WO2018173781A1 - Pickup method, pickup device, and mounting device - Google Patents

Pickup method, pickup device, and mounting device Download PDF

Info

Publication number
WO2018173781A1
WO2018173781A1 PCT/JP2018/009067 JP2018009067W WO2018173781A1 WO 2018173781 A1 WO2018173781 A1 WO 2018173781A1 JP 2018009067 W JP2018009067 W JP 2018009067W WO 2018173781 A1 WO2018173781 A1 WO 2018173781A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
holding surface
transfer plate
electrostatic transfer
chip holding
Prior art date
Application number
PCT/JP2018/009067
Other languages
French (fr)
Japanese (ja)
Inventor
岩出 卓
新井 義之
潤 稲垣
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to CN201880025630.0A priority Critical patent/CN110537252B/en
Priority to KR1020197027401A priority patent/KR102416296B1/en
Publication of WO2018173781A1 publication Critical patent/WO2018173781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67144Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67712Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrate being handled substantially vertically
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips

Definitions

  • the present invention relates to a pickup method, a pickup apparatus, and a mounting apparatus for picking up a desired semiconductor chip from a plurality of arranged semiconductor chips.
  • an LED used for a display is required to be mounted at high speed with an accuracy of several ⁇ m, which is an LED chip of 50 ⁇ m ⁇ 50 ⁇ m or less called a micro LED.
  • Patent Document 1 a semiconductor chip formed in a lattice shape on a wafer is irradiated with a band-shaped laser beam and transferred to the transfer substrate 200 in batches for each line or a plurality of lines, and then transferred to the transfer substrate 200.
  • a configuration is described in which a plurality of subsequent semiconductor chips are irradiated with a band-shaped laser beam and transferred onto the transfer substrate 300 in a lump for each line or a plurality of lines.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-161221
  • An object of the present invention is to solve the above-described problems, eliminate the influence of adhesive force and the like, and perform semiconductor chip pickup and mounting with high reliability.
  • the present invention is a pickup method for picking up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface, A charging step of forming a desired charging pattern on the semiconductor chip holding surface; A pickup step of selectively picking up the semiconductor chip by adsorbing it to the semiconductor chip holding surface according to the desired charging pattern among the plurality of semiconductor chips arranged.
  • a pickup method is provided.
  • the electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface.
  • an electrode to which a high voltage is applied is selectively contacted to the semiconductor chip holding surface.
  • the desired charging pattern may be formed on the semiconductor chip holding surface of the electrostatic transfer plate by bringing them close to each other.
  • the electrostatic transfer plate includes a photoconductive insulating layer, the surface of the insulating layer is the semiconductor chip mounting surface, A uniform charging step in which the charging step uniformly charges the semiconductor chip holding surface; An exposure step of irradiating the semiconductor chip holding surface with light energy according to the desired charging pattern, and forming the desired charging pattern on the semiconductor chip holding surface of the electrostatic transfer plate. Also good.
  • the present invention is a pickup device that picks up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface, A charging pattern forming apparatus for forming a desired charging pattern on the semiconductor chip holding surface; A mounting table for arranging a plurality of semiconductor chips; An electrostatic transfer plate transfer head for transferring the electrostatic transfer plate; The electrostatic transfer plate transfer head transfers the electrostatic transfer plate to the mounting table, and selectively selects a plurality of semiconductor chips arranged on the mounting table according to the desired charging pattern. It is an object of the present invention to provide a pickup device that picks up the semiconductor chip by adsorbing it to the semiconductor chip holding surface.
  • the electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface, and the charging pattern forming device selectively applies an electrode to which a voltage is applied to the semiconductor chip holding surface. It is good also as a structure which forms the said desired charging pattern in the said semiconductor chip holding surface of the said electrostatic transfer board by making it contact or adjoin to.
  • the insulating layer is photoconductive, the surface of the insulating layer is the semiconductor chip holding surface, and the charging pattern forming device uniformly charges the semiconductor chip holding surface. It is good also as a structure which has an apparatus and the exposure apparatus which irradiates light energy with respect to the said semiconductor chip holding surface according to the said desired charging pattern.
  • the semiconductor chips picked up by the pickup device may be collectively mounted on the substrate.
  • the semiconductor chip may be an LED chip having a projected area of 50 ⁇ m ⁇ 50 ⁇ m or less.
  • Example 1 of this invention It is a figure explaining the mounting base charging process and carrier substrate isolation
  • FIG. 1 is a diagram for explaining a mounting table charging step and a carrier substrate separating step in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram for explaining a charging step in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram for explaining the first half of the pickup process in the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the latter half of the pickup process in the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining a mounting process in the first embodiment of the present invention.
  • a semiconductor chip 1 is formed on a carrier substrate 3 made of sapphire, and the semiconductor chip 1 is held on one side of the carrier substrate 3.
  • the other surface, which is the opposite surface, is exposed to the outside and bumps 2 are formed.
  • the carrier substrate 3 has a circular shape or a quadrangular shape, and there is a substrate made of gallium arsenide other than sapphire.
  • the semiconductor chip 1 is diced and a plurality (several hundred to several tens of thousands) of the semiconductor substrate 1 are two-dimensionally arranged on the carrier substrate 3.
  • a small semiconductor chip 1 called a micro LED has a size of 50 ⁇ m ⁇ 50 ⁇ m or less, and is arranged at a pitch obtained by adding a dicing width to this size.
  • Such a small semiconductor chip 1 is required to be mounted on a circuit board with high accuracy (for example, accuracy of 1 ⁇ m or less).
  • each semiconductor chip 1 is inspected in advance to remove defective LED chips. Specifically, a laser beam stronger than that in the case of laser lift-off described later is irradiated to burn down defective chips.
  • the mounting table charging step the surface of the mounting table charging device 60 is brought into contact with or close to the entire surface of the mounting table 50, and a positive voltage 70 of about 1 KV is applied.
  • the mounting table 50 includes a table 51 made of a metal such as iron and an insulator 52 made of glass provided on the surface of the table 51 on the side where the mounting table charging device 60 is brought into contact. By applying a positive voltage to the insulator 52 of the mounting table 50, the entire surface of the mounting table 50 is charged to a positive potential.
  • the mounting table 50 is charged to a positive potential.
  • the present invention is not necessarily limited to this and can be changed as appropriate.
  • it may be charged to a negative potential.
  • the insulator 52 may be made of a material such as Teflon (registered trademark) or polypropylene in accordance with the charge train.
  • the surface of the mounting table charging device 60 is brought into contact with or close to the entire surface of the mounting table 50 in order to charge the surface of the mounting table 50. It can be changed.
  • a charging bar in which corona discharge portions are arranged in a row is used, and the charging bar is brought into contact with or close to the surface of the mounting table 50 and is relative to the mounting table 50 in a direction perpendicular to the arrangement direction of the corona discharge units. You may comprise so that it may move. Thereby, the surface of the mounting table 50 can be charged with a simple configuration.
  • the mounting table After removing the mounting table charging device 60, the mounting table whose surface is charged on the other surface of the plurality of semiconductor chips 1 whose one surface is held on the carrier substrate 3 by a carrier substrate transfer head (not shown). 50 (see FIG. 1B). Thereby, the other surface of the semiconductor chip 1 holding the carrier substrate 3 is held on the mounting table 50 by static electricity.
  • a carrier substrate separation process for separating one surface of the semiconductor chip 1 from the carrier substrate 3 is performed.
  • a carrier substrate separation device (not shown) irradiates the carrier substrate 3 with a laser beam 90 made of an excimer laser in a line shape, and the carrier substrate 3 or the line-shaped laser beam 90 is irradiated with the laser beam.
  • the entire carrier substrate 3 is irradiated with a laser beam by being relatively moved in a direction perpendicular to the 90 line (see FIG. 1C).
  • a part of the GaN layer in the carrier substrate 3 made of sapphire is decomposed into Ga and N, and the semiconductor chip 1 is separated from the carrier substrate 3. This technique is called laser lift-off.
  • the separated carrier substrate 3 can be removed by the carrier substrate transfer head 20.
  • the semiconductor chip 1 to be mounted is held on the mounting table 50.
  • a charging step of picking up the semiconductor chip 1 by the electrostatic transfer plate 10 whose outermost layer has the semiconductor chip holding surface 13 is executed (FIG. 2). reference).
  • the electrostatic transfer plate 10 has a plate 11 made of a metal such as iron and an insulating layer 12 on one side of the plate 11.
  • the surface opposite to the plate 11 side of the insulating layer 12 is referred to as a semiconductor chip mounting surface.
  • a desired charging pattern is formed on the semiconductor chip holding surface 13 by bringing the semiconductor chip holding surface 13 into contact with or close to the charging pattern forming device 30.
  • the charging pattern forming apparatus 30 includes a plurality of protruding electrode portions 31 with a part of the surface protruding and a plurality of non-projecting portions 32 that do not protrude.
  • a positive voltage 40 of about 1 KV is applied to the charging pattern forming device 30, and two-dimensionally at a pitch that matches the arrangement pitch of the desired semiconductor chips 1 among the plurality of semiconductor chips 1 arranged on the mounting table 50.
  • the protruding electrode portion 31 protrudes (also in the depth direction of FIG. 2).
  • the electrostatic transfer plate transfer head 20 holds the electrostatic transfer plate 10 by vacuum suction. Touch or bring close.
  • the portion of the semiconductor chip holding surface 13 in contact with the protruding electrode portion 31 in the electrostatic transfer plate 10 is charged with a positive potential.
  • the positive potential is charged on the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in contact with the desired region where the protruding electrode portion 31 is formed in the charging pattern forming apparatus 30, thereby forming a desired charging pattern.
  • a slight region around it may be charged, so the protruding electrode portion 31 is configured to contact an area smaller than the desired region. May be.
  • the protruding electrode 31 to which a voltage is applied is brought into contact with the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in a desired area, and the protruding electrode 31 to which a voltage is applied is applied to the area other than the desired area.
  • a desired charging pattern can be formed by the charging pattern forming apparatus 30 in which the non-projecting portions 32 are formed so as not to be in contact with each other.
