In the present embodiment, an engine 10 or the like which is a drive source of the tractor 1 is accommodated in the bonnet 9. The engine 10 may be configured by, for example, a diesel engine, or may be configured by, for example, a gasoline engine. In addition to or instead of the engine 10, another drive source such as an electric motor may be employed.
 ボンネット9の後方には、ユーザが搭乗するためのキャビン11が配置されていてもよい。キャビン11の内部には、ユーザが操向操作するためのステアリングハンドル12、ユーザが着座可能な座席13、および、ユーザが各種の操作を行うための様々な操作装置等が設けられている。ただし、トラクタ1は、キャビン11付きのものに限られず、キャビン11を備えない構成であってもよい。 A cabin 11 may be disposed behind the hood 9 for the user to board. Inside the cabin 11, a steering handle 12 for the user to steer and operate, a seat 13 on which the user can sit, and various operation devices for the user to perform various operations are provided. However, the tractor 1 is not limited to the one with the cabin 11, and may have a configuration without the cabin 11.
 走行機体2の下部には、トラクタ1のシャーシ20が設けられている。当該シャーシ20は、機体フレーム21、トランスミッション22、フロントアクスル23およびリアアクスル24等を含んでいる。 A chassis 20 of the tractor 1 is provided at a lower part of the traveling body 2. The chassis 20 includes an airframe 21, a transmission 22, a front axle 23, a rear axle 24, and the like.
 機体フレーム21は、トラクタ1の前部における支持部材であって、直接、または防振部材等を介してエンジン10を支持している。トランスミッション22は、エンジン10からの動力を変化させてフロントアクスル23およびリアアクスル24に伝達する。フロントアクスル23は、トランスミッション22から入力された動力を前輪7に伝達する。リアアクスル24は、トランスミッション22から入力された動力を後輪8に伝達する。    The airframe frame 21 is a support member at the front of the tractor 1 and supports the engine 10 directly or via a vibration isolation member or the like. The transmission 22 changes the power from the engine 10 and transmits it to the front axle 23 and the rear axle 24. The front axle 23 transmits the power input from the transmission 22 to the front wheels 7. The rear axle 24 transmits the power input from the transmission 22 to the rear wheel 8.
 図3は、座席13の周囲に配置される各種の操作装置を示す平面図である。 FIG. 3 is a plan view showing various operation devices disposed around the seat 13. As shown in FIG.
 図3を参照して、操作装置としては、モニタ装置36、アクセルレバー15、リバーサレバー26、主変速レバー27、速度回転数選択切換スイッチ29、速度回転数設定変更ダイアル14、ダイアル設定切換スイッチ16、副変速レバー19、PTOスイッチ17、PTO変速レバー18、作業機昇降スイッチ28および作業機下降速度調整ノブ25等を例として挙げることができる。これらの操作装置は、座席13の近傍、またはステアリングハンドル12の近傍に配置されている。 Referring to FIG. 3, the operation device includes monitor 36, accelerator lever 15, reverser lever 26, main shift lever 27, speed / rotational speed selection switch 29, speed / rotational speed setting change dial 14, dial setting changeover switch 16. The auxiliary transmission lever 19, the PTO switch 17, the PTO transmission lever 18, the work implement lift switch 28, the work implement lowering speed adjustment knob 25 and the like can be mentioned as an example. These operating devices are disposed near the seat 13 or near the steering wheel 12.
 モニタ装置36は、トラクタ1の様々な情報を表示可能に構成されている。また、モニタ装置36にはボタン、ダイアル等の信号入力部材が備えられており、この信号入力部材をユーザが操作することにより、トラクタ1に各種の指示信号を入力することができる。    The monitor device 36 is configured to be able to display various information of the tractor 1. Further, the monitor device 36 is provided with signal input members such as buttons and dials, and the user can input various instruction signals to the tractor 1 by operating the signal input members.
 アクセルレバー15は、エンジン10の出力回転数を設定するための操作具である。 The accelerator lever 15 is an operating tool for setting the output rotational speed of the engine 10.
 リバーサレバー26は、トラクタ1の前進、後進、および停止を切り換えるための操作具である。主変速レバー27は、リバーサレバー26で指示した方向にトラクタ1が走行する速度(車速)を無段階で変更するための操作具である。 The reverser lever 26 is an operation tool for switching the forward, reverse, and stop of the tractor 1. The main shift lever 27 is an operation tool for steplessly changing the speed (vehicle speed) at which the tractor 1 travels in the direction indicated by the reverser lever 26.
 速度回転数選択切換スイッチ29は、手動走行を行うトラクタ1が、その車速とエンジン10の回転数との組合せを、予め設定されている2種類の組合せで交互に切り換えるための操作具である。速度回転数設定変更ダイアル14は、前記2種類の組合せのそれぞれに関して、トラクタ1の車速(走行機体2の車速)およびエンジン10の回転数の設定値を調整するための操作具である。ダイアル設定切換スイッチ16は、速度回転数設定変更ダイアル14が、トラクタ1の車速の設定値を変更するか、エンジン10の回転数の設定値を変更するかを切り換えるための操作具である。 The speed / rotational speed selection switch 29 is an operating tool for the tractor 1 performing manual traveling to alternately switch the combination of the vehicle speed and the rotation speed of the engine 10 in two combinations set in advance. The speed / rotational speed setting change dial 14 is an operating tool for adjusting the set value of the vehicle speed of the tractor 1 (the vehicle speed of the traveling vehicle 2) and the rotational speed of the engine 10 for each of the two types of combinations. The dial setting change switch 16 is an operating tool for switching whether the speed / rotational speed setting change dial 14 changes the set value of the vehicle speed of the tractor 1 or changes the set value of the rotational speed of the engine 10.
 副変速レバー19は、トランスミッション22内の走行副変速ギア機構の変速比を切り換えるための操作具である。 The auxiliary transmission lever 19 is an operating tool for switching the transmission ratio of the traveling auxiliary transmission gear mechanism in the transmission 22.
 PTOスイッチ17は、トランスミッション22の後端から突出したPTO軸(動力伝達軸(図示せず))への動力の伝達/遮断を切換するための操作具である。PTO変速レバー18は、PTO軸の回転速度の変速を行うための操作具である。 The PTO switch 17 is an operating tool for switching transmission / disconnection of power to a PTO shaft (power transmission shaft (not shown)) protruding from the rear end of the transmission 22. The PTO shift lever 18 is an operating tool for shifting the rotational speed of the PTO shaft.
 作業機昇降スイッチ28は、走行機体2に装着された作業機の高さを所定範囲内で昇降させるための操作具である。作業機下降速度調整ノブ25は、作業機が下降するときの速度を調整するための操作具である。 The work implement raising and lowering switch 28 is an operating tool for raising and lowering the height of the work implement attached to the traveling machine body 2 within a predetermined range. The work implement lowering speed adjustment knob 25 is an operating tool for adjusting the speed when the work implement is lowered.
 キャビン11の屋根5上には、衛星信号受信用アンテナ46および無線通信用アンテナ48が設けられている(図1参照)。衛星信号受信用アンテナ46は、走行機体2の位置情報を検出するために使用されるアンテナである。無線通信用アンテナ48は、無線通信端末100(後述する図4参照)と通信を行うためのアンテナである。無線通信端末100は、自律走行経路の作成、および、トラクタ1との通信等を行うものである。無線通信端末100は、この実施形態では、タブレット型パーソナルコンピュータ(タブレット型PC)で構成されている例を示すが、これに限定されるものではない。 On the roof 5 of the cabin 11, a satellite signal receiving antenna 46 and a wireless communication antenna 48 are provided (see FIG. 1). The satellite signal receiving antenna 46 is an antenna used to detect the position information of the traveling body 2. The wireless communication antenna 48 is an antenna for communicating with the wireless communication terminal 100 (see FIG. 4 described later). The wireless communication terminal 100 creates an autonomous traveling route, communicates with the tractor 1, and the like. In this embodiment, the wireless communication terminal 100 is an example configured of a tablet personal computer (tablet PC), but the present invention is not limited to this.
 座席13には、ユーザが座席に座っていることを検知する着座センサ13aが設けられていてもよい。この着座センサ13aは、例えば、メンブレンスイッチを利用した構成であってもよい。 The seat 13 may be provided with a seating sensor 13a that detects that the user is sitting in the seat. The seating sensor 13a may have, for example, a configuration using a membrane switch.
 図4は、トラクタ1の主要な電気的構成を示すブロック図である。 FIG. 4 is a block diagram showing the main electrical configuration of the tractor 1.
 図4に示すように、トラクタ1は、走行機体2の動作(前進、後進、停止および旋回等)、および、走行機体2に装着された作業機の動作(昇降、駆動および停止等)を制御するための制御部4を備える。制御部4には、トラクタ1の各部を制御するための複数のコントローラがそれぞれ電気的に接続されている。 As shown in FIG. 4, the tractor 1 controls the operation of the traveling machine body 2 (forward, reverse, stop and turn, etc.) and the operation of the working machine mounted on the traveling machine body 2 (lifting, driving, stop etc.) The control unit 4 is provided. The control unit 4 is electrically connected to a plurality of controllers for controlling the respective units of the tractor 1.
 複数のコントローラは、エンジンコントローラ31、車速コントローラ32、操向コントローラ33、昇降コントローラ34およびPTOコントローラ35を含む。 The plurality of controllers include an engine controller 31, a vehicle speed controller 32, a steering controller 33, an elevation controller 34, and a PTO controller 35.
 エンジンコントローラ31は、エンジン10の回転数等を制御するものである。エンジンコントローラ31は、エンジン10に設けられる燃料噴射装置としてのコモンレール装置41と電気的に接続されている。コモンレール装置41は、エンジン10の各気筒に燃料を噴射するものである。この場合、エンジン10の各気筒に対するインジェクタの燃料噴射バルブが開閉制御されることによって、燃料供給ポンプによって燃料タンクからコモンレール装置41に圧送された高圧の燃料が各インジェクタからエンジン10の各気筒に噴射され、各インジェクタから供給される燃料の噴射圧力、噴射時期、噴射期間(噴射量)が高精度にコントロールされる。エンジンコントローラ31は、コモンレール装置41を制御することで、エンジン10の回転数等を制御する。エンジンコントローラ31は、コモンレール装置41を制御することで、エンジン10への燃料の供給を停止させ、エンジン10の駆動を停止させることもできる。 The engine controller 31 controls the number of rotations of the engine 10 and the like. The engine controller 31 is electrically connected to a common rail device 41 as a fuel injection device provided in the engine 10. The common rail device 41 injects fuel into each cylinder of the engine 10. In this case, the fuel injection valve of the injector for each cylinder of the engine 10 is controlled to open and close, so that high-pressure fuel pressure-fed from the fuel tank to the common rail device 41 by the fuel supply pump is injected from each injector to each cylinder of the engine 10 Thus, the injection pressure, injection timing, and injection period (injection amount) of the fuel supplied from each injector are controlled with high accuracy. The engine controller 31 controls the common rail device 41 to control the number of rotations of the engine 10 and the like. The engine controller 31 can also stop the supply of fuel to the engine 10 and stop the driving of the engine 10 by controlling the common rail device 41.
 車速コントローラ32は、トラクタ1の車速を制御するものである。具体的には、トランスミッション22には、例えば可動斜板式の油圧式無段変速装置である変速装置42が設けられている。車速コントローラ32は、変速装置42の斜板の角度をアクチュエータ(図示せず)によって変更することで、トランスミッション22の変速比を変更し、所望の車速を実現することができる。自律走行時には、制御部4(後述する自律走行制御部50)は、トラクタ1の目標車速を指定する制御信号を車速コントローラ32に送信する。この制御信号に従って、車速コントローラ32は、トラクタ1の車速が目標車速になるように変速装置42を制御する。 The vehicle speed controller 32 controls the vehicle speed of the tractor 1. Specifically, the transmission 22 is provided with a transmission 42 which is, for example, a movable swash plate type hydraulic stepless transmission. The vehicle speed controller 32 can change the transmission ratio of the transmission 22 by changing the angle of the swash plate of the transmission 42 by an actuator (not shown), and can realize a desired vehicle speed. During autonomous traveling, the control unit 4 (an autonomous traveling control unit 50 described later) transmits a control signal for specifying a target vehicle speed of the tractor 1 to the vehicle speed controller 32. According to this control signal, the vehicle speed controller 32 controls the transmission 42 so that the vehicle speed of the tractor 1 becomes the target vehicle speed.
 操向コントローラ33は、前輪7の転舵角を制御するものである。具体的には、ステアリングハンドル12の回転軸(ステアリングシャフト)の中途部には、操向アクチュエータ43が設けられている。自律走行時には、制御部4は、予め定められた自律走行経路に沿ってトラクタ1を走行させるための目標転舵角を演算して、操向コントローラ33に設定する。操向コントローラ33は、ステアリングハンドル12の回転角が目標転舵角となるように操向アクチュエータ43を制御する。これにより、トラクタ1の前輪7の転舵角が制御される。 The steering controller 33 controls the turning angle of the front wheel 7. Specifically, a steering actuator 43 is provided in the middle of the rotation shaft (steering shaft) of the steering handle 12. During autonomous traveling, the control unit 4 calculates a target turning angle for causing the tractor 1 to travel along a predetermined autonomous traveling route, and sets the steering angle in the steering controller 33. The steering controller 33 controls the steering actuator 43 so that the rotation angle of the steering wheel 12 becomes the target turning angle. Thereby, the turning angle of the front wheel 7 of the tractor 1 is controlled.
 なお、操向アクチュエータはステアリングハンドル12の回動角度を調整することなく、トラクタ1の前輪7の転舵角を変化させるものであってもよい。その場合、制御部4は、予め定められた自律走行経路に沿ってトラクタ1を走行させるための目標転舵角を演算して、操向コントローラ33に設定する。操向コントローラ33は、前輪7の転舵角が目標転舵角となるように操向アクチュエータを制御する。その場合、旋回走行を行ったとしてもステアリングハンドル12は回動しない。 The steering actuator may change the turning angle of the front wheel 7 of the tractor 1 without adjusting the turning angle of the steering wheel 12. In that case, the control unit 4 calculates a target turning angle for causing the tractor 1 to travel along a predetermined autonomous traveling route, and sets the steering angle in the steering controller 33. The steering controller 33 controls the steering actuator so that the turning angle of the front wheels 7 becomes the target turning angle. In that case, the steering handle 12 does not rotate even if a cornering movement is performed.
 昇降コントローラ34は、作業機の昇降を制御するものである。具体的には、トラクタ1は、作業機を走行機体2に連結する部分の近傍に、公知の油圧式のリフトシリンダからなる昇降アクチュエータ44を備えている。昇降コントローラ34は、制御部4から入力された制御信号に基づいて図略の電磁弁を開閉することによりリフトシリンダを駆動することによって、作業機を適宜に昇降駆動させる。リフトシリンダは単動式である。リフトシリンダは、シリンダに作動油を供給することで作業機を上昇させる。リフトシリンダは、シリンダから作動油を排出することで作業機が自重で下降するように構成されている。図示しないが、シリンダからの作動油の排出経路には公知の下降速度調整弁が配置されている。この下降速度調整弁の開度をユーザが作業機下降速度調整ノブ25(図3参照)によって操作することで、作業機が下降する場合の速度を調整することができる。昇降コントローラ34により、作業機を、作業を行わない非作業高さ、および、作業を行う作業高さ等の所望の高さで支持することができる。 The elevation controller 34 controls elevation of the working machine. Specifically, the tractor 1 is provided with a lift actuator 44 composed of a known hydraulic lift cylinder in the vicinity of the portion connecting the work machine to the traveling machine body 2. The elevation controller 34 raises and lowers the work machine appropriately by driving the lift cylinder by opening and closing a solenoid valve (not shown) based on the control signal input from the control unit 4. The lift cylinder is single acting. The lift cylinder raises the working machine by supplying hydraulic oil to the cylinder. The lift cylinder is configured such that the working machine is lowered by its own weight by discharging the hydraulic oil from the cylinder. Although not shown, a well-known descent speed adjusting valve is disposed in the discharge path of the hydraulic fluid from the cylinder. The user can adjust the opening speed of the lowering speed adjusting valve with the work machine lowering speed adjusting knob 25 (see FIG. 3) to adjust the speed when the working machine is lowered. The lift controller 34 can support the work machine at a desired height such as a non-work height at which work is not performed and a work height at which the work is performed.
 PTOコントローラ35は、前記PTO軸の回転を制御するものである。具体的には、トラクタ1は、PTO軸への動力の伝達/遮断を切り換えるためのPTOクラッチ45を備えている。PTOコントローラ35は、制御部4から入力された制御信号に基づいてPTOクラッチ45を切り換えることによって、PTO軸を介して作業機3を回転駆動したり、この回転駆動を停止させたりすることができる。本実施形態では、作業機3の「作業状態」とは、作業機3のピックアップ装置80がPTO軸からの駆動力によって駆動されている状態を意味する。また、「非作業状態」とは、上記の作業状態以外の状態を意味する。非作業状態は、例えば、ピックアップ装置80が停止している状態である。 The PTO controller 35 controls the rotation of the PTO shaft. Specifically, the tractor 1 is provided with a PTO clutch 45 for switching transmission / disconnection of power to the PTO shaft. The PTO controller 35 can rotationally drive the work machine 3 via the PTO shaft or stop the rotational drive by switching the PTO clutch 45 based on the control signal input from the control unit 4 . In the present embodiment, the “working state” of the work machine 3 means a state in which the pickup device 80 of the work machine 3 is driven by the driving force from the PTO shaft. Further, "non-working state" means a state other than the above working state. The non-operation state is, for example, a state in which the pickup device 80 is stopped.
 制御部4には、衛星信号受信用アンテナ46が電気的に接続されている。制御部4には、無線通信部47を介して無線通信用アンテナ48が電気的に接続されている。無線通信部47は、一例として、無線LANルータ(Wi-Fiルータ)から構成されていてもよい。制御部4には、モニタ装置36が電気的に接続されている。制御部4には、作業機3と通信するためのインターフェースである走行機体側通信部37が電気的に接続されている。 A satellite signal reception antenna 46 is electrically connected to the control unit 4. A radio communication antenna 48 is electrically connected to the control unit 4 via the radio communication unit 47. The wireless communication unit 47 may be configured by a wireless LAN router (Wi-Fi router), for example. A monitor device 36 is electrically connected to the control unit 4. A traveling machine side communication unit 37, which is an interface for communicating with the work machine 3, is electrically connected to the control unit 4.
 衛星信号受信用アンテナ46は、衛星測位システム(GNSS)を構成する測位衛星からの信号を受信するものである。衛星信号受信用アンテナ46で受信された測位信号は、位置情報算出部(位置情報取得部)49に入力される。位置情報算出部49は、トラクタ1の走行機体2(厳密には、衛星信号受信用アンテナ46)の位置情報を、例えば緯度・経度情報として算出する。 The satellite signal receiving antenna 46 receives a signal from a positioning satellite that constitutes a satellite positioning system (GNSS). The positioning signal received by the satellite signal reception antenna 46 is input to a position information calculation unit (position information acquisition unit) 49. The position information calculation unit 49 calculates position information of the traveling body 2 (strictly speaking, the satellite signal receiving antenna 46) of the tractor 1 as, for example, latitude and longitude information.
 なお、本実施形態では、衛星測位システムは、GNSS-RTK法を利用した高精度の衛星測位システムである。衛星測位システムは、これに限られるものではなく、他の測位システムを用いてもよい。例えば、相対測位方式(DGPS)、または静止衛星型衛星航法補強システム(SBAS)が使用されてもよいし、これらのシステムの組み合わせが使用されてもよい。 In the present embodiment, the satellite positioning system is a high precision satellite positioning system using the GNSS-RTK method. The satellite positioning system is not limited to this, and another positioning system may be used. For example, a relative positioning system (DGPS), or a geosynchronous satellite navigation augmentation system (SBAS) may be used, or a combination of these systems may be used.
 制御部4には、慣性計測装置(図示せず)が接続されていてもよい。この慣性計測装置は角速度センサおよび加速度センサを備える公知の構成である。この慣性計測装置は、上記のGNSS測位が電波受信等の事情でできなくなった場合においてもトラクタ1の位置を取得することができるように構成されている。 The control unit 4 may be connected to an inertial measurement device (not shown). This inertial measurement device is a known configuration provided with an angular velocity sensor and an acceleration sensor. This inertial measurement device is configured to be able to acquire the position of the tractor 1 even when the GNSS positioning described above can not be performed due to radio wave reception and the like.
 制御部4は、キャビン11内に搭乗したユーザの各種操作に基づいて、トラクタ1および作業機3を制御する機能、および、トラクタ1を予め作成された自律走行経路に沿って自動的に走行させながら、作業機3を自動的に制御する自律走行機能等を備えている。以下においては、自律走行機能について詳しく説明する。 The control unit 4 has a function of controlling the tractor 1 and the work machine 3 based on various operations of the user who got into the cabin 11, and causes the tractor 1 to automatically travel along the autonomous traveling route created in advance. However, it has an autonomous traveling function and the like for automatically controlling the work machine 3. The autonomous traveling function will be described in detail below.
 制御部4は、マイクロコンピュータを含んでいる。マイクロコンピュータは、CPU、記憶部(ROM、RAM、不揮発性メモリ、ハードディスク等)60を備えている。記憶部60には、プログラムおよび各種データが記憶される。マイクロコンピュータは、記憶部60に記憶されている所定のプログラムを実行することによって、複数の機能処理部として機能する。この複数の機能処理部には、自律走行制御部50などが含まれる。 The control unit 4 includes a microcomputer. The microcomputer includes a CPU and a storage unit (ROM, RAM, non-volatile memory, hard disk, etc.) 60. The storage unit 60 stores programs and various data. The microcomputer functions as a plurality of function processing units by executing a predetermined program stored in the storage unit 60. The plurality of function processing units include an autonomous traveling control unit 50 and the like.
 自律走行制御部50は、自律走行に関する統括的な制御を行う。この自律走行制御部50は、ユーザが搭乗した状態で自律走行を行う有人自律走行モード(第1モード)と、ユーザが搭乗しない状態で自律走行を行う無人自律走行モード(第2モード)とを切り換えて、トラクタ1を自律走行経路に沿って自律走行させることが可能に構成されている。 The autonomous traveling control unit 50 performs overall control on autonomous traveling. The autonomous traveling control unit 50 includes a manned autonomous traveling mode (first mode) in which autonomous traveling is performed in a state where the user is on board and an unmanned autonomous traveling mode (second mode) in which autonomous traveling is performed in a state where the user is not on board. It is possible to switch and allow the tractor 1 to travel autonomously along the autonomous traveling route.
