WO2018173966A1 - 走行制御装置、車両および走行制御方法 - Google Patents

走行制御装置、車両および走行制御方法 Download PDF

Info

Publication number
WO2018173966A1
WO2018173966A1 PCT/JP2018/010560 JP2018010560W WO2018173966A1 WO 2018173966 A1 WO2018173966 A1 WO 2018173966A1 JP 2018010560 W JP2018010560 W JP 2018010560W WO 2018173966 A1 WO2018173966 A1 WO 2018173966A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
travel
traveling
inter
distance
Prior art date
Application number
PCT/JP2018/010560
Other languages
English (en)
French (fr)
Inventor
尚基 高橋
正一 高橋
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to DE112018001539.4T priority Critical patent/DE112018001539T5/de
Priority to US16/496,435 priority patent/US11124189B2/en
Priority to CN201880019426.8A priority patent/CN110431058B/zh
Publication of WO2018173966A1 publication Critical patent/WO2018173966A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/162Speed limiting therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2310/00Arrangements, adaptations or methods for cruise controls
    • B60K2310/24Speed setting methods
    • B60K2310/248Speed setting methods resuming speed control, e.g. returning to old target speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K2310/00Arrangements, adaptations or methods for cruise controls
    • B60K2310/26Distance setting methods, e.g. determining target distance to target vehicle
    • B60K2310/266Distance setting methods, e.g. determining target distance to target vehicle releasing distance control, e.g. inhibiting control if target vehicle lost or changing lane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2754/00Output or target parameters relating to objects
    • B60W2754/10Spatial relation or speed relative to objects
    • B60W2754/30Longitudinal distance