  • the charging pattern forming apparatus 30 having a plurality of protruding electrode portions 31 and a plurality of non-projecting portions 32 is brought into contact with or close to the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 as desired.
  • a desired charging pattern may be formed by moving or contacting the insulating layer 12 of the electrostatic transfer plate 10 while moving a single electrode portion.
  • a desired charging pattern may be formed by selectively contacting or approaching the electrode to which the high voltage is applied to the insulating layer 12.
  • a desired charging pattern is formed so as to pick up a plurality of semiconductor chips 1.
  • the present invention is not necessarily limited to this and can be changed as appropriate.
  • a desired charging pattern may be formed so as to pick up one semiconductor chip 1.
  • the electrostatic transfer plate 10 is charged to a positive potential, but the present invention is not necessarily limited to this, and can be changed as appropriate. For example, it may be charged to a negative potential.
  • the insulating layer 12 may be made of a material such as Teflon (registered trademark) or polypropylene in accordance with the charge train.
  • the electrostatic transfer plate 10 is placed in contact with the semiconductor chip 1 on the mounting table 50 and picked up, but the electric potential charged on the surface of the mounting table 50 is neutralized immediately before that.
  • the charge removal can be performed on the mounting table 50 by light discharge, AC charge removal, or the like.
  • the semiconductor chip 1 held on the mounting table 50 may jump due to static electricity.
  • a semiconductor chip is selectively picked up by performing a pick-up process and attracting the semiconductor chip holding surface 13 according to a desired charging pattern among the plurality of semiconductor chips arranged. That is, the electrostatic transfer plate 10 charged to a desired charging pattern is transferred to the semiconductor chip 1 mounted on the mounting table 50 by being attracted by the electrostatic transfer plate transfer head 20 (see FIG. 3A). ), The semiconductor chip holding surface 13 charged to the desired charging pattern of the electrostatic transfer plate 10 is selectively brought into contact with the semiconductor chip 1 (see FIG. 3B). Then, as the electrostatic transfer plate transfer head 20 moves away from the mounting table 50, the electrostatic transfer plate 10 also moves away from the mounting table 50. At this time, a plurality of semiconductor chips 1 corresponding to a desired charging pattern are attracted and picked up by the electrostatic transfer plate 10 due to static electricity (see FIG. 4).
  • the semiconductor chip 1 corresponding to the pitch and the number of arrangements mounted on the substrate is selectively picked up so that it can be efficiently transferred to the mounting process described later.
  • the electric potential charged on the surface of the mounting table 50 is removed prior to the pick-up process.
  • the present invention is not necessarily limited to this and can be changed as appropriate.
  • the surface of the mounting table 50 is kept charged, and a higher potential (for example, about 2 KV) than the potential charged on the mounting table 50 is charged on the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in the charging process.
  • the pickup process may be executed. This eliminates the need for neutralizing the potential charged on the surface of the mounting table 50 and allows the semiconductor chip 1 to be easily picked up.
  • the mounting step is executed to mount the semiconductor chip 1 held on the electrostatic transfer plate 10 on the substrate 80. That is, the electrostatic transfer plate transfer head 20 sucks the electrostatic transfer plate 10 and transfers it to the substrate 80 to mount the semiconductor chip 1 held on the electrostatic transfer plate 10 on the substrate 80.
  • the bumps 2 of the semiconductor chip 1 and the electrodes of the substrate 80 are performed by metal bonding (see FIG. 5A).
  • the electrostatic transfer plate transfer head 20 releases the vacuum suction and moves away from the electrostatic transfer plate 10, the electrostatic transfer plate 10 and the semiconductor chip 1 remain on the substrate 80, and the mounting process is completed. That is, the electrostatic transfer plate transfer head 20 mounts the semiconductor chip 1 picked up on the electrostatic transfer plate 10 together with the electrostatic transfer plate 10.
  • the electrostatic transfer plate 10 can be removed from the semiconductor chip 1 by neutralizing the electrostatic transfer plate 10 as necessary.
  • the neutralization can be performed on the electrostatic transfer plate 10 by light discharge, AC neutralization, or the like.
  • the semiconductor chip 1 since the semiconductor chip 1 is bonded to the substrate, if the electrostatic transfer plate 10 is lightly charged, it can be removed by vacuum suction with the electrostatic transfer plate transfer head 20 without static elimination.
  • the carrier substrate is transferred by the carrier substrate transfer head
  • the electrostatic transfer plate is transferred by the electrostatic transfer plate transfer head. It can be changed.
  • the carrier substrate and the electrostatic transfer plate may be transferred by a common transfer head.
  • Example 1 a pickup method for picking up a semiconductor chip with an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface, A charging step of forming a desired charging pattern on the semiconductor chip holding surface; A pickup step of selectively picking up the semiconductor chip by adsorbing it to the semiconductor chip holding surface according to the desired charging pattern among the plurality of semiconductor chips arranged.
  • the pickup method described above it is possible to mount the semiconductor chip picked up on the electrostatic transfer plate with high reliability without the influence of adhesive force or the like.
  • the pickup device picks up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface, A charging pattern forming apparatus for forming a desired charging pattern on the semiconductor chip holding surface; A mounting table for arranging a plurality of semiconductor chips; An electrostatic transfer plate transfer head for transferring the electrostatic transfer plate; The electrostatic transfer plate transfer head transfers the electrostatic transfer plate to the mounting table, and selectively selects a plurality of semiconductor chips arranged on the mounting table according to the desired charging pattern.
  • the pick-up device that picks up the semiconductor chip by adsorbing to the semiconductor chip holding surface eliminates the influence of adhesive force and the like, and the mounting of the semiconductor chip picked up on the electrostatic transfer plate is reliable. Can be done high.
  • Example 2 of the present invention is different from Example 1 in the configuration of the charging pattern forming apparatus and the charging process.
  • a second embodiment will be described with reference to FIGS.
  • FIG. 6 is a diagram for explaining a uniform charging process in the second embodiment of the present invention.
  • FIG. 7 is a view for explaining an exposure process in Embodiment 2 of the present invention.
  • the charging process executed by the charging pattern forming apparatus includes a uniform charging process and an exposure process.
  • the electrostatic transfer plate 110 in Example 2 includes a plate 11 made of a metal such as iron and an insulating layer 112 having photoconductivity on one surface of the plate 11, and the surface thereof is a semiconductor chip mounting surface 113.
  • the surface of the charging pattern forming apparatus 13 is uniformly flat on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 held by the electrostatic transfer plate transfer head 20 by suction.
  • the charging unit 131 is brought into contact with or close to the charging unit 131 (see FIG. 6). A voltage of approximately 1 KV is applied to the uniform charging unit 131, whereby the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 is uniformly charged with a positive potential. Thereafter, the electrostatic transfer plate 110 is separated from the uniform charging unit 131 by the electrostatic transfer plate transfer head 20.
  • an exposure process is executed to form a desired charging pattern on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110. That is, the laser light 190 is irradiated from an exposure unit (not shown) to the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 held by the electrostatic transfer plate transfer head 20 (see FIG. 7A). ).
  • the conductivity of the insulating layer 112 having photoconductivity increases and the charged potential disappears. Therefore, the region irradiated with the laser beam 190 loses charge, and the region not irradiated with the laser beam 190 can remain charged.
  • this property is used to irradiate the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 with the laser light 190 and the region not irradiated with the laser light 190 according to the desired charging pattern. Select the area to be used. Thereby, a desired charging pattern can be formed on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 (see FIG. 7B).
  • the exposure unit is provided with a galvano mirror, and the galvano mirror is irradiated with a laser beam to control the position where the laser beam 190 is irradiated. Can be done.
  • Example 2 although it comprised so that the position which irradiates the laser beam 190 with a galvanometer mirror might be controlled, it is not necessarily limited to this but can change suitably.
  • a mask that shields a desired charged pattern region between the exposure unit and the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 and irradiating the mask with the laser light 190 evenly You may comprise so that it may irradiate according to the desired charging pattern in the semiconductor chip holding surface 113 of the electrotransfer board 110.
  • the laser array is controlled so that the laser beam 190 is irradiated only to a region other than a desired charging pattern, and the semiconductor chip holding surface of the electrostatic transfer plate 110 You may comprise so that 113 may be irradiated according to a desired charging pattern.
  • the exposure process is configured so as to irradiate the semiconductor chip holding surface 113 with the laser beam 190, but the present invention is not necessarily limited to this and can be changed as appropriate.
  • the exposure process may be configured to irradiate the semiconductor chip holding surface 113 with light such as visible light that is not laser light. That is, the exposure process may be configured to irradiate the semiconductor chip holding surface 113 with light energy according to a desired charging pattern.
  • the electrostatic transfer plate includes a photoconductive insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface, A uniform charging step in which the charging step uniformly charges the semiconductor chip holding surface; Forming the desired charging pattern on the semiconductor chip holding surface of the electrostatic transfer plate by an exposure step of irradiating the semiconductor chip holding surface with light energy according to the desired charging pattern.
  • the insulating layer has photoconductivity, and the surface of the insulating layer is the semiconductor chip holding surface,
  • the charging pattern forming device is a uniform charging device that uniformly charges the semiconductor chip holding surface; An exposure apparatus that irradiates the semiconductor chip holding surface with light energy in accordance with the desired charging pattern, so that the desired charging pattern can be reliably formed.
  • the pickup method, pickup apparatus, and mounting apparatus according to the present invention can be widely used in the field of picking up a desired semiconductor chip from a plurality of arranged semiconductor chips.
  • Electrostatic transfer plate 11 Plate 12: Insulating layer 13: Semiconductor chip holding surface 20: Electrostatic transfer plate transfer head 30: Charging pattern forming device 31: Projecting electrode Part 32: Non-protruding part 40: Positive voltage 50: Mounting table 51: Stand 52: Insulator 60: Mounting table charging device 70: Plus voltage 80: Substrate 90: Laser light 110: Electrostatic transfer plate 112: Insulating layer 113: Semiconductor chip holding surface 130: charging pattern forming device 131: uniform charging unit 190: laser light