 自律走行制御部50は、各コントローラ31~35を制御することにより、予め生成された自律走行経路に沿ってトラクタ1を自律走行させたり、自律走行を停止させたりする。自律走行制御部50は、所定の目標車速VTを車速コントローラ32に設定する目標車速設定部51を含む。自律走行時には、自律走行制御部50が制御信号を出力することによって、トラクタ1の車速が目標車速VTとなるように、車速コントローラ32が制御される。すなわち、トラクタ1の車速が目標車速VTと異なるときは、トラクタ1の車速は、目標車速VTと一致するように増減される。 The autonomous traveling control unit 50 causes the tractor 1 to autonomously travel along the autonomous traveling route generated in advance or stops autonomous traveling by controlling the respective controllers 31 to 35. The autonomous traveling control unit 50 includes a target vehicle speed setting unit 51 that sets a predetermined target vehicle speed VT in the vehicle speed controller 32. During autonomous traveling, the autonomous traveling control unit 50 outputs a control signal to control the vehicle speed controller 32 such that the vehicle speed of the tractor 1 becomes the target vehicle speed VT. That is, when the vehicle speed of the tractor 1 is different from the target vehicle speed VT, the vehicle speed of the tractor 1 is increased or decreased to match the target vehicle speed VT.
 予め生成された自律走行経路には、トラクタ1の目標車速VTの基準となる車速である基準車速が設定されている。仮に、自律走行時に作業機側制御部84からの特定制御信号が制御部4に入力されない場合、トラクタ1の目標車速VTには基準車速が設定される。基準車速は、自律走行経路上のトラクタ1の位置に応じて、複数設定することができる。例えば、二種類の基準車速(第1基準車速V1および第2基準車速V2)が設定される。この設定は、例えば、無線通信端末100(後述する図4参照)を用いて行われる。このように、無線通信端末100は、基準車速設定部としての機能を有する。 A reference vehicle speed which is a vehicle speed serving as a reference of the target vehicle speed VT of the tractor 1 is set in the autonomous traveling route generated in advance. If the specific control signal from the work machine side control unit 84 is not input to the control unit 4 during autonomous traveling, the reference vehicle speed is set as the target vehicle speed VT of the tractor 1. A plurality of reference vehicle speeds can be set in accordance with the position of the tractor 1 on the autonomous traveling route. For example, two types of reference vehicle speeds (a first reference vehicle speed V1 and a second reference vehicle speed V2) are set. This setting is performed, for example, using the wireless communication terminal 100 (see FIG. 4 described later). Thus, the wireless communication terminal 100 has a function as a reference vehicle speed setting unit.
 ロールベーラである作業機3は、前述した作業機機構部82と、検出部83と、作業機側制御部84と、作業機側通信部85とを含んでいる。検出部83は、作業機3が特定の作業状態になったことを検出する。作業機側制御部84は、特定の作業状態になったときや特定の作業状態が解消されたときに所定の制御信号(特定制御信号)を出力する。作業機側通信部85は、走行機体側通信部37を介して制御部4と通信するためのインターフェースである。作業機側制御部84と制御部4とは、作業機側通信部85および走行機体側通信部37を介して通信可能である。よって、作業機側制御部84が出力する所定の制御信号(特定制御信号)は、作業機側通信部85および走行機体側通信部37を介して、制御部4に入力される。 The work machine 3 which is a roll baler includes the work machine mechanism unit 82 described above, a detection unit 83, a work machine side control unit 84, and a work machine side communication unit 85. The detection unit 83 detects that the work machine 3 is in a specific work state. The work machine side control unit 84 outputs a predetermined control signal (specific control signal) when the specific work state is reached or when the specific work state is cancelled. The working machine side communication unit 85 is an interface for communicating with the control unit 4 via the traveling machine side communication unit 37. The work machine side control unit 84 and the control unit 4 can communicate via the work machine side communication unit 85 and the traveling machine body communication unit 37. Therefore, the predetermined control signal (specific control signal) output by the work machine side control unit 84 is input to the control unit 4 via the work machine side communication unit 85 and the traveling machine body side communication unit 37.
 特定制御信号の種別としては、減速信号、停止信号、減速解除信号、停止解除信号が挙げられる。減速信号は、トラクタ1の減速を要求する信号である。停止信号は、トラクタ1の走行の停止を要求する信号である。減速信号が出力されると、目標車速VTは、第1基準車速V1または第2基準車速V2に所定の減速率(例えば0.5)を乗じた速度に設定される。停止信号が出力されると、目標車速VTは、0km/hに設定される。 The types of specific control signals include a deceleration signal, a stop signal, a deceleration release signal, and a stop release signal. The deceleration signal is a signal that requests the tractor 1 to decelerate. The stop signal is a signal requesting stop of the traveling of the tractor 1. When the deceleration signal is output, the target vehicle speed VT is set to a speed obtained by multiplying the first reference vehicle speed V1 or the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5). When the stop signal is output, the target vehicle speed VT is set to 0 km / h.
 減速解除信号は、減速信号によるトラクタ1の減速の解除を要求する信号である。停止解除信号は、停止信号によるトラクタ1の走行の停止の解除を要求する信号である。言い換えると、停止解除信号は、実質的に、トラクタ1の走行の再開を要求する信号であるといえる。 The deceleration release signal is a signal for requesting release of the deceleration of the tractor 1 by the deceleration signal. The stop release signal is a signal requesting release of the stop of the traveling of the tractor 1 by the stop signal. In other words, it can be said that the stop release signal is a signal substantially requesting resumption of traveling of the tractor 1.
 本実施形態のように作業機3がロールベーラである場合、各特定制御信号が出力されるタイミングとしては、作業機3が以下のような作業状態となったタイミングが挙げられる。 When the work machine 3 is a roll baler as in the present embodiment, the timing at which the work machine 3 is in the following work state may be mentioned as the timing at which each specific control signal is output.
 具体的には、減速信号は、成形室81に被成形材料が送られることによって、成形室81内の被成形材料の量が成形室81の容量の所定の割合(たとえば80%)に達したときや、作業機3の作業機機構部82に詰まりが発生して単位時間あたりに作業機3が拾い上げることができる被成形材料の量が低下したとき等に出力されることがある。減速解除信号は、成形室81からロールベールが排出されて成形室81が空になったときや、作業機機構部82の詰まりが解消されたとき等に出力されることがある。 Specifically, the deceleration signal indicates that the amount of the material to be molded in the molding chamber 81 reaches a predetermined ratio (for example, 80%) of the volume of the molding chamber 81 by the material to be molded being sent to the molding chamber 81 Occasionally, it may be output, for example, when the work machine mechanism 82 of the work machine 3 is clogged and the amount of material to be molded that can be picked up by the work machine 3 decreases per unit time. The deceleration release signal may be output, for example, when the roll bale is discharged from the forming chamber 81 and the forming chamber 81 becomes empty, or when the clogging of the working machine mechanism unit 82 is resolved.
 停止信号は、成形室81内でロールベールが形成されたときや、トラクタ1が自律走行経路を走行し終えたとき等に出力されることがある。停止解除信号は、成形室81からロールベールが排出されて成形室81が空になったとき等に出力されることがある。 The stop signal may be output, for example, when the roll bale is formed in the forming chamber 81, or when the tractor 1 finishes traveling on the autonomous traveling route. The stop release signal may be output when the roll bale is discharged from the forming chamber 81 and the forming chamber 81 becomes empty.
 無線通信端末100は、経路生成部101、表示部102、表示制御部103、無線通信部104および無線通信用アンテナ105を含む。経路生成部101は、自律走行経路の生成を行う。表示部102は、各種データを表示したり、ユーザによる操作を受け付けたりするものである。表示部102は、タッチパネル式ディプレイによって構成されている。表示制御部103は、表示部102の表示内容を制御する。具体的には、表示制御部103は、表示部102に対して自律走行経路を表示させたり、表示部102に表示された自律走行経路上に走行機体2の位置を示す所定画像を表示させたりすることができる。無線通信部104および無線通信用アンテナ105は、トラクタ1の制御部4と無線通信を行うために使用される装置である。無線通信用アンテナ105は、無線LANアダプタ(Wi-Fiアダプタ)を含んでいてもよい。無線通信用アンテナ105は、無線通信部104を介して経路生成部101および表示制御部103に接続されている。経路生成部101によって生成された自律走行経路は、無線通信端末100からトラクタ1の制御部4に送信され、記憶部60に経路データとして記憶される。 The wireless communication terminal 100 includes a route generation unit 101, a display unit 102, a display control unit 103, a wireless communication unit 104, and a wireless communication antenna 105. The route generation unit 101 generates an autonomous traveling route. The display unit 102 displays various data and receives an operation by a user. The display unit 102 is configured by a touch panel display. The display control unit 103 controls the display content of the display unit 102. Specifically, the display control unit 103 causes the display unit 102 to display an autonomous traveling route, or causes the display unit 102 to display a predetermined image indicating the position of the traveling vehicle 2 on the autonomous traveling route. can do. The wireless communication unit 104 and the wireless communication antenna 105 are devices used to perform wireless communication with the control unit 4 of the tractor 1. The wireless communication antenna 105 may include a wireless LAN adapter (Wi-Fi adapter). The wireless communication antenna 105 is connected to the path generation unit 101 and the display control unit 103 via the wireless communication unit 104. The autonomous traveling route generated by the route generation unit 101 is transmitted from the wireless communication terminal 100 to the control unit 4 of the tractor 1 and stored in the storage unit 60 as route data.
 図5は、自律走行経路の一例を示す模式図である。 FIG. 5 is a schematic view showing an example of the autonomous traveling route.
 図5を参照して、自律走行経路Pは、予め指定された作業開始位置Sと、作業終了位置Eとを結ぶように生成される。この自律走行経路Pは、作業領域Wに設定され、直線状または折れ線状の自律作業路(自律作業が行われる線状の経路)P1と、非作業領域Nに設定され、当該自律作業路P1の端部同士を繋ぐ経路である接続路P2とを交互に繋いだ構成となっている。なお、本実施形態において作業領域Wとは、自律作業が行われる領域であることを意味し、非作業領域Nとは、自律作業が行われない領域であることを意味するものとする。以下、特筆なき限り、「走行」は自律走行を意味し、「作業」は自律作業を意味するものとする。 Referring to FIG. 5, the autonomous traveling route P is generated so as to connect the work start position S specified in advance and the work end position E. The autonomous traveling route P is set in the work area W, and is set in a linear or polygonal autonomous working path (a linear path on which the autonomous work is performed) P1 and a non-work area N. The connection path P2, which is a path connecting the end portions of the two, is alternately connected. In the present embodiment, the work area W means an area where the autonomous work is performed, and the non-work area N means an area where the autonomous work is not performed. Hereinafter, unless otherwise stated, “travel” means autonomous travel, and “work” means autonomous work.
 自律作業路P1は、作業機3による作業が行われる経路である。接続路P2は、旋回・切返し操作が行われる円弧状部分を含む旋回路である。 The autonomous work path P1 is a path on which the work by the work machine 3 is performed. The connection path P2 is a rotary circuit including an arc-like portion where the turning and turning back operation is performed.
 図5の例では、自律作業路P1は直線状に生成され、接続路P2はU字状に生成される。接続路P2は、互いに隣り合う自律作業路P1の端部同士を接続するように配置される。このように作成された自律走行経路Pにおいては、各接続路P2において180°の方向転換が行われるので、トラクタ1の走行方向は、ある自律作業路P1と、その自律作業路P1の隣の自律作業路P1との間で、互いに逆を向くことになる。トラクタ1は、自律走行経路P上を走行するが、以下では、トラクタ1の走行方向の前方を「走行方向下流側」ともいい、トラクタ1の走行方向の後方を「走行方向上流側」ともいう。自律作業路P1と接続路P2とは、走行方向に沿って交互に並んでいる。自律作業路P1と当該自律作業路P1の走行方向下流側の接続路P2との境界を第1境界位置B1という。接続路P2と当該接続路P2の走行方向下流側の自律作業路P1との境界を第2境界位置B2という。 In the example of FIG. 5, the autonomous work path P1 is generated linearly, and the connection path P2 is generated U-shaped. The connection path P2 is disposed to connect the end portions of the autonomous work paths P1 adjacent to each other. In the autonomous traveling route P created in this way, a direction change of 180 ° is performed in each connecting route P2, so that the traveling direction of the tractor 1 is an autonomous work route P1 and its neighboring autonomous work route P1. Between the autonomous work path P1 and the work path, they will turn opposite to each other. The tractor 1 travels on the autonomous traveling route P. In the following, the front in the traveling direction of the tractor 1 is also referred to as "the traveling direction downstream side", and the rear in the traveling direction of the tractor 1 is also referred to as the "traveling direction upstream side" . The autonomous work path P1 and the connection path P2 are alternately arranged along the traveling direction. The boundary between the autonomous work path P1 and the connection path P2 on the downstream side in the traveling direction of the autonomous work path P1 is referred to as a first boundary position B1. The boundary between the connection path P2 and the autonomous work path P1 on the downstream side in the traveling direction of the connection path P2 is referred to as a second boundary position B2.
 図6は、自律走行経路Pの接続路P2付近の模式図である。 FIG. 6 is a schematic view of the vicinity of the connection path P2 of the autonomous traveling path P. As shown in FIG.
 図5および図6を参照して、自律走行経路Pには、基準車速Vが設定されている。具体的には、自律作業路P1には、第1基準車速V1が設定されており、接続路P2には、第2基準車速V2が設定されている。目標車速設定部51は、特定制御信号が出力されていないときには、トラクタ1が自律作業路P1を走行するときに目標車速VTを第1基準車速V1にし、トラクタ1が接続路P2を走行するときに目標車速VTを第2基準車速V2にする。 Referring to FIGS. 5 and 6, a reference vehicle speed V is set for the autonomous traveling route P. Specifically, the first reference vehicle speed V1 is set to the autonomous work path P1, and the second reference vehicle speed V2 is set to the connection path P2. The target vehicle speed setting unit 51 sets the target vehicle speed VT to the first reference vehicle speed V1 when the tractor 1 travels the autonomous work path P1 when the specific control signal is not output, and the tractor 1 travels the connection path P2. The target vehicle speed VT is set to the second reference vehicle speed V2.
 目標車速設定部51は、第1基準車速V1と第2基準車速V2との間で目標車速VTを切り換える第1設定部52を含む。第1設定部52は、走行機体2が自律作業路P1から当該自律作業路P1の走行方向下流側の接続路P2へ移動する際に、目標車速VTを第1基準車速V1から第2基準車速V2に切り換える。第1設定部52は、走行機体2が接続路P2から当該接続路P2の走行方向下流側の自律作業路P1へ移動する際に、目標車速VTを第2基準車速V2から第1基準車速V1に切り換える。 The target vehicle speed setting unit 51 includes a first setting unit 52 that switches the target vehicle speed VT between the first reference vehicle speed V1 and the second reference vehicle speed V2. The first setting unit 52 sets the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed when the traveling airframe 2 moves from the autonomous work path P1 to the connection path P2 downstream of the autonomous work path P1 in the traveling direction. Switch to V2. The first setting unit 52 sets the target vehicle speed VT from the second reference vehicle speed V2 to the first reference vehicle speed V1 when the traveling airframe 2 moves from the connection path P2 to the autonomous work path P1 on the downstream side in the traveling direction of the connection path P2. Switch to
 自律走行経路P上には、目標車速設定部51が目標車速VTを切り換える基準となる変速基準位置Rが設定(特定)される。走行機体2が変速基準位置Rに達すると、車速コントローラ32を制御する制御信号が自律走行制御部50から出力される。変速基準位置Rを適切に設定するために、自律走行制御部50は、変速基準位置設定部54をさらに含む(図4も参照)。変速基準位置設定部54は、車速コントローラ32によって目標車速VTに対する車速切換制御が開始されたことに応じて、走行機体2の現在の位置よりも走行方向下流側に次の変速基準位置Rを設定する。また、変速基準位置設定部54は、特定制御信号に応じて目標車速VTが変更される場合には、それに伴って変速基準位置Rを設定することが可能である。 A shift reference position R on which the target vehicle speed setting unit 51 switches the target vehicle speed VT is set (specified) on the autonomous traveling route P. When the traveling body 2 reaches the shift reference position R, a control signal for controlling the vehicle speed controller 32 is output from the autonomous traveling control unit 50. In order to appropriately set the shift reference position R, the autonomous traveling control unit 50 further includes a shift reference position setting unit 54 (see also FIG. 4). The shift reference position setting unit 54 sets the next shift reference position R in the traveling direction downstream of the current position of the traveling vehicle body 2 in response to the vehicle speed switching control for the target vehicle speed VT being started by the vehicle speed controller 32. Do. Further, when the target vehicle speed VT is changed according to the specific control signal, the shift reference position setting unit 54 can set the shift reference position R accordingly.
 走行機体2が自律作業路P1から当該自律作業路P1の走行方向下流側の接続路P2へ移動する際に目標車速VTを切り換えるときの基準となる変速基準位置Rを第1変速基準位置R1ともいう。走行機体2が接続路P2から当該接続路P2の走行方向下流側の自律作業路P1へ移動する際に目標車速VTを切り換えるときの基準となる変速基準位置Rを第2変速基準位置R2ともいう。 When the traveling airframe 2 moves from the autonomous work path P1 to the connection path P2 on the downstream side of the traveling direction of the autonomous work path P1, the shift reference position R serving as a reference when switching the target vehicle speed VT is also the first shift reference position R1. Say. The shift reference position R serving as a reference when switching the target vehicle speed VT when the traveling body 2 moves from the connection path P2 to the autonomous work path P1 downstream of the connection path P2 in the traveling direction is also referred to as a second shift reference position R2. .
 変速基準位置Rは、現在位置する経路(自律作業路P1であるか接続路P2であるか)と、基準車速Vとに基づいて設定される。第1変速基準位置R1は、自律作業路P1から接続路P2へ移動する際に、目標車速VTを切り換える基準となる位置であることから、第1境界位置B1またはその付近に設定される。第2変速基準位置R2は、接続路P2から自律作業路P1へ移動する際に目標車速VTを切り換える基準となる位置であることから、第2境界位置B2またはその付近に設定される。 The shift reference position R is set based on the current position (whether it is the autonomous work path P1 or the connection path P2) and the reference vehicle speed V. Since the first shift reference position R1 is a position serving as a reference for switching the target vehicle speed VT when moving from the autonomous work path P1 to the connection path P2, the first shift reference position R1 is set at or near the first boundary position B1. The second shift reference position R2 is a position serving as a reference for switching the target vehicle speed VT when moving from the connection path P2 to the autonomous work path P1, and therefore, is set at or near the second boundary position B2.
 自律作業路P1では、その全域において作業が均等に行われることが好ましい。そのためには、トラクタ1がほぼ等速(自律作業路P1で目標車速VTを切り換えることなく)で自律作業路P1を走行することが好ましい。そのため、本実施形態では、トラクタ1がほぼ等速で自律作業路P1を走行することができるように変速基準位置Rが設定されることが好ましい。 In the autonomous work path P1, it is preferable that the work be performed equally over the entire area. For that purpose, it is preferable that the tractor 1 travel on the autonomous work path P1 at substantially the same speed (without switching the target vehicle speed VT in the autonomous work path P1). Therefore, in the present embodiment, it is preferable that the shift reference position R be set so that the tractor 1 can travel on the autonomous work path P1 at substantially the same speed.
 したがって、本実施形態では、走行機体2が次に通過する境界位置が第1境界位置B1である場合、変速基準位置設定部54は、現在の目標車速VTの値にかかわらず、変速基準位置R(第1変速基準位置R1)を第1境界位置B1に設定する。そして、変速基準位置Rで目標車速VTが切り換えられ、変速基準位置Rから所定の距離L1だけ走行機体2が移動した時点で、トラクタ1の車速が切り換え後の目標車速VTに達する。所定の距離L1は、切り換え後の目標車速VTにトラクタ1の車速が達するまでに必要な距離であり、現在の目標車速VTとトラクタ1の加速度または減速度の大きさとに応じて定まる。 Therefore, in the present embodiment, when the boundary position where the traveling vehicle body 2 passes next is the first boundary position B1, the shift reference position setting unit 54 selects the shift reference position R regardless of the value of the current target vehicle speed VT. (First shift reference position R1) is set to the first boundary position B1. Then, the target vehicle speed VT is switched at the shift reference position R, and when the traveling body 2 moves from the shift reference position R by a predetermined distance L1, the vehicle speed of the tractor 1 reaches the target vehicle speed VT after switching. The predetermined distance L1 is a distance necessary for the vehicle speed of the tractor 1 to reach the switched target vehicle speed VT, and is determined according to the current target vehicle speed VT and the magnitude of the acceleration or deceleration of the tractor 1.
 また、走行機体2が次に通過する境界位置が第2境界位置B2である場合、変速基準位置設定部54は、現在の目標車速VTから切り換え後の目標車速VTにトラクタ1の車速が達するまでに必要な距離(所定の距離L2)だけ第2境界位置B2よりも走行方向上流側に変速基準位置Rを設定する。変速基準位置設定部54は、現在の目標車速VTと、切り換え後の目標車速VTと、トラクタ1の加速度または減速度とに基づいて所定の距離L2を算出し、算出された所定の距離L2だけ第2境界位置B2よりも走行方向上流側に変速基準位置R(第2変速基準位置R2)を設定する。このように、第2変速基準位置R2は、第1変速基準位置R1とは異なり、現在の目標車速VTを考慮して設定される。 When the boundary position through which the traveling vehicle 2 passes next is the second boundary position B2, the shift reference position setting unit 54 continues until the vehicle speed of the tractor 1 reaches the target vehicle speed VT after switching from the current target vehicle speed VT. The shift reference position R is set on the upstream side of the second boundary position B2 in the traveling direction by a distance (predetermined distance L2) necessary for the second position. The shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT, the switched target vehicle speed VT, and the degree of acceleration or deceleration of the tractor 1, and the calculated predetermined distance L2 A shift reference position R (second shift reference position R2) is set upstream of the second boundary position B2 in the traveling direction. Thus, unlike the first shift reference position R1, the second shift reference position R2 is set in consideration of the current target vehicle speed VT.