Definitions

  • the present disclosure relates to a travel control device, a vehicle, and a travel control method for controlling travel of the vehicle.
  • Patent Document 1 discloses a travel control device that performs control for driving (driving) a vehicle while maintaining the vehicle speed at a set vehicle speed (hereinafter referred to as a target vehicle speed).
  • Patent Document 2 discloses a control (Adaptive Cruise Control) that causes a vehicle to travel (follow-up traveling) so as to maintain a distance between the vehicle and a preceding vehicle traveling ahead of the vehicle at a predetermined distance (hereinafter referred to as a target inter-vehicle distance).
  • a travel control device that performs ACC is disclosed.
  • the vehicle may be accelerated to overtake the preceding vehicle.
  • the inter-vehicle distance becomes narrower than the target inter-vehicle distance, so that the vehicle is braked.
  • acceleration of the vehicle is hindered, making it difficult to pass smoothly.
  • the present disclosure is to provide a travel control device, a vehicle, and a travel control method capable of smoothly overtaking from follow-up travel while improving safety.
  • the travel control device of the present disclosure is A direction indication determination unit that determines whether or not the direction indication by the direction indicator of the vehicle is operating; Control for switching vehicle travel between follow-up travel in which the vehicle travels following a preceding vehicle traveling in front of the vehicle and drive travel in which the vehicle travels so that the speed of the vehicle matches a target vehicle speed.
  • the vehicle of the present disclosure is The travel control device is provided.
  • the travel control method includes: Determine if the direction indicator by the vehicle direction indicator is working, Control for switching vehicle travel between follow-up travel in which the vehicle travels following a preceding vehicle traveling in front of the vehicle and drive travel in which the vehicle travels so that the speed of the vehicle matches a target vehicle speed. And Detecting an inter-vehicle distance between the vehicle and the preceding vehicle; During the follow-up running, when the operation of the direction instruction is determined and the inter-vehicle distance exceeds a predetermined distance, the running of the vehicle is switched from the follow-up running to the drive running.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a vehicle including a travel control device according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing an example of the configuration of the travel control apparatus according to the present embodiment.
  • FIG. 3 is a time chart showing an example of the operation of the travel control device.
  • FIG. 4 is a flowchart illustrating an example of the operation of the traveling control during the following traveling.
  • FIG. 5 is a flowchart illustrating an example of a travel control operation during driving travel.
  • FIG. 1 is a block diagram showing an example of a configuration of a vehicle including a travel control device 100 according to the present embodiment. It should be noted that here, the illustration and description will be made with a focus on the parts related to the travel control device 100.
  • the vehicle 1 is a vehicle that can be switched between driving traveling and following traveling.
  • the drive travel also referred to as constant speed travel
  • the drive travel is travel in which the vehicle 1 is traveled so as to drive the wheels 9 by a drive system described later and maintain a preset target vehicle speed.
  • follow-up travel is travel in which the vehicle 1 travels so that the inter-vehicle distance between the vehicle 1 and a preceding vehicle that travels in front of the vehicle 1 is maintained at the target inter-vehicle distance.
  • the vehicle 1 shown in FIG. 1 is a large vehicle such as a truck equipped with an in-line 6-cylinder diesel engine, for example.
  • a vehicle 1 includes a drive system for driving the vehicle, and includes an engine 3, a clutch 4, a transmission (transmission) 5, a propulsion shaft (propeller shaft) 6, and a differential device (differential gear) 7. , A drive shaft 8 and wheels 9.
  • the power of the engine 3 is transmitted to the transmission 5 via the clutch 4, and the power transmitted to the transmission 5 is further transmitted to the wheels 9 via the propulsion shaft 6, the differential device 7, and the drive shaft 8. Communicated. Thereby, the motive power of the engine 3 is transmitted to the wheels 9 and the vehicle 1 travels.
  • the vehicle 1 has a braking device 40 as a configuration of a braking system for stopping the vehicle.
  • the braking device 40 includes a foot brake 41 that provides resistance to the wheels 9, a retarder 42 that provides resistance to the propulsion shaft 6, and an auxiliary brake 43 such as an exhaust brake that applies load to the engine.
  • the vehicle 1 has an automatic travel device 2 as a configuration of a control system that controls the travel of the vehicle 1.
  • the automatic travel device 2 is a device that automatically controls the output of the engine 3, the connection / disconnection of the clutch 4, and the speed change of the transmission 5 to automatically travel the vehicle 1, and includes a plurality of control devices.
  • the automatic travel device 2 includes an engine ECU (engine control device) 10, a power transmission ECU (power transmission control device) 11, a target vehicle speed setting device 13, an increase / decrease value setting device 14, and road information acquisition. It has the apparatus 20, the vehicle information acquisition apparatus 30, and the traveling control apparatus 100.
  • engine ECU engine control device
  • power transmission ECU power transmission control device
  • target vehicle speed setting device 13 an increase / decrease value setting device 14
  • road information acquisition It has the apparatus 20, the vehicle information acquisition apparatus 30, and the traveling control apparatus 100.
  • the engine ECU 10, the power transmission ECU 11, and the travel control device 100 are connected to each other via an in-vehicle network, and can transmit and receive necessary data and control signals to and from each other.
  • the engine ECU 10 controls the output of the engine 3.
  • the power transmission ECU 11 controls the connection and disconnection of the clutch 4 and the shift of the transmission 5.
  • the target vehicle speed setting device 13 sets the target vehicle speed at the time of automatic traveling of the vehicle 1 in the traveling control device 100.
  • the increase / decrease value setting device 14 sets the speed decrease value and the speed increase value during the automatic traveling of the vehicle 1 in the traveling control device 100. These values are parameters used for automatic driving of the vehicle 1.
  • the target vehicle speed setting device 13 and the increase / decrease value setting device 14 include, for example, an information input interface such as a display with a touch panel arranged on a dashboard (not shown) of the driver's seat, and accept the setting of the above parameters from the driver.
  • the target vehicle speed, the speed decrease value, and the speed increase value are appropriately referred to as “setting information”.
  • the road information acquisition device 20 acquires road information indicating the road condition and the current position of the vehicle 1 and outputs the road information to the travel control device 100.
  • the road information acquisition device 20 includes a current position acquisition device 21 that is a receiver of a satellite positioning system (GPS), a weather acquisition device 22 that acquires weather during traveling, and a traveling vehicle (preceding vehicle) around the vehicle 1. And a surrounding sensor 23 that detects a difference in vehicle speed and a difference in vehicle speed.
  • GPS satellite positioning system
  • weather acquisition device 22 that acquires weather during traveling
  • a surrounding sensor 23 that detects a difference in vehicle speed and a difference in vehicle speed.
  • the road information preferably includes road gradient information indicating the gradient of each point on the road in consideration of a travel schedule generated by the travel control device 100 (the travel control unit 120 in FIG. 2).
  • the road gradient information is, for example, data describing the altitude (road altitude) of the corresponding position in association with the horizontal position (latitude / longitude information, etc.) of each place on the road.
  • the vehicle information acquisition device 30 acquires the vehicle information indicating the operation content by the driver and the state of the vehicle 1 and outputs the vehicle information to the travel control device 100.
  • the vehicle information acquisition device 30 includes the accelerator sensor 31 that detects the amount of depression of the accelerator pedal, the brake switch 32 that detects whether or not the brake pedal is depressed, the shift lever 33, the turn signal switch 34, and the speed of the vehicle 1.
  • a vehicle speed sensor 35 for detection is included.
  • the traveling control device 100 generates a traveling schedule including driving traveling and following traveling based on the above-described setting information, road information, and vehicle information.
  • traveling control apparatus 100 controls each part of the vehicle 1 so that the vehicle 1 travels according to the generated traveling schedule.
  • the engine ECU 10, the power transmission ECU 11, and the travel control device 100 are, for example, a CPU (Central Processing Unit), a storage medium such as a ROM (Read Only Memory) storing a control program, a RAM (Random Access Memory), and the like. Each having a working memory and a communication circuit.
  • the functions of the above-described units constituting the travel control device 100 are realized by the CPU executing the control program. Note that all or a part of the engine ECU 10, the power transmission ECU 11, and the travel control device 100 may be integrally configured.
  • FIG. 2 is a block diagram illustrating an example of the configuration of the travel control device 100.
  • the travel control device 100 includes a direction instruction determination unit 110, a travel control unit 120, a preceding vehicle identification unit 130, and an inter-vehicle distance detection unit 140.
  • the direction indication determination unit 110 determines whether or not a direction indicator (not shown) is operating based on a detection signal from a direction indication operation switch (not shown), and outputs a determination result to the travel control unit 120.