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The present invention addresses the problem of reducing the influence of holding force such as adhesive force, and to perform picking-up and mounting of a semiconductor chip with high reliability. Specifically, a pickup method for picking up a semiconductor chip 1 by means of an electrostatic transfer plate of which an upper-most layer has a semiconductor chip mounting surface 13 is characterized by comprising at least: a charging step of forming a desired charging pattern on the semiconductor chip mounting surface 13; and a pickup step of selectively picking up, from among a plurality of arrayed semiconductor chips 1, a semiconductor chip 1 by suction-attachment onto the semiconductor chip mounting surface 13 in accordance with the desired charging pattern.

Description

ピックアップ方法、ピックアップ装置、及び実装装置Pickup method, pickup device, and mounting device
本発明は、配列された複数の半導体チップから所望の半導体チップをピックアップするピックアップ方法、ピックアップ装置、及び実装装置に関するものである。 The present invention relates to a pickup method, a pickup apparatus, and a mounting apparatus for picking up a desired semiconductor chip from a plurality of arranged semiconductor chips.
 半導体チップは、コスト低減のために小型化し、小型化した半導体チップを高速・高精度に実装するための取組みが行われている。特に、ディスプレイに用いられるLEDはマイクロLEDと呼ばれる50μm×50μm以下のLEDチップを数μmの精度で高速に実装することが求められている。 Semiconductor chips are miniaturized to reduce costs, and efforts are being made to mount miniaturized semiconductor chips with high speed and high accuracy. In particular, an LED used for a display is required to be mounted at high speed with an accuracy of several μm, which is an LED chip of 50 μm × 50 μm or less called a micro LED.
特許文献1には、ウェハに格子状に形成された半導体チップに帯状のレーザ光を照射して1ラインまたは複数ラインごとに一括して転写基板200に転写したのち、転写基板200に転写された後の複数の半導体チップに帯状のレーザ光を照射して1ラインまたは複数ラインごとに転写基板300に一括して転写する構成が記載されている。 In Patent Document 1, a semiconductor chip formed in a lattice shape on a wafer is irradiated with a band-shaped laser beam and transferred to the transfer substrate 200 in batches for each line or a plurality of lines, and then transferred to the transfer substrate 200. A configuration is described in which a plurality of subsequent semiconductor chips are irradiated with a band-shaped laser beam and transferred onto the transfer substrate 300 in a lump for each line or a plurality of lines.
特許文献1:特開2010-161221号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2010-161221
しかしながら、特許文献1記載のものは、一の転写基板から他の転写基板に半導体チップを転写(ピックアップ)する際に、半導体チップが保持されている粘着力等の影響で一の転写基板から分離できず、他の転写基板にスムーズに転写できない恐れがあるという問題があった。 However, when the semiconductor chip is transferred (pickup) from one transfer substrate to another transfer substrate, the one described in Patent Document 1 is separated from the one transfer substrate by the influence of the adhesive force or the like that holds the semiconductor chip. There is a problem that the transfer cannot be performed smoothly to another transfer substrate.
本発明は、上記問題点を解決して、粘着力等の影響をなくして、半導体チップのピックアップ及び実装を信頼性高く行うことを課題とする。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems, eliminate the influence of adhesive force and the like, and perform semiconductor chip pickup and mounting with high reliability.
上記課題を解決するために本発明は、最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ方法であって、
前記半導体チップ載持面に所望の帯電パターンを形成する帯電工程と、
配列された複数の前記半導体チップのうち、前記所望の帯電パターンに応じて前記半導体チップ載持面に吸着させることにより、選択的に前記半導体チップをピックアップするピックアップ工程と、を少なくとも有することを特徴とするピックアップ方法を提供するものである。
In order to solve the above problems, the present invention is a pickup method for picking up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
A charging step of forming a desired charging pattern on the semiconductor chip holding surface;
A pickup step of selectively picking up the semiconductor chip by adsorbing it to the semiconductor chip holding surface according to the desired charging pattern among the plurality of semiconductor chips arranged. A pickup method is provided.
この構成により、帯電した静電気で半導体チップをピックアップすることで、粘着力等の影響をなくして、半導体チップのピックアップを信頼性高く行うことができる。 With this configuration, by picking up the semiconductor chip with charged static electricity, it is possible to remove the influence of adhesive force and the like and to pick up the semiconductor chip with high reliability.
前記静電転写板は絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、前記帯電工程においては、前記半導体チップ載持面に高電圧を印加した電極を選択的に接触又は近接させることにより、前記静電転写板の前記半導体チップ載持面に前記所望の帯電パターンを形成する構成としてもよい。 The electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface. In the charging step, an electrode to which a high voltage is applied is selectively contacted to the semiconductor chip holding surface. Alternatively, the desired charging pattern may be formed on the semiconductor chip holding surface of the electrostatic transfer plate by bringing them close to each other.
この構成により、確実に所望の帯電パターンを形成することができる。 With this configuration, a desired charging pattern can be reliably formed.
 前記静電転写板は光導電性を有する絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、
前記帯電工程が、前記半導体チップ載持面を一様に帯電する一様帯電工程と、
前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光工程と、により前記静電転写板の前記半導体チップ載持面に前記所望の帯電パターンを形成する構成としてもよい。
The electrostatic transfer plate includes a photoconductive insulating layer, the surface of the insulating layer is the semiconductor chip mounting surface,
A uniform charging step in which the charging step uniformly charges the semiconductor chip holding surface;
An exposure step of irradiating the semiconductor chip holding surface with light energy according to the desired charging pattern, and forming the desired charging pattern on the semiconductor chip holding surface of the electrostatic transfer plate. Also good.
この構成によっても、確実に所望の帯電パターンを形成することができる。 Also with this configuration, it is possible to reliably form a desired charging pattern.
 また、上記課題を解決するために本発明は、最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ装置であって、
前記半導体チップ載持面に所望の帯電パターンを形成する帯電パターン形成装置と、
複数の半導体チップを配列する載置台と、
前記静電転写板を移載する静電転写板移載ヘッドと、を少なくとも備え、
前記静電転写板移載ヘッドは、前記載置台まで前記静電転写板を移載し、前記所望の帯電パターンに応じて、前記載置台に配列された複数の前記半導体チップのうち選択的に前記半導体チップを、前記半導体チップ載持面に吸着してピックアップすることを特徴とするピックアップ装置を提供するものである。
Further, in order to solve the above problems, the present invention is a pickup device that picks up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
A charging pattern forming apparatus for forming a desired charging pattern on the semiconductor chip holding surface;
A mounting table for arranging a plurality of semiconductor chips;
An electrostatic transfer plate transfer head for transferring the electrostatic transfer plate;
The electrostatic transfer plate transfer head transfers the electrostatic transfer plate to the mounting table, and selectively selects a plurality of semiconductor chips arranged on the mounting table according to the desired charging pattern. It is an object of the present invention to provide a pickup device that picks up the semiconductor chip by adsorbing it to the semiconductor chip holding surface.
この構成により、帯電した静電気で半導体チップをピックアップすることで、粘着力等の影響をなくして、半導体チップのピックアップを信頼性高く行うことができる。 With this configuration, by picking up the semiconductor chip with charged static electricity, it is possible to remove the influence of adhesive force and the like and to pick up the semiconductor chip with high reliability.
前記静電転写板は絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、前記帯電パターン形成装置が、電圧を印加した電極を前記半導体チップ載持面に対して選択的に接触又は近接させることで、前記所望の帯電パターンを前記静電転写板の前記半導体チップ載持面に形成する構成としてもよい。 The electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface, and the charging pattern forming device selectively applies an electrode to which a voltage is applied to the semiconductor chip holding surface. It is good also as a structure which forms the said desired charging pattern in the said semiconductor chip holding surface of the said electrostatic transfer board by making it contact or adjoin to.
この構成により、確実に所望の帯電パターンを形成することができる。 With this configuration, a desired charging pattern can be reliably formed.
前記絶縁層が光導電性を有するものであり、前記絶縁層の表面が前記半導体チップ載持面であり、前記帯電パターン形成装置が、前記半導体チップ載持面を一様に帯電する一様帯電装置と、前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光装置と、を有した構成としてもよい。 The insulating layer is photoconductive, the surface of the insulating layer is the semiconductor chip holding surface, and the charging pattern forming device uniformly charges the semiconductor chip holding surface. It is good also as a structure which has an apparatus and the exposure apparatus which irradiates light energy with respect to the said semiconductor chip holding surface according to the said desired charging pattern.
この構成によっても、確実に所望の帯電パターンを形成することができる。 Also with this configuration, it is possible to reliably form a desired charging pattern.
ピックアップ装置によりピックアップした前記半導体チップを、基板上に一括して実装する構成としてもよい。 The semiconductor chips picked up by the pickup device may be collectively mounted on the substrate.
この構成により、粘着力等の影響をなくして、静電転写板にピックアップされた半導体チップの実装を信頼性高く行うことができる。 With this configuration, it is possible to mount the semiconductor chip picked up on the electrostatic transfer plate with high reliability without the influence of adhesive force or the like.
前記半導体チップが50μm×50μm以下の投影面積を有するLEDチップである構成としてもよい。 The semiconductor chip may be an LED chip having a projected area of 50 μm × 50 μm or less.
この構成により、高精細なディスプレイ装置を実現することができる。 With this configuration, a high-definition display device can be realized.
本発明のピックアップ方法、ピックアップ装置、及び実装装置により、粘着力等の影響をなくして、半導体チップのピックアップ及び実装を信頼性高く行うことができる。 With the pick-up method, pick-up device, and mounting device of the present invention, it is possible to perform pick-up and mounting of a semiconductor chip with high reliability without the influence of adhesive force or the like.
本発明の実施例1における載置台帯電工程及びキャリア基板分離工程を説明する図である。It is a figure explaining the mounting base charging process and carrier substrate isolation | separation process in Example 1 of this invention. 本発明の実施例1における帯電工程を説明する図である。It is a figure explaining the charging process in Example 1 of this invention. 本発明の実施例1におけるピックアップ工程の前半を説明する図である。It is a figure explaining the first half of the pick-up process in Example 1 of this invention. 本発明の実施例1におけるピックアップ工程の後半を説明する図である。It is a figure explaining the latter half of the pick-up process in Example 1 of this invention. 本発明の実施例1における実装工程を説明する図である。It is a figure explaining the mounting process in Example 1 of this invention. 本発明の実施例2における一様帯電工程を説明する図である。It is a figure explaining the uniform charging process in Example 2 of this invention. 本発明の実施例2における露光工程を説明する図である。It is a figure explaining the exposure process in Example 2 of this invention.
