WO2018173679A1 - Acid-group-containing (meth)acrylate resin and resin material for solder resist - Google Patents

Acid-group-containing (meth)acrylate resin and resin material for solder resist Download PDF

Info

Publication number
WO2018173679A1
WO2018173679A1 PCT/JP2018/007724 JP2018007724W WO2018173679A1 WO 2018173679 A1 WO2018173679 A1 WO 2018173679A1 JP 2018007724 W JP2018007724 W JP 2018007724W WO 2018173679 A1 WO2018173679 A1 WO 2018173679A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acid
resin
acrylate
Prior art date
Application number
PCT/JP2018/007724
Other languages
French (fr)
Japanese (ja)
Inventor
駿介 山田
亀山 裕史
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2019507486A priority Critical patent/JP6660575B2/en
Publication of WO2018173679A1 publication Critical patent/WO2018173679A1/en

Links

Images

Definitions

  • the present invention provides an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the resin, an insulating material comprising the curable resin composition, and a solder resist
  • the present invention relates to a resin material and a resist member.
  • an acid group-containing epoxy acrylate resin obtained by reacting an acid anhydride after an epoxy resin is acrylated with acrylic acid is widely used.
  • the required performance for the resin material for solder resist includes various properties such as curing with a small exposure amount, excellent alkali developability, and excellent heat resistance, strength, flexibility, dielectric properties, etc. in the cured product.
  • Patent Document 1 As a conventionally known resin material for solder resist, an acid obtained by further reacting a reaction product of cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin and bisphenol F with acrylic acid and tetrahydrophthalic anhydride.
  • a group-containing epoxy acrylate resin is known (see Patent Document 1 below).
  • the acid group-containing epoxy acrylate resin described in Patent Document 1 has characteristics that are excellent in solder resistance and heat resistance in a cured product, the elongation in the cured product is very low, and the cured product is easily cracked and has poor reliability. There existed problems, such as not being suitable for the use for which a softness
  • the problem to be solved by the present invention is an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the acid group, and the curable resin composition.
  • An insulating material, a resin material for solder resist, and a resist member are provided.
  • an ester bond site derived from a polycarboxylic acid or a derivative thereof has a molecular structure as an epoxy resin that is a reaction raw material of an acid group-containing epoxy (meth) acrylate resin.
  • the resin material has an excellent balance between elongation and heat resistance in a cured product while maintaining performance such as photosensitivity and alkali developability, and the present invention has been completed. It was.
  • the present invention is an acid group-containing (meth) acrylate resin comprising an epoxy resin (A), an unsaturated monocarboxylic acid or derivative thereof (B), and a polycarboxylic acid anhydride (C) as essential reaction raw materials.
  • the epoxy resin (A) relates to an acid group-containing (meth) acrylate resin having an ester bond site derived from a polycarboxylic acid or a derivative thereof (a1) in the molecular structure.
  • the present invention further relates to a curable resin composition containing the acid group-containing (meth) acrylate resin and a photopolymerization initiator.
  • the present invention further relates to a cured product of the curable resin composition.
  • the present invention further relates to an insulating material comprising the curable resin composition.
  • the present invention further relates to a solder resist resin material comprising the curable resin composition.
  • the present invention further relates to a resist member made of the resin material for solder resist.
  • an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the resin, an insulating material comprising the curable resin composition, and a solder A resist resin material and a resist member can be provided.
  • FIG. 1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1.
  • FIG. 1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1.
  • the acid group-containing (meth) acrylate resin of the present invention comprises an epoxy resin (A), an unsaturated monocarboxylic acid or derivative thereof (B), and a polycarboxylic acid anhydride (C) as essential reaction materials, and the epoxy resin.
  • (A) has an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure.
  • the (meth) acrylate resin refers to a resin having an acryloyl group, a methacryloyl group, or both in the molecule.
  • the (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group, and (meth) acrylate is a general term for acrylate and methacrylate.
  • the epoxy resin (A) is characterized by having an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure. This feature is an essential requirement for obtaining an acid group-containing (meth) acrylate resin that has an excellent balance between elongation and heat resistance in the cured product.
  • the epoxy resin (A) is not limited as long as it has an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure and has a plurality of epoxy groups in the molecular structure.
  • the structure is not particularly limited, and any structure may be used.