 図7は、減速信号などの特定制御信号が出力されない場合に、変速基準位置R付近を走行するトラクタ1の車速の変化を説明するためのグラフである。図7では、横軸がトラクタ1(走行機体2)の位置を示しており、縦軸がトラクタ1の車速を示している(後述する図8A~図9Dでも同様)。 FIG. 7 is a graph for explaining changes in the vehicle speed of the tractor 1 traveling near the shift reference position R when a specific control signal such as a deceleration signal is not output. In FIG. 7, the horizontal axis indicates the position of the tractor 1 (traveling machine body 2), and the vertical axis indicates the vehicle speed of the tractor 1 (the same applies to FIGS. 8A to 9D described later).
 図7の例では、走行機体2が自律作業路P1を走行する際、第1設定部52が目標車速VTを第1基準車速V1に設定する。そして、変速基準位置設定部54は、走行機体2が現在位置する自律作業路P1と、その下流側に位置する接続路P2との境界である(すなわち走行機体2が次に通過する)第1境界位置B1に変速基準位置Rを設定する。そして、走行機体2が変速基準位置Rに達すると、第1設定部52は、目標車速VTを第1基準車速V1から第2基準車速V2に切り換える。そのため、トラクタ1の減速が始まる。そして、車速コントローラ32は、変速基準位置Rから所定の距離L1だけ走行機体2が移動した時点で、トラクタ1の車速が第2基準車速V2に達するようにトラクタ1の車速を制御する。 In the example of FIG. 7, when the traveling body 2 travels on the autonomous work path P1, the first setting unit 52 sets the target vehicle speed VT to the first reference vehicle speed V1. Then, the shift reference position setting unit 54 is a first boundary between the autonomous work path P1 where the traveling airframe 2 is currently located and the connection path P2 located downstream thereof (that is, the traveling airframe 2 passes next) The shift reference position R is set to the boundary position B1. When the traveling body 2 reaches the shift reference position R, the first setting unit 52 switches the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed V2. Therefore, deceleration of the tractor 1 starts. The vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 reaches the second reference vehicle speed V2 when the traveling vehicle body 2 moves from the shift reference position R by a predetermined distance L1.
 目標車速VTが第2基準車速V2に設定されると、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、現在の目標車速VT(第2基準車速V2)と、切り換え後の目標車速VT(第1基準車速V1)と、トラクタ1の加速度または減速度とに基づいて所定の距離L2を演算し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置Rを設定する。つまり、所定の距離L2は、第2境界位置B2に走行機体2が達した時点でトラクタ1の車速が目標車速VTに達するように演算される。そして、走行機体2が変速基準位置Rに達すると、目標車速VTが第2基準車速V2から第1基準車速V1に切り換えられ、トラクタ1の加速が始まる。そして、車速コントローラ32は、走行機体2が第2境界位置B2に達した時点で、トラクタ1の車速が第1基準車速V1に達するようにトラクタ1の車速を制御する。 When the target vehicle speed VT is set to the second reference vehicle speed V2, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 is based on the current target vehicle speed VT (second reference vehicle speed V2), the target vehicle speed VT after switching (first reference vehicle speed V1), and the acceleration or deceleration of the tractor 1 A predetermined distance L2 is calculated, and the next shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next. That is, the predetermined distance L2 is calculated so that the vehicle speed of the tractor 1 reaches the target vehicle speed VT when the traveling body 2 reaches the second boundary position B2. When the traveling body 2 reaches the shift reference position R, the target vehicle speed VT is switched from the second reference vehicle speed V2 to the first reference vehicle speed V1, and acceleration of the tractor 1 starts. The vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 reaches the first reference vehicle speed V1 when the traveling body 2 reaches the second boundary position B2.
 そして、図示はしないが、目標車速VTが第1基準車速V1に切り換えられると、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、走行機体2が次に通過する第1境界位置B1に次の変速基準位置Rを設定する。そして、走行機体2が作業終了位置Eに達するまで、目標車速VTの設定と、変速基準位置Rの設定とが繰り返される。 Although not shown, when the target vehicle speed VT is switched to the first reference vehicle speed V1, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 sets the next shift reference position R at a first boundary position B1 where the traveling vehicle body 2 passes next. Then, the setting of the target vehicle speed VT and the setting of the shift reference position R are repeated until the traveling body 2 reaches the work end position E.
 自律走行制御部50は、走行機体2が第1境界位置B1に達する際、作業機3による作業を停止するための作業停止信号を作業機側制御部84に出力する。自律走行制御部50は、走行機体2が第2境界位置B2に達する際、作業機3による作業を開始するための作業開始信号を作業機側制御部84に出力する。 The autonomous traveling control unit 50 outputs a work stop signal for stopping work by the work machine 3 to the work machine side control unit 84 when the traveling machine body 2 reaches the first boundary position B1. The autonomous traveling control unit 50 outputs a work start signal for starting work by the work machine 3 to the work machine side control unit 84 when the traveling machine body 2 reaches the second boundary position B2.
 なお、作業停止信号および作業開始信号の出力タイミングは、作業機3が第1境界位置B1、第2境界位置B2に達した際でもよい。この場合、走行機体2の位置と、予め定められた走行機体2に対する作業機3の相対位置とに基づいて作業機3の位置が算出される。 The output timing of the work stop signal and the work start signal may be when the work machine 3 reaches the first boundary position B1 and the second boundary position B2. In this case, the position of the working machine 3 is calculated based on the position of the traveling machine body 2 and the relative position of the working machine 3 with respect to the traveling machine body 2 determined in advance.
 本実施形態のように作業機3がロールベーラである場合、作業停止信号および作業開始信号によって、PTOコントローラ35がPTOクラッチ45を切り換えて、作業機3の作業機機構部82を回転駆動させたりこの回転を停止させたりする。本実施形態とは異なり作業機が耕耘機等である場合、作業停止信号および作業開始信号によって、昇降コントローラ34が作業機を上昇させたり下降させたりしてもよい。なお、作業停止信号または作業開始信号が出力されてから実際の作業が停止または開始されるまでに所定の準備期間を要する作業機である場合には、当該所定の準備期間の間に走行機体2が走行する準備走行距離を算出し、走行機体2が第1境界位置B1または第2境界位置B2よりも準備走行距離だけ上流側の位置に達したときに作業停止信号または作業開始信号が出力されることとしてもよい。 As in the present embodiment, when the work machine 3 is a roll baler, the PTO controller 35 switches the PTO clutch 45 according to the work stop signal and the work start signal to rotate the work machine mechanism 82 of the work machine 3 or Stop the rotation. Unlike the present embodiment, when the work machine is a cultivator or the like, the lift controller 34 may raise or lower the work machine according to the work stop signal and the work start signal. In addition, when it is a work machine which requires a predetermined preparation period until the actual work is stopped or started after the work stop signal or the work start signal is output, the traveling machine body 2 is performed during the predetermined preparation period. When the traveling body 2 reaches a position upstream of the first boundary position B1 or the second boundary position B2 by the preparation traveling distance, the operation stop signal or the operation start signal is output. It may be
 本実施形態では、特定制御信号(特に減速信号や減速解除信号)が出力されることによって、目標車速VTが変更されることがある。このような場合、特定制御信号が出力されることによって行われる車速制御と、トラクタ1が変速基準位置Rに達したことによって行われる車速制御との関係性について考慮する必要がある。 In the present embodiment, the target vehicle speed VT may be changed by outputting a specific control signal (in particular, a deceleration signal or a deceleration release signal). In such a case, it is necessary to consider the relationship between the vehicle speed control performed by outputting the specific control signal and the vehicle speed control performed when the tractor 1 has reached the shift reference position R.
 トラクタ1が変速基準位置Rの付近を走行しているときに特定制御信号が出力された場合、特定制御信号によるトラクタ1の車速の変化、および、走行機体2が変速基準位置Rに達したことによる車速の変化の双方が短時間で実行されるおそれがある。しかし、車速の頻繁な変更は、走行機体2への負荷が大きい上に、トラクタ1の燃費や作業機3の作業にとっても好ましくない。 When the specific control signal is output while the tractor 1 is traveling near the shift reference position R, the change in the vehicle speed of the tractor 1 according to the specific control signal and that the traveling body 2 has reached the shift reference position R There is a risk that both of the changes in the vehicle speed due to will be performed in a short time. However, frequent changes in the vehicle speed are not preferable for the fuel efficiency of the tractor 1 and the work of the work machine 3 as well as the load on the traveling airframe 2 is large.
 そこで、本実施形態では、目標車速設定部51が、特定制御信号が出力された場合に走行機体2の位置に基づいて目標車速VTを設定することができるように構成されている。詳しくは、目標車速設定部51が、第1設定部52に加えて、第1設定部52とは異なる基準で目標車速VTを設定する第2設定部53をさらに含んでいる(図4参照)。 So, in this embodiment, the target vehicle speed setting part 51 is comprised so that the target vehicle speed VT can be set based on the position of the traveling body 2 when a specific control signal is output. Specifically, in addition to the first setting unit 52, the target vehicle speed setting unit 51 further includes a second setting unit 53 that sets the target vehicle speed VT based on a standard different from that of the first setting unit 52 (see FIG. 4). .
 第1設定部52は、作業機3が特定の作業状態でないときに、目標車速VTを設定する設定部である。一方、第2設定部53は、作業機3が特定の作業状態となってから(特定の作業状態であることを示す特定制御信号が出力されてから)、特定の作業状態が解消されるまで(特定の作業状態が解消されたことを示す特定制御信号が出力されるまで)の期間に、目標車速VTを設定する設定部である。 The first setting unit 52 is a setting unit that sets the target vehicle speed VT when the work machine 3 is not in a specific work state. On the other hand, after the work machine 3 is in the specific work state (after the specific control signal indicating that the specific work state is output), the second setting unit 53 continues until the specific work state is canceled. It is a setting unit that sets a target vehicle speed VT during a period (until a specific control signal indicating that a specific work state is canceled) is output.
 つまり、第1設定部52は、作業機3が特定の作業状態でない場合に走行機体2が変速基準位置Rに至ったとき、および、作業機3の特定の作業状態が解消されたことを示す特定制御信号を取得したときに目標車速VTを設定する設定部であるといえる。また、第2設定部53は、作業機3が特定の作業状態である場合に走行機体2が変速基準位置Rに至ったとき、および、特定の作業状態であることを示す特定制御信号を取得したときに目標車速VTを設定する設定部であるといえる。 That is, the first setting unit 52 indicates that when the traveling machine body 2 reaches the shift reference position R when the work machine 3 is not in the specific work state, and that the specific work state of the work machine 3 is cancelled. It can be said that the setting unit sets the target vehicle speed VT when acquiring the specific control signal. In addition, the second setting unit 53 acquires a specific control signal indicating that the traveling machine body 2 has reached the shift reference position R when the work machine 3 is in the specific work state, and that the specific work state is in progress. It can be said that the setting unit sets the target vehicle speed VT when it
 以下では、特定制御信号に応じて第1設定部52が目標車速VTを設定する場合、その特定制御信号は特定の作業状態が解消されたことを示す特定制御信号を示し、第2設定部53が目標車速VTを設定する場合、その特定制御信号は特定の作業状態であることを示す特定制御信号を示すこととする。 In the following, when the first setting unit 52 sets the target vehicle speed VT according to the specific control signal, the specific control signal indicates a specific control signal indicating that the specific work state has been cancelled, and the second setting unit 53 When the target vehicle speed VT is set, the specific control signal indicates a specific control signal indicating that the specific working state is in effect.
 第1設定部52および第2設定部53は、作業機側制御部84から特定制御信号が出力されたときには、現在、変速基準位置設定部54により設定されている変速基準位置Rに対する走行機体2の位置に基づいて特定目標車速VSを演算し、その特定目標車速VSを目標車速VTとして設定する。詳しくは、走行機体2の現在の位置と、現在の変速基準位置Rとの間の距離(離間距離)が、所定の基準距離D未満であるか否かに基づいて特定目標車速VSが変えられる。 When the specific control signal is output from work machine side control unit 84, first setting unit 52 and second setting unit 53 execute traveling machine body 2 relative to shift reference position R currently set by shift reference position setting unit 54. The specific target vehicle speed VS is calculated on the basis of the position of and the specific target vehicle speed VS is set as the target vehicle speed VT. Specifically, the specific target vehicle speed VS is changed based on whether or not the distance (separation distance) between the current position of the traveling airframe 2 and the current shift reference position R is less than a predetermined reference distance D. .
 より詳しくは、第1設定部52および第2設定部53は、走行機体2の現在位置と変速基準位置Rとの離間距離が基準距離D未満であるときに特定制御信号が出力されると、走行機体2が現在位置する経路P1,P2(第1区間)の走行方向下流側の経路P2,P1(第2区間)の基準車速V1,V2に基づいて特定目標車速VSを演算する。また、第1設定部52および第2設定部53は、走行機体2の現在位置と変速基準位置Rとの離間距離が基準距離D以上であるときに特定制御信号が出力されると、走行機体2が現在位置する経路P1,P2(第1区間)の基準車速V1,V2に基づいて特定目標車速VSを演算する。第1設定部52および第2設定部53は、作業機側制御部84から特定制御信号が出力されたときに目標車速VTを設定することによって車速コントローラ32に車速を制御させる。 More specifically, the first setting unit 52 and the second setting unit 53 output the specific control signal when the separation distance between the current position of the traveling vehicle body 2 and the shift reference position R is less than the reference distance D. The specific target vehicle speed VS is calculated based on the reference vehicle speeds V1 and V2 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is currently located. When the specific control signal is output when the separation distance between the current position of the traveling machine body 2 and the shift reference position R is equal to or more than the reference distance D, the first setting unit 52 and the second setting unit 53 The specific target vehicle speed VS is calculated based on the reference vehicle speeds V1 and V2 of the routes P1 and P2 (first section) in which 2 is currently located. The first setting unit 52 and the second setting unit 53 cause the vehicle speed controller 32 to control the vehicle speed by setting the target vehicle speed VT when the specific control signal is output from the work machine side control unit 84.
 所定の基準距離Dは、例えば、予め設定された固定の距離である。所定の基準距離Dとは、例えば、特定制御信号が出力されたことに応答して目標車速VTが設定された場合に、トラクタ1の車速がその目標車速VTに達するまでに要する走行距離(変速に必要な走行距離)である。変速に必要な走行距離は、トラクタ1の現在の車速や、トラクタ1の加速度(減速度)によって変化する。変速に必要な走行距離を適宜算出して基準距離Dとして設定してもよい。基準距離Dは、変速に必要な走行距離にマージンを加えた距離であってもよい。基準距離Dは、第1変速基準位置R1および第2変速基準位置R2のそれぞれに対して設定されている。基準距離Dは、特定制御信号の種別に応じて変更されてもよい。 The predetermined reference distance D is, for example, a predetermined fixed distance. When the target vehicle speed VT is set in response to the output of a specific control signal, for example, the predetermined reference distance D is a travel distance required for the vehicle speed of the tractor 1 to reach the target vehicle speed VT Distance required to The travel distance required for shifting changes depending on the current vehicle speed of the tractor 1 and the acceleration (deceleration) of the tractor 1. The travel distance required for shifting may be calculated appropriately and set as the reference distance D. The reference distance D may be a distance obtained by adding a margin to the travel distance required for shifting. The reference distance D is set for each of the first shift reference position R1 and the second shift reference position R2. The reference distance D may be changed according to the type of the specific control signal.
 そして、変速基準位置設定部54は、特定制御信号が出力されたときには、現在の目標車速VTと、現在の変速基準位置Rに対する走行機体2の現在の位置とに基づいて変速基準位置Rを設定することができる。すなわち、第1設定部52または第2設定部53により特定目標車速VSが目標車速VTとして設定されることに伴って、車速コントローラ32により車速切換制御が行われる場合、変速基準位置設定部54は変速基準位置Rを走行機体2の現在位置に変更する。そして、変速基準位置設定部54は、車速コントローラ32による車速切換制御が開始された後、次の変速基準位置Rを設定する。 The shift reference position setting unit 54 sets the shift reference position R based on the current target vehicle speed VT and the current position of the traveling vehicle 2 with respect to the current shift reference position R when the specific control signal is output. can do. That is, when the vehicle speed controller 32 performs the vehicle speed switching control in response to the specific target vehicle speed VS being set as the target vehicle speed VT by the first setting unit 52 or the second setting unit 53, the shift reference position setting unit 54 The shift reference position R is changed to the current position of the traveling body 2. Then, after the vehicle speed switching control by the vehicle speed controller 32 is started, the shift reference position setting unit 54 sets the next shift reference position R.
 自律走行に必要な各情報は、記憶部60に記憶される。すなわち、記憶部60は、経路記憶部61、領域記憶部62、変速基準位置記憶部63、基準車速記憶部64、および基準距離記憶部65を含む(図4参照)。経路記憶部61は、自律走行経路P(自律作業路P1および接続路P2)の情報を記憶する。領域記憶部62は、予め設定された作業領域Wの情報(具体的には、作業領域Wの位置および形状等に関する情報)と、残りの領域である非作業領域Nの情報とを記憶する。作業領域Wの情報は、例えば、自律走行の開始前にユーザが無線通信端末100を適宜操作することで設定することができる。変速基準位置記憶部63は、自律走行経路Pに設定された変速基準位置Rを記憶する。変速基準位置記憶部63に記憶される変速基準位置Rは、変速基準位置設定部54が変速基準位置Rを設定する度に設定される。基準車速記憶部64は、自律走行中のトラクタ1の基準車速(第1基準車速V1および第2基準車速V2)を記憶する。基準距離記憶部65は、変速基準位置Rに対する基準距離Dを記憶する。 Each piece of information necessary for autonomous traveling is stored in the storage unit 60. That is, the storage unit 60 includes a route storage unit 61, an area storage unit 62, a shift reference position storage unit 63, a reference vehicle speed storage unit 64, and a reference distance storage unit 65 (see FIG. 4). The route storage unit 61 stores information of the autonomous traveling route P (the autonomous work route P1 and the connection route P2). The area storage unit 62 stores information on a preset work area W (specifically, information on the position, shape, and the like of the work area W) and information on a non-work area N which is the remaining area. The information of the work area W can be set, for example, by the user appropriately operating the wireless communication terminal 100 before starting the autonomous traveling. The shift reference position storage unit 63 stores the shift reference position R set on the autonomous traveling route P. The shift reference position R stored in the shift reference position storage unit 63 is set every time the shift reference position setting unit 54 sets the shift reference position R. The reference vehicle speed storage unit 64 stores the reference vehicle speed (the first reference vehicle speed V1 and the second reference vehicle speed V2) of the tractor 1 during autonomous traveling. The reference distance storage unit 65 stores a reference distance D with respect to the shift reference position R.
 次に、変速基準位置Rの付近を走行中に、減速信号または減速解除信号が出力された場合のトラクタ1の車速の変化について具体的に説明する。 Next, a change in the vehicle speed of the tractor 1 when the deceleration signal or the deceleration release signal is output while traveling around the shift reference position R will be specifically described.
 まず、図8A~図8Dを用いて減速信号が出力された場合について説明する。図8Aは、自律作業路P1を等速(第1基準車速V1)で走行中に減速信号が出力されたときのトラクタ1の車速の変化を説明するためのグラフである。図8Bは、目標車速VTが第1基準車速V1から第2基準車速V2に切り換えられたことによってトラクタ1が減速している途中(減速中)に減速信号が出力されたときの、トラクタ1の車速の変化を説明するためのグラフである。図8Cは、接続路P2を等速(第2基準車速V2)で走行中に減速信号が出力されたときのトラクタ1の車速の変化を説明するためのグラフである。図8Dは、目標車速VTが第2基準車速V2から第1基準車速V1に切り換えられたことによってトラクタ1が加速している途中(加速中)に、減速信号が出力されたときのトラクタ1の車速の変化を説明するためのグラフである。 First, the case where the deceleration signal is output will be described with reference to FIGS. 8A to 8D. FIG. 8A is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration signal is output while traveling on the autonomous work path P1 at the same speed (first reference vehicle speed V1). FIG. 8B shows that when the target vehicle speed VT is switched from the first reference vehicle speed V1 to the second reference vehicle speed V2, the deceleration signal is output while the tractor 1 is decelerating (during deceleration). It is a graph for demonstrating the change of the vehicle speed. FIG. 8C is a graph for illustrating changes in the vehicle speed of the tractor 1 when the deceleration signal is output while traveling on the connection path P2 at a constant speed (second reference vehicle speed V2). FIG. 8D shows that when the target vehicle speed VT is switched from the second reference vehicle speed V2 to the first reference vehicle speed V1, the deceleration signal is output while the tractor 1 is accelerating (during acceleration). It is a graph for demonstrating the change of the vehicle speed.
 図8A~図8Dでは、特定制御信号が出力されないときのトラクタ1の車速の変化を実線で示している。図8A~図8Dでは、減速信号が出力された後のトラクタ1の車速の変化を一点鎖線または二点鎖線で示している。図8A~図8Dでは、減速信号が出力されたときの走行機体2の位置を下向きの矢印で示している。 In FIGS. 8A to 8D, changes in the vehicle speed of the tractor 1 when the specific control signal is not output are indicated by solid lines. In FIGS. 8A to 8D, changes in the vehicle speed of the tractor 1 after the deceleration signal is output are indicated by alternate long and short dash lines. In FIGS. 8A to 8D, the position of the traveling airframe 2 when the deceleration signal is output is indicated by a downward arrow.
 変速基準位置Rが第1変速基準位置R1であり、かつ、特定制御信号が減速信号であるときの基準距離Dを第1基準距離D1という(図8A参照)。変速基準位置Rが第2変速基準位置R2であり、かつ、特定制御信号が減速信号であるときの基準距離Dを第2基準距離D2という(図8C参照)。本実施形態では、第1基準車速V1は、第2基準車速V2よりも大きいため、第1基準距離D1は、第2基準距離D2よりも大きい値に設定されている。 The reference distance D when the shift reference position R is the first shift reference position R1 and the specific control signal is the deceleration signal is referred to as a first reference distance D1 (see FIG. 8A). The reference distance D when the shift reference position R is the second shift reference position R2 and the specific control signal is the deceleration signal is referred to as a second reference distance D2 (see FIG. 8C). In the present embodiment, since the first reference vehicle speed V1 is larger than the second reference vehicle speed V2, the first reference distance D1 is set to a value larger than the second reference distance D2.