本発明の実施例1について、図1~図5を参照して説明する。図1は、本発明の実施例1における載置台帯電工程及びキャリア基板分離工程を説明する図である。図2は、本発明の実施例1における帯電工程を説明する図である。図3は、本発明の実施例1におけるピックアップ工程の前半を説明する図である。図4は、本発明の実施例1におけるピックアップ工程の後半を説明する図である。図5は、本発明の実施例1における実装工程を説明する図である。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram for explaining a mounting table charging step and a carrier substrate separating step in Embodiment 1 of the present invention. FIG. 2 is a diagram for explaining a charging step in Embodiment 1 of the present invention. FIG. 3 is a diagram for explaining the first half of the pickup process in the first embodiment of the present invention. FIG. 4 is a diagram for explaining the latter half of the pickup process in the first embodiment of the present invention. FIG. 5 is a diagram for explaining a mounting process in the first embodiment of the present invention.
図1(b)、図1(c)に示すように、サファイヤからなるキャリア基板3に半導体チップ1が成長させられて形成されており、半導体チップ1はキャリア基板3に保持された一方の面と反対側の面である他方の面が外部に露出しバンプ2が形成されている。また、キャリア基板3は円形又は四角形を有しており、サファイヤ以外にガリウムヒ素からなるものもある。また、半導体チップ1はダイシングされてキャリア基板3に複数個(数百個~数万個)が2次元に配列されている。マイクロLEDと呼ばれる小型の半導体チップ1では、50μm×50μm以下のサイズであり、このサイズにダイシング幅を加えたピッチで配列されている。このような小型の半導体チップ1は、高精度(例えば、1μm以下の精度)に回路基板に実装することが求められている。実施例1における半導体チップ1は、事前に各半導体チップ1を検査し不良のLEDチップを除去している。具体的には、後述のレーザリフトオフの場合よりも強いレーザ光を照射し、不良チップを焼失させている。 As shown in FIGS. 1B and 1C, a semiconductor chip 1 is formed on a carrier substrate 3 made of sapphire, and the semiconductor chip 1 is held on one side of the carrier substrate 3. The other surface, which is the opposite surface, is exposed to the outside and bumps 2 are formed. Further, the carrier substrate 3 has a circular shape or a quadrangular shape, and there is a substrate made of gallium arsenide other than sapphire. The semiconductor chip 1 is diced and a plurality (several hundred to several tens of thousands) of the semiconductor substrate 1 are two-dimensionally arranged on the carrier substrate 3. A small semiconductor chip 1 called a micro LED has a size of 50 μm × 50 μm or less, and is arranged at a pitch obtained by adding a dicing width to this size. Such a small semiconductor chip 1 is required to be mounted on a circuit board with high accuracy (for example, accuracy of 1 μm or less). In the semiconductor chip 1 in the first embodiment, each semiconductor chip 1 is inspected in advance to remove defective LED chips. Specifically, a laser beam stronger than that in the case of laser lift-off described later is irradiated to burn down defective chips.
まず、キャリア基板3及びキャリア基板3に保持された半導体チップ1を載置台50にしっかりと保持させるために、図1(a)に示すように、載置台50の表面全域を帯電させる載置台帯電工程を実行する。載置台帯電工程では、載置台帯電装置60の表面を載置台50の表面全域に接触または、近接させて、およそ1KVのプラス電圧70を印加する。載置台50は、鉄等の金属からなる台51と台51の載置台帯電装置60を接触させる側の表面に設けられたガラスからなる絶縁体52とからなる。この載置台50の絶縁体52にプラス電圧を印加することにより、載置台50の表面全域がプラス電位に帯電する。 First, in order to hold the carrier substrate 3 and the semiconductor chip 1 held on the carrier substrate 3 firmly on the mounting table 50, as shown in FIG. Execute the process. In the mounting table charging step, the surface of the mounting table charging device 60 is brought into contact with or close to the entire surface of the mounting table 50, and a positive voltage 70 of about 1 KV is applied. The mounting table 50 includes a table 51 made of a metal such as iron and an insulator 52 made of glass provided on the surface of the table 51 on the side where the mounting table charging device 60 is brought into contact. By applying a positive voltage to the insulator 52 of the mounting table 50, the entire surface of the mounting table 50 is charged to a positive potential.
なお、実施例1においては、載置台50をプラス電位に帯電させているが、必ずしもこれに限定されず適宜変更が可能である。例えば、マイナス電位に帯電させてもよい。その場合、帯電列にしたがって、絶縁体52をテフロン(登録商標)やポリプロピレン等の材料で構成すればよい。 In the first embodiment, the mounting table 50 is charged to a positive potential. However, the present invention is not necessarily limited to this and can be changed as appropriate. For example, it may be charged to a negative potential. In that case, the insulator 52 may be made of a material such as Teflon (registered trademark) or polypropylene in accordance with the charge train.
また、実施例1においては、載置台50の表面を帯電させるために、載置台帯電装置60の表面を載置台50の表面全域に接触又は近接させる構成としたが、必ずしもこれに限定されず適宜変更が可能である。例えば、一列にコロナ放電部を配列させた帯電バーを用いて、この帯電バーを載置台50の表面に接触又は近接させてコロナ放電部の配列方向と直交する方向に載置台50に対して相対移動させるように構成してもよい。これにより簡単な構成で載置台50の表面に帯電させることができる。 In the first embodiment, the surface of the mounting table charging device 60 is brought into contact with or close to the entire surface of the mounting table 50 in order to charge the surface of the mounting table 50. It can be changed. For example, a charging bar in which corona discharge portions are arranged in a row is used, and the charging bar is brought into contact with or close to the surface of the mounting table 50 and is relative to the mounting table 50 in a direction perpendicular to the arrangement direction of the corona discharge units. You may comprise so that it may move. Thereby, the surface of the mounting table 50 can be charged with a simple configuration.
次に、載置台帯電装置60を取り除いた後、図示しないキャリア基板移載ヘッドにより、キャリア基板3に一方の面が保持された複数の半導体チップ1の他方の面を表面が帯電された載置台50に載置する(図1(b)参照)。これにより、キャリア基板3を保持された半導体チップ1の他方の面は、静電気によって載置台50に保持させられる。 Next, after removing the mounting table charging device 60, the mounting table whose surface is charged on the other surface of the plurality of semiconductor chips 1 whose one surface is held on the carrier substrate 3 by a carrier substrate transfer head (not shown). 50 (see FIG. 1B). Thereby, the other surface of the semiconductor chip 1 holding the carrier substrate 3 is held on the mounting table 50 by static electricity.
そして、キャリア基板3から半導体チップ1の一方の面を分離するキャリア基板分離工程を実行する。実施例1においては、図示しないキャリア基板分離装置により、キャリア基板3に対してライン状にエキシマレーザからなるレーザ光90を照射し、キャリア基板3又はライン状のレーザ光90のいずれかをレーザ光90のラインと直交する方向に相対移動させてキャリア基板3全体にレーザ光を照射する(図1(c)参照)。そして、サファイヤからなるキャリア基板3におけるGaN層の一部をGaとNに分解させて、キャリア基板3から半導体チップ1を分離する。この手法はレーザリフトオフと呼ばれる。分離したキャリア基板3は、キャリア基板移載ヘッド20により除去することができる。 Then, a carrier substrate separation process for separating one surface of the semiconductor chip 1 from the carrier substrate 3 is performed. In the first embodiment, a carrier substrate separation device (not shown) irradiates the carrier substrate 3 with a laser beam 90 made of an excimer laser in a line shape, and the carrier substrate 3 or the line-shaped laser beam 90 is irradiated with the laser beam. The entire carrier substrate 3 is irradiated with a laser beam by being relatively moved in a direction perpendicular to the 90 line (see FIG. 1C). Then, a part of the GaN layer in the carrier substrate 3 made of sapphire is decomposed into Ga and N, and the semiconductor chip 1 is separated from the carrier substrate 3. This technique is called laser lift-off. The separated carrier substrate 3 can be removed by the carrier substrate transfer head 20.
 以上で、実装すべき半導体チップ1が載置台50に保持される。そして、キャリア基板分離工程と並行して、又はキャリア基板分離工程の後に、最表層が半導体チップ載持面13を有する静電転写板10により半導体チップ1をピックアップする帯電工程を実行する(図2参照)。静電転写板10は鉄等の金属からなる板11と板11の一方側には絶縁層12を有している。この絶縁層12の板11側とは反対側の表面を、本明細書においては、半導体チップ載持面と呼ぶ。帯電工程では、半導体チップ載持面13を帯電パターン形成装置30に接触又は近接させて所望の帯電パターンを半導体チップ載持面13に形成する。 Thus, the semiconductor chip 1 to be mounted is held on the mounting table 50. Then, in parallel with the carrier substrate separation step or after the carrier substrate separation step, a charging step of picking up the semiconductor chip 1 by the electrostatic transfer plate 10 whose outermost layer has the semiconductor chip holding surface 13 is executed (FIG. 2). reference). The electrostatic transfer plate 10 has a plate 11 made of a metal such as iron and an insulating layer 12 on one side of the plate 11. In this specification, the surface opposite to the plate 11 side of the insulating layer 12 is referred to as a semiconductor chip mounting surface. In the charging step, a desired charging pattern is formed on the semiconductor chip holding surface 13 by bringing the semiconductor chip holding surface 13 into contact with or close to the charging pattern forming device 30.
つまり、帯電パターン形成装置30は、図2に示すように、その表面の一部が突出した複数の突出電極部31と突出していない複数の非突出部32とを備えている。帯電パターン形成装置30にはおよそ1KVのプラス電圧40が印加されており、載置台50に配列されている複数の半導体チップ1のうち所望の半導体チップ1の配列ピッチに合わせたピッチで2次元に(図2の奥行き方向にも)突出電極部31が突出している。静電転写板移載ヘッド20で静電転写板10を真空吸着して保持し、この帯電パターン形成装置30の突出電極部31の先端部に静電転写板10の半導体チップ載持面13を接触又は近接させる。 That is, as shown in FIG. 2, the charging pattern forming apparatus 30 includes a plurality of protruding electrode portions 31 with a part of the surface protruding and a plurality of non-projecting portions 32 that do not protrude. A positive voltage 40 of about 1 KV is applied to the charging pattern forming device 30, and two-dimensionally at a pitch that matches the arrangement pitch of the desired semiconductor chips 1 among the plurality of semiconductor chips 1 arranged on the mounting table 50. The protruding electrode portion 31 protrudes (also in the depth direction of FIG. 2). The electrostatic transfer plate transfer head 20 holds the electrostatic transfer plate 10 by vacuum suction. Touch or bring close.
そして、帯電パターン形成装置30の突出電極部31に印加されている高電圧により、静電転写板10における突出電極部31が接触している半導体チップ載持面13の部分にプラス電位が帯電される。つまり、帯電パターン形成装置30における突出電極部31を形成した所望領域に接触した静電転写板10の半導体チップ載持面13にプラス電位が帯電して所望の帯電パターンが形成される。このとき、実際には突出電極部31に接触した部分に加えて、その周囲のわずかな領域に帯電させられることがあるため、所望領域よりも小さい面積を接触させるように突出電極部31を構成してもよい。 Then, due to the high voltage applied to the protruding electrode portion 31 of the charging pattern forming apparatus 30, the portion of the semiconductor chip holding surface 13 in contact with the protruding electrode portion 31 in the electrostatic transfer plate 10 is charged with a positive potential. The In other words, the positive potential is charged on the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in contact with the desired region where the protruding electrode portion 31 is formed in the charging pattern forming apparatus 30, thereby forming a desired charging pattern. At this time, in fact, in addition to the portion in contact with the protruding electrode portion 31, a slight region around it may be charged, so the protruding electrode portion 31 is configured to contact an area smaller than the desired region. May be.