  • the epoxy resin obtained by using the said polycarboxylic acid or its derivative (a1) and raw material epoxy resin (a2) as an essential reaction raw material is mentioned.
  • Examples of the polycarboxylic acid or its derivative (a1) include compounds having two or more carboxy groups in the molecular structure, acid halides, acid anhydrides and the like thereof.
  • the polycarboxylic acid or its derivative (a1) is not particularly limited as long as it has two or more reactive points derived from a carboxy group and functions as a cross-linking agent by an ester bond. Compounds can be used.
  • the number and type of the carboxy group-derived functional group of the polycarboxylic acid or its derivative (a1) is appropriately selected according to the reactivity with the raw material epoxy resin (a2), the desired cured product performance, and the like.
  • the dicarboxylic acid compound which has two carboxy groups is preferable.
  • Specific examples of the dicarboxylic acid compound include compounds represented by the following structural formula (1).
  • X represents an aliphatic hydrocarbon group, an alicyclic structure-containing hydrocarbon group, an aromatic ring-containing hydrocarbon group, and one or more of the hydrogen atoms contained therein are substituted with an alkoxy group, an aryloxy group, a halogen atom, etc. It is a structured part.
  • the aliphatic hydrocarbon group may be linear or branched, and may have one or more unsaturated bonds.
  • an alkylene group having 1 to 6 carbon atoms is preferable because the acid group-containing (meth) acrylate resin is further excellent in the balance between elongation and heat resistance in the cured product.
  • the alicyclic structure of the alicyclic structure-containing hydrocarbon group include a cyclopentane structure, a cyclohexane structure, a norbornane structure, a norbornene structure, a tricyclodecane structure, a dicyclopentadiene structure, and an adamantane structure.
  • an aliphatic hydrocarbon group as a bonding group between the alicyclic structures or a bonding group between the alicyclic structure and the carboxy group. Etc. may be contained.
  • the aliphatic hydrocarbon group as the linking group is preferably an alkylene group having 1 to 6 carbon atoms. Examples of the aromatic ring structure possessed by the aromatic ring-containing hydrocarbon group include a benzene ring, a naphthalene ring, and an anthracene ring.
  • the aromatic ring-containing hydrocarbon group contains an aliphatic hydrocarbon group or the like as a bonding group between aromatic rings or a bonding group between an alicyclic ring and a carboxy group. You may do it.
  • the aliphatic hydrocarbon group as the linking group is preferably an alkylene group having 1 to 6 carbon atoms. Examples of the alkoxy group include alkoxy groups having about 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group, a pentyloxy group, and a hexyloxy group.
  • aryloxy group examples include a benzeneoxy group, a naphthyloxy group, and a structural site in which one or more of hydrogen atoms on the aromatic nucleus are substituted with an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, or the like. It is done.
  • the halogen atom examples include a chlorine atom, a bromine atom, and an iodine atom.
  • X in the structural formula (1) is an alicyclic structure-containing hydrocarbon.
  • a group or a structure site in which one or more hydrogen atoms in the alicyclic structure-containing hydrocarbon group are substituted with an alkoxy group, an aryloxy group, a halogen atom or the like is preferable.
  • what has a cyclohexane structure as an alicyclic structure is more preferable.
  • the raw material epoxy resin (a2) is not particularly limited as long as it is a resin having a plurality of epoxy groups, and a wide variety of materials can be used. Especially, since it becomes acid group containing (meth) acrylate resin with especially high heat resistance in hardened
  • One example is polyglycidyl ether of phenolic hydroxyl group-containing resin.
  • a polyglycidyl ether of a novolak type resin (hereinafter referred to as “raw material epoxy resin (a2-1)”) using one or more phenolic hydroxyl group-containing compounds (P) as a reaction raw material
  • a reaction product comprising one or more phenolic hydroxyl group-containing compounds (P) and a compound (y) represented by any one of the following structural formulas (y-1) to (y-5) as essential reaction raw materials
  • polyglycidyl ether hereinafter referred to as “raw material epoxy resin (a2-2)”.
  • R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is an integer of 0 or 1 to 4.
  • Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group, and an alkyloxymethyl group.
  • Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group.
  • j is an integer of 1 to 4.