 減速信号による車速制御が実行されていない状態で、走行機体2が自律作業路P1に位置すると、第1設定部52は、現在の目標車速VTを第1基準車速V1に設定する。このとき、変速基準位置設定部54は、走行機体2が次に通過する第1境界位置B1に変速基準位置R(第1変速基準位置R1)を設定する。 If the traveling body 2 is positioned on the autonomous work path P1 while the vehicle speed control based on the deceleration signal is not executed, the first setting unit 52 sets the current target vehicle speed VT to the first reference vehicle speed V1. At this time, the shift reference position setting unit 54 sets the shift reference position R (first shift reference position R1) at the first boundary position B1 where the traveling body 2 passes next.
 その後、図8Aの一点鎖線を参照して、走行機体2の現在の位置と第1変速基準位置R1との離間距離が、第1基準距離D1以上であるときに減速信号が出力された場合、第2設定部53は、自律作業路P1(第1区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた車速に設定される(VT=(1/2)V1)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が(1/2)V1に変化するまで、トラクタ1は減速される。 Thereafter, referring to the dashed-dotted line in FIG. 8A, when the decelerating signal is output when the separated distance between the current position of the traveling vehicle body 2 and the first shift reference position R1 is equal to or greater than the first reference distance D1: The second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V1). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is decelerated until the vehicle speed of the tractor 1 changes to (1/2) V1.
 目標車速VTが(1/2)V1に設定されると、変速基準位置設定部54は、変速基準位置Rを走行機体2の現在位置に設定する。そして、車速コントローラ32によって走行機体2の車速を(1/2)V1とする車速切換制御が開始された後、変速基準位置設定部54は、目標車速VTにかかわらず第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 When the target vehicle speed VT is set to (1/2) V1, the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 continues to the first boundary position B1 regardless of the target vehicle speed VT. The shift reference position R (first shift reference position R1) is set.
 走行機体2の車速は、車速が(1/2)V1に至ってから走行機体2が次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V1で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, the specific control signal is Until it is output, it is maintained at (1/2) V1.
 一方、図8Aの二点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が、第1基準距離D1未満であるときに減速信号が出力された場合には、第2設定部53は、走行機体2が現在位置する自律作業路P1(第1区間)の走行方向下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に所定の減速率(例えば、0.5)を乗じた車速に設定される(VT=(1/2)V2)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が(1/2)V2に変化するまで、トラクタ1は減速される。 On the other hand, referring to the two-dot chain line in FIG. 8A, deceleration is performed when the distance between the current position of traveling body 2 and shift reference position R (first shift reference position R1) is less than first reference distance D1. When the signal is output, the second setting unit 53 sets the reference vehicle speed of the connection path P2 (second section) on the downstream side in the traveling direction of the autonomous work path P1 (first section) in which the traveling machine body 2 is currently positioned The specific target vehicle speed VS is calculated based on the second reference vehicle speed V2). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V2) . The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is decelerated until the vehicle speed of the tractor 1 changes to (1/2) V2.
 目標車速VTが(1/2)V2に設定されると、変速基準位置設定部54は、変速基準位置Rを走行機体2の現在位置に設定する。そして、車速コントローラ32によって走行機体2の車速を(1/2)V2とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、現在の目標車速VT((1/2)V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。 When the target vehicle speed VT is set to (1/2) V2, the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2), and the second boundary position B2 at which the traveling vehicle body 2 passes next is calculated. The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2.
 トラクタ1の加速度が一定であるとすると、所定の距離L2は、目標車速VTが第2基準車速V2である場合よりも現在の目標車速VTが(1/2)V2である場合の方が小さくなる。そのため、現在の目標車速VTが(1/2)V2であるときの第2変速基準位置R2は、現在の目標車速VTが第2基準車速V2であるときの第2変速基準位置R2と比べて走行方向下流側(第2境界位置B2に近い位置)に設定される。 Assuming that the acceleration of the tractor 1 is constant, the predetermined distance L2 is smaller when the current target vehicle speed VT is (1/2) V2 than when the target vehicle speed VT is the second reference vehicle speed V2. Become. Therefore, the second shift reference position R2 when the current target vehicle speed VT is (1/2) V2 is compared to the second shift reference position R2 when the current target vehicle speed VT is the second reference vehicle speed V2. It is set to the traveling direction downstream side (position close to the second boundary position B2).
 走行機体2の車速は、車速が(1/2)V2に至ってから走行機体2が次の変速基準位置R(第2変速基準位置R2)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V2で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
 図8Bを参照して、走行機体2が変速基準位置R(第1変速基準位置R1)に達したことによってトラクタ1が減速中であるとき、変速基準位置Rは、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に設定されている(図8Bの実線参照)。そのため、図8Bの二点鎖線を参照して、走行機体2の位置と変速基準位置R(第2変速基準位置R2)との離間距離が第2基準距離D2以上であるときに減速信号が出力されると、トラクタ1が減速中であっても、第2設定部53は、接続路P2(第1区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた車速に設定される(VT=(1/2)V2)。 Referring to FIG. 8B, when tractor 1 is decelerating due to traveling body 2 reaching shift reference position R (first transmission reference position R1), shift reference position R causes traveling body 2 to pass next. A predetermined distance L2 is set upstream of the second boundary position B2 to be traveled (see the solid line in FIG. 8B). Therefore, referring to the two-dot chain line in FIG. 8B, the decelerating signal is output when the distance between the position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than second reference distance D2. Then, even if the tractor 1 is decelerating, the second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V2).
 目標車速VTが(1/2)V2に設定されると、変速基準位置設定部54は、変速基準位置Rを走行機体2の現在位置に設定する。そして、車速コントローラ32によって走行機体2の車速を(1/2)V1とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、図8Bの二点鎖線を参照して、変速基準位置設定部54は、走行機体2の現在の目標車速VT((1/2)V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。 When the target vehicle speed VT is set to (1/2) V2, the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, referring to the two-dot chain line in FIG. 8B, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2) of the traveling airframe 2; The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
 走行機体2の車速は、車速が(1/2)V2に至ってから走行機体2が次の変速基準位置R(第2変速基準位置R2)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V2で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
 図8Cを参照して、特定制御信号による車速制御が実行されていない状態で、走行機体2が接続路P2に位置するとき、目標車速VTは、第2基準車速V2に設定されている。このとき、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に変速基準位置Rが設定されている。 Referring to FIG. 8C, when traveling body 2 is positioned on connection path P2 in a state where vehicle speed control by the specific control signal is not performed, target vehicle speed VT is set to second reference vehicle speed V2. At this time, the shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
 その後、図8Cの一点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第2変速基準位置R2)との離間距離が、第2基準距離D2以上であるときに減速信号が出力された場合、第2設定部53は、走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた車速に設定される(VT=(1/2)V2)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が(1/2)V2になるまで、トラクタ1は減速される。 Thereafter, referring to the alternate long and short dash line in FIG. 8C, the deceleration signal is generated when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than second reference distance D2. Is output, the second setting unit 53 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) in which the traveling body 2 is currently positioned. As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V2). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is decelerated until the vehicle speed of the tractor 1 becomes (1/2) V2.
 目標車速VTが(1/2)V2に設定されると、変速基準位置設定部54は、変速基準位置Rを走行機体2の現在位置に設定する。そして、車速コントローラ32によって走行機体2の車速が(1/2)V2とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、走行機体2の現在の目標車速VT((1/2)V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する(図示せず)。 When the target vehicle speed VT is set to (1/2) V2, the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control in which the vehicle speed of the traveling vehicle body 2 is set to (1/2) V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT ((1/2) V2) of the traveling airframe 2, and the second boundary at which the traveling airframe 2 passes next The next shift reference position R (second shift reference position R2) is set upstream of the position B2 by a predetermined distance L2 in the traveling direction (not shown).
 走行機体2の車速は、車速が(1/2)V2に至ってから走行機体2が次の変速基準位置R(第2変速基準位置R2)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V2で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, the specific control signal is It is maintained at (1/2) V 2 until it is output.
 一方、図8Cの二点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第2変速基準位置R2)との離間距離が、第2基準距離D2未満であるときに減速信号が出力された場合には、第2設定部53は、走行機体2が現在位置する接続路P2の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に所定の減速率(例えば、0.5)を乗じた車速に設定される(VT=(1/2)V1)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が(1/2)V1に変化するまで、トラクタ1が加速される。    On the other hand, referring to the alternate long and two short dashes line in FIG. 8C, deceleration is performed when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is less than second reference distance D2. When the signal is output, the second setting unit 53 sets the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (second section) downstream in the traveling direction of the connection path P2 where the traveling body 2 is currently located. The specific target vehicle speed VS is calculated based on. As a result of calculating the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V1) . The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is accelerated until the vehicle speed of the tractor 1 changes to (1/2) V1.
 図8Cの二点鎖線で示す車速制御では、第2設定部53は、減速信号が出力された直後に目標車速VTを(1/2)V1に設定した。しかし、この車速制御とは異なり、走行機体2が変速基準位置R(第2変速基準位置R2)に達するまでは目標車速VTが設定されなくてもよい。例えば、走行機体2が変速基準位置Rに達したときに、第2設定部53が目標車速を(1/2)V1に設定してもよい。 In the vehicle speed control indicated by the two-dot chain line in FIG. 8C, the second setting unit 53 sets the target vehicle speed VT to (1/2) V1 immediately after the deceleration signal is output. However, unlike the vehicle speed control, the target vehicle speed VT may not be set until the traveling body 2 reaches the shift reference position R (second shift reference position R2). For example, when the traveling body 2 reaches the shift reference position R, the second setting unit 53 may set the target vehicle speed to (1/2) V1.
 目標車速VTが(1/2)V1に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を(1/2)V1とする車速切換制御が開始された後、変速基準位置設定部54は、走行機体2が次に通過する第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 When the target vehicle speed VT is set to (1/2) V1, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle 2 to (1/2) V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 determines the first boundary position B1 where the traveling vehicle 2 passes next. Next shift reference position R (first shift reference position R1) is set.
 走行機体2の車速は、車速が(1/2)V1に至ってから次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V1で維持される。 The vehicle speed of the traveling vehicle 2 is between (1) the vehicle speed reaching (1/2) V1 and the next shift reference position R (first shift reference position R1), or until a specific control signal is output next Is maintained at (1/2) V1.
 図8Dを参照して、走行機体2が変速基準位置R(第2変速基準位置R2)に達したことによってトラクタ1が加速中であるとき、変速基準位置Rは、走行機体2が次に通過する第1境界位置B1に設定されている。そのため、走行機体2の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第1基準距離D1以上であるときに減速信号が出力されると、トラクタ1が加速中であっても、図8Dに二点鎖線で示すように、第2設定部53は、走行機体2が現在位置する接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた車速に設定される(VT=(1/2)V1)。 Referring to FIG. 8D, when tractor 1 is accelerating due to traveling body 2 reaching shift reference position R (the second shift reference position R2), transmission reference position R causes traveling body 2 to pass next. Is set to a first boundary position B1. Therefore, when the deceleration signal is output when the distance between the position of the traveling vehicle body 2 and the shift reference position R (first shift reference position R1) is equal to or greater than the first reference distance D1, the tractor 1 is accelerating. However, as indicated by a two-dot chain line in FIG. 8D, the second setting unit 53 is an autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section) where the traveling body 2 is currently positioned. The specific target vehicle speed VS is calculated based on the reference vehicle speed (first reference vehicle speed V1). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to a vehicle speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (VT = (1/2) V1).
 目標車速VTが(1/2)V1に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を(1/2)V1とする車速切換制御が開始された後、図8Dに二点鎖線で示すように、変速基準位置設定部54は、第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 When the target vehicle speed VT is set to (1/2) V1, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control to set the vehicle speed of the traveling vehicle body 2 to (1/2) V1 is started by the vehicle speed controller 32, as shown by a two-dot chain line in FIG. 8D, the shift reference position setting unit 54 The next shift reference position R (first shift reference position R1) is set at the boundary position B1.
 走行機体2の車速は、車速が(1/2)V1に至ってから走行機体2が次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、(1/2)V1で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches (1/2) V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, the specific control signal is Until it is output, it is maintained at (1/2) V1.
 次に、図9A~図9Dを用いて、減速解除信号が出力された場合について説明する。図9Aは、自律作業路P1を等速((1/2)V1)で走行中に減速解除信号が出力されたときのトラクタ1の車速の変化を説明するためのグラフである。図9Bは、目標車速VTが(1/2)V1から(1/2)V2に切り換えられたことによってトラクタ1が減速されている途中(減速中)に減速解除信号が出力されたときの、トラクタ1の車速の変化を説明するためのグラフである。図9Cは、接続路P2を等速((1/2)V2)で走行中に減速解除信号が出力されたときのトラクタ1の車速の変化を説明するためのグラフである。図9Dは、目標車速VTが(1/2)V2から(1/2)V1に切り換えられたことによってトラクタ1が加速されている途中(加速中)に減速解除信号が出力されたときの、走行機体2の車速の変化を説明するためのグラフである。 Next, the case where the deceleration release signal is output will be described with reference to FIGS. 9A to 9D. FIG. 9A is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration release signal is output while traveling on the autonomous work path P1 at a constant speed ((1/2) V1). FIG. 9B shows that when the target vehicle speed VT is switched from (1/2) V1 to (1/2) V2, the deceleration cancel signal is output while the tractor 1 is being decelerated (during deceleration), It is a graph for demonstrating the change of the vehicle speed of the tractor 1. FIG. FIG. 9C is a graph for illustrating a change in the vehicle speed of the tractor 1 when the deceleration release signal is output while traveling on the connection path P2 at a constant speed ((1/2) V2). FIG. 9D shows that when the target vehicle speed VT is switched from (1/2) V2 to (1/2) V1, the deceleration release signal is output while the tractor 1 is being accelerated (during acceleration), It is a graph for demonstrating the change of the vehicle speed of the traveling body 2. FIG.
 図9A~図9Dでは、減速信号が出力されたことによって減速された状態で変速基準位置R付近を走行中のトラクタ1の車速の変化を実線で示している。減速解除信号が出力されるまでは、自律作業路P1における目標車速VTは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた車速に設定されている(VT=(1/2)V1)。減速解除信号が出力されるまでは、接続路P2における目標車速VTは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた車速に設定されている(VT=(1/2)V2)。図9A~図9Dでは、減速解除信号が出力された後のトラクタ1の車速の変化を一点鎖線または二点鎖線で示している。図9A~図9Dでは、減速信号が出力されたときの走行機体2の位置を下向きの矢印で示している。 In FIG. 9A to FIG. 9D, the change in vehicle speed of the tractor 1 traveling in the vicinity of the shift reference position R in a state of being decelerated by the output of the decelerating signal is indicated by a solid line. The target vehicle speed VT on the autonomous work path P1 is set to the vehicle speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) until the deceleration cancellation signal is output (VT = (1 / 2) V1). The target vehicle speed VT in the connection path P2 is set to the vehicle speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) until the deceleration cancellation signal is output (VT = (1/1 2) V2). In FIGS. 9A to 9D, changes in the vehicle speed of the tractor 1 after the deceleration release signal is output are indicated by alternate long and short dash lines. In FIG. 9A to FIG. 9D, the position of the traveling vehicle 2 when the deceleration signal is output is indicated by a downward arrow.
 変速基準位置Rが第1変速基準位置R1であり、かつ、特定制御信号が減速解除信号であるときの基準距離Dを第3基準距離D3という(図9A参照)。変速基準位置Rが第2変速基準位置R2であり、かつ、特定制御信号が減速解除信号であるときの基準距離Dを第4基準距離D4という(図9C参照)。第3基準距離D3は、第1基準距離D1と異なる距離に設定されているが、第1基準距離D1と同じ距離であってもよい。第4基準距離D4は、第2基準距離D2と異なる距離に設定されているが、第2基準距離D2と同じ距離であってもよい。 The reference distance D when the shift reference position R is the first shift reference position R1 and the specific control signal is the deceleration cancellation signal is referred to as a third reference distance D3 (see FIG. 9A). The reference distance D when the shift reference position R is the second shift reference position R2 and the specific control signal is the deceleration release signal is referred to as a fourth reference distance D4 (see FIG. 9C). The third reference distance D3 is set to a distance different from the first reference distance D1, but may be the same distance as the first reference distance D1. The fourth reference distance D4 is set to a distance different from the second reference distance D2, but may be the same distance as the second reference distance D2.
 減速信号による車速制御が実行されている状態で、走行機体2が自律作業路P1に位置するとき、第2設定部53は、現在の目標車速VTを(1/2)V1に設定している。このとき、変速基準位置設定部54は、現在の目標車速VT((1/2)V1)に基づいて第1変速基準位置R1を設定している。 The second setting unit 53 sets the current target vehicle speed VT to (1/2) V1 when the traveling airframe 2 is positioned on the autonomous work path P1 while the vehicle speed control based on the deceleration signal is being executed. . At this time, the shift reference position setting unit 54 sets the first shift reference position R1 based on the current target vehicle speed VT ((1/2) V1).
 その後、図9Aの一点鎖線を参照して、走行機体2の現在の位置と第1変速基準位置R1との離間距離が、第3基準距離D3以上であるときに減速解除信号が出力された場合、第1設定部52は、自律作業路P1(第1区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に設定される(VT=V1)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が第1基準車速V1になるまで、トラクタ1は加速される。 Thereafter, with reference to the one-dot chain line in FIG. 9A, when the separated distance between the current position of the traveling vehicle body 2 and the first shift reference position R1 is equal to or greater than the third reference distance D3, the deceleration release signal is output. The first setting unit 52 calculates the specific target vehicle speed VS based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the first reference vehicle speed V1 (VT = V1). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the first reference vehicle speed V1.
 目標車速VTが第1基準車速V1に設定されると、変速基準位置設定部54は、変速基準位置Rを走行機体2の現在位置に設定する。そして、車速コントローラ32によって走行機体2の車速を第1基準車速V1とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置R(第1変速基準位置R1)を第1境界位置B1に設定する。 When the target vehicle speed VT is set to the first reference vehicle speed V1, the shift reference position setting unit 54 sets the shift reference position R to the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle speed V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 performs the next shift reference position R (first shift reference position R1). Is set to the first boundary position B1.
 走行機体2の車速は、車速が第1基準車速V1に至ってから走行機体2が次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第1基準車速V1で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V1 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, a specific control signal is output The first reference vehicle speed V1 is maintained until it is reset.
 一方、図9Aの二点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第3基準距離D3未満であるときに減速解除信号が出力された場合には、第1設定部52は、走行機体2が現在位置する自律作業路P1(第1区間)の下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に設定される(VT=V2)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が第2基準車速V2になるまで、トラクタ1は減速される。 On the other hand, referring to the two-dot chain line in FIG. 9A, the deceleration is canceled when the distance between the current position of traveling body 2 and shift reference position R (first shift reference position R1) is less than third reference distance D3. When the signal is output, the first setting unit 52 sets the reference vehicle speed (second section) of the connection path P2 (second section) on the downstream side of the autonomous work path P1 (first section) in which the traveling machine body 2 is currently positioned. The specific target vehicle speed VS is calculated based on the reference vehicle speed V2). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the second reference vehicle speed V2 (VT = V2). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is decelerated until the vehicle speed of the tractor 1 becomes the second reference vehicle speed V2.
 図9Aの二点鎖線で示す車速制御では、第1設定部52は、減速解除信号が出力された直後に目標車速VTを第2基準車速V2に設定した。しかし、この車速制御とは異なり、減速解除信号が出力されたとしても、走行機体2が変速基準位置R(第1変速基準位置R1)に達するまでは目標車速VTが設定されなくてもよい。例えば、走行機体2が変速基準位置Rに達したときに、第1設定部52が目標車速を第2基準車速V2に設定してもよい。 In the vehicle speed control indicated by the two-dot chain line in FIG. 9A, the first setting unit 52 sets the target vehicle speed VT to the second reference vehicle speed V2 immediately after the deceleration cancellation signal is output. However, unlike the vehicle speed control, even if the deceleration cancellation signal is output, the target vehicle speed VT may not be set until the traveling vehicle body 2 reaches the shift reference position R (first shift reference position R1). For example, when the traveling airframe 2 reaches the shift reference position R, the first setting unit 52 may set the target vehicle speed to the second reference vehicle speed V2.
 目標車速VTが第2基準車速V2に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を第2基準車速V2とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、現在の目標車速VT(第2基準車速V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。 When the target vehicle speed VT is set to the second reference vehicle speed V2, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (the second reference vehicle speed V2), and is more predetermined than the second boundary position B2 at which the traveling vehicle body 2 passes next. The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by the distance L2.
 トラクタ1の加速度が一定であるとすると、所定の距離L2は、現在の目標車速VTが第2基準車速V2である場合よりも現在の目標車速VTが(1/2)V2である場合の方が小さくなる。そのため、第2変速基準位置R2は、現在の目標車速VTが(1/2)V2であるときと比べて走行方向上流側(第2境界位置B2から遠い位置)に設定される。    Assuming that the acceleration of the tractor 1 is constant, the predetermined distance L2 is smaller than the case where the current target vehicle speed VT is the second reference vehicle speed V2 when the current target vehicle speed VT is (1/2) V2. Becomes smaller. Therefore, the second shift reference position R2 is set on the upstream side in the traveling direction (a position farther from the second boundary position B2) than when the current target vehicle speed VT is (1/2) V2.
 その後、目標車速VTは、走行機体2が変速基準位置Rに達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第2基準車速V2で維持される。 After that, the target vehicle speed VT is maintained at the second reference vehicle speed V2 until the traveling vehicle body 2 reaches the shift reference position R or until the specific control signal is output next.