 つまり、帯電工程では、静電転写板10の半導体チップ載持面13に対して、所望領域には電圧を印加した突出電極31を接触させ、所望領域以外には電圧を印加した突出電極31を接触させないように非突出部32を形成した帯電パターン形成装置30により、所望の帯電パターンを形成することができる。 In other words, in the charging process, the protruding electrode 31 to which a voltage is applied is brought into contact with the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in a desired area, and the protruding electrode 31 to which a voltage is applied is applied to the area other than the desired area. A desired charging pattern can be formed by the charging pattern forming apparatus 30 in which the non-projecting portions 32 are formed so as not to be in contact with each other.
 なお、実施例1においては、複数の突出電極部31と複数の非突出部32とを備えた帯電パターン形成装置30を静電転写板10の半導体チップ載持面13に接触又は近接させて所望の帯電パターンを形成するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、単一の電極部を移動させながら静電転写板10の絶縁層12に接触又は近接させて所望の帯電パターンを形成するように構成してもよい。すなわち、帯電工程においては、絶縁層12に高電圧を印加した電極を選択的に接触又は近接させることにより、所望の帯電パターンを形成すればよい。 In the first embodiment, the charging pattern forming apparatus 30 having a plurality of protruding electrode portions 31 and a plurality of non-projecting portions 32 is brought into contact with or close to the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 as desired. However, the present invention is not necessarily limited to this and can be changed as appropriate. For example, a desired charging pattern may be formed by moving or contacting the insulating layer 12 of the electrostatic transfer plate 10 while moving a single electrode portion. In other words, in the charging step, a desired charging pattern may be formed by selectively contacting or approaching the electrode to which the high voltage is applied to the insulating layer 12.
 また、実施例1においては、複数の半導体チップ1をピックアップするように所望の帯電パターンを形成するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、一の半導体チップ1をピックアップするように所望の帯電パターンを形成するように構成してもよい。 In the first embodiment, a desired charging pattern is formed so as to pick up a plurality of semiconductor chips 1. However, the present invention is not necessarily limited to this and can be changed as appropriate. For example, a desired charging pattern may be formed so as to pick up one semiconductor chip 1.
 さらに、実施例1においては、静電転写板10をプラス電位に帯電させているが、必ずしもこれに限定されず適宜変更が可能である。例えば、マイナス電位に帯電させてもよい。その場合、帯電列にしたがって、絶縁層12をテフロン(登録商標)やポリプロピレン等の材料で構成すればよい。 Furthermore, in Example 1, the electrostatic transfer plate 10 is charged to a positive potential, but the present invention is not necessarily limited to this, and can be changed as appropriate. For example, it may be charged to a negative potential. In that case, the insulating layer 12 may be made of a material such as Teflon (registered trademark) or polypropylene in accordance with the charge train.
 次に、静電転写板10を載置台50上の半導体チップ1に重ねて接触させピックアップするが、その直前に載置台50の表面に帯電した電位を除電しておく。除電は、載置台50に光放電やAC除電等により行うことができる。除電すると、静電気によって載置台50に保持されていた半導体チップ1が躍ることもあるので、静電転写板10によりピックアップする直前に除電する。 Next, the electrostatic transfer plate 10 is placed in contact with the semiconductor chip 1 on the mounting table 50 and picked up, but the electric potential charged on the surface of the mounting table 50 is neutralized immediately before that. The charge removal can be performed on the mounting table 50 by light discharge, AC charge removal, or the like. When the static electricity is removed, the semiconductor chip 1 held on the mounting table 50 may jump due to static electricity.
 そして、ピックアップ工程を実行して、配列された複数の前記半導体チップのうち、所望の帯電パターンに応じて半導体チップ載持面13に吸着させることにより、選択的に半導体チップをピックアップする。すなわち、所望の帯電パターンに帯電した静電転写板10は、静電転写板移載ヘッド20が吸着して載置台50に載置された半導体チップ1まで移載し(図3(a)参照)、静電転写板10の所望の帯電パターンに帯電した半導体チップ載持面13が選択的に半導体チップ1に重なるように接触させる(図3(b)参照)。そして、静電転写板移載ヘッド20が載置台50から離れるに伴って、静電転写板10も載置台50から離れる。このとき、静電転写板10には、静電気によって所望の帯電パターンに応じた複数の半導体チップ1が吸着してピックアップされる(図4参照)。 Then, a semiconductor chip is selectively picked up by performing a pick-up process and attracting the semiconductor chip holding surface 13 according to a desired charging pattern among the plurality of semiconductor chips arranged. That is, the electrostatic transfer plate 10 charged to a desired charging pattern is transferred to the semiconductor chip 1 mounted on the mounting table 50 by being attracted by the electrostatic transfer plate transfer head 20 (see FIG. 3A). ), The semiconductor chip holding surface 13 charged to the desired charging pattern of the electrostatic transfer plate 10 is selectively brought into contact with the semiconductor chip 1 (see FIG. 3B). Then, as the electrostatic transfer plate transfer head 20 moves away from the mounting table 50, the electrostatic transfer plate 10 also moves away from the mounting table 50. At this time, a plurality of semiconductor chips 1 corresponding to a desired charging pattern are attracted and picked up by the electrostatic transfer plate 10 due to static electricity (see FIG. 4).
 ここで、所望の帯電パターンに応じてピックアップするのであれば、載置台50上の半導体チップ1の集合の特定の位置からピックアップする必要はなく、どこの部分からピックアップしてもよい。 Here, if picking up according to a desired charging pattern, it is not necessary to pick up from a specific position of the set of semiconductor chips 1 on the mounting table 50, and any part may be picked up.
実施例1においては、基板に実装するピッチ及び配列数に相当する半導体チップ1を選択的にピックアップすることで、後述の実装工程に効率よく移行できるようにしている。 In the first embodiment, the semiconductor chip 1 corresponding to the pitch and the number of arrangements mounted on the substrate is selectively picked up so that it can be efficiently transferred to the mounting process described later.
 なお、実施例1においては、ピックアップ工程に先立って載置台50の表面に帯電した電位を除電しておくように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、載置台50の表面は帯電したままとし、帯電工程で静電転写板10の半導体チップ載持面13に載置台50に帯電している電位よりも高い電位(例えば、2KV程度)を帯電してピックアップ工程を実行するように構成してもよい。これにより、載置台50の表面に帯電した電位の除電が不要となるとともに、容易に半導体チップ1をピックアップすることができる。 In the first embodiment, the electric potential charged on the surface of the mounting table 50 is removed prior to the pick-up process. However, the present invention is not necessarily limited to this and can be changed as appropriate. For example, the surface of the mounting table 50 is kept charged, and a higher potential (for example, about 2 KV) than the potential charged on the mounting table 50 is charged on the semiconductor chip holding surface 13 of the electrostatic transfer plate 10 in the charging process. Then, the pickup process may be executed. This eliminates the need for neutralizing the potential charged on the surface of the mounting table 50 and allows the semiconductor chip 1 to be easily picked up.
 次に、実装工程を実行して静電転写板10に保持された半導体チップ1を基板80に実装する。すなわち、静電転写板移載ヘッド20が静電転写板10を吸着して基板80まで移載して静電転写板10に保持されている半導体チップ1を基板80に実装する。実装に際しては、半導体チップ1のバンプ2と基板80の電極とを金属接合により行う(図5(a)参照)。そして、静電転写板移載ヘッド20が真空吸着を解除して静電転写板10から離れることによって静電転写板10と半導体チップ1が基板80に残り、実装工程が完了する。つまり、静電転写板移載ヘッド20は、静電転写板10にピックアップされた半導体チップ1を静電転写板10とともに実装する。 Next, the mounting step is executed to mount the semiconductor chip 1 held on the electrostatic transfer plate 10 on the substrate 80. That is, the electrostatic transfer plate transfer head 20 sucks the electrostatic transfer plate 10 and transfers it to the substrate 80 to mount the semiconductor chip 1 held on the electrostatic transfer plate 10 on the substrate 80. When mounting, the bumps 2 of the semiconductor chip 1 and the electrodes of the substrate 80 are performed by metal bonding (see FIG. 5A). Then, when the electrostatic transfer plate transfer head 20 releases the vacuum suction and moves away from the electrostatic transfer plate 10, the electrostatic transfer plate 10 and the semiconductor chip 1 remain on the substrate 80, and the mounting process is completed. That is, the electrostatic transfer plate transfer head 20 mounts the semiconductor chip 1 picked up on the electrostatic transfer plate 10 together with the electrostatic transfer plate 10.
 その後、必要に応じて、静電転写板10の除電を行って、静電転写板10を半導体チップ1から取り去ることができる。除電は、静電転写板10に光放電やAC除電等により行うことができる。また、半導体チップ1は、基板に接合されているので、静電転写板10の帯電が軽ければ、除電しなくても静電転写板移載ヘッド20で真空吸着して取り去ることもできる。 Thereafter, the electrostatic transfer plate 10 can be removed from the semiconductor chip 1 by neutralizing the electrostatic transfer plate 10 as necessary. The neutralization can be performed on the electrostatic transfer plate 10 by light discharge, AC neutralization, or the like. In addition, since the semiconductor chip 1 is bonded to the substrate, if the electrostatic transfer plate 10 is lightly charged, it can be removed by vacuum suction with the electrostatic transfer plate transfer head 20 without static elimination.
 なお、実施例1においては、キャリア基板移載ヘッドによりキャリア基板を移載し、静電転写板移載ヘッドにより静電転写板を移載するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、共通の移載ヘッドにより、キャリア基板及び静電転写板を移載するように構成してもよい。 In the first embodiment, the carrier substrate is transferred by the carrier substrate transfer head, and the electrostatic transfer plate is transferred by the electrostatic transfer plate transfer head. It can be changed. For example, the carrier substrate and the electrostatic transfer plate may be transferred by a common transfer head.
 このように、実施例1においては、最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ方法であって、
前記半導体チップ載持面に所望の帯電パターンを形成する帯電工程と、
配列された複数の前記半導体チップのうち、前記所望の帯電パターンに応じて前記半導体チップ載持面に吸着させることにより、選択的に前記半導体チップをピックアップするピックアップ工程と、を少なくとも有することを特徴とするピックアップ方法により、粘着力等の影響をなくして、静電転写板にピックアップされた半導体チップの実装を信頼性高く行うことができる。
Thus, in Example 1, a pickup method for picking up a semiconductor chip with an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
A charging step of forming a desired charging pattern on the semiconductor chip holding surface;
A pickup step of selectively picking up the semiconductor chip by adsorbing it to the semiconductor chip holding surface according to the desired charging pattern among the plurality of semiconductor chips arranged. According to the pickup method described above, it is possible to mount the semiconductor chip picked up on the electrostatic transfer plate with high reliability without the influence of adhesive force or the like.