  • the preceding vehicle specifying unit 130 detects the presence or absence of a preceding vehicle traveling in front of the vehicle 1 (specification or non-specification of the preceding vehicle) based on the detection signal of the surrounding sensor 23, and outputs the detection result to the traveling control unit 120.
  • specification part 130 detects whether a preceding vehicle exists by an image recognition process more preferably using the image data of a vehicle-mounted camera.
  • the inter-vehicle distance detection unit 140 detects the inter-vehicle distance between the vehicle 1 and the preceding vehicle based on the detection signal of the surrounding sensor 23 and outputs the detection result to the travel control unit 120.
  • the inter-vehicle distance detection unit 140 more preferably uses both an in-vehicle camera and an in-vehicle radar.
  • the inter-vehicle distance detection unit 140 detects the two-dimensional position of the preceding vehicle through image recognition processing, for example, using image data of an in-vehicle camera. Then, the inter-vehicle distance detection unit 140 detects the inter-vehicle distance from the preceding vehicle using an in-vehicle radar.
  • the traveling control unit 120 performs control for switching the traveling of the vehicle 1 between the follow traveling and the driving traveling.
  • the traveling control unit 120 performs control for switching the traveling of the vehicle 1 based on the information on the presence / absence of the preceding vehicle, the inter-vehicle distance from the preceding vehicle, and the like.
  • a temporal change in the relative position of the vehicle 1 is indicated by a solid line 201
  • a temporal change in the relative position of the preceding vehicle is indicated by a solid line 202.
  • the distance between the solid lines 201 and 202 represents the inter-vehicle distance L.
  • the direction instruction determination unit 110 determines that the direction instruction is activated based on the ON signal output at t1 shown in FIG.
  • the preceding vehicle specifying unit 130 determines that there is a preceding vehicle based on the lock-on signal shown in FIG.
  • the traveling control unit 120 is in a condition that during follow-up traveling, the operation of the direction instruction is determined at t1 shown in FIG. 3, the preceding vehicle is specified, and the inter-vehicle distance L with the preceding vehicle exceeds a predetermined distance. When this condition is satisfied, control for switching the traveling of the vehicle 1 from the follow-up traveling to the driving traveling is performed.
  • the predetermined distance here is an inter-vehicle distance in consideration of safety when the vehicle 1 overtakes the preceding vehicle, that is, a distance that can ensure safety when exceeding the predetermined distance.
  • the travel of the vehicle 1 is switched from the follow travel to the drive travel.
  • the vehicle 1 In driving traveling, the vehicle 1 is accelerated so that the speed of the vehicle 1 matches the target vehicle speed.
  • the driver operates the steering wheel so as to change the course from the traveling lane to the passing lane.
  • the vehicle 1 can pass the preceding vehicle by the difference between the target vehicle speed of the vehicle 1 and the speed of the preceding vehicle.
  • the driver may not perform the steering operation.
  • the vehicle 1 due to the difference between the target vehicle speed of the vehicle 1 and the speed of the preceding vehicle, the vehicle 1 approaches the preceding vehicle and the inter-vehicle distance L from the preceding vehicle cannot be sufficiently secured. The situation will be reduced.
  • the traveling control unit 120 determines the operation of the direction instruction at t2 shown in FIG. 3 during driving traveling, specifies the preceding vehicle, and sets the distance L between the preceding vehicle and the predetermined distance (predetermined during the following traveling). If this condition is satisfied on condition that the distance is less than or equal to the distance, control is performed to switch the travel of the vehicle 1 from drive travel to follow-up travel.
  • the predetermined distance here is an inter-vehicle distance in consideration of safety when the vehicle 1 overtakes the preceding vehicle, that is, a distance where safety cannot be ensured when the distance is less than the predetermined distance.
  • FIG. 4 is a flowchart illustrating an operation example of travel control during follow-up travel. The process in FIG. 4 is executed while the vehicle 1 is traveling, for example.
  • step S100 determines whether or not the vehicle is following following. As a result of the determination, if the vehicle is not following (step S100: NO), the process ends. On the other hand, when the vehicle is following (step S100: YES), the process proceeds to step S110.
  • step S110 the traveling control unit 120 determines whether or not the direction instruction is an operation. If it is not a direction instruction operation (step S110: NO), the process ends. On the other hand, when the operation is a direction instruction (step S110: YES), the traveling control unit 120 determines whether there is a preceding vehicle (step S120).
  • step S120 If there is no preceding vehicle (step S120: NO), the process ends. On the other hand, when there is a preceding vehicle (step S120: YES), the traveling control unit 120 acquires the inter-vehicle distance (step S130).
  • the traveling control unit 120 determines whether or not the inter-vehicle distance exceeds a predetermined distance (step S140).
  • step S140 If the inter-vehicle distance is equal to or less than the predetermined distance (step S140: NO), the process ends. On the other hand, when the inter-vehicle distance exceeds the predetermined distance (step S140: YES), the travel control unit 120 performs control to switch the travel of the vehicle 1 from the follow travel to the drive travel (step S150).
  • FIG. 5 is a flowchart illustrating an operation example of travel control during driving travel. The process in FIG. 5 is executed while the vehicle 1 is traveling, for example.
  • the traveling control unit 120 determines whether or not the vehicle is driving (step S200). If the result of determination is that driving is not in progress (step S200: NO), the processing ends. On the other hand, if the vehicle is driving (step S200: YES), the process proceeds to step S210.
  • step S210 the traveling control unit 120 determines whether or not the direction instruction is an operation. If it is not a direction instruction operation (step S210: NO), the process ends. On the other hand, when the operation is a direction instruction (step S210: YES), the traveling control unit 120 determines whether there is a preceding vehicle (step S220).
  • step S220 If there is no preceding vehicle (step S220: NO), the process ends. On the other hand, when there is a preceding vehicle (step S220: YES), the traveling control unit 120 acquires the inter-vehicle distance (step S230).
  • the traveling control unit 120 determines whether or not the inter-vehicle distance is less than a predetermined distance (which may or may not be the same as the predetermined distance in step S140) (step S240).
  • step S240 If the inter-vehicle distance is greater than or equal to the predetermined distance (step S240: NO), the process ends. On the other hand, when the inter-vehicle distance is less than the predetermined distance (step S240: YES), the traveling control unit 120 performs control to switch the traveling of the vehicle 1 from the driving traveling to the following traveling (step S250).
  • travel control unit 120 determines the operation of direction indication during follow-up travel, specifies the preceding vehicle, and sets inter-vehicle distance L to be predetermined. When this condition is satisfied on condition that the distance is exceeded, control is performed to switch the traveling of the vehicle 1 from the follow-up traveling to the driving traveling. As a result, the vehicle 1 can be accelerated without being hindered by the braking of the vehicle 1, and there is a sufficient inter-vehicle distance when overtaking the preceding vehicle. Can overtake.
  • the travel control unit 120 determines the operation of the direction instruction during driving travel, specifies the preceding vehicle, and the inter-vehicle distance L is less than the predetermined distance. If this condition is satisfied, the vehicle 1 is controlled so as to switch the driving from the driving driving to the following driving. Thereby, for example, when the inter-vehicle distance is insufficient, the driving traveling is switched to the following traveling, so that it is possible to improve safety when overtaking the preceding vehicle.
  • the predetermined distance as a condition for overtaking the preceding vehicle is constant regardless of the speed of the vehicle 1.
  • the present disclosure is not limited to this, and the predetermined distance may be set according to the speed of the vehicle 1.
  • the speed of the vehicle 1 is detected by a vehicle speed sensor 35.
  • the traveling control unit 120 is provided on the condition that during the following traveling, the operation of the direction instruction is determined, the preceding vehicle is specified, and the inter-vehicle distance L exceeds a predetermined distance. When this condition is satisfied, control for switching from follow-up travel to drive travel is performed.
  • the present disclosure is not limited to this, and when the above condition is satisfied and the relative speed in the separation direction of the vehicle 1 with respect to the preceding vehicle exceeds a predetermined speed, control for switching from follow-up travel to drive travel may be performed.
  • the relative speed in the separation direction with respect to the preceding vehicle can be calculated based on the change in the inter-vehicle distance measured by the inter-vehicle distance detection unit 140.
  • the traveling control unit 120 is conditioned on the condition that the operation of the direction instruction is determined during driving traveling, the preceding vehicle is specified, and the inter-vehicle distance L is less than the predetermined distance. When this condition is satisfied, control is performed to switch from drive travel to follow-up travel.
  • the present disclosure is not limited to this, and the above condition is satisfied, and the relative speed in the approaching direction of the vehicle 1 with respect to the preceding vehicle may be the same as or not the same as the predetermined speed in the relative speed in the separation direction. If it exceeds the upper limit, control for switching from drive travel to follow-up travel may be performed.
  • the present disclosure is useful as a travel control device for an automobile or the like that requires smooth overtaking from follow-up while increasing safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