 図9Bを参照して、走行機体2が変速基準位置R(第1変速基準位置R1)に達したことによってトラクタ1が減速中であるとき、変速基準位置Rは、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に設定されている。そのため、トラクタ1が減速中であっても、走行機体2の位置と変速基準位置R(第2変速基準位置R2)との離間距離が第4基準距離D4以上であるときには、図9Bの二点鎖線に示すように、第1設定部52は、接続路P2(第1区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に設定される(VT=V2)。 Referring to FIG. 9B, when tractor 1 is decelerating due to traveling body 2 reaching shift reference position R (first transmission reference position R1), shift reference position R causes traveling body 2 to pass next. A predetermined distance L2 is set upstream of the second boundary position B2 in the traveling direction. Therefore, even when the tractor 1 is decelerating, when the separation distance between the position of the traveling body 2 and the shift reference position R (second shift reference position R2) is equal to or greater than the fourth reference distance D4, two points in FIG. As indicated by the dashed line, the first setting unit 52 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the second reference vehicle speed V2 (VT = V2).
 目標車速VTが第2基準車速V2に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を第2基準車速V2とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、図9Bの二点鎖線に示すように、変速基準位置設定部54は、走行機体2の現在の目標車速VT(第2基準車速V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。 When the target vehicle speed VT is set to the second reference vehicle speed V2, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, as shown by a two-dot chain line in FIG. 9B, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (second reference vehicle speed V2) of the traveling airframe 2 and travels. The next shift reference position R (second shift reference position R2) is set upstream of the second boundary position B2 where the machine body 2 passes next by a predetermined distance L2 in the traveling direction.
 走行機体2の車速は、車速が第2基準車速V2に至ってから走行機体2が次の変速基準位置R(第2変速基準位置R2)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第2基準車速V2で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the second reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, a specific control signal is output The second reference vehicle speed V2 is maintained until it is reset.
 図9Cを参照して、減速信号により車速が制御されている状態で走行機体2が接続路P2に位置するとき、目標車速VTは、(1/2)V2に設定されている。このとき、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に変速基準位置Rが設定されている。 Referring to FIG. 9C, when traveling body 2 is positioned on connection path P2 in a state where the vehicle speed is controlled by the deceleration signal, target vehicle speed VT is set to (1/2) V2. At this time, the shift reference position R is set on the upstream side in the traveling direction by a predetermined distance L2 from the second boundary position B2 where the traveling body 2 passes next.
 その後、図9Cの一点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第2変速基準位置R2)との離間距離が、第4基準距離D4以上であるときに減速解除信号が出力された場合、第1設定部52は、走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第2基準車速V2に設定される(VT=V2)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が第2基準車速V2になるまで、トラクタ1は加速される。 Thereafter, referring to the alternate long and short dash line in FIG. 9C, the deceleration is canceled when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is equal to or greater than fourth reference distance D4. When the signal is output, the first setting unit 52 calculates the specific target vehicle speed VS based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) in which the traveling body 2 is currently positioned. As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the second reference vehicle speed V2 (VT = V2). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the second reference vehicle speed V2.
 目標車速VTが第2基準車速V2に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速が第2基準車速V2とする車速切換制御が開始された後、変速基準位置設定部54は、次の変速基準位置Rを設定する。詳しくは、変速基準位置設定部54は、走行機体2の現在の目標車速VT(第2基準車速V2)に基づいて所定の距離L2を算出し、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に次の変速基準位置R(第2変速基準位置R2)を設定する(図示せず)。 When the target vehicle speed VT is set to the second reference vehicle speed V2, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the second reference vehicle speed V2 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the next shift reference position R. Specifically, the shift reference position setting unit 54 calculates a predetermined distance L2 based on the current target vehicle speed VT (second reference vehicle speed V2) of the traveling airframe 2, and the second boundary position where the traveling airframe 2 passes next The next shift reference position R (second shift reference position R2) is set on the upstream side in the traveling direction by a predetermined distance L2 from B2 (not shown).
 走行機体2の車速は、車速が第2基準車速V2に至ってから走行機体2が次の変速基準位置R(第2変速基準位置R2)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第2基準車速V2で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the second reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (second shift reference position R2), or next, a specific control signal is output The second reference vehicle speed V2 is maintained until it is reset.
 一方、図9Cの二点鎖線を参照して、走行機体2の現在の位置と変速基準位置R(第2変速基準位置R2)との離間距離が、第4基準距離D4未満であるときに減速解除信号が出力された場合には、第1設定部52は、走行機体2が現在位置する接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に設定される(VT=V1)。この車速設定に応じて、車速コントローラ32が変速装置42を制御する。これにより、トラクタ1の車速が第1基準車速V1になるまで、トラクタ1は加速される。 On the other hand, referring to the alternate long and two short dashes line in FIG. 9C, deceleration is performed when the distance between the current position of traveling body 2 and shift reference position R (second shift reference position R2) is less than fourth reference distance D4. When the release signal is output, the first setting unit 52 sets the reference vehicle speed of the autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section) where the traveling machine body 2 is currently located. The specific target vehicle speed VS is calculated based on (first reference vehicle speed V1). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the first reference vehicle speed V1 (VT = V1). The vehicle speed controller 32 controls the transmission 42 according to the vehicle speed setting. Thus, the tractor 1 is accelerated until the vehicle speed of the tractor 1 becomes the first reference vehicle speed V1.
 目標車速VTが第1基準車速V1に設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を第1基準車速V1とする車速切換制御が開始された後、変速基準位置設定部54は、次に走行機体2が通過する第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 When the target vehicle speed VT is set to the first reference vehicle speed V1, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle velocity V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 sets the first boundary position B1 where the traveling vehicle 2 passes next. The next shift reference position R (first shift reference position R1) is set.
 走行機体2の車速は、車速が第1基準車速V1に至ってから次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第1基準車速V1で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V1 until when the next shift reference position R (first shift reference position R1) is reached, or until the specific control signal is output next In the meantime, the vehicle is maintained at the first reference vehicle speed V1.
 図9Dを参照して、走行機体2が変速基準位置R(第2変速基準位置R2)に達したことによってトラクタ1が加速中であるとき、変速基準位置Rは、走行機体2が次に通過する第1境界位置B1に設定されている。そのため、トラクタ1が加速中であっても、走行機体2の位置と変速基準位置(第1変速基準位置R1)との離間距離が第3基準距離D3以上であるときに減速解除信号が出力されると、図9Dに二点鎖線で示すように、第1設定部52は、当該接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)に基づいて特定目標車速VSを演算する。特定目標車速VSが演算された結果、目標車速VTは、第1基準車速V1に設定される(VT=V1)。 Referring to FIG. 9D, when tractor 1 is accelerating due to traveling body 2 reaching shift reference position R (the second shift reference position R2), transmission reference position R causes traveling body 2 to pass next. Is set to a first boundary position B1. Therefore, even when the tractor 1 is accelerating, the deceleration cancellation signal is output when the distance between the position of the traveling vehicle body 2 and the shift reference position (first shift reference position R1) is equal to or greater than the third reference distance D3. Then, as indicated by a two-dot chain line in FIG. 9D, the first setting unit 52 sets the reference vehicle speed of the autonomous work path P1 (second section) on the downstream side in the traveling direction of the connection path P2 (first section). The specific target vehicle speed VS is calculated based on 1 reference vehicle speed V1). As a result of calculation of the specific target vehicle speed VS, the target vehicle speed VT is set to the first reference vehicle speed V1 (VT = V1).
 目標車速VTが第1基準車速V1設定されると、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定する。そして、車速コントローラ32によって走行機体2の車速を第1基準車速V1とする車速切換制御が開始された後、変速基準位置設定部54は、第1境界位置B1に変速基準位置R(第1変速基準位置R1)を設定する。 When the target vehicle speed VT is set to the first reference vehicle speed V1, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2. Then, after the vehicle speed switching control for setting the vehicle speed of the traveling vehicle 2 to the first reference vehicle speed V1 is started by the vehicle speed controller 32, the shift reference position setting unit 54 shifts the first boundary position B1 to the shift reference position R (first shift Set the reference position R1).
 走行機体2の車速は、車速が第1基準車速V2に至ってから走行機体2が次の変速基準位置R(第1変速基準位置R1)に達するまでの間、あるいは、次に特定制御信号が出力されるまでの間、第1基準車速V1で維持される。 The vehicle speed of the traveling vehicle 2 is from when the vehicle speed reaches the first reference vehicle speed V2 until the traveling vehicle 2 reaches the next shift reference position R (first shift reference position R1), or next, a specific control signal is output The first reference vehicle speed V1 is maintained until it is reset.
 以上の車速制御処理は、図10~図13に示すようなフローチャートに従う特定目標車速VSの演算、目標車速VTの設定、および変速基準位置Rの設定が行われることによって実現される。 The above-described vehicle speed control processing is realized by performing the calculation of the specific target vehicle speed VS, the setting of the target vehicle speed VT, and the setting of the shift reference position R according to the flowcharts shown in FIGS.
 図10は、自律走行システムによる車速制御処理の一例を説明するためのフローチャートである。図11は、図10に示す自律走行システムによる車速制御処理において、減速信号に基づいて車速が制御されているときに行われる処理を説明するためのフローチャートである。図12は、減速信号に基づく特定目標車速VSの演算処理の一例を説明するためのフローチャートである。図13は、減速解除信号に基づく特定目標車速VSの演算処理の一例を説明するためのフローチャートである。 FIG. 10 is a flowchart for explaining an example of a vehicle speed control process by the autonomous traveling system. FIG. 11 is a flow chart for explaining the process performed when the vehicle speed is controlled based on the deceleration signal in the vehicle speed control process by the autonomous traveling system shown in FIG. FIG. 12 is a flowchart for explaining an example of the calculation process of the specific target vehicle speed VS based on the deceleration signal. FIG. 13 is a flow chart for explaining an example of the calculation processing of the specific target vehicle speed VS based on the deceleration release signal.
 図10を参照して、自律走行が開始されると、まず、第1設定部52は、目標車速VTを第1基準車速V1または第2基準車速V2に設定する(ステップS1)。詳しくは、走行機体2が自律作業路P1に位置するときには、目標車速VTは、第1基準車速V1に設定される。走行機体2が接続路P2に位置するときには、目標車速VTは、第2基準車速V2に設定される。そして、目標車速VTが設定されると(車速コントローラ32による目標車速VTに対する車速切換制御が開始されると)、変速基準位置設定部54は、変速基準位置Rを設定する(ステップS2)。詳しくは、走行機体2が自律作業路P1に位置するときには、走行機体2が次に通過する第1境界位置B1に変速基準位置R(第1変速基準位置R1)が設定される。走行機体2が接続路P2に位置するときには、走行機体2が次に通過する第2境界位置B2よりも所定の距離L2だけ走行方向上流側に変速基準位置R(第2変速基準位置R2)が設定される。 Referring to FIG. 10, when the autonomous traveling is started, first, first setting unit 52 sets target vehicle speed VT to first reference vehicle speed V1 or second reference vehicle speed V2 (step S1). Specifically, when traveling machine body 2 is positioned on autonomous work path P1, target vehicle speed VT is set to first reference vehicle speed V1. When traveling body 2 is positioned on connection path P2, target vehicle speed VT is set to second reference vehicle speed V2. When the target vehicle speed VT is set (when the vehicle speed switching control to the target vehicle speed VT by the vehicle speed controller 32 is started), the shift reference position setting unit 54 sets the shift reference position R (step S2). Specifically, when the traveling machine body 2 is positioned on the autonomous work path P1, the shift reference position R (first shift reference position R1) is set at a first boundary position B1 where the traveling body 2 passes next. When traveling body 2 is positioned on connection path P2, shift reference position R (second shift reference position R2) is on the traveling direction upstream side by a predetermined distance L2 from second boundary position B2 where traveling body 2 passes next. It is set.
 そして、自律走行制御部50は、減速信号に基づく車速制御中か否かを判別する(ステップS3)。減速信号に基づく車速制御中とは、減速信号が出力され、減速信号に基づく目標車速VTが設定されているときのことである。すなわち、減速信号に基づく車速制御中とは、減速信号が出力されたが、その後、減速解除信号または停止信号が未だ出力されていないときのことである。 Then, the autonomous traveling control unit 50 determines whether or not the vehicle speed control is being performed based on the deceleration signal (step S3). During vehicle speed control based on the deceleration signal is when the deceleration signal is output and the target vehicle speed VT based on the deceleration signal is set. That is, during the vehicle speed control based on the deceleration signal, the deceleration signal is output, but after that, the deceleration release signal or the stop signal is not yet output.
 減速信号に基づく車速制御中でない場合(ステップS3:NO)、減速信号が出力されたか否か(ステップS4)、停止信号が出力されたか否か(ステップS5)、および、走行機体2の現在の位置が変速基準位置Rであるか否か(ステップS6)が監視される。減速信号に基づく車速制御が実行されている場合(ステップS3:YES)、図11を参照して、減速解除信号が出力されたか否か(ステップS7)、停止信号が出力されたか否か(ステップS8)および、走行機体2の現在の位置が変速基準位置Rであるか否か(ステップS9)が監視される。 If the vehicle speed control based on the deceleration signal is not in progress (step S3: NO), whether the deceleration signal is output (step S4), whether the stop signal is output (step S5), and the current speed of the traveling vehicle 2 It is monitored whether the position is the shift reference position R (step S6). When the vehicle speed control based on the deceleration signal is being executed (step S3: YES), referring to FIG. 11, whether or not the deceleration cancellation signal is output (step S7), the stop signal is output (step S7) S8) and whether or not the current position of the traveling body 2 is the shift reference position R (step S9) is monitored.
 減速信号に基づく車速制御中でない場合(ステップS3:NO)に行われる監視中に、走行機体2の現在の位置が変速基準位置Rに達した場合(ステップS6:YES)、第1設定部52は、第1基準車速V1または第2基準車速V2に現在の目標車速VTを設定する(ステップS10)。詳しくは、変速基準位置Rが第1変速基準位置R1であるときは、第1設定部52は、目標車速VTを第1基準車速V1から第2基準車速V2に切り換える。また、変速基準位置Rが第2変速基準位置R2であるときは、第1設定部52は、目標車速VTを第2基準車速V2から第1基準車速V1に切り換える。 When the current position of the traveling vehicle body 2 reaches the shift reference position R during monitoring performed when the vehicle speed control based on the deceleration signal is not being performed (step S3: NO), the first setting unit 52 The present target vehicle speed VT is set to the first reference vehicle speed V1 or the second reference vehicle speed V2 (step S10). Specifically, when the shift reference position R is the first shift reference position R1, the first setting unit 52 switches the target vehicle speed VT from the first reference vehicle speed V1 to the second reference vehicle speed V2. When the shift reference position R is the second shift reference position R2, the first setting unit 52 switches the target vehicle speed VT from the second reference vehicle speed V2 to the first reference vehicle speed V1.
 そして、変速基準位置設定部54は、変速基準位置Rを設定する(ステップS11)。詳しくは、第2境界位置B2よりも所定の距離L2だけ走行方向上流側の位置、または、第1境界位置B1に変速基準位置Rが設定される(図7の説明を参照)。その後、ステップS3に戻る。 Then, the shift reference position setting unit 54 sets the shift reference position R (step S11). Specifically, the shift reference position R is set at a position upstream of the second boundary position B2 by a predetermined distance L2 or in the first boundary position B1 (see the description of FIG. 7). Thereafter, the process returns to step S3.
 減速信号に基づく車速制御中でない場合(ステップS3:NO)に行われる監視中に停止信号が出力された場合(ステップS5:YES)、トラクタ1の走行が停止される(ステップS12)。停止信号が出力されてから停止解除信号が出力されるまでの間、トラクタ1の自律走行が停止される(ステップS13:NO)。停止解除信号が出力されると(ステップS13:YES)、目標車速VTが基準車速V1,V2にされ(ステップS1)、トラクタ1の走行が再開される。トラクタ1が自律走行経路Pの作業終了位置Eに達することによっても停止信号が出力されて、トラクタ1の自律走行が終了する。 When the stop signal is output during monitoring performed when the vehicle speed control based on the deceleration signal is not being performed (step S3: NO) (step S5: YES), the traveling of the tractor 1 is stopped (step S12). Between the output of the stop signal and the output of the stop release signal, autonomous traveling of the tractor 1 is stopped (step S13: NO). When the stop release signal is output (step S13: YES), the target vehicle speed VT is set to the reference vehicle speeds V1 and V2 (step S1), and the traveling of the tractor 1 is resumed. The stop signal is also output when the tractor 1 reaches the work end position E of the autonomous traveling route P, and the autonomous traveling of the tractor 1 is ended.
 減速信号に基づく車速制御中でない場合(ステップS3:NO)に行われる監視中に減速信号が出力された場合(ステップS4:YES)、自律走行制御部50によって、減速信号に基づく特定目標車速VSの演算処理が実行される(ステップS14)。特定目標車速VSの演算処理の後、目標車速VTが、特定目標車速VSに設定される(ステップS15)。そして、走行機体2の現在位置に変速基準位置Rが設定され、車速コントローラ32によって走行機体2の車速を特定目標車速VSとする車速切換制御が開始される。走行機体2の車速を特定目標車速VSとする車速切換制御が開始されると、次の変速基準位置Rが設定される(ステップS16)(図8A~図8Dの説明を参照)。その後、ステップS3に戻る。 When the deceleration signal is output during monitoring performed when the vehicle speed control based on the deceleration signal is not being performed (step S3: NO) (step S4: YES), the autonomous traveling control unit 50 determines the specific target vehicle speed VS based on the deceleration signal. The arithmetic processing of is executed (step S14). After the calculation process of the specific target vehicle speed VS, the target vehicle speed VT is set to the specific target vehicle speed VS (step S15). Then, the shift reference position R is set at the current position of the traveling body 2, and the vehicle speed controller 32 starts the vehicle speed switching control to set the vehicle speed of the traveling body 2 to the specific target vehicle speed VS. When the vehicle speed switching control in which the vehicle speed of the traveling vehicle 2 is set to the specific target vehicle speed VS is started, the next shift reference position R is set (step S16) (see the description of FIGS. 8A to 8D). Thereafter, the process returns to step S3.
 図12を参照して、減速信号に基づく特定目標車速VSの演算では、まず、自律走行制御部50が、現在の変速基準位置Rの種類を判別する(ステップS30)。現在の変速基準位置Rが第1変速基準位置R1である場合(ステップS30:第1変速基準位置R1)、走行機体2の位置と変速基準位置Rとの離間距離が、第1基準距離D1未満であるか否かが判別される(ステップS31)。離間距離が第1基準距離D1以上である場合(ステップS31:NO)、特定目標車速VSは、第1基準車速V1(第1区間の基準車速V)に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS32)。離間距離が第1基準距離D1未満である場合(ステップS31:YES)、特定目標車速VSは、第2基準車速V2(第2区間の基準車速V)に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS33)。これにより、減速信号に基づく特定目標車速VSの演算処理が終了する。 Referring to FIG. 12, in the calculation of the specific target vehicle speed VS based on the deceleration signal, first, the autonomous traveling control unit 50 determines the type of the current shift reference position R (step S30). When the current shift reference position R is the first shift reference position R1 (step S30: first shift reference position R1), the separation distance between the position of the traveling body 2 and the shift reference position R is less than the first reference distance D1. Is determined (step S31). When the separation distance is equal to or more than the first reference distance D1 (step S31: NO), the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the first reference vehicle speed V1 (reference vehicle speed V of the first section). To the speed multiplied by (step S32). When the separation distance is less than the first reference distance D1 (step S31: YES), the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the second reference vehicle speed V2 (the reference vehicle speed V of the second section). To the speed multiplied by (step S33). Thus, the calculation processing of the specific target vehicle speed VS based on the deceleration signal is completed.
 現在の変速基準位置Rが第2変速基準位置R2である場合(ステップS30:第2変速基準位置R2)、走行機体2の位置と、変速基準位置Rとの離間距離が、第2基準距離D2未満であるか否かが判別される(ステップS34)。離間距離が第2基準距離D2以上である場合(ステップS34:NO)、特定目標車速VSは、第2基準車速V2(第1区間の基準車速V)に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS35)。離間距離が第2基準距離D2未満である場合(ステップS34:YES)、特定目標車速VSは、第1基準車速V1(第2区間の基準車速V)に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS36)。これにより、減速信号に基づく特定目標車速VSの演算処理が終了する。 When the current shift reference position R is the second shift reference position R2 (step S30: second shift reference position R2), the separation distance between the position of the traveling body 2 and the shift reference position R is the second reference distance D2. It is determined whether it is less than (step S34). When the separation distance is equal to or greater than the second reference distance D2 (step S34: NO), the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the second reference vehicle speed V2 (reference vehicle speed V of the first section). To the speed multiplied by (step S35). When the separation distance is less than the second reference distance D2 (step S34: YES), the specific target vehicle speed VS is a predetermined deceleration rate (for example, 0.5) at the first reference vehicle speed V1 (the reference vehicle speed V in the second section). To the speed multiplied by (step S36). Thus, the calculation processing of the specific target vehicle speed VS based on the deceleration signal is completed.
 図10および図11を参照して、減速信号に基づく車速制御中である場合(ステップS3:YES)に行われる監視中に、走行機体2の現在の位置が変速基準位置Rに達した場合(ステップS9:YES)、第2設定部53は、第1基準車速V1に所定の減速率を乗じた速度、または、第2基準車速V2に所定の減速率を乗じた速度に現在の目標車速VTを設定する(ステップS17)。詳しくは、第1変速基準位置R1が設定されているときは、第1基準車速V1に減速率を乗じた速度から第2基準車速V2に減速率を乗じた速度に目標車速VTを切り換える。また、第2変速基準位置R2が設定されているときは、第2基準車速V2に減速率を乗じた速度から第1基準車速V1に減速率を乗じた速度に目標車速VTを切り換える。 Referring to FIGS. 10 and 11, when the vehicle speed control based on the deceleration signal is being performed (YES in step S3), the current position of traveling body 2 reaches shift reference position R during monitoring (YES in step S3) Step S9: YES), the second setting unit 53 sets the current target vehicle speed VT to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate, or to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate Are set (step S17). Specifically, when the first shift reference position R1 is set, the target vehicle speed VT is switched to a speed obtained by multiplying the second reference vehicle speed V2 by the deceleration rate from a speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate. When the second shift reference position R2 is set, the target vehicle speed VT is switched to a speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate from a speed obtained by multiplying the second reference vehicle speed V2 by the deceleration rate.