 また、最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ装置であって、
前記半導体チップ載持面に所望の帯電パターンを形成する帯電パターン形成装置と、
複数の半導体チップを配列する載置台と、
前記静電転写板を移載する静電転写板移載ヘッドと、を少なくとも備え、
前記静電転写板移載ヘッドは、前記載置台まで前記静電転写板を移載し、前記所望の帯電パターンに応じて、前記載置台に配列された複数の前記半導体チップのうち選択的に前記半導体チップを、前記半導体チップ載持面に吸着してピックアップすることを特徴とするピックアップ装置により、粘着力等の影響をなくして、静電転写板にピックアップされた半導体チップの実装を信頼性高く行うことができる。
Further, the pickup device picks up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
A charging pattern forming apparatus for forming a desired charging pattern on the semiconductor chip holding surface;
A mounting table for arranging a plurality of semiconductor chips;
An electrostatic transfer plate transfer head for transferring the electrostatic transfer plate;
The electrostatic transfer plate transfer head transfers the electrostatic transfer plate to the mounting table, and selectively selects a plurality of semiconductor chips arranged on the mounting table according to the desired charging pattern. The pick-up device that picks up the semiconductor chip by adsorbing to the semiconductor chip holding surface eliminates the influence of adhesive force and the like, and the mounting of the semiconductor chip picked up on the electrostatic transfer plate is reliable. Can be done high.
 本発明の実施例2は、帯電パターン形成装置及び帯電工程の構成が実施例1と異なっている。実施例2について、図6、図7を参照して説明する。図6は、本発明の実施例2における一様帯電工程を説明する図である。図7は、本発明の実施例2における露光工程を説明する図である。 Example 2 of the present invention is different from Example 1 in the configuration of the charging pattern forming apparatus and the charging process. A second embodiment will be described with reference to FIGS. FIG. 6 is a diagram for explaining a uniform charging process in the second embodiment of the present invention. FIG. 7 is a view for explaining an exposure process in Embodiment 2 of the present invention.
 実施例2においては、帯電パターン形成装置が実行する帯電工程は、一様帯電工程と露光工程とで構成される。 In Example 2, the charging process executed by the charging pattern forming apparatus includes a uniform charging process and an exposure process.
 実施例2における静電転写板110は鉄等の金属からなる板11と板11の一方の面には光導電性を有する絶縁層112を備え、その表面が半導体チップ載持面113である。一様帯電工程では、静電転写板移載ヘッド20が吸着保持している静電転写板110の半導体チップ載持面113を帯電パターン形成装置13の表面が一様に平坦面である一様帯電部131に接触又は近接させる(図6参照)。一様帯電部131は、およそ1KVの電圧が印加されており、これにより、静電転写板110の半導体チップ載持面113は、一様にプラス電位が帯電する。その後、静電転写板移載ヘッド20により静電転写板110を一様帯電部131から離す。 The electrostatic transfer plate 110 in Example 2 includes a plate 11 made of a metal such as iron and an insulating layer 112 having photoconductivity on one surface of the plate 11, and the surface thereof is a semiconductor chip mounting surface 113. In the uniform charging step, the surface of the charging pattern forming apparatus 13 is uniformly flat on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 held by the electrostatic transfer plate transfer head 20 by suction. The charging unit 131 is brought into contact with or close to the charging unit 131 (see FIG. 6). A voltage of approximately 1 KV is applied to the uniform charging unit 131, whereby the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 is uniformly charged with a positive potential. Thereafter, the electrostatic transfer plate 110 is separated from the uniform charging unit 131 by the electrostatic transfer plate transfer head 20.
 次に、露光工程を実行して、静電転写板110の半導体チップ載持面113に所望の帯電パターンを形成する。すなわち、静電転写板移載ヘッド20が吸着保持している静電転写板110の半導体チップ載持面113に対して、図示しない露光部からレーザ光190を照射する(図7(a)参照)。レーザ光190を半導体チップ載持面113に対して照射することにより、光導電性を有する絶縁層112の導電率が増加して帯電している電位が消失する。したがって、レーザ光190を照射した領域は帯電が消失し、レーザ光190を照射しない領域は帯電したままとすることができる。実施例2においては、この性質を利用して、静電転写板110の半導体チップ載持面113に対して、所望の帯電パターンに応じて、レーザ光190を照射しない領域とレーザ光190を照射する領域とを選択する。これにより、静電転写板110の半導体チップ載持面113に所望の帯電パターンを形成させることができる(図7(b)参照)。 Next, an exposure process is executed to form a desired charging pattern on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110. That is, the laser light 190 is irradiated from an exposure unit (not shown) to the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 held by the electrostatic transfer plate transfer head 20 (see FIG. 7A). ). By irradiating the semiconductor chip holding surface 113 with the laser light 190, the conductivity of the insulating layer 112 having photoconductivity increases and the charged potential disappears. Therefore, the region irradiated with the laser beam 190 loses charge, and the region not irradiated with the laser beam 190 can remain charged. In the second embodiment, this property is used to irradiate the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 with the laser light 190 and the region not irradiated with the laser light 190 according to the desired charging pattern. Select the area to be used. Thereby, a desired charging pattern can be formed on the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 (see FIG. 7B).
 レーザ光190を照射しない領域とレーザ光190を照射する領域とを選択するには、露光部にガルバノミラーを備え、ガルバノミラーにレーザビームを照射してレーザ光190を照射する位置を制御することで行うことができる。 In order to select a region where the laser beam 190 is not irradiated and a region where the laser beam 190 is irradiated, the exposure unit is provided with a galvano mirror, and the galvano mirror is irradiated with a laser beam to control the position where the laser beam 190 is irradiated. Can be done.
 なお、実施例2においては、ガルバノミラーによってレーザ光190を照射する位置を制御するように構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、所望の帯電パターンの領域を遮蔽したマスクを露光部と静電転写板110の半導体チップ載持面113の間に配置して、レーザ光190をマスクに対してまんべんなく照射することにより、静電転写板110の半導体チップ載持面113における所望の帯電パターンに応じて照射させるように構成してもよい。 In addition, in Example 2, although it comprised so that the position which irradiates the laser beam 190 with a galvanometer mirror might be controlled, it is not necessarily limited to this but can change suitably. For example, by placing a mask that shields a desired charged pattern region between the exposure unit and the semiconductor chip holding surface 113 of the electrostatic transfer plate 110 and irradiating the mask with the laser light 190 evenly, You may comprise so that it may irradiate according to the desired charging pattern in the semiconductor chip holding surface 113 of the electrotransfer board 110. FIG.
また、2次元に発光素子を配列したレーザアレイを用いて、所望の帯電パターン以外の領域にのみレーザ光190を照射するようにレーザアレイを制御して静電転写板110の半導体チップ載持面113に所望の帯電パターンに応じて照射させるように構成してもよい。 Further, by using a laser array in which light emitting elements are arranged two-dimensionally, the laser array is controlled so that the laser beam 190 is irradiated only to a region other than a desired charging pattern, and the semiconductor chip holding surface of the electrostatic transfer plate 110 You may comprise so that 113 may be irradiated according to a desired charging pattern.
 さらに、実施例2においては、レーザ光190を半導体チップ載持面113に照射するように露光工程を構成したが、必ずしもこれに限定されず適宜変更が可能である。例えば、レーザ光ではない可視光等の光を半導体チップ載持面113に照射するように露光工程を構成してもよい。つまり、所望の帯電パターンに応じて光エネルギーを半導体チップ載持面113に対して照射するように露光工程を構成すればよい。 Furthermore, in the second embodiment, the exposure process is configured so as to irradiate the semiconductor chip holding surface 113 with the laser beam 190, but the present invention is not necessarily limited to this and can be changed as appropriate. For example, the exposure process may be configured to irradiate the semiconductor chip holding surface 113 with light such as visible light that is not laser light. That is, the exposure process may be configured to irradiate the semiconductor chip holding surface 113 with light energy according to a desired charging pattern.
 このように、実施例2においては、前記静電転写板は光導電性を有する絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、
前記帯電工程が、前記半導体チップ載持面を一様に帯電する一様帯電工程と、
前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光工程と、により前記静電転写板の前記半導体チップ載持面に前記所望の帯電パターンを形成するものであることにより、確実に所望の帯電パターンを形成することができる。
Thus, in Example 2, the electrostatic transfer plate includes a photoconductive insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface,
A uniform charging step in which the charging step uniformly charges the semiconductor chip holding surface;
Forming the desired charging pattern on the semiconductor chip holding surface of the electrostatic transfer plate by an exposure step of irradiating the semiconductor chip holding surface with light energy according to the desired charging pattern. By being, it is possible to reliably form a desired charging pattern.
 また、前記絶縁層が光導電性を有するものであり、前記絶縁層の表面が前記半導体チップ載持面であり、
前記帯電パターン形成装置が、前記半導体チップ載持面を一様に帯電する一様帯電装置と、
前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光装置と、を有したことにより、確実に所望の帯電パターンを形成することができる。
The insulating layer has photoconductivity, and the surface of the insulating layer is the semiconductor chip holding surface,
The charging pattern forming device is a uniform charging device that uniformly charges the semiconductor chip holding surface;
An exposure apparatus that irradiates the semiconductor chip holding surface with light energy in accordance with the desired charging pattern, so that the desired charging pattern can be reliably formed.
本発明におけるピックアップ方法、ピックアップ装置、及び実装装置は、配列された複数の半導体チップから所望の半導体チップをピックアップする分野に広く用いることができる。 The pickup method, pickup apparatus, and mounting apparatus according to the present invention can be widely used in the field of picking up a desired semiconductor chip from a plurality of arranged semiconductor chips.
1:半導体チップ  2:バンプ  3:キャリア基板  10:静電転写板  11:板  12:絶縁層  13:半導体チップ載持面  20:静電転写板移載ヘッド  30:帯電パターン形成装置  31:突出電極部  32:非突出部  40: プラス電圧  50:載置台  51:台  52:絶縁体  60:載置台帯電装置  70:プラス電圧  80:基板  90:レーザ光  110:静電転写板  112:絶縁層  113:半導体チップ載持面  130:帯電パターン形成装置  131:一様帯電部  190:レーザ光   1: Semiconductor chip 2: Bump 3: Carrier substrate 10: Electrostatic transfer plate 11: Plate 12: Insulating layer 13: Semiconductor chip holding surface 20: Electrostatic transfer plate transfer head 30: Charging pattern forming device 31: Projecting electrode Part 32: Non-protruding part 40: Positive voltage 50: Mounting table 51: Stand 52: Insulator 60: Mounting table charging device 70: Plus voltage 80: Substrate 90: Laser light 110: Electrostatic transfer plate 112: Insulating layer 113: Semiconductor chip holding surface 130: charging pattern forming device 131: uniform charging unit 190: laser light