安全性を高めつつ、追従走行からスムーズな追い越しが可能な走行制御装置、車両および走行制御方法を提供する。走行制御装置は、車両の方向指示器による方向指示が作動しているか否かを判定する方向指示判定部と、車両を先行車両に追従させて走行させる追従走行と、車両の速度を目標車速に合わせるように車両を走行させる駆動走行との間で車両の走行を切り替える制御を行う走行制御部と、追従走行中における車両と先行車両との車間距離を検知する車間距離検知部と、を備え、走行制御部は、追従走行中において、方向指示の作動が判定され、かつ、車間距離が所定距離を超えている第1条件を満たす場合、車両の走行を追従走行から駆動走行へ切り替える。

Description

走行制御装置、車両および走行制御方法
 本開示は、車両の走行を制御する走行制御装置、車両および走行制御方法に関する。
 従来、車両の自動走行(運転者の操作を必要としない走行)を制御する走行制御装置が知られている。
 例えば、特許文献1には、車両の速度を設定された車速(以下、目標車速という)に維持して車両を走行(駆動走行)させる制御を行う走行制御装置が開示されている。
 例えば、特許文献2には、車両とその前方を走行する先行車両との車間距離を所定距離(以下、目標車間距離という)に保つように車両を走行(追従走行)させる制御(Adaptive Cruise Control:ACC)を行う走行制御装置が開示されている。
日本国特開2017-024479号公報 日本国特開2016-144967号公報
 ところで、追従走行中に、車両を加速させて先行車両を追い越す場合がある。車両を加速させると、車間距離が目標車間距離より狭くなるため、車両が制動される。これにより、車両の加速が妨げられるため、スムーズな追い越しが困難になるという問題点があった。
 また、車間距離が狭い場合に、先行車両を追い越すことは、走行の安全性を高める上で支障となる。
 本開示は、安全性を高めつつ、追従走行からスムーズな追い越しが可能な走行制御装置、車両および走行制御方法を提供することである。
 本開示の走行制御装置は、
 車両の方向指示器による方向指示が作動しているか否かを判定する方向指示判定部と、
 前記車両を当該車両の前方を走行する先行車両に追従させて走行させる追従走行と、前記車両の速度を目標車速に合わせるように前記車両を走行させる駆動走行との間で車両の走行を切り替える制御を行う走行制御部と、
 前記追従走行中における前記車両と前記先行車両との車間距離を検知する車間距離検知部と、
 を備え、
 前記走行制御部は、前記追従走行中において、前記方向指示の作動が判定され、かつ、前記車間距離が所定距離を超えている第1条件を満たす場合、前記車両の走行を前記追従走行から前記駆動走行へ切り替える。
 本開示の車両は、
 上記走行制御装置を備える。
 本開示の走行制御方法は、
 車両の方向指示器による方向指示が作動しているか否かを判定し、
 前記車両を当該車両の前方を走行する先行車両に追従させて走行させる追従走行と、前記車両の速度を目標車速に合わせるように前記車両を走行させる駆動走行との間で車両の走行を切り替える制御を行い、
 前記車両と前記先行車両との車間距離を検知し、
 前記追従走行中において、前記方向指示の作動が判定され、かつ、前記車間距離が所定距離を超えている場合、車両の走行を前記追従走行から前記駆動走行へ切り替える。
 本開示によれば、安全性を高めつつ、追従走行からスムーズな追い越しができる。
図1は、本開示の一実施の形態に係る走行制御装置を含む車両の構成の一例を示すブロック図である。 図2は、本実施の形態に係る走行制御装置の構成の一例を示すブロック図である。 図3は、走行制御装置の動作の一例を示すタイムチャートである。 図4は、追従走行中における走行制御の動作の一例を示すフローチャートである。 図5は、駆動走行中における走行制御の動作の一例を示すフローチャートである。
 以下、本開示の一実施の形態について、図面を参照して詳細に説明する。
<車両1の構成例>
 まず、本実施の形態に係る走行制御装置100を含む車両の構成について説明する。図1は、本実施の形態に係る走行制御装置100を含む車両の構成の一例を示すブロック図である。なお、ここでは、走行制御装置100に関連する部分に着目して、図示および説明を行う。
 車両1は、駆動走行と追従走行との切り替えが可能な車両である。駆動走行(定速走行ともいう)とは、後述する駆動系統により車輪9を駆動させ、予め設定された目標車速を維持するように車両1を走行させる走行である。追従走行とは、車両1とその前方を走行する先行車両との車間距離を目標車間距離に保つように車両1を走行させる走行である。
 図1に示す車両1は、例えば、直列6気筒のディーゼルエンジンを搭載した、トラック等の大型車両である。
 図1に示すように、車両1は、車両を走行させる駆動系統の構成として、エンジン3、クラッチ4、変速機(トランスミッション)5、推進軸(プロペラシャフト)6、差動装置(デファレンシャルギヤ)7、駆動軸(ドライブシャフト)8、および車輪9を有する。
 エンジン3の動力は、クラッチ4を経由して変速機5に伝達され、変速機5に伝達された動力は、更に、推進軸6、差動装置7、および駆動軸8を介して車輪9に伝達される。これにより、エンジン3の動力が車輪9に伝達されて車両1が走行する。
 また、車両1は、車両を停止させる制動系統の構成として、制動装置40を有する。制動装置40は、車輪9に対して抵抗力を与えるフットブレーキ41、推進軸6に対して抵抗力を与えるリターダ42、およびエンジンに対して負荷を与える排気ブレーキなどの補助ブレーキ43を含む。
 更に、車両1は、車両1の走行を制御する制御系統の構成として、自動走行装置2を有する。自動走行装置2は、エンジン3の出力、クラッチ4の断接、および変速機5の変速を制御して、車両1を自動走行させる装置であり、複数の制御装置を備える。
 具体的には、自動走行装置2は、エンジン用ECU(エンジン用制御装置)10、動力伝達用ECU(動力伝達用制御装置)11、目標車速設定装置13、増減値設定装置14、道路情報取得装置20、車両情報取得装置30、および走行制御装置100を有する。
 なお、エンジン用ECU10、動力伝達用ECU11、および、走行制御装置100は、車載ネットワークにより相互に接続され、必要なデータや制御信号を相互に送受信可能となっている。
 エンジン用ECU10は、エンジン3の出力を制御する。動力伝達用ECU11は、クラッチ4の断接および変速機5の変速を制御する。
 目標車速設定装置13は、車両1の自動走行時の目標車速を、走行制御装置100に設定する。
 増減値設定装置14は、車両1の自動走行時の速度減少値、および、速度増加値を、走行制御装置100に設定する。これらの値は、車両1の自動走行に用いられるパラメータである。