 そして、変速基準位置設定部54は、変速基準位置Rを設定する(ステップS18)。詳しくは、第2境界位置B2よりも所定の距離L2だけ走行方向上流側の位置、または、第1境界位置B1に変速基準位置Rが設定される。その後、ステップS3に戻る。 Then, the shift reference position setting unit 54 sets the shift reference position R (step S18). Specifically, the shift reference position R is set at a position upstream of the second boundary position B2 by a predetermined distance L2 in the traveling direction or at the first boundary position B1. Thereafter, the process returns to step S3.
 減速信号に基づく車速制御中である場合(ステップS3:YES)に行われる監視中に停止信号が出力された場合(ステップS8:YES)、減速信号に基づく車速制御中でない場合に停止信号が出力された場合(ステップS5:YES)と同様の処理が実行される。 When the stop signal is output during monitoring performed when the vehicle speed control based on the deceleration signal is in progress (step S3: YES) (step S8: YES), the stop signal is output when the vehicle speed control based on the deceleration signal is not in progress The same processing as in the case (step S5: YES) is performed.
 減速信号に基づく車速制御が実行されている場合(ステップS3:YES)に行われる監視中に減速解除信号が出力された場合(ステップS7:YES)、自律走行制御部50によって、減速解除信号に基づく特定目標車速VSの演算処理が実行される(ステップS19)。特定目標車速VSの演算処理の後、目標車速VTが、特定目標車速VSに設定される(ステップS20)。そして、現在の目標車速VTと、現在の変速基準位置Rに対する走行機体2の位置とに基づいて変速基準位置Rが設定される(ステップS21)。その後、ステップS3に戻る。 When the vehicle speed control based on the deceleration signal is being executed (step S3: YES) and the deceleration cancellation signal is output during monitoring (step S7: YES), the autonomous traveling control unit 50 generates the deceleration cancellation signal The calculation process of the specific target vehicle speed VS based on is performed (step S19). After the calculation process of the specific target vehicle speed VS, the target vehicle speed VT is set to the specific target vehicle speed VS (step S20). Then, the shift reference position R is set based on the current target vehicle speed VT and the position of the traveling body 2 with respect to the current shift reference position R (step S21). Thereafter, the process returns to step S3.
 図13を参照して、減速解除信号に基づく特定目標車速VSでは、まず、自律走行制御部50が、現在の変速基準位置Rの種類を判別する(ステップS40)。変速基準位置Rが第1変速基準位置R1である場合(ステップS40:第1変速基準位置R1)、走行機体2の位置と、変速基準位置Rとの離間距離が、第3基準距離D3未満であるか否かが判別される(ステップS41)。離間距離が第3基準距離D3以上である場合(ステップS41:NO)、特定目標車速VSは、第1基準車速V1(第1区間の基準車速V)にされる(ステップS42)。離間距離が第3基準距離D3未満である場合(ステップS41:YES)、特定目標車速VSは、第2基準車速V2(第2区間の基準車速V)にされる(ステップS43)。これにより、減速解除信号に基づく特定目標車速VSの演算処理が終了する。 Referring to FIG. 13, at the specific target vehicle speed VS based on the deceleration release signal, the autonomous traveling control unit 50 first determines the type of the current shift reference position R (step S40). When the shift reference position R is the first shift reference position R1 (step S40: first shift reference position R1), the separation distance between the position of the traveling body 2 and the shift reference position R is less than the third reference distance D3. It is determined whether there is any (step S41). If the separation distance is equal to or greater than the third reference distance D3 (step S41: NO), the specific target vehicle speed VS is set to the first reference vehicle speed V1 (the reference vehicle speed V of the first section) (step S42). If the separation distance is less than the third reference distance D3 (step S41: YES), the specific target vehicle speed VS is set to the second reference vehicle speed V2 (the reference vehicle speed V of the second section) (step S43). Thereby, the calculation processing of the specific target vehicle speed VS based on the deceleration release signal is completed.
 変速基準位置Rが第2変速基準位置R2である場合(ステップS40:第2変速基準位置)、走行機体2の位置と、走行機体2が次に到達する第1変速基準位置R1との離間距離が、第4基準距離D4未満であるか否かが判別される(ステップS44)。離間距離が第4基準距離D4以上である場合(ステップS44:NO)、特定目標車速VSは、第2基準車速V2(第1区間の基準車速V)にされる(ステップS45)。離間距離が第4基準距離D4未満である場合(ステップS44:YES)、特定目標車速VSは、第1基準車速V1(第2区間の基準車速V)にされる(ステップS46)。これにより、減速解除信号に基づく特定目標車速VSの演算処理が終了する。 When the shift reference position R is the second shift reference position R2 (step S40: second shift reference position), the distance between the position of the traveling body 2 and the first shift reference position R1 to which the traveling body 2 reaches next Is determined to be less than the fourth reference distance D4 (step S44). When the separation distance is equal to or greater than the fourth reference distance D4 (step S44: NO), the specific target vehicle speed VS is set to the second reference vehicle speed V2 (the reference vehicle speed V of the first section) (step S45). If the separation distance is less than the fourth reference distance D4 (step S44: YES), the specific target vehicle speed VS is set to the first reference vehicle speed V1 (the reference vehicle speed V of the second section) (step S46). Thereby, the calculation processing of the specific target vehicle speed VS based on the deceleration release signal is completed.
 以上に説明したように、第1実施形態の自律走行システムは、無線通信端末100と、作業機側制御部84と、目標車速設定部51と、車速コントローラ32とを含む。無線通信端末100は、自律作業路P1および接続路P2のそれぞれに基準車速Vを設定する。作業機側制御部84は、特定制御信号を出力する。目標車速設定部51は、自律走行経路Pに沿って自律走行するトラクタの目標車速VTを設定する。車速コントローラ32は、トラクタ1の車速が目標車速VTになるように、トラクタ1の車速を制御する。目標車速設定部51は、自律走行経路P上で特定された変速基準位置Rに走行機体2が達したときに、第1基準車速V1と第2基準車速V2との間で目標車速VTを切り換え可能である。目標車速設定部51は、特定制御信号が出力されたときに、変速基準位置Rに対する走行機体2の位置に基づいて特定目標車速VSを演算して、特定目標車速VSを目標車速VTとして設定する。 As described above, the autonomous travel system of the first embodiment includes the wireless communication terminal 100, the work machine side control unit 84, the target vehicle speed setting unit 51, and the vehicle speed controller 32. The wireless communication terminal 100 sets the reference vehicle speed V to each of the autonomous work path P1 and the connection path P2. The work machine side control unit 84 outputs a specific control signal. Target vehicle speed setting unit 51 sets a target vehicle speed VT of the tractor traveling autonomously along autonomous traveling route P. The vehicle speed controller 32 controls the vehicle speed of the tractor 1 so that the vehicle speed of the tractor 1 becomes the target vehicle speed VT. The target vehicle speed setting unit 51 switches the target vehicle speed VT between the first reference vehicle speed V1 and the second reference vehicle speed V2 when the traveling vehicle body 2 reaches the shift reference position R specified on the autonomous traveling route P It is possible. The target vehicle speed setting unit 51 calculates the specific target vehicle speed VS based on the position of the traveling body 2 with respect to the shift reference position R when the specific control signal is output, and sets the specific target vehicle speed VS as the target vehicle speed VT. .
 この構成によれば、変速基準位置Rに対する走行機体2の位置に応じて、特定目標車速VSを変更することができる。したがって、走行機体2が変速基準位置Rに達したことによる車速制御と、特定制御信号(減速信号および減速解除信号)による車速制御とが短時間の間に実行された場合であっても、加速や減速が短時間で繰り返されないように目標車速VTを設定することができる。したがって、作業機3から特定制御信号が出力された際に、最適な車速制御を行うことができる。これにより、走行機体2の燃費を向上させたり、走行機体2に作用する慣性力(負荷)を低減させたりすることができる。さらに、走行機体2にユーザが搭乗する場合、ユーザに与える不快感を低減することができる。 According to this configuration, it is possible to change the specific target vehicle speed VS in accordance with the position of the traveling body 2 with respect to the shift reference position R. Therefore, even if the vehicle speed control by the traveling body 2 reaching the shift reference position R and the vehicle speed control by the specific control signal (deceleration signal and deceleration release signal) are executed in a short time, The target vehicle speed VT can be set such that deceleration is not repeated in a short time. Therefore, when the specific control signal is output from the work implement 3, the optimum vehicle speed control can be performed. As a result, it is possible to improve the fuel consumption of the traveling airframe 2 and to reduce the inertial force (load) acting on the traveling airframe 2. Furthermore, when the user gets on the traveling machine body 2, the discomfort given to the user can be reduced.
 また、第1実施形態の自律走行システムでは、目標車速設定部51は、走行機体2の現在位置と変速基準位置Rとの離間距離が基準距離D未満であるときに特定制御信号が出力されると、走行機体2が位置する経路P1,P2(第1区間)の走行方向下流側の経路P2,P1(第2区間)の基準車速V2,V1に基づいて特定目標車速VSを演算する。 Further, in the autonomous traveling system of the first embodiment, the target vehicle speed setting unit 51 outputs the specific control signal when the separation distance between the current position of the traveling vehicle body 2 and the shift reference position R is less than the reference distance D. The specific target vehicle speed VS is calculated based on the reference vehicle speeds V2 and V1 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is located.
 この構成によれば、走行機体2が次に達する変速基準位置Rと走行機体2の位置との離間距離が基準距離D未満であるときに減速信号または減速解除信号が出力された場合、目標車速VTは、走行機体2が現在位置する経路P1,P2(第1区間)の走行方向下流側の経路P2,P1(第2区間)の基準車速V2,V1に基づいて設定される。したがって、減速信号または減速解除信号によるトラクタ1の車速の変化と、走行機体2が変速基準位置Rに達したことによるトラクタ1の車速の変化とが短時間で行われることを確実に抑制することができる。同時に、走行機体2が現在位置する経路P1,P2(第1区間)の走行方向下流側の経路P2,P1(第2区間)の基準車速V1,V2に基づいて、目標車速VTを適切に設定することができる。 According to this configuration, when the decelerating signal or the decelerating cancellation signal is output when the separated distance between the shift reference position R to which the traveling body 2 reaches next and the position of the traveling body 2 is less than the reference distance D, the target vehicle speed The VT is set based on the reference vehicle speeds V2 and V1 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) where the traveling body 2 is currently positioned. Therefore, the change of the vehicle speed of the tractor 1 due to the deceleration signal or the deceleration release signal and the change of the vehicle speed of the tractor 1 due to the traveling body 2 reaching the shift reference position R are reliably suppressed in a short time. Can. At the same time, the target vehicle speed VT is properly set based on the reference vehicle speeds V1 and V2 of the paths P2 and P1 (second section) on the downstream side in the traveling direction of the paths P1 and P2 (first section) can do.
 また、第1実施形態の自律走行システムでは、目標車速設定部51は、特定制御信号が減速信号であるときには、第1基準車速V1または第2基準車速V2に所定の減速率(例えば0.5)を乗じた車速を特定目標車速VSとする。目標車速設定部51は、特定制御信号が減速解除信号であるときには、第1基準車速V1または第2基準車速V2を特定目標車速VSとする。この構成によれば、減速信号および減速解除信号が作業機3から出力される構成において、適切に目標車速VTを設定することができる。 Further, in the autonomous traveling system of the first embodiment, when the specific control signal is a deceleration signal, the target vehicle speed setting unit 51 sets the first reference vehicle speed V1 or the second reference vehicle speed V2 to a predetermined deceleration ratio (for example, 0.5 Let the vehicle speed multiplied by) be the specific target vehicle speed VS. The target vehicle speed setting unit 51 sets the first reference vehicle speed V1 or the second reference vehicle speed V2 as the specific target vehicle speed VS when the specific control signal is the deceleration cancellation signal. According to this configuration, in the configuration in which the deceleration signal and the deceleration release signal are output from the work machine 3, the target vehicle speed VT can be set appropriately.
 次に、自律走行制御の際、無線通信端末100の表示部102に表示される画像について説明する。 Next, an image displayed on the display unit 102 of the wireless communication terminal 100 during autonomous traveling control will be described.
 図14は、自律走行中に無線通信端末100の表示部102に表示される画像を説明するための図である。表示制御部103(図4参照)は、無線通信端末100の表示部102に、自律走行経路Pを示す画像108と、トラクタ1の現在の位置を示す画像109と、特定制御信号が出力されたときの走行機体2の位置を示す所定画像106とを表示部102に表示させる。所定画像106の表示によって、ユーザは、作業機側制御部84から特定制御信号が出力されたときの走行機体2の位置を容易に認識することができる。 FIG. 14 is a diagram for explaining an image displayed on the display unit 102 of the wireless communication terminal 100 during autonomous traveling. The display control unit 103 (see FIG. 4) outputs the image 108 indicating the autonomous traveling route P, the image 109 indicating the current position of the tractor 1, and a specific control signal to the display unit 102 of the wireless communication terminal 100. The display unit 102 displays a predetermined image 106 indicating the position of the traveling vehicle 2 at that time. By displaying the predetermined image 106, the user can easily recognize the position of the traveling machine body 2 when the specific control signal is output from the work machine side control unit 84.
 具体的には、作業機3から停止信号または停止解除信号が出力されたときの走行機体2の位置を示す所定画像を表示部102に表示することで、例えば、自律走行経路P上のどの位置にロールベールが排出されたかを特定することができる。また、作業機3から減速信号が出力されたときの走行機体2の位置を示す所定画像を表示部102に表示することで、例えば、作業機3に詰まりが発生したときのトラクタ1の位置を特定することができる。作業機3から減速解除信号が出力されたときの走行機体2の位置を示す所定画像を表示部102に表示することで、例えば、作業機3の詰まりが解消されたときのトラクタ1の位置を特定することができる。 Specifically, by displaying a predetermined image indicating the position of the traveling machine body 2 when the stop signal or the stop release signal is output from the work machine 3 on the display unit 102, for example, any position on the autonomous traveling route P To determine if the roll bale has been discharged. In addition, by displaying a predetermined image indicating the position of the traveling machine body 2 when the deceleration signal is output from the work machine 3 on the display unit 102, for example, the position of the tractor 1 when the work machine 3 is clogged It can be identified. By displaying a predetermined image indicating the position of the traveling machine body 2 when the deceleration release signal is output from the work machine 3 on the display unit 102, for example, the position of the tractor 1 when the clogging of the work machine 3 is eliminated It can be identified.
 所定画像106を表示する際に、無線通信端末100は、音声による報知や発光による報知を行うように構成されていてもよい。これにより、ユーザは、表示部102を視認することなく、作業機側制御部84から特定制御信号が出力されたタイミングを知ることができる。 When displaying the predetermined image 106, the wireless communication terminal 100 may be configured to perform notification by sound or notification by light emission. Thus, the user can know the timing at which the work control unit 84 outputs the specific control signal without visually recognizing the display unit 102.
 図15は、トラクタ1が自律走行経路Pを走行し終えた後に無線通信端末100の表示部102に表示される画像を説明するための図である。作業機側制御部84から特定制御信号が出力されたときの走行機体2の位置を示す所定画像106が自律走行経路P上の複数箇所(図15では5箇所)に表示されている場合、複数の画像106を通る走行経路Q(他の走行経路)を経路生成部101に生成させることができる。走行経路Qは、自律走行経路Pとは別の走行経路である。自律走行の終了後に、作業機側制御部84から特定制御信号が出力されたときの走行機体2の位置を通る作業が行われる場合に、当該作業を効率的に行うことができる。 FIG. 15 is a diagram for describing an image displayed on the display unit 102 of the wireless communication terminal 100 after the tractor 1 has finished traveling on the autonomous traveling route P. When the predetermined image 106 indicating the position of the traveling machine body 2 when the specific control signal is output from the work machine side control unit 84 is displayed at a plurality of locations (five locations in FIG. 15) on the autonomous traveling route P The route generation unit 101 can generate a traveling route Q (another traveling route) passing through the image 106 of FIG. The travel route Q is a travel route different from the autonomous travel route P. When the work passing through the position of the traveling machine body 2 when the specific control signal is output from the work machine side control unit 84 after the autonomous traveling ends, the work can be performed efficiently.
 例えば、作業機3から停止信号または停止解除信号が出力されたときの走行機体2の位置を示す所定画像を表示部102に表示する場合、経路生成部101は、ロールベールを回収するロールベール回収作業車両の現在位置を示す画像107を始点として、停止信号または停止解除信号が出力されたときの走行機体2の位置を示す所定画像106を接続する走行経路Qを生成することができる。この走行経路Qに沿ってロールベール回収作業車両を移動させることで、ロールベールを効率的に回収することができる。 For example, when displaying a predetermined image indicating the position of the traveling machine body 2 when the stop signal or the stop release signal is output from the work machine 3 on the display unit 102, the path generation unit 101 recovers the roll bale. Starting from the image 107 indicating the current position of the work vehicle, it is possible to generate a traveling route Q connecting the predetermined image 106 indicating the position of the traveling body 2 when the stop signal or the stop release signal is output. By moving the roll bale collecting work vehicle along the traveling route Q, the roll bale can be collected efficiently.
 <第2実施形態>
 第2実施形態に係る自律走行システムは、第1実施形態に係る自律走行システムとは異なり、図16および図17に示すように、特定目標車速VSの演算において、第1基準車速V1と第2基準車速V2との大小関係を考慮して目標車速VTを設定する。
Second Embodiment
The autonomous traveling system according to the second embodiment differs from the autonomous traveling system according to the first embodiment in that, as shown in FIG. 16 and FIG. The target vehicle speed VT is set in consideration of the magnitude relationship with the reference vehicle speed V2.
 図16は、第2実施形態に係る自律走行システムによる、減速信号に基づく特定目標車速VSの演算処理の一例を示すフローチャートである。図17は、第2実施形態に係る自律走行システムによる、減速解除信号に基づく特定目標車速VSの演算処理の一例を示すフローチャートである。第2実施形態では、第1実施形態と主に異なる部分のみを説明し、今まで説明した部材と同じ部材には同じ参照符号を付して、その説明を省略する。 FIG. 16 is a flowchart showing an example of calculation processing of a specific target vehicle speed VS based on a deceleration signal by the autonomous traveling system according to the second embodiment. FIG. 17 is a flowchart showing an example of calculation processing of the specific target vehicle speed VS based on the deceleration release signal by the autonomous traveling system according to the second embodiment. In the second embodiment, only portions different from the first embodiment will be mainly described, and the same members as the members described so far will be denoted with the same reference numerals, and the description thereof will be omitted.
 図16を参照して、減速信号に基づく特定目標車速VSの演算では、現在の変速基準位置Rが第1変速基準位置R1であり(ステップS30:第1変速基準位置R1)、かつ、走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第1基準距離D1未満である場合(ステップS31:YES)、基準車速V1,V2の大小関係が判別される(ステップS50)。 Referring to FIG. 16, in the calculation of the specific target vehicle speed VS based on the deceleration signal, the current shift reference position R is the first shift reference position R1 (step S30: first shift reference position R1), and the traveling airframe When the separation distance between the current position 2 and the shift reference position R (first shift reference position R1) is less than the first reference distance D1 (step S31: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined. (Step S50).
 走行機体2が現在位置する自律作業路P1(第1区間)の基準車速(第1基準車速V1)が当該自律作業路P1の走行方向下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)以上である場合(ステップS50:V1≧V2)、特定目標車速VSは、当該自律作業路P1(第1区間)の基準車速(第1基準車速V1)に基づいて算出される。詳しくは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS51)。 Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is equal to or higher than the second reference vehicle speed V2 (step S50: V1) V2), the specific target vehicle speed VS is calculated based on the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) Ru. Specifically, the first reference vehicle speed V1 is multiplied by a predetermined deceleration rate (for example, 0.5) (step S51).
 走行機体2が現在位置する自律作業路P1(第1区間)の基準車速(第1基準車速V1)が当該自律作業路P1の走行方向下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)よりも小さい場合(ステップS50:V1<V2)、特定目標車速VSは、当該接続路P2(第2区間)の基準車速(第2基準車速V2)に基づいて算出される。詳しくは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS52)。 Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 When it is smaller than the second reference vehicle speed V2) (step S50: V1 <V2), the specific target vehicle speed VS is calculated based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (second section). . Specifically, the second reference vehicle speed V2 is multiplied by a predetermined deceleration rate (for example, 0.5) (step S52).
 走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第1基準距離D1未満でない場合(ステップS31:NO)、上述の第1実施形態と同様に、特定目標車速VSは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS32)。 If the separation distance between the current position of the traveling airframe 2 and the shift reference position R (first shift reference position R1) is not less than the first reference distance D1 (step S31: NO), as in the first embodiment described above The specific target vehicle speed VS is set to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (step S32).
 現在の変速基準位置Rが第2変速基準位置R2であり(ステップS30:第2変速基準位置R2)、かつ、走行機体2の現在位置と変速基準位置R(第2変速基準位置R2)との離間距離が第2基準距離D2未満である場合も(ステップS34:YES)、基準車速V1,V2の大小関係が判別される(ステップS53)。 The current shift reference position R is the second shift reference position R2 (step S30: second shift reference position R2), and the current position of the traveling body 2 and the shift reference position R (second shift reference position R2) Also when the separation distance is less than the second reference distance D2 (step S34: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined (step S53).
 走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)が当該接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)よりも小さい場合(ステップS53:V1>V2)、特定目標車速VSは、当該自律作業路P1(第2区間)の基準車速(第1基準車速V1)に基づいて演算される。詳しくは、特定目標車速VSは、第1基準車速V1に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS54)。 The autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the specific target vehicle speed VS is smaller than the reference vehicle speed of the first vehicle (the first reference vehicle velocity V1) (step S53: V1> V2), the reference vehicle speed (the first reference vehicle velocity V1) of the autonomous work path P1 (second section) Calculated based on. Specifically, the specific target vehicle speed VS is set to a speed obtained by multiplying the first reference vehicle speed V1 by a predetermined deceleration rate (for example, 0.5) (step S54).
 走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)が当該接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)以上である場合(ステップS53:V1≦V2)、特定目標車速VSは、当該接続路P2(第1区間)の基準車速(第2基準車速V2)に基づいて算出される。具体的には、特定目標車速VSは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS55)。 The autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the vehicle speed is higher than the first reference vehicle speed (first reference vehicle speed V1) (step S53: V1 ≦ V2), the specific target vehicle speed VS is based on the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section). Calculated. Specifically, the specific target vehicle speed VS is set to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (step S55).