Claims (8)

  1.  最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ方法であって、
    前記半導体チップ載持面に所望の帯電パターンを形成する帯電工程と、
    配列された複数の前記半導体チップのうち、前記所望の帯電パターンに応じて前記半導体チップ載持面に吸着させることにより、選択的に前記半導体チップをピックアップするピックアップ工程と、を少なくとも有することを特徴とするピックアップ方法。
    A pick-up method for picking up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
    A charging step of forming a desired charging pattern on the semiconductor chip holding surface;
    A pickup step of selectively picking up the semiconductor chip by adsorbing it to the semiconductor chip holding surface according to the desired charging pattern among the plurality of semiconductor chips arranged. Pick up method.
  2.  前記静電転写板は絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、前記帯電工程においては、前記半導体チップ載持面に高電圧を印加した電極を選択的に接触又は近接させることにより、前記静電転写板の前記半導体チップ載持面に前記所望の帯電パターンを形成することを特徴とする請求項1に記載のピックアップ方法。 The electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface. In the charging step, an electrode to which a high voltage is applied is selectively contacted to the semiconductor chip holding surface. 2. The pickup method according to claim 1, wherein the desired charging pattern is formed on the semiconductor chip holding surface of the electrostatic transfer plate by bringing them close to each other.
  3.  前記静電転写板は光導電性を有する絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、
    前記帯電工程が、前記半導体チップ載持面を一様に帯電する一様帯電工程と、
    前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光工程と、により前記静電転写板の前記半導体チップ載持面に前記所望の帯電パターンを形成するものであることを特徴とする請求項1に記載のピックアップ方法。
    The electrostatic transfer plate includes a photoconductive insulating layer, the surface of the insulating layer is the semiconductor chip mounting surface,
    A uniform charging step in which the charging step uniformly charges the semiconductor chip holding surface;
    Forming the desired charging pattern on the semiconductor chip holding surface of the electrostatic transfer plate by an exposure step of irradiating the semiconductor chip holding surface with light energy according to the desired charging pattern. The pickup method according to claim 1, wherein the pickup method is provided.
  4.  最表層が半導体チップ載持面を有する静電転写板により半導体チップをピックアップするピックアップ装置であって、
    前記半導体チップ載持面に所望の帯電パターンを形成する帯電パターン形成装置と、
    複数の半導体チップを配列する載置台と、
    前記静電転写板を移載する静電転写板移載ヘッドと、を少なくとも備え、
    前記静電転写板移載ヘッドは、前記載置台まで前記静電転写板を移載し、前記所望の帯電パターンに応じて、前記載置台に配列された複数の前記半導体チップのうち選択的に前記半導体チップを、前記半導体チップ載持面に吸着してピックアップすることを特徴とするピックアップ装置。
    A pickup device for picking up a semiconductor chip by an electrostatic transfer plate having an outermost layer having a semiconductor chip holding surface,
    A charging pattern forming apparatus for forming a desired charging pattern on the semiconductor chip holding surface;
    A mounting table for arranging a plurality of semiconductor chips;
    An electrostatic transfer plate transfer head for transferring the electrostatic transfer plate;
    The electrostatic transfer plate transfer head transfers the electrostatic transfer plate to the mounting table, and selectively selects a plurality of semiconductor chips arranged on the mounting table according to the desired charging pattern. A pick-up apparatus, wherein the semiconductor chip is picked up by being attracted to the semiconductor chip holding surface.
  5.  前記静電転写板は絶縁層を備え、前記絶縁層の表面が前記半導体チップ載持面であり、前記帯電パターン形成装置が、電圧を印加した電極を前記半導体チップ載持面に対して選択的に接触又は近接させることで、前記所望の帯電パターンを前記静電転写板の前記半導体チップ載持面に形成するものであることを特徴とする請求項4に記載のピックアップ装置。 The electrostatic transfer plate includes an insulating layer, and the surface of the insulating layer is the semiconductor chip holding surface, and the charging pattern forming device selectively applies an electrode to which a voltage is applied to the semiconductor chip holding surface. The pickup device according to claim 4, wherein the desired charging pattern is formed on the semiconductor chip holding surface of the electrostatic transfer plate by being brought into contact with or in proximity to the substrate.
  6.  前記絶縁層が光導電性を有するものであり、前記絶縁層の表面が前記半導体チップ載持面であり、
    前記帯電パターン形成装置が、前記半導体チップ載持面を一様に帯電する一様帯電装置と、
    前記所望の帯電パターンに応じて光エネルギーを前記半導体チップ載持面に対して照射する露光装置と、を有したことを特徴とする請求項4に記載のピックアップ装置。
    The insulating layer has photoconductivity, and the surface of the insulating layer is the semiconductor chip mounting surface,
    The charging pattern forming device is a uniform charging device that uniformly charges the semiconductor chip holding surface;
    The pickup apparatus according to claim 4, further comprising: an exposure apparatus that irradiates the semiconductor chip holding surface with light energy according to the desired charging pattern.
  7.  請求項4~6のいずれかに記載のピックアップ装置によりピックアップした前記半導体チップを、基板上に一括して実装することを特徴とする実装装置。 7. A mounting apparatus, wherein the semiconductor chips picked up by the pickup apparatus according to claim 4 are mounted together on a substrate.
  8.  前記半導体チップが50μm×50μm以下の投影面積を有するLEDチップであることを特徴とする請求項7に記載の実装装置。 The mounting device according to claim 7, wherein the semiconductor chip is an LED chip having a projected area of 50 μm × 50 μm or less.
PCT/JP2018/009067 2017-03-24 2018-03-08 Pickup method, pickup device, and mounting device WO2018173781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880025630.0A CN110537252B (en) 2017-03-24 2018-03-08 Pickup method, pickup apparatus, and mounting apparatus
KR1020197027401A KR102416296B1 (en) 2017-03-24 2018-03-08 Pickup method, pickup device, and mounting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-058622 2017-03-24
JP2017058622A JP6918537B2 (en) 2017-03-24 2017-03-24 Pickup method, pickup device, and mounting device