  • the phenolic hydroxyl group-containing compound (P) includes, for example, phenol, polyhydroxybenzene, naphthol, polyhydroxynaphthalene, anthracenol, polyhydroxyanthracene, biphenol, bisphenol, and one or more of these on the aromatic nucleus. Examples thereof include compounds having a substituent. Examples of the substituent on the aromatic nucleus include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group. The aliphatic hydrocarbon group may be either linear or branched, and may have an unsaturated bond in the structure.
  • Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, and a nonyl group.
  • the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom.
  • aryl group examples include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aromatic hydrocarbon group, the alkoxy group, the halogen atom, or the like is substituted on the aromatic nucleus.
  • aryloxy group examples include a phenyloxy group, a naphthyloxy group, an anthryloxy group, and a structural site in which the alkyl group, alkoxy group, halogen atom, or the like is substituted on the aromatic nucleus.
  • aralkyl group examples include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, alkoxy group, halogen atom, or the like is substituted on the aromatic nucleus.
  • the phenolic hydroxyl group-containing compound (P) may be used singly or in combination of two or more.
  • a compound having one or more substituents on the aromatic nucleus of phenol or phenol is phenol or alkylphenol having one or more alkyl groups having 1 to 6 carbon atoms.
  • R 1 in the structural formulas (y-1) to (y-5) is any of an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group. Specific examples thereof include those exemplified above.
  • the compound represented by the structural formula (y-1) is preferable because the acid group-containing (meth) acrylate resin is further excellent in the balance between elongation and heat resistance in the cured product.
  • the novolac resin using the phenolic hydroxyl group-containing compound (P) as a reaction raw material can be produced by the same production method as a general novolac resin.
  • the molecular weight and the like of the novolac resin is preferably adjusted so that the softening point of the obtained raw material epoxy resin (a2-1) is about 50 to 120 ° C.
  • the reaction between the phenolic hydroxyl group-containing compound (P) and the compound (y) can be carried out by a method of heating and stirring under acid catalyst conditions and at a temperature of about 70 to 180 ° C.
  • the reaction ratio between the phenolic hydroxyl group-containing compound (P) and the compound (y) is such that the phenolic hydroxyl group-containing compound (P) is 1.5 to 5 moles per mole of the compound (y). It is preferable that
  • the polyglycidyl etherification reaction of the phenolic hydroxyl group-containing resin can be performed by a known and conventional method.
  • 2 to 10 mol of epihalohydrin is used with respect to 1 mol of phenolic hydroxyl group contained in the phenolic hydroxyl group-containing resin, and 0.9 to 2.0 mol of basicity with respect to 1 mol of phenolic hydroxyl group.
  • Examples thereof include a method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding the catalyst all at once or dividedly.
  • the epoxy group equivalent of the raw material epoxy resin (a2) is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product, and is in the range of 160 to 400 g / equivalent. Preferably there is.
  • the raw material epoxy resin (a2) may be used alone or in combination of two or more.
  • the raw material epoxy resin (a2-2) is preferably used as an essential component because the acid group-containing (meth) acrylate resin is further excellent in the balance of elongation and heat resistance in the cured product.
  • the obtained acid group-containing (meth) acrylate resin in addition to the elongation and heat resistance in the cured product, various performances can be imparted, and balance control of each performance becomes easy.
  • the ratio of the raw material epoxy resin (a2-2) to the total weight of the raw material epoxy resin (a2) is preferably 30% by mass or more, more preferably in the range of 30 to 80% by mass, and 40 to 70%. It is particularly preferable that the mass range. Further, the total mass of the raw material epoxy resin (a2-1) and the raw material epoxy resin (a2-2) with respect to the total mass of the raw material epoxy resin (a2) is preferably 50% by mass or more, and 80% by mass. More preferably.
  • the raw material epoxy resin (a2) produced separately may be used, or it may be used at the stage of the phenolic hydroxyl group-containing resin to be polyglycidyl etherified. You may use what you did.
  • the reaction between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) can be performed, for example, in the presence of an esterification catalyst at a temperature range of 100 to 150 ° C.
  • the reaction ratio between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product. From the above, it is preferable to use the polycarboxylic acid or its derivative (a1) in the range of 0.5 to 20% by mass, and in the range of 1 to 10% by mass, based on the total mass of the raw material epoxy resin (a2). It is more preferable.