 走行機体2の現在の位置と、変速基準位置R(第2変速基準位置R2)との離間距離が第2基準距離D2以上である場合(ステップS34:NO)、上述の第1実施形態と同様に、特定目標車速VSは、第2基準車速V2に所定の減速率(例えば0.5)を乗じた速度にされる(ステップS35)。 If the separation distance between the current position of the traveling airframe 2 and the shift reference position R (second shift reference position R2) is equal to or greater than the second reference distance D2 (step S34: NO), as in the first embodiment described above The specific target vehicle speed VS is set to a speed obtained by multiplying the second reference vehicle speed V2 by a predetermined deceleration rate (for example, 0.5) (step S35).
 この実施形態では、特定目標車速VSは、第1基準車速V1と第2基準車速V2とが同じ車速である場合(V1=V2)、走行機体2が現在位置する経路P1,P2(第1区間)の基準車速(基準車速V1,V2)に基づいて算出される。しかし、この実施形態とは異なり、特定目標車速VSは、第1基準車速V1と第2基準車速V2とが同じ車速である場合(V1=V2)、走行機体2が現在位置する経路P1,P2(第1区間)の下流側の経路P2,P1(第2区間)の基準車速(基準車速V2,V1)に基づいて算出されてもよい。 In this embodiment, when the first reference vehicle speed V1 and the second reference vehicle speed V2 are the same vehicle speed (V1 = V2), the specific target vehicle speed VS is a route P1, P2 (first section) on which the traveling body 2 is currently located. Calculated based on the reference vehicle speed (reference vehicle speed V1, V2). However, different from this embodiment, when the first reference vehicle speed V1 and the second reference vehicle speed V2 are the same vehicle speed (V1 = V2), the specific target vehicle speed VS is the route P1, P2 on which the traveling body 2 is currently located. It may be calculated based on the reference vehicle speed (reference vehicle speed V2, V1) of the route P2, P1 (second region) on the downstream side of the (first interval).
 すなわち、ステップS50では、V1>V2の場合、特定目標車速VSが第1基準車速V1に減速率を乗じた速度にされ(ステップS51)、V1≦V2の場合、特定目標車速VSが第2基準車速V2に減速率を乗じた速度にされてもよい(ステップS52)。一方、ステップS53では、V1≧V2の場合、特定目標車速VSが第1基準車速V1に減速率を乗じた速度にされ(ステップS54)、V1<V2の場合、特定目標車速VSが第2基準車速V2に減速率を乗じた速度にされてもよい(ステップS55)。 That is, in step S50, if V1> V2, the specific target vehicle speed VS is the speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate (step S51). If V1 ≦ V2, the specific target vehicle speed VS is the second reference The vehicle speed V2 may be multiplied by the deceleration rate (step S52). On the other hand, in step S53, if V1 ≧ V2, the specific target vehicle speed VS is set to the speed obtained by multiplying the first reference vehicle speed V1 by the deceleration rate (step S54). If V1 <V2, the specific target vehicle speed VS is the second reference The vehicle speed V2 may be multiplied by the deceleration rate (step S55).
 図17を参照して、減速信号に基づく特定目標車速VSの演算では、現在の変速基準位置Rが第1変速基準位置R1であり(ステップS40:第1変速基準位置R1)、かつ、走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第3基準距離D3未満である場合(ステップS41:YES)、基準車速V1,V2の大小関係が判別される(ステップS60)。 Referring to FIG. 17, in the calculation of the specific target vehicle speed VS based on the deceleration signal, the current shift reference position R is the first shift reference position R1 (step S40: first shift reference position R1), and the traveling airframe When the separation distance between the current position 2 and the shift reference position R (first shift reference position R1) is less than the third reference distance D3 (step S41: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined. Step S60.
 走行機体2が現在位置する自律作業路P1(第1区間)の基準車速(第1基準車速V1)が当該自律作業路P1の走行方向下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)よりも大きい場合(ステップS60:V1>V2)、特定目標車速VSは、当該接続路P2(第2区間)の基準車速(第2基準車速V2)にされる(ステップS61)。 Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is higher than the second reference vehicle speed V2) (step S60: V1> V2), the specific target vehicle speed VS is set to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (second section) (step S61). ).
 走行機体2が現在位置する自律作業路P1(第1区間)の基準車速(第1基準車速V1)が当該自律作業路P1の走行方向下流側の接続路P2(第2区間)の基準車速(第2基準車速V2)以下である場合(ステップS60:V1≦V2)、特定目標車速VSは、当該自律作業路P1(第1区間)の基準車速(第1基準車速V1)にされる(ステップS62)。 Reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) where the traveling body 2 is currently located is reference speed (connection section P2 (second section) of the traveling direction downstream of the autonomous work path P1 If it is less than the second reference vehicle speed V2) (step S60: V1 ≦ V2), the specific target vehicle speed VS is set to the reference vehicle speed (first reference vehicle speed V1) of the autonomous work path P1 (first section) (step S62).
 走行機体2の現在の位置と変速基準位置R(第1変速基準位置R1)との離間距離が第3基準距離D3以上である場合(ステップS41:NO)、上述の実施形態と同様に、特定目標車速VSは、第1基準車速V1にされる(ステップS42)。 When the separation distance between the current position of the traveling airframe 2 and the shift reference position R (first shift reference position R1) is equal to or more than the third reference distance D3 (step S41: NO), identification is performed as in the above embodiment. The target vehicle speed VS is set to the first reference vehicle speed V1 (step S42).
 現在の変速基準位置Rが第2変速基準位置R2であり(ステップS40:第2変速基準位置R2)、かつ、走行機体2の現在の位置と変速基準位置R(第2変速基準位置R2)との離間距離が第4基準距離D4未満である場合も(ステップS44:YES)、基準車速V1,V2の大小関係が判別される(ステップS63)。 The current shift reference position R is the second shift reference position R2 (step S40: second shift reference position R2), and the current position of the traveling body 2 and the shift reference position R (second shift reference position R2) Also in the case where the separation distance is smaller than the fourth reference distance D4 (step S44: YES), the magnitude relationship between the reference vehicle speeds V1 and V2 is determined (step S63).
 走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)が当該接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)以下である場合(ステップS63:V1≧V2)、特定目標車速VSは、当該接続路P2(第1区間)の基準車速(第2基準車速V2)にされる(ステップS64)。 The autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the specified target vehicle speed VS is equal to or less than the first reference vehicle speed (first reference vehicle speed V1) (step S63: V1.gtoreq.V2), the specified target vehicle speed VS is set to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section). Step S64).
 走行機体2が現在位置する接続路P2(第1区間)の基準車速(第2基準車速V2)が当該接続路P2(第1区間)の走行方向下流側の自律作業路P1(第2区間)の基準車速(第1基準車速V1)よりも大きい場合(ステップS63:V1<V2)、特定目標車速VSは、当該自律作業路P1(第2区間)の基準車速(第1基準車速V1)にされる(ステップS65)。 The autonomous work path P1 (second section) on the downstream side of the connection path P2 (first section) with respect to the reference vehicle speed (second reference vehicle speed V2) of the connection path P2 (first section) where the traveling body 2 is currently located If the specific target vehicle speed VS is higher than the reference vehicle speed (first reference vehicle speed V1) (step S63: V1 <V2), the reference vehicle speed (first reference vehicle speed V1) for the autonomous work path P1 (second section) (Step S65).
 走行機体2の現在の位置と変速基準位置R2(第2変速基準位置R2)との離間距離が第4基準距離D4以上である場合(ステップS44:NO)、上述の第1実施形態と同様に、特定目標車速VSは、第2基準車速V2にされる(ステップS45)。 When the separation distance between the current position of the traveling body 2 and the shift reference position R2 (the second shift reference position R2) is equal to or greater than the fourth reference distance D4 (step S44: NO), as in the first embodiment described above The specific target vehicle speed VS is set to the second reference vehicle speed V2 (step S45).
 この実施形態では、特定目標車速VSは、第1基準車速V1と第2基準車速V2とが同じ車速である場合(V1=V2)、走行機体2が現在位置する経路P1,P2(第1区間)の基準車速(基準車速V1,V2)に基づいて算出される。しかし、この実施形態とは異なり、特定目標車速VSは、第1基準車速V1と第2基準車速V2とが同じ車速である場合(V1=V2)、走行機体2が現在位置する経路P1,P2(第1区間)の下流側の経路P2,P1(第2区間)の基準車速(基準車速V2,V1)に基づいて算出されてもよい。 In this embodiment, when the first reference vehicle speed V1 and the second reference vehicle speed V2 are the same vehicle speed (V1 = V2), the specific target vehicle speed VS is a route P1, P2 (first section) on which the traveling body 2 is currently located. Calculated based on the reference vehicle speed (reference vehicle speed V1, V2). However, different from this embodiment, when the first reference vehicle speed V1 and the second reference vehicle speed V2 are the same vehicle speed (V1 = V2), the specific target vehicle speed VS is the route P1, P2 on which the traveling body 2 is currently located. It may be calculated based on the reference vehicle speed (reference vehicle speed V2, V1) of the route P2, P1 (second region) on the downstream side of the (first interval).
 すなわち、ステップS60では、V1≧V2の場合、特定目標車速VSが第2基準車速V2に(ステップS61)、V1<V2の場合、特定目標車速VSが第1基準車速V1にされてもよい(ステップS62)。一方、ステップS63では、V1>V2の場合、特定目標車速VSが第2基準車速V2にされ(ステップS64)、V1≦V2の場合、特定目標車速VSが第1基準車速V1にされてもよい(ステップS65)。 That is, in step S60, if V1 ≧ V2, the specific target vehicle speed VS may be set to the second reference vehicle speed V2 (step S61), and if V1 <V2, the specific target vehicle speed VS may be set to the first reference vehicle speed V1 Step S62). On the other hand, in step S63, if V1> V2, the specific target vehicle speed VS may be set to the second reference vehicle speed V2 (step S64), and if V1 ≦ V2, the specific target vehicle speed VS may be set to the first reference vehicle speed V1. (Step S65).
 第2実施形態に係る自律走行システムでは、変速基準位置Rの設定においても第1基準車速V1と第2基準車速V2との大小関係が考慮される。 In the autonomous traveling system according to the second embodiment, the magnitude relationship between the first reference vehicle speed V1 and the second reference vehicle speed V2 is also considered in setting the shift reference position R.
 すなわち、ステップS50(図16参照)でV1≧V2の場合、その後のステップS16(図10参照)において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。一方、ステップS50でV1<V2の場合、その後のステップS16において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第2境界位置B2よりも所定の距離L2だけ上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。 That is, if V1 ≧ V2 in step S50 (see FIG. 16), shift reference position setting unit 54 sets shift reference position R at the current position of traveling machine body 2 in step S16 (see FIG. 10) thereafter. The next shift reference position R (first shift reference position R1) is set to the first boundary position B1. On the other hand, if V1 <V2 in step S50, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then predetermined by the second boundary position B2. The next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2.
 ステップS53(図16参照)でV1>V2の場合、その後のステップS16において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。一方、ステップS53でV1≦V2の場合、その後のステップS16において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第2境界位置B2よりも所定の距離L2だけ上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。    If V1> V2 in step S53 (see FIG. 16), the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then sets the first boundary position B1. The next shift reference position R (first shift reference position R1) is set. On the other hand, if V1 ≦ V2 in step S53, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S16, and then predetermined by the second boundary position B2. The next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2.
 ステップS60(図17参照)でV1>V2の場合、その後のステップS18において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第2境界位置B2よりも所定の距離L2だけ上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。一方、ステップS60でV1≦V2の場合、その後のステップS18(図11参照)において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 If V1> V2 in step S60 (see FIG. 17), the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling body 2 in the subsequent step S18, and then from the second boundary position B2. Also, the next shift reference position R (second shift reference position R2) is set on the upstream side by a predetermined distance L2. On the other hand, if V1 ≦ V2 in step S60, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in the subsequent step S18 (see FIG. 11). The next shift reference position R (first shift reference position R1) is set to B1.
 ステップS63(図17参照)でV1≧V2の場合、ステップS18において、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第2境界位置B2よりも所定の距離L2だけ上流側に次の変速基準位置R(第2変速基準位置R2)を設定する。一方、ステップS63でV1<V2の場合に、変速基準位置設定部54は、走行機体2の現在位置に変速基準位置Rを設定した後、第1境界位置B1に次の変速基準位置R(第1変速基準位置R1)を設定する。 If V1 ≧ V2 in step S63 (see FIG. 17), the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2 in step S18, and then the predetermined position is more than the second boundary position B2. The next shift reference position R (second shift reference position R2) is set on the upstream side by the distance L2. On the other hand, if V1 <V2 in step S63, the shift reference position setting unit 54 sets the shift reference position R at the current position of the traveling vehicle body 2, and then shifts to the first boundary position B1 to the next shift reference position R 1 Set the shift reference position R1).
 第2実施形態に係る自律走行システムでは、第1実施形態に係る自律走行システムと同様に、作業機3から特定制御信号が出力された際に、最適な車速制御を行うことができる。 In the autonomous traveling system according to the second embodiment, as in the case of the autonomous traveling system according to the first embodiment, when the specific control signal is output from the work machine 3, the optimum vehicle speed control can be performed.
 ここで、短時間の間で減速のみが繰り返されたり、短時間の間で加速のみが繰り返されたりする場合よりも、短時間の間で減速と加速とが実行される場合の方が、トラクタ1の燃費の悪化度合や走行機体2への負荷が大きい上にユーザが不快に感じやすい。そのため、短時間の間で減速と加速とが実行される車速制御を防止したいというニーズがある。 Here, the tractor is more likely to execute deceleration and acceleration in a short time than when the deceleration is repeated only in a short time or acceleration is repeated in a short time. The degree of deterioration of the fuel efficiency in 1 and the load on the traveling vehicle 2 are large, and the user is likely to feel uncomfortable. Therefore, there is a need to prevent vehicle speed control in which deceleration and acceleration are performed in a short time.
 第2実施形態に係る自律走行システムでは、トラクタ1が減速された直後に減速されることや、トラクタ1が加速された直後に加速されることが許容される一方で、トラクタ1が減速された直後に加速されることや、トラクタ1が加速された直後に減速されることが防止される。そのため、このようなニーズに対応することができる。また、減速信号および減速解除信号が作業機3から出力される構成において、目標車速VTを一層適切に設定することができる。 In the autonomous traveling system according to the second embodiment, while the tractor 1 is decelerated immediately after being decelerated or the tractor 1 is accelerated immediately after being accelerated, the tractor 1 is decelerated. It is prevented that the vehicle is accelerated immediately thereafter or decelerated immediately after the tractor 1 is accelerated. Therefore, such needs can be met. Further, in a configuration in which the deceleration signal and the deceleration release signal are output from the work machine 3, the target vehicle speed VT can be set more appropriately.
 この発明は、以上に説明した実施形態に限定されるものではなく、さらに他の形態で実施することができる。 The present invention is not limited to the embodiments described above, and can be embodied in other forms.
 上述した実施形態では、特定制御信号には、減速信号、停止信号、減速解除信号、および、停止解除信号が含まれる。上述した実施形態とは異なり、特定制御信号には、トラクタ1の増速を要求する増速信号と、増速信号に基づいてトラクタ1の車速が制御されている状態の解除を要求する増速解除信号とが含まれていてもよい。特定制御信号が増速信号であるときの特定目標車速VSの演算は、特定制御信号が減速信号であるときの特定目標車速VSの演算(図12参照)とほぼ同様であるが一部が異なる。具体的には、図12のステップS32,S36において、第1基準車速V1に所定の減速率を乗じた車速が特定目標車速VSとされる代わりに、第1基準車速V1に所定の増速率を乗じた車速が特定目標車速VSとされる。図12のステップS33,S35において、第2基準車速V2に所定の減速率を乗じた車速が特定目標車速VSとされる代わりに、第2基準車速V2に所定の増速率を乗じた車速が特定目標車速VSとされる。特定制御信号が増速解除信号であるときの特定目標車速VSの演算は、特定制御信号が減速解除信号であるときの特定目標車速VSの演算(図13参照)とほぼ同様である。 In the embodiment described above, the specific control signal includes the deceleration signal, the stop signal, the deceleration release signal, and the stop release signal. Unlike the above-described embodiment, the specific control signal requires an acceleration signal requesting acceleration of the tractor 1 and an acceleration request requesting release of a state in which the vehicle speed of the tractor 1 is controlled based on the acceleration signal. A release signal may be included. The calculation of the specific target vehicle speed VS when the specific control signal is an acceleration signal is substantially the same as the calculation of the specific target vehicle speed VS when the specific control signal is a deceleration signal (see FIG. 12), but is partially different . Specifically, instead of using the first reference vehicle speed V1 multiplied by the predetermined deceleration rate as the specific target vehicle speed VS in steps S32 and S36 in FIG. 12, the first reference vehicle speed V1 is set to the predetermined acceleration rate. The multiplied vehicle speed is set as the specific target vehicle speed VS. In steps S33 and S35 of FIG. 12, instead of setting the second reference vehicle speed V2 by the predetermined deceleration rate as the specific target vehicle speed VS, the second reference vehicle speed V2 is determined by multiplying the second reference vehicle speed V2 by the predetermined acceleration rate The target vehicle speed VS is set. The calculation of the specific target vehicle speed VS when the specific control signal is the acceleration release signal is substantially the same as the calculation of the specific target vehicle speed VS when the specific control signal is the deceleration release signal (see FIG. 13).
 この構成によれば、特定制御信号として増速信号および増速解除信号が作業機3から出力される構成において、作業機3から特定制御信号が出力された際に、最適な車速制御を行うことができる。また、適切に目標車速VTを設定することができる。 According to this configuration, in the configuration in which the acceleration signal and the acceleration release signal are output from the work machine 3 as the specific control signal, optimal vehicle speed control is performed when the specific control signal is output from the work machine 3 Can. In addition, the target vehicle speed VT can be set appropriately.
 第1基準車速V1と第2基準車速V2との大小関係を考慮する場合には、特定制御信号が増速信号であるときの特定目標車速VSの演算は、特定制御信号が減速信号であるときの特定目標車速VSの演算(図16参照)とほぼ同様であるが一部が異なる。具体的には、図16のステップS51,S54において、特定目標車速VSが第2基準車速V2に所定の増速率を乗じた速度とされ、図16のステップS52,S55において、特定目標車速VSが第1基準車速V1に所定の増速率を乗じた速度とされる。 When the magnitude relation between the first reference vehicle speed V1 and the second reference vehicle speed V2 is taken into consideration, the calculation of the specific target vehicle speed VS when the specific control signal is the acceleration signal is performed when the specific control signal is the deceleration signal The calculation is substantially the same as the calculation of the specific target vehicle speed VS (see FIG. 16), but is partially different. Specifically, in steps S51 and S54 in FIG. 16, the specific target vehicle speed VS is the speed obtained by multiplying the second reference vehicle speed V2 by a predetermined acceleration rate, and in steps S52 and S55 in FIG. The speed is obtained by multiplying the first reference vehicle speed V1 by a predetermined speed increase rate.
 第1基準車速V1と第2基準車速V2との大小関係を考慮する場合には、特定制御信号が増速解除信号であるときの特定目標車速VSの演算は、特定制御信号が減速解除信号であるときの特定目標車速VSの演算(図17参照)とほぼ同様であるが一部が異なる。具体的には、図17のステップS61,S64において、特定目標車速VSが第1基準車速V1とされ、図17のステップS62,S65において、特定目標車速VSが第2基準車速V2とされる。 When the magnitude relation between the first reference vehicle speed V1 and the second reference vehicle speed V2 is taken into consideration, in the calculation of the specific target vehicle speed VS when the specific control signal is the acceleration cancellation signal, the specific control signal is the deceleration cancellation signal. It is almost the same as the calculation of the specific target vehicle speed VS at a given time (see FIG. 17), but a part is different. Specifically, the specific target vehicle speed VS is set to the first reference vehicle speed V1 in steps S61 and S64 in FIG. 17, and the specific target vehicle speed VS is set to the second reference vehicle speed V2 in steps S62 and S65 in FIG.
 第1基準車速V1および第2基準車速V2の大小関係を考慮した場合、上述した実施形態と同様に、トラクタ1が減速された直後に減速されることや、トラクタ1が加速された直後に加速されることが許容される一方で、トラクタ1が減速された直後に加速されることや、トラクタ1が加速された直後に減速されることが防止される。したがって、短時間で減速と加速とが実行される車速制御を防止したいというニーズに対応することができる。 When the magnitude relationship between the first reference vehicle speed V1 and the second reference vehicle speed V2 is taken into consideration, the tractor 1 is decelerated immediately after being decelerated, or the tractor 1 is accelerated immediately after acceleration as in the embodiment described above. While being allowed to be, it is prevented that the tractor 1 is accelerated immediately after being decelerated or that the tractor 1 is accelerated immediately after being accelerated. Therefore, it is possible to meet the need to prevent vehicle speed control in which deceleration and acceleration are performed in a short time.
 特定制御信号が増速信号や増速解除信号である場合の基準距離Dは、特定制御信号が減速信号である場合の基準距離D1,D2や、特定制御信号が減速信号である場合の基準距離D3.D4と同じ距離であってもよいし、これらと異なる距離であってもよい。 The reference distance D when the specific control signal is the acceleration signal or the acceleration release signal is the reference distance D1, D2 when the specific control signal is the deceleration signal, or the reference distance when the specific control signal is the deceleration signal D3. It may be the same distance as D4 or a different distance from these.
 また、特定制御信号が停止解除信号である場合にも、特定制御信号が減速信号である場合の車速制御(図12および図16参照)や減速解除信号である場合の車速制御(図13および図17参照)と同様の車速制御を実行することが可能である。この場合、停止信号が出力されたことによって、トラクタ1が走行を開始するときの走行機体2の位置と、変速基準位置Rとの離間距離が所定の基準距離D未満であるか否かによって、目標車速VTが変えられる。特定制御信号が停止解除信号である場合の基準距離Dは、特定制御信号が減速信号である場合の基準距離D1,D2や、特定制御信号が減速信号である場合の基準距離D3.D4と同じ距離であってもよいし、これらと異なる距離であってもよい。 Further, even when the specific control signal is the stop release signal, the vehicle speed control (see FIGS. 12 and 16) when the specific control signal is the deceleration signal or the vehicle speed control when the deceleration release signal (FIG. 13 and FIG. It is possible to execute the same vehicle speed control as in 17). In this case, the stop signal is output, depending on whether the distance between the position of the traveling body 2 when the tractor 1 starts traveling and the shift reference position R is less than a predetermined reference distance D. The target vehicle speed VT can be changed. The reference distance D when the specific control signal is the stop release signal is the reference distances D1 and D2 when the specific control signal is the deceleration signal, and the reference distance D3 when the specific control signal is the deceleration signal. It may be the same distance as D4 or a different distance from these.