 目標車速設定装置13および増減値設定装置14は、例えば、運転席のダッシュボード(図示せず)に配置されたタッチパネル付きディスプレイ等の情報入力インタフェースを含み、運転者から上記パラメータの設定を受け付ける。目標車速、速度減少値、速度増加値は、適宜、「設定情報」という。
 道路情報取得装置20は、道路の状況および車両1の現在位置を示す道路情報を取得し、走行制御装置100へ出力する。例えば、道路情報取得装置20は、衛星測位システム(GPS)の受信機である現在位置取得装置21と、走行中の天候を取得する天候取得装置22と、車両1の周囲の走行車両(先行車両や並走車両など)との距離や車速差を検知する周囲センサ23とを含む。
 なお、道路情報は、走行制御装置100(図2の走行制御部120)により生成される走行スケジュールを考慮して、道路の各地点の勾配を示す道路勾配情報を含むことが望ましい。道路勾配情報は、例えば、道路各所の水平位置(緯度経度情報等)に対応付けて、該当する位置の標高(道路標高)を記述したデータである。
 車両情報取得装置30は、運転者による操作内容や車両1の状態を示す車両情報を取得し、走行制御装置100へ出力する。例えば、車両情報取得装置30は、アクセルペダルの踏み込み量を検出するアクセルセンサ31、ブレーキペダルの踏み込みの有無を検出するブレーキスイッチ32、シフトレバー33、ターンシグナルスイッチ34、および、車両1の速度を検出する車速センサ35を含む。
 走行制御装置100は、上述の設定情報、道路情報、および車両情報に基づいて、駆動走行と追従走行とを含む走行スケジュールを生成する。
 そして、走行制御装置100は、生成した走行スケジュールに従って車両1が走行するように、車両1の各部を制御する。
 エンジン用ECU10、動力伝達用ECU11、走行制御装置100は、図示しないが、例えば、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)等の記憶媒体、RAM(Random Access Memory)等の作業用メモリ、および通信回路をそれぞれ有する。この場合、例えば、走行制御装置100を構成する上記各部の機能は、CPUが制御プログラムを実行することにより実現される。なお、エンジン用ECU10、動力伝達用ECU11、走行制御装置100の全部または一部は、一体的に構成されていてもよい。
<走行制御装置100の構成例>
 次に、走行制御装置100の構成について、図2を用いて説明する。図2は、走行制御装置100の構成の一例を示すブロック図である。
 図2に示すように、走行制御装置100は、方向指示判定部110と、走行制御部120と、先行車両特定部130と、車間距離検知部140とを有する。
 まず、方向指示判定部110について説明する。
 方向指示判定部110は、方向指示器(図示略)が作動しているか否かについて、方向指示操作スイッチ(図示略)からの検出信号により判定し、判定結果を走行制御部120に出力する。
 先行車両特定部130は、周囲センサ23の検知信号により、車両1の前方を走行する先行車両の有無(先行車両の特定、非特定)を検知し、検知結果を走行制御部120に出力する。なお、先行車両特定部130は、より好適には、車載カメラの画像データを用いて、画像認識処理によって、先行車両が存在するか否かを検知する。
 車間距離検知部140は、周囲センサ23の検知信号に基づいて、車両1と先行車両との車間距離を検知し、検知結果を走行制御部120に出力する。なお、車間距離検知部140は、より好適には、車載カメラと車載レーダの両方を用いる。車間距離検知部140は、例えば、車載カメラの画像データを用いて、画像認識処理によって、先行車両の二次元的な位置を検知する。そして、車間距離検知部140は、車載レーダを用いて先行車両との車間距離を検知する。
 走行制御部120は、追従走行と駆動走行との間で車両1の走行を切り替える制御を行う。
 走行制御部120は、先行車両の有無の情報、先行車両との車間距離などに基づいて、車両1の走行を切り替える制御を行う。
 次に、車両1の走行の切り替え制御について、具体例について図3を参照して説明する。図3に、車両1の相対的位置の時間的変化を実線201で示し、先行車両の相対的位置の時間的変化を実線202で示す。実線201,202間の距離は車間距離Lを表す。
 方向指示判定部110は、図3に示すt1時に出力されたオン信号により、方向指示が作動されていると判定する。
 先行車両特定部130は、図3に示すロックオン信号により、先行車両があると判定する。
 走行制御部120は、追従走行中において、図3に示すt1時に方向指示の作動が判定され、かつ、先行車両が特定され、先行車両との車間距離Lが所定距離を超えていることを条件として、この条件を満たす場合、車両1の走行を追従走行から駆動走行へ切り替る制御を行う。ここでの所定距離は、車両1が先行車両を追い越す場合における安全性に配慮された車間距離、つまり、所定距離を超える場合に安全性を担保できる距離である。
 以上、先行車両との車間距離Lが所定距離を超えていること等の条件を満たす場合に、車両1の走行が追従走行から駆動走行へ切り替えられる。駆動走行では、車両1の速度を目標車速に合わせるように車両1が加速される。例えば、運転者は走行車線から追い越し車線に進路変更するようにハンドル操作を行う。これにより、車両1の目標車速と先行車両の速度との差により、車両1は先行車両を追い越すことができる。
 しかしながら、駆動走行に切り替えられ、車両1が加速されても、運転者が上記ハンドル操作を行わない場合がある。この場合、車両1の目標車速と先行車両の速度との差により、車両1が先行車両に接近し、先行車両との車間距離Lを十分に確保できないため、先行車両を追い越す際の安全性を低下させる状況となる。
 走行制御部120は、駆動走行中において、図3に示すt2時に方向指示の作動が判定され、かつ、先行車両が特定され、先行車両との車間距離Lが所定距離(上記追従走行中における所定距離と同じでもよく、また、同じでなくてもよい)未満であることを条件として、この条件を満たす場合、車両1の走行を駆動走行から追従走行へ切り替える制御を行う。ここでの所定距離は、車両1が先行車両を追い越す場合における安全性に配慮された車間距離、つまり、所定距離未満の場合に安全性を担保できない距離である。
 次に、走行制御部120における走行制御の動作例について説明する。
 まず、追従走行中における走行制御の動作例について説明する。図4は、追従走行中における走行制御の動作例を示すフローチャートである。図4における処理は、例えば車両1の走行中において実行される。
 図4に示すように、走行制御部120は、追従走行中であるか否かについて判定する(ステップS100)。判定の結果、追従走行中でない場合(ステップS100:NO)、処理は終了する。一方、追従走行中である場合(ステップS100:YES)、処理はステップS110に遷移する。