Publications (1)

Publication Number Publication Date
WO2018173781A1 true WO2018173781A1 (en) 2018-09-27

Family

ID=63584254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009067 WO2018173781A1 (en) 2017-03-24 2018-03-08 Pickup method, pickup device, and mounting device

Country Status (5)

Country Link
JP (1) JP6918537B2 (en)
KR (1) KR102416296B1 (en)
CN (1) CN110537252B (en)
TW (1) TWI754023B (en)
WO (1) WO2018173781A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146131B (en) * 2018-11-06 2022-08-26 成都辰显光电有限公司 Transfer device and transfer method of micro-element
US11521887B2 (en) 2019-12-18 2022-12-06 Seoul Viosys Co., Ltd. Method of transferring micro LED and micro LED transferring apparatus
CN112967974B (en) * 2020-06-17 2023-03-14 重庆康佳光电技术研究院有限公司 Mass transfer device and mass transfer method
JP2022058237A (en) 2020-09-30 2022-04-11 信越化学工業株式会社 Method for lifting optical device and device thereof, method for manufacturing receptor substrate to which optical device is transferred, and method for manufacturing display

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119399A (en) * 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd Electrostatic chuck and manufacturing method of semiconductor device
JP2014533890A (en) * 2011-11-18 2014-12-15 ルクスビュー テクノロジー コーポレイション Micro LED structure with electrically insulating layer and method of forming an array of micro LED structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098196A1 (en) * 2005-03-17 2006-09-21 Matsushita Electric Industrial Co., Ltd. Package equipped with semiconductor chip and method for producing same
JP2008103493A (en) * 2006-10-18 2008-05-01 Lintec Corp Method and apparatus for picking up chip
JP2010161221A (en) 2009-01-08 2010-07-22 Sony Corp Method of manufacturing mounting substrate, mounting substrate, and light emitting device
US8809875B2 (en) * 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US9773750B2 (en) * 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
KR102402189B1 (en) * 2015-08-26 2022-05-25 엘지전자 주식회사 Transfer unit for micro device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012119399A (en) * 2010-11-29 2012-06-21 Sumitomo Electric Ind Ltd Electrostatic chuck and manufacturing method of semiconductor device
JP2014533890A (en) * 2011-11-18 2014-12-15 ルクスビュー テクノロジー コーポレイション Micro LED structure with electrically insulating layer and method of forming an array of micro LED structures

Also Published As

Publication number Publication date
TW201903912A (en) 2019-01-16
KR102416296B1 (en) 2022-07-01
CN110537252A (en) 2019-12-03
JP2018163900A (en) 2018-10-18
TWI754023B (en) 2022-02-01
CN110537252B (en) 2023-04-18
KR20190129872A (en) 2019-11-20
JP6918537B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2018173781A1 (en) Pickup method, pickup device, and mounting device
JP7130701B2 (en) A method of assembling discrete components in parallel on a board
CN110034065B (en) Method for manufacturing device chip and pick-up device
CN109545815B (en) Mass transfer method of micro light-emitting diode
KR102629259B1 (en) Transfer device and transfer method of micro elements
JP2007532003A (en) Method and apparatus for transporting conductive fragments during the manufacture of semiconductor devices
CN110233129B (en) Device moving method
CN109285806B (en) Method for manufacturing electrostatic chuck plate
CN114762097A (en) Adsorption gripping device and object surface processing method
JP2008103390A (en) Manufacturing method of semiconductor device
TWI304643B (en) Bonding apparatus, bonding method, and method for manufacturing semiconductor device
JP7152330B2 (en) Holding device, transfer device and transfer method
US9796001B2 (en) Apparatus and method for removing particles present on a wafer using photoelectrons and an electric field
TWI653703B (en) Method of changing the arrangement of electronic components
US20200234961A1 (en) Substrate processing method
JP2022544300A (en) Method and device for picking up and placing optoelectronic semiconductor chips
TWI509681B (en) Method and apparatus for processing on wafers
TW201810511A (en) Chuck device and trasfer method for element
TWM556928U (en) Device for changing arrangement of electronic components
JP2023131203A (en) Packaging system
TW202339018A (en) Receptor substrate, method for manufacturing receptor substrate, transfer method, led panel manufacturing method, and stamper
TW201442142A (en) Techniques for clamping and declamping a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027401

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18772325

Country of ref document: EP

Kind code of ref document: A1