 また、上述した実施形態では、第1設定部52および第2設定部53は、走行機体2の現在の位置と変速基準位置Rとの離間距離が基準距離D1~D4未満であるときに特定制御信号が出力された場合には、特定制御信号が出力された直後に目標車速VTを設定するように構成されている。上述した実施形態とは異なり、第1設定部52および第2設定部53は、走行機体2の現在の位置と走行機体2が次に通過する変速基準位置Rとの離間距離が基準距離D1~D4未満であるときに特定制御信号が出力された直後には、特定制御信号に基づく目標車速VTの設定を行わないように構成されていてもよい。つまり、特定制御信号を無視してもよい。その代わり、走行機体2が当該変速基準位置Rに達したときに目標車速VTが設定される。そして、走行機体2が当該変速基準位置Rの次の変速基準位置Rに達したときには、走行機体2が当該変速基準位置Rに達する前に出力された特定制御信号に基づいて目標車速VTが設定される。 Further, in the embodiment described above, the first setting unit 52 and the second setting unit 53 perform specific control when the distance between the current position of the traveling body 2 and the shift reference position R is less than the reference distance D1 to D4. When the signal is output, the target vehicle speed VT is set immediately after the specific control signal is output. Unlike the embodiment described above, in the first setting unit 52 and the second setting unit 53, the separation distance between the current position of the traveling airframe 2 and the shift reference position R through which the traveling airframe 2 passes next is the reference distance D1 to Immediately after the specific control signal is output when it is less than D4, the setting of the target vehicle speed VT based on the specific control signal may not be performed. That is, the specific control signal may be ignored. Instead, the target vehicle speed VT is set when the traveling airframe 2 reaches the shift reference position R. When the traveling body 2 reaches the shift reference position R next to the shift reference position R, the target vehicle speed VT is set based on the specific control signal output before the traveling body 2 reaches the shift reference position R. Be done.
 このような構成によれば、目標車速VTの設定によるトラクタ1の車速の変化量を低減することができる。具体的には、目標車速VTが第1基準車速V1(例えば10km/h)から第2基準車速V2(例えば4km/h)に減速率を乗じた速度(例えば2km/h)に変更されるよりも、目標車速VTが第1基準車速V1(例えば10km/h)から第2基準車速V2(例えば4km/h)に変更される方が、トラクタ1の車速の変化量を低減することができる。したがって、ユーザに与える不快感を一層低減できる。このような車速制御は、ユーザが搭乗した状態で自律走行を行う有人自律走行モード(第1モード)において特に有用である。 According to such a configuration, it is possible to reduce the amount of change in the vehicle speed of the tractor 1 due to the setting of the target vehicle speed VT. Specifically, the target vehicle speed VT is changed from the first reference vehicle speed V1 (for example 10 km / h) to the speed (for example 2 km / h) obtained by multiplying the second reference vehicle speed V2 (for example 4 km / h) by the deceleration rate Also, when the target vehicle speed VT is changed from the first reference vehicle speed V1 (for example, 10 km / h) to the second reference vehicle speed V2 (for example 4 km / h), the amount of change in the vehicle speed of the tractor 1 can be reduced. Therefore, the discomfort given to the user can be further reduced. Such vehicle speed control is particularly useful in a manned autonomous traveling mode (first mode) in which autonomous traveling is performed in a state where the user is on board.
 ただし、上述の実施形態ように作業機3がロールベーラであれば、作業機機構部82に詰まりが発生して作業の続行ができないとき(作業の続行によってロールベーラの破損を招くようなとき)に停止信号が出力されることが想定し得る。このような場合には、停止信号を無視せずに、停止信号が出力された直後に目標車速VTを0km/hに設定する必要がある。 However, if the work machine 3 is a roll baler as in the above-described embodiment, the work machine mechanism unit 82 is clogged and the work can not be continued (when the work continues to cause damage to the roll baler) It can be assumed that a signal is output. In such a case, it is necessary to set the target vehicle speed VT to 0 km / h immediately after the stop signal is output without neglecting the stop signal.
 また、上述した実施形態では、経路生成部101、表示部102、および、表示制御部103は、無線通信端末100に設けられている。しかし、図14および図15に示す画像は、モニタ装置36に表示されるように構成されていてもよい。この場合、制御部4が、モニタ装置36による画像表示を制御する表示制御部38と、自律走行経路Pを生成可能な経路生成部39とを含んでいてもよい(図4の二点鎖線参照)。 Further, in the embodiment described above, the route generation unit 101, the display unit 102, and the display control unit 103 are provided in the wireless communication terminal 100. However, the images shown in FIGS. 14 and 15 may be configured to be displayed on the monitor device 36. In this case, the control unit 4 may include a display control unit 38 that controls image display by the monitor device 36, and a route generation unit 39 capable of generating an autonomous traveling route P (see two-dot chain line in FIG. 4). ).
 また、上述した実施形態では、停止解除信号は、作業機3の作業機側制御部84から出力される。しかし、上述の実施形態とは異なり、停止解除信号が特定制御信号には含まれず(作業機3から停止解除信号が出力されることはなく)、ユーザが無線通信端末100を操作することによってトラクタ1の走行の停止が解除されてもよい。 Further, in the embodiment described above, the stop release signal is output from the work machine side control unit 84 of the work machine 3. However, unlike the above-described embodiment, the stop release signal is not included in the specific control signal (the work release unit 3 does not output the stop release signal), and the user operates the wireless communication terminal 100 to operate the tractor. The stopping of the traveling of 1 may be released.
 また、上述した実施形態では、無線通信端末100によって第1基準車速V1および第2基準車速V2が設定されるが、モニタ装置36または速度回転数設定変更ダイアル14を用いて第1基準車速V1および第2基準車速V2を設定してもよい。なお、トラクタ1の車速とエンジン10の回転数の設定は、トラクタ1の停止中だけでなく、トラクタ1が自律走行を行っている途中においても、速度回転数設定変更ダイアル14等をユーザが操作することにより変更することができる。また、無線通信端末100によって設定する速度回転数設定変更ダイアル14によって設定するかはトラクタ1のモードによって定められてもよい。例えば、トラクタ1が第1モードである場合は、速度回転数設定変更ダイアル14によって設定され、トラクタ1が第2モードである場合は、無線通信端末100によって設定されることとしてもよい。 In the above-described embodiment, the first reference vehicle speed V1 and the second reference vehicle speed V2 are set by the wireless communication terminal 100, but the first reference vehicle speed V1 and the second reference vehicle speed V1 are changed The second reference vehicle speed V2 may be set. In addition, the setting of the vehicle speed of the tractor 1 and the rotational speed of the engine 10 is performed by the user operating the speed / rotational speed setting change dial 14 etc. not only when the tractor 1 is stopping but also while the tractor 1 is traveling autonomously. It can be changed by doing. Further, it may be determined by the mode of the tractor 1 whether the setting is made by the speed / rotation number setting change dial 14 set by the wireless communication terminal 100. For example, when the tractor 1 is in the first mode, it may be set by the speed / rotational speed setting change dial 14, and when the tractor 1 is in the second mode, it may be set by the wireless communication terminal 100.
 上述の実施形態では、変速基準位置設定部54は、特定制御信号が出力されない場合にトラクタ1が等速で自律作業路P1を走行できるように変速基準位置Rを設定する。しかし、上述の実施形態とは異なり、変速基準位置設定部54は、特定制御信号が出力されない場合にトラクタ1が一定の速度で接続路P2を走行できるように変速基準位置Rを設定してもよい。 In the above embodiment, the shift reference position setting unit 54 sets the shift reference position R so that the tractor 1 can travel on the autonomous work path P1 at a constant speed when the specific control signal is not output. However, unlike the above embodiment, the shift reference position setting unit 54 sets the shift reference position R so that the tractor 1 can travel the connection path P2 at a constant speed when the specific control signal is not output. Good.
 詳しくは、変速基準位置設定部54は、第1変速基準位置R1を、現在の目標車速VTから切り換え後の目標車速VTにトラクタ1の車速が達するまでに必要な距離(所定の距離L1)だけ第1境界位置B1よりも走行方向上流側に設定する。一方、変速基準位置設定部54は、第2変速基準位置R2を、現在の目標車速VTの値にかかわらず、第2境界位置B2に設定する。 Specifically, the shift reference position setting unit 54 sets the first shift reference position R1 by a distance (a predetermined distance L1) necessary for the vehicle speed of the tractor 1 to reach the target vehicle speed VT after switching from the current target vehicle speed VT. The travel direction is set upstream of the first boundary position B1. On the other hand, the shift reference position setting unit 54 sets the second shift reference position R2 to the second boundary position B2 regardless of the value of the current target vehicle speed VT.
 また、上述の実施形態とは異なり、変速基準位置設定部54は、第1境界位置B1から所定の距離L1だけ走行方向上流側に第1変速基準位置R1を設定し、かつ、第2境界位置B2から所定の距離L2だけ走行方向上流側に第2変速基準位置R2を設定してもよい。 Further, unlike the above embodiment, the shift reference position setting unit 54 sets the first shift reference position R1 upstream in the traveling direction by the predetermined distance L1 from the first boundary position B1, and the second boundary position. The second shift reference position R2 may be set on the upstream side in the traveling direction by a predetermined distance L2 from B2.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are merely specific examples used for clarifying the technical contents of the present invention, and the present invention is construed as being limited to these specific examples. It is not to be construed that the scope of the present invention is limited only by the appended claims.
 この出願は、2017年7月3日に日本国特許庁に提出された特願2017-130505号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。 This application corresponds to Japanese Patent Application No. 2017-130505 filed on Jul. 3, 2017, and the entire disclosure of this application is incorporated herein by reference.
2   :走行機体(走行車)
3   :作業機
14  :速度回転数設定変更ダイアル(基準車速設定部)
32  :車速コントローラ(車速制御部)
36  :モニタ装置(表示部)
38  :表示制御部
39  :経路生成部
51  :目標車速設定部
84  :作業機側制御部
100 :無線通信端末(基準車速設定部)
101 :経路生成部
102 :表示部
103 :表示制御部
106 :所定画像
D   :基準距離(所定の距離)
D1  :第1基準距離(所定の距離)
D2  :第2基準距離(所定の距離)
D3  :第3基準距離(所定の距離)
D4  :第4基準距離(所定の距離)
P   :自律走行経路
P1  :自律作業路(第1区間、第2区間)
P2  :接続路(第1区間、第2区間)
Q   :他の走行経路
R   :変速基準位置 
R1  :第1変速基準位置(変速基準位置)
R2  :第2変速基準位置(変速基準位置)
V   :基準車速(第1区間の基準車速、第2区間の基準車速)
V1  :第1基準車速(第1区間の基準車速、第2区間の基準車速)
V2  :第2基準車速(第1区間の基準車速、第2区間の基準車速)
VS  :特定目標車速
VT  :目標車速
2: Traveling vehicle (traveling car)
3: Working machine 14: Speed / rotational speed setting change dial (reference vehicle speed setting unit)
32: Vehicle speed controller (vehicle speed control unit)
36: Monitor device (display unit)
38: Display control unit 39: Path generation unit 51: Target vehicle speed setting unit 84: Working machine side control unit 100: Wireless communication terminal (reference vehicle speed setting unit)
101: path generation unit 102: display unit 103: display control unit 106: predetermined image D: reference distance (predetermined distance)
D1: First reference distance (predetermined distance)
D2: Second reference distance (predetermined distance)
D3: Third reference distance (predetermined distance)
D4: Fourth reference distance (predetermined distance)
P: autonomous traveling route P1: autonomous work route (first section, second section)
P2: Connection path (first section, second section)
Q: Other travel route R: Shift reference position
R1: 1st shift reference position (shift reference position)
R2: Second shift reference position (shift reference position)
V: Reference vehicle speed (reference vehicle speed for the first section, reference vehicle speed for the second section)
V1: first reference vehicle speed (reference vehicle speed for the first section, reference vehicle speed for the second section)
V2: second reference vehicle speed (reference vehicle speed for the first section, reference vehicle speed for the second section)
VS: Specific target vehicle speed VT: Target vehicle speed

Claims (6)

  1.  予め設定された走行経路に沿って走行車を自律走行させる自律走行システムであって、
     前記走行経路において、第1区間、および前記第1区間よりも走行方向下流側に位置する第2区間のそれぞれに基準車速を設定する基準車速設定部と、
     前記走行車に装着された作業機が特定の作業状態になったときに所定の制御信号を出力する作業機側制御部と、
     前記走行経路に沿って自律走行する前記走行車の目標車速を設定する目標車速設定部と、
     前記走行車の車速が前記目標車速設定部によって設定される目標車速になるように、前記走行車の車速を制御する車速制御部とを含み、
     前記目標車速設定部は、前記走行経路上で特定された変速基準位置に達したときに、前記第1区間の基準車速と前記第2区間の基準車速との間で目標車速を切り換え可能であり、
     前記目標車速設定部は、前記所定の制御信号が出力されたときに、前記変速基準位置に対する前記走行車の位置に基づいて特定目標車速を演算して、前記特定目標車速を目標車速として設定する、自律走行システム。
    An autonomous traveling system for autonomously traveling a traveling vehicle along a previously set traveling route,
    A reference vehicle speed setting unit configured to set a reference vehicle speed to each of a first section and a second section located downstream in the traveling direction with respect to the first section on the traveling route;
    A work machine side control unit that outputs a predetermined control signal when the work machine attached to the traveling vehicle is in a specific work state;
    A target vehicle speed setting unit configured to set a target vehicle speed of the traveling vehicle autonomously traveling along the traveling route;
    A vehicle speed control unit for controlling the vehicle speed of the traveling vehicle such that the vehicle speed of the traveling vehicle becomes the target vehicle speed set by the target vehicle speed setting unit;
    The target vehicle speed setting unit can switch the target vehicle speed between the reference vehicle speed of the first section and the reference vehicle speed of the second section when the shift reference position specified on the traveling route is reached. ,
    The target vehicle speed setting unit calculates a specific target vehicle speed based on the position of the traveling vehicle with respect to the shift reference position when the predetermined control signal is output, and sets the specific target vehicle speed as the target vehicle speed. , Autonomous traveling system.
  2.  前記所定の制御信号は、前記走行車の減速を要求する減速信号を含み、
     前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記第1区間の基準車速が前記第2区間の基準車速よりも小さい場合に、前記第1区間に位置する前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに前記減速信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する、請求項1に記載の自律走行システム。
    The predetermined control signal includes a deceleration signal requesting deceleration of the traveling vehicle.
    The target vehicle speed setting unit is positioned in the first section when the traveling vehicle is positioned in the first section and the reference vehicle speed of the first section is smaller than the reference vehicle speed of the second section. If the deceleration signal is output when the separation distance between the current position of the traveling vehicle and the shift reference position is less than a predetermined distance, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section. The autonomous traveling system according to claim 1.
  3.  前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記所定の制御信号が前記減速信号であるときには、前記第1区間の基準車速または前記第2区間の基準車速に所定の減速率を乗じた車速を前記特定目標車速とする、請求項2に記載の自律走行システム。 When the traveling vehicle is located in the first section and the predetermined control signal is the deceleration signal, the target vehicle speed setting unit sets the reference vehicle speed of the first section or the reference vehicle speed of the second section. The autonomous traveling system according to claim 2, wherein a vehicle speed obtained by multiplying a predetermined deceleration rate is set as the specific target vehicle speed.
  4.  前記所定の制御信号は、前記減速信号に基づいて前記走行車の車速が制御されている状態の解除を要求する減速解除信号を含み、
     前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記第1区間の基準車速が前記第2区間の基準車速よりも大きい場合に、前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに前記減速解除信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する、請求項2または3に記載の自律走行システム。
    The predetermined control signal includes a deceleration release signal requesting release of a state in which the vehicle speed of the traveling vehicle is controlled based on the deceleration signal,
    The target vehicle speed setting unit sets the current position of the traveling vehicle and the target vehicle speed when the traveling vehicle is located in the first zone and the reference vehicle speed of the first zone is larger than the reference vehicle speed of the second zone. The specific target vehicle speed is calculated based on the reference vehicle speed of the second section when the deceleration release signal is output when the separation distance from the shift reference position is less than a predetermined distance. Autonomous traveling system described.
  5.  前記目標車速設定部は、前記走行車が前記第1区間に位置し、かつ、前記走行車の現在位置と前記変速基準位置との離間距離が所定の距離未満であるときに、前記所定の制御信号が出力されると、前記第2区間の基準車速に基づいて前記特定目標車速を演算する、請求項1に記載の自律走行システム。 The target vehicle speed setting unit performs the predetermined control when the traveling vehicle is positioned in the first section and a separation distance between a current position of the traveling vehicle and the shift reference position is less than a predetermined distance. The autonomous traveling system according to claim 1, wherein when the signal is output, the specific target vehicle speed is calculated based on the reference vehicle speed of the second section.
  6.  表示部による画像表示を制御する表示制御部と、
     前記走行経路を生成可能な経路生成部とをさらに含み、
     前記表示制御部は、前記表示部に前記走行経路を表示させることが可能であり、前記作業機側制御部から前記所定の制御信号が出力されたときの前記走行車の位置を示す所定画像を、前記表示部に表示された前記走行経路上に表示させることが可能であり、
     前記経路生成部は、前記表示部に複数表示された前記所定画像を通る他の走行経路を生成可能である、請求項1~5のいずれか一項に記載の自律走行システム。
    A display control unit that controls image display by the display unit;
    Further including a route generation unit capable of generating the traveling route;
    The display control unit can display the traveling path on the display unit, and a predetermined image indicating the position of the traveling vehicle when the predetermined control signal is output from the work machine side control unit , Can be displayed on the travel route displayed on the display unit,
    The autonomous traveling system according to any one of claims 1 to 5, wherein the route generation unit can generate another traveling route passing through the plurality of predetermined images displayed on the display unit.
PCT/JP2018/024456 2017-07-03 2018-06-27 Autonomous travel system WO2019009164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130505 2017-07-03
JP2017130505A JP6876547B2 (en) 2017-07-03 2017-07-03 Autonomous driving system

Publications (1)

Publication Number Publication Date
WO2019009164A1 true WO2019009164A1 (en) 2019-01-10

Family

ID=64949981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024456 WO2019009164A1 (en) 2017-07-03 2018-06-27 Autonomous travel system

Country Status (2)

Country Link
JP (1) JP6876547B2 (en)
WO (1) WO2019009164A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014586A1 (en) * 2019-07-23 2021-01-28 本田技研工業株式会社 Autonomous work machine, autonomous work machine control method and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024050A1 (en) * 2019-08-05 2021-02-11 Precision Planting Llc Speed control of implements during transitions of settings of agricultural parameters
JP7275011B2 (en) * 2019-11-29 2023-05-17 株式会社クボタ agricultural machine
JP7407600B2 (en) 2020-01-14 2024-01-04 株式会社クボタ work equipment
JP2021108614A (en) * 2020-01-14 2021-08-02 株式会社クボタ Implement
JP7365103B2 (en) 2020-12-24 2023-10-19 株式会社クボタ Farming support system, location information generation method, computer program and processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151801A (en) * 1989-11-09 1991-06-28 Yanmar Agricult Equip Co Ltd Steering control system in running working machine
JPH09178481A (en) * 1995-12-25 1997-07-11 Kubota Corp Device for preparing running data of working vehicle, and guidance and control device
JPH09222919A (en) * 1996-02-19 1997-08-26 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for guiding work wagon by utilizing beam light
US20140336818A1 (en) * 2013-05-10 2014-11-13 Cnh Industrial America Llc Control architecture for multi-robot system
JP2016067244A (en) * 2014-09-29 2016-05-09 株式会社Ihiスター Farm work machine, travel vehicle pulling or mounting farm work machine, and farm work vehicle system
JP2016093125A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Travel route setting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52143621A (en) * 1976-05-24 1977-11-30 Kubota Ltd Power agricultural implement with hydraulically driven runner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03151801A (en) * 1989-11-09 1991-06-28 Yanmar Agricult Equip Co Ltd Steering control system in running working machine
JPH09178481A (en) * 1995-12-25 1997-07-11 Kubota Corp Device for preparing running data of working vehicle, and guidance and control device
JPH09222919A (en) * 1996-02-19 1997-08-26 Nosakubutsu Seiiku Kanri Syst Kenkyusho:Kk Device for guiding work wagon by utilizing beam light
US20140336818A1 (en) * 2013-05-10 2014-11-13 Cnh Industrial America Llc Control architecture for multi-robot system
JP2016067244A (en) * 2014-09-29 2016-05-09 株式会社Ihiスター Farm work machine, travel vehicle pulling or mounting farm work machine, and farm work vehicle system
JP2016093125A (en) * 2014-11-13 2016-05-26 ヤンマー株式会社 Travel route setting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021014586A1 (en) * 2019-07-23 2021-01-28 本田技研工業株式会社 Autonomous work machine, autonomous work machine control method and program

Also Published As

Publication number Publication date
JP6876547B2 (en) 2021-05-26
JP2019016010A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
WO2019009164A1 (en) Autonomous travel system
KR102325719B1 (en) work vehicle
KR102380578B1 (en) Task vehicle control system
KR102463645B1 (en) Work vehicle control device
JP7155328B2 (en) work vehicle
JP7504961B2 (en) Work vehicle control method
KR20220039646A (en) Automated driving systems for work vehicles
JP2018200611A (en) Autonomous travel system
JP7438998B2 (en) autonomous driving system
JP6840276B2 (en) Work vehicle
JP2017182374A (en) Service vehicle
JP7058635B2 (en) Autonomous driving system
JP7075436B2 (en) Work vehicle control system
JP7177198B2 (en) Autonomous working system
JP7047015B2 (en) Driving support system
JP2023129688A (en) Autonomous travelling system and method of autonomous travelling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828542

Country of ref document: EP

Kind code of ref document: A1