 ステップS110において、走行制御部120は、方向指示が作動であるか否かについて判定する。方向指示の作動でない場合(ステップS110:NO)、処理は終了する。一方、方向指示の作動である場合(ステップS110:YES)、走行制御部120は、先行車両があるか否かについて判定する(ステップS120)。
 先行車両がない場合(ステップS120:NO)、処理は終了する。一方、先行車両がある場合(ステップS120:YES)、走行制御部120は、車間距離を取得する(ステップS130)。
 次に、走行制御部120は、車間距離が所定距離を超えているか否かについて判定する(ステップS140)。
 車間距離が所定距離以下である場合(ステップS140:NO)、処理は終了する。一方、車間距離が所定距離を超えている場合(ステップS140:YES)、走行制御部120は、車両1の走行を追従走行から駆動走行へ切り替える制御を行う(ステップS150)。
 次に、駆動走行中における走行制御の動作例について説明する。図5は、駆動走行中における走行制御の動作例を示すフローチャートである。図5における処理は、例えば車両1の走行中において実行される。
 図5に示すように、走行制御部120は、駆動走行中であるか否かについて判定する(ステップS200)。判定の結果、駆動走行中でない場合(ステップS200:NO)、処理は終了する。一方、駆動走行中である場合(ステップS200:YES)、処理はステップS210に遷移する。
 ステップS210において、走行制御部120は、方向指示が作動であるか否かについて判定する。方向指示の作動でない場合(ステップS210:NO)、処理は終了する。一方、方向指示の作動である場合(ステップS210:YES)、走行制御部120は、先行車両があるか否かについて判定する(ステップS220)。
 先行車両がない場合(ステップS220:NO)、処理は終了する。一方、先行車両がある場合(ステップS220:YES)、走行制御部120は、車間距離を取得する(ステップS230)。
 次に、走行制御部120は、車間距離が所定距離(上記ステップS140における所定距離と同じでもよく、また、同じでなくてもよい)未満であるか否かについて判定する(ステップS240)。
 車間距離が所定距離以上である場合(ステップS240:NO)、処理は終了する。一方、車間距離が所定距離未満である場合(ステップS240:YES)、走行制御部120は、車両1の走行を駆動走行から追従走行へ切り替える制御を行う(ステップS250)。
 <本実施の形態の効果>
 以上、本実施の形態に係る走行制御装置100によれば、走行制御部120は、追従走行中において、方向指示の作動が判定され、かつ、先行車両が特定され、かつ、車間距離Lが所定距離を超えていることを条件として、この条件を満たす場合、車両1の走行を追従走行から駆動走行へ切り替える制御を行う。これにより、車両1の制動に妨げられることなく、車両1を加速することができるため、また、先行車両を追い越しする場合に十分な車間距離があるため、安全性を高めつつ、追従走行からスムーズな追い越しができる。
 また、上記実施の形態に係る走行制御装置100によれば、走行制御部120は、駆動走行中において、方向指示の作動が判定され、かつ、先行車両が特定され、車間距離Lが所定距離未満であることを条件として、この条件を満たす場合、車両1の走行を駆動走行から追従走行へ切り替える制御を行う。これにより、例えば、車間距離が不十分な場合、駆動走行から追従走行に切り替わるため、先行車両を追い越す際の安全性を上げることができる。
 <変形例1>
 次に、本実施の形態の変形例1について説明する。
 上記実施の形態では、先行車両を追い越す場合の条件となる所定距離は車両1の速度に拘わらず一定である。本開示はこれに限らず、所定距離は、車両1の速度に応じて設定されてもよい。なお、車両1の速度は、車速センサ35により検出される。
 <変形例2>
 なお、上記実施の形態では、走行制御部120は、追従走行中において、方向指示の作動が判定され、かつ、先行車両が特定され、かつ、車間距離Lが所定距離を超えていることを条件として、この条件を満たす場合に、追従走行から駆動走行に切り替える制御を行う。本開示はこれに限らず、上記条件を満たし、かつ、先行車両に対する車両1の離間方向の相対速度が所定速度を超える場合、追従走行から駆動走行へ切り替える制御を行うようにしてもよい。なお、車間距離検知部140によって計測される車間距離の変化に基づいて、先行車両に対する離間方向の相対速度を算出することができる。離間方向の相対速度に基づいて追従走行から駆動走行へ切り替える制御を行うことにより、車間距離が十分に確保されるため、先行車両を追い越す際の安全性をさらに上げることができる。
 <変形例3>
 なお、上記実施の形態では、走行制御部120は、駆動走行中において、方向指示の作動が判定され、かつ、先行車両が特定され、かつ、車間距離Lが所定距離未満であることを条件として、この条件を満たす場合に、駆動走行から追従走行に切り替える制御を行う。本開示はこれに限らず、上記条件を満たし、かつ、先行車両に対する車両1の接近方向の相対速度が所定速度(上記離間方向の相対速度における所定速度と同じでもよく、また、同じでなくてもよい)を超える場合、駆動走行から追従走行へ切り替える制御を行うようにしてもよい。接近方向の相対速度に基づいて駆動走行から追従走行へ切り替える制御を行うことにより、車間距離が十分に確保されない場合、駆動走行から追従走行に切り替わるため、先行車両を追い越す際の安全性をさらに上げることができる。
 以上、本開示の具体例を詳細に説明したが、これらは例示にすぎず、請求項の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 本出願は、2017年3月23日付で出願された日本国特許出願(特願2017-057819)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、安全性を高めつつ、追従走行からスムーズな追い越しが要求される自動車等の走行制御装置として有用である。
 1 車両
 2 自動走行装置
 3 エンジン
 4 クラッチ
 5 変速機
 6 推進軸
 7 差動装置
 8 駆動軸
 9 車輪
 10 エンジン用ECU
 11 動力伝達用ECU
 13 目標車速設定装置
 14 増減値設定装置
 20 道路情報取得装置
 21 現在位置取得装置
 22 天候取得装置
 23 周囲センサ
 30 車両情報取得装置
 31 アクセルセンサ
 32 ブレーキスイッチ
 33 シフトレバー
 34 ターンシグナルスイッチ
 35 車速センサ
 40 制動装置
 41 フットブレーキ
 42 リターダ
 43 補助ブレーキ
 100 走行制御装置
 110 方向指示判定部
 120 走行制御部
 130 先行車両特定部
 140 車間距離検知部