  • esterification reaction catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine, and triphenylphosphine, and amine compounds such as triethylamine, tributylamine, and dimethylbenzylamine. These may be used alone or in combination of two or more.
  • the amount of the catalyst added is preferably in the range of 0.05 to 5% by mass with respect to the total mass of the polycarboxylic acid or derivative (a1) and the raw material epoxy resin (a2).
  • the reaction between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) may be performed in an organic solvent as necessary.
  • the organic solvent to be used is appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more.
  • the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
  • epoxy resin (A) an epoxy resin having an oxazolidone ring structure in the molecular structure can also be used.
  • the epoxy resin having an oxazolidone ring structure in the molecular structure is not particularly limited as long as it has an oxazolidone ring structure in the molecular structure, and various kinds of resins can be used. .
  • the epoxy resin having an oxazolidone ring structure in the molecular structure for example, the polyglycidyl etherified product of the phenolic hydroxyl group-containing compound (P) described above and the polyisocyanate compound (a3) are used as essential reaction raw materials. Reaction products are mentioned.
  • the polyisocyanate compound (a3) is a compound having a plurality of isocyanate groups in the molecule, the specific structure and the presence or absence of other functional groups are not particularly limited, and various types can be used.
  • Specific examples of the polyisocyanate compound (a3) include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; Alicyclic diisocyanate compounds such as norbornane diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; aromas such as tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene di
  • R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 is each independently an alkyl group having 1 to 4 carbon atoms or a bonding point linked to a structural moiety represented by the structural formula (2) via a methylene group marked with *.
  • m is 0 or an integer of 1 to 3
  • l is an integer of 1 or more.
  • Examples of the unsaturated monocarboxylic acid or its derivative (B) include compounds having a (meth) acryloyl group and a carboxy group in one molecule such as acrylic acid and methacrylic acid, acid halides, acid anhydrides thereof, and the like. It is done. These may be used alone or in combination of two or more.
  • any acid anhydride of a compound having two or more carboxy groups in one molecule can be used.
  • oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid examples thereof include acid anhydrides of dicarboxylic acid compounds such as hexahydrophthalic acid and methylhexahydrophthalic acid.
  • Polycarboxylic acid anhydrides (C) may be used alone or in combination of two or more.
  • phthalic acid isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, etc.
  • An acid anhydride of a compound having a cyclic structure is preferred.
  • a succinic anhydride is preferable in that the acid group-containing (meth) acrylate resin is excellent in developability.
  • the acid group-containing (meth) acrylate resin of the present invention uses the epoxy resin (A), the unsaturated monocarboxylic acid or its derivative (B), and the polycarboxylic acid anhydride (C) as essential reaction raw materials. If it is a thing, the manufacturing method will not be specifically limited, For example, either the method of reacting all the reaction raw materials collectively, or the method of reacting sequentially may be sufficient. Among them, since the reaction is easily controlled, the epoxy resin (A) is first reacted with the unsaturated monocarboxylic acid or derivative (B), and then the polycarboxylic acid anhydride (C) is reacted. The method is preferred.
  • the reaction is performed, for example, by reacting the epoxy resin (A) with the unsaturated monocarboxylic acid or derivative (B) in the presence of an esterification reaction catalyst in a temperature range of 100 to 150 ° C.
  • the polycarboxylic acid anhydride (C) can be added to the mixture and reacted in a temperature range of 90 to 120 ° C.
  • the reaction ratio of the epoxy resin (A) to the unsaturated monocarboxylic acid or its derivative (B) is the ratio of the unsaturated monocarboxylic acid or its derivative (B) to 1 mol of the epoxy group in the epoxy resin (A). It is preferably used in the range of 0.9 to 1.1 mol.
  • the reaction rate of the polycarboxylic acid anhydride (D) is preferably in the range of 0.2 to 1.0 mol with respect to 1 mol of the epoxy group in the epoxy resin (A).
  • esterification catalyst examples include the same compounds as those used in the reaction of the polycarboxylic acid or its derivative (a1) with the raw material epoxy resin (a2).
  • the addition amount of the catalyst is preferably in the range of 0.03 to 5% by mass with respect to the total mass of the reaction raw materials.
  • the reaction may be performed in an organic solvent as necessary.