Claims (6)

  1.  車両の方向指示器による方向指示が作動しているか否かを判定する方向指示判定部と、
     前記車両を当該車両の前方を走行する先行車両に追従させて走行させる追従走行と、前記車両の速度を目標車速に合わせるように前記車両を走行させる駆動走行との間で車両の走行を切り替える制御を行う走行制御部と、
     前記追従走行中における前記車両と前記先行車両との車間距離を検知する車間距離検知部と、
     を備え、
     前記走行制御部は、前記追従走行中において、前記方向指示の作動が判定され、かつ、前記車間距離が所定距離を超えている第1条件を満たす場合、前記車両の走行を前記追従走行から前記駆動走行へ切り替える、走行制御装置。
  2.  前記先行車両に対する前記車両の離間方向の相対速度を検知する相対速度検知部をさらに備え、
     前記走行制御部は、前記第1条件を満たし、かつ、前記離間方向の相対速度が所定速度を超えている場合、前記車両の走行を前記追従走行から前記駆動走行へ切り替える、請求項1に記載の走行制御装置。
  3.  前記走行制御部は、前記駆動走行中において、前記方向指示の作動が判定され、かつ、前記先行車両が特定され、かつ、前記車間距離が所定距離未満である第2条件を満たす場合、車両の走行を前記駆動走行から前記追従走行へ切り替える、請求項2に記載の走行制御装置。
  4.  前記走行制御部は、前記第2条件を満たし、かつ、前記先行車両に対する前記車両の接近方向の相対速度が所定速度を超える場合、車両の走行を前記駆動走行から前記追従走行へ切り替える制御を行う、請求項3に記載の走行制御装置。
  5.  請求項1に記載の走行制御装置を備える、車両。
  6.  車両の方向指示器による方向指示が作動しているか否かを判定し、
     前記車両を当該車両の前方を走行する先行車両に追従させて走行させる追従走行と、前記車両の速度を目標車速に合わせるように前記車両を走行させる駆動走行との間で車両の走行を切り替える制御を行い、
     前記車両と前記先行車両との車間距離を検知し、
     前記追従走行中において、前記方向指示の作動が判定され、かつ、前記車間距離が所定距離を超えている場合、車両の走行を前記追従走行から前記駆動走行へ切り替える、走行制御方法。
PCT/JP2018/010560 2017-03-23 2018-03-16 走行制御装置、車両および走行制御方法 WO2018173966A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018001539.4T DE112018001539T5 (de) 2017-03-23 2018-03-16 Steuervorrichtung für Spurhaltevorrichtung, Fahrzeug und Spurhaltesteuerverfahren
US16/496,435 US11124189B2 (en) 2017-03-23 2018-03-16 Travel control device, vehicle, and travel control method
CN201880019426.8A CN110431058B (zh) 2017-03-23 2018-03-16 行驶控制装置、车辆及行驶控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017057819A JP6776968B2 (ja) 2017-03-23 2017-03-23 走行制御装置、車両および走行制御方法
JP2017-057819 2017-03-23

Publications (1)

Publication Number Publication Date
WO2018173966A1 true WO2018173966A1 (ja) 2018-09-27

Family

ID=63584387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010560 WO2018173966A1 (ja) 2017-03-23 2018-03-16 走行制御装置、車両および走行制御方法

Country Status (5)

Country Link
US (1) US11124189B2 (ja)
JP (1) JP6776968B2 (ja)
CN (1) CN110431058B (ja)
DE (1) DE112018001539T5 (ja)
WO (1) WO2018173966A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124189B2 (en) 2017-03-23 2021-09-21 Isuzu Motors Limited Travel control device, vehicle, and travel control method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051186B2 (ja) * 2018-05-17 2022-04-11 エヌ・イーケムキャット株式会社 排ガス浄化触媒
JP7106477B2 (ja) * 2019-03-20 2022-07-26 本田技研工業株式会社 車両制御装置
JP2021172239A (ja) * 2020-04-27 2021-11-01 トヨタ自動車株式会社 走行制御装置、情報処理装置、および情報処理方法
DE102021204998A1 (de) * 2021-05-18 2022-11-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Aktivierung einer Überholassistenzfunktion eines einspurigen Kraftfahrzeugs
FR3131886A1 (fr) * 2022-01-18 2023-07-21 Psa Automobiles Sa Procédé et dispositif de contrôle d’un système de régulation adaptative de vitesse d’un véhicule
DE102022128390A1 (de) 2022-10-26 2024-05-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben eines Fahrerassistenzsystems eines Fahrzeugs mit automatisierter Querführung bei einer Folgefahrt, Fahrerassistenzsystem sowie Fahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156977A (ja) * 1991-12-04 1993-06-22 Toyota Motor Corp 車両用走行制御装置
JPH05221253A (ja) * 1992-02-12 1993-08-31 Toyota Motor Corp 車両用走行制御装置
JP2002211270A (ja) * 2000-11-16 2002-07-31 Honda Motor Co Ltd オートクルーズ装置
JP2004017895A (ja) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd 先行車追従制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432270B2 (ja) * 2001-03-22 2010-03-17 日産自動車株式会社 車間距離制御装置
CN202413789U (zh) * 2011-11-30 2012-09-05 富士重工业株式会社 车辆用驾驶辅助装置
CN103318176B (zh) * 2013-06-28 2016-02-24 郑州宇通客车股份有限公司 一种客车自适应巡航系统的控制方法
DE112013007677T5 (de) * 2013-12-10 2016-09-08 Mitsubishi Electric Corporation Fahrsteuerungsvorrichtung
JP2016144967A (ja) 2015-02-06 2016-08-12 富士重工業株式会社 車両制御装置
CN104670235B (zh) * 2015-02-17 2017-05-17 苏州安智汽车零部件有限公司 一种前车跟随的实现方法
JP6413964B2 (ja) 2015-07-17 2018-10-31 トヨタ自動車株式会社 クルーズコントロール装置
JP6565526B2 (ja) 2015-09-18 2019-08-28 スズキ株式会社 エンジンのオイル通路構造
JP6617534B2 (ja) * 2015-11-30 2019-12-11 株式会社デンソー 運転支援装置
JP6776968B2 (ja) 2017-03-23 2020-10-28 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05156977A (ja) * 1991-12-04 1993-06-22 Toyota Motor Corp 車両用走行制御装置
JPH05221253A (ja) * 1992-02-12 1993-08-31 Toyota Motor Corp 車両用走行制御装置
JP2002211270A (ja) * 2000-11-16 2002-07-31 Honda Motor Co Ltd オートクルーズ装置
JP2004017895A (ja) * 2002-06-19 2004-01-22 Nissan Motor Co Ltd 先行車追従制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11124189B2 (en) 2017-03-23 2021-09-21 Isuzu Motors Limited Travel control device, vehicle, and travel control method

Also Published As

Publication number Publication date
US20200017107A1 (en) 2020-01-16
DE112018001539T5 (de) 2020-01-02
CN110431058B (zh) 2022-10-25
CN110431058A (zh) 2019-11-08
US11124189B2 (en) 2021-09-21
JP6776968B2 (ja) 2020-10-28
JP2018158678A (ja) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2018173966A1 (ja) 走行制御装置、車両および走行制御方法
JP5336052B2 (ja) クルーズ制御装置、プログラム、及び目標車速の設定方法
US10214211B2 (en) Drive control apparatus
US11814048B2 (en) Vehicle travel control apparatus
JP2008195226A (ja) 車両用走行制御装置
CN110072751B (zh) 汽车的行驶控制装置和汽车的行驶控制系统
US10691124B2 (en) Control apparatus for vehicle
JP2016215921A (ja) 車両の制御装置
JP2011183983A (ja) 車両制御装置
US20190018409A1 (en) Systems and methods for providing an intelligent override for a driving automation system
US20230294701A1 (en) Driving support device, vehicle, driving support method, and storage medium
US20220203988A1 (en) Method for driving a vehicle platoon
CN111791894A (zh) 车辆行驶控制装置
JP2018193011A (ja) 車両の制御装置
US11420627B2 (en) Driving assistance device
JP2017121851A (ja) 車両の走行制御装置
JP7070450B2 (ja) 車両走行制御装置
CN115003578A (zh) 用于控制动力系的巡航控制系统和方法
US11220178B2 (en) Vehicle speed regulation incorporating driver wishes under cornering
JP2018127095A (ja) 走行制御装置、車両および走行制御方法
CN112550288A (zh) 车辆驾驶辅助装置
US20190329781A1 (en) Driving assist system and driving assist method
JP2013151993A (ja) 車両制御装置
US20240101121A1 (en) Controlling driving modes and operations for vehicles
US20230311875A1 (en) Control device, method for operating control device, and non-transitory computer-readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771908

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18771908

Country of ref document: EP

Kind code of ref document: A1