  • the organic solvent to be used include the same compounds as those used in the reaction of the polycarboxylic acid or its derivative (a1) with the raw material epoxy resin (a2).
  • the amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
  • the acid value of the acid group-containing (meth) acrylate resin of the present invention is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product, 40 to 90 mgKOH / g It is preferable that it is the range of these.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • the acid group-containing (meth) acrylate resin of the present invention has a polymerizable (meth) acryloyl group in the molecular structure, for example, it can be used as a curable resin composition by adding a photopolymerization initiator. Can do.
  • the photopolymerization initiator may be selected and used according to the type of active energy ray to be irradiated. Moreover, you may use together with photosensitizers, such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound.
  • photosensitizers such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound.
  • photopolymerization initiator examples include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) Alkylphenone photopolymerization initiators such as -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples include acylphosphine oxide photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
  • the addition amount of the photopolymerization initiator is preferably in the range of 0.05 to 15% by mass, for example, in the range of 0.1 to 10% by mass with respect to the total of components other than the solvent of the curable resin composition. It is more preferable that
  • the curable resin composition of the present invention may contain a resin component other than the acid group-containing (meth) acrylate resin of the present invention.
  • the resin component is obtained, for example, by reacting an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin with (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride as required.
  • an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin
  • acrylic acid, dicarboxylic acid anhydride dicarboxylic acid anhydride
  • unsaturated monocarboxylic acid anhydride unsaturated monocarboxylic acid anhydride
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( Aliphatic mono (meth) acrylate compounds such as meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate,
  • Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate
  • alicyclic di (meth) acrylate compounds aromatic di (meth) acrylate compounds such as biphenol di (meth) acrylate and bisphenol di (meth) acrylate;
  • Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound, (poly) (Poly) oxyalkylene-modified tri (meth) acrylate compound introduced with (poly) oxyalkylene chain such as oxypropylene chain and (poly) oxytetramethylene chain; in the molecular structure of the aliphatic tri (meth) acrylate compound ( A lactone-modified tri (meth) acrylate compound having a poly) lactone structure;
  • Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; (Poly) oxyalkylene-modified poly (meth) having 4 or more functionalities in which (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, or other (poly) oxyalkylene chain is introduced into the molecular structure Acrylate compounds; tetrafunctional or higher functional lactone-modified poly (meth) acrylate compounds in which a (poly) lactone structure is introduced into the molecular structure of the aliphatic poly (meth) acrylate compound.
  • the curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity.
  • the kind and addition amount are appropriately adjusted according to the desired performance. Generally, it is used in the range of 10 to 90% by mass with respect to the total of the curable resin composition.
  • Specific examples of the solvent include, for example, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; aromatics such as toluene and xylene.
  • Solvents include cycloaliphatic, methylcyclohexane and other alicyclic solvents; carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol mono Examples include glycol ether solvents such as alkyl ether acetates. These may be used alone or in combination of two or more.
  • the curable resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers. .
  • the acid group-containing (meth) acrylate resin of the present invention is characterized by an excellent balance between elongation and heat resistance in a cured product.
  • the acid group-containing (meth) acrylate resin of the present invention has a performance that defeats the conventional technical knowledge in that both of these difficult performances are combined at a high level.
  • the acid group-containing (meth) acrylate resin of the present invention is used as an application in which the balance between elongation and heat resistance in a cured product is utilized, for example, as a semiconductor device-related application, a solder resist, an interlayer insulating material, It can be used as a package adhesive layer such as a package material, an underfill material or a circuit element, or an adhesive layer between an integrated circuit element and a circuit board.
  • thin film display applications such as LCD and OELD can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, color filter pigment resists, black matrix resists, spacers, and the like.
  • the acid group-containing (meth) acrylate resin of the present invention is excellent in developability as well as elongation and heat resistance in a cured product, it can be suitably used for solder resist applications.
  • the resin material for solder resist of the present invention includes, for example, each component such as a curing agent, a curing accelerator, and an organic solvent in addition to the acid group-containing (meth) acrylate resin, the photopolymerization initiator, and various additives. Become.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin.
  • examples of the epoxy resin used here include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol Examples include addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these epoxy resins, phenolic novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin because of excellent heat resistance in cured products.
  • Novolak type epoxy resins such as naphthol-cresol co-condensed novolak type epoxy resins are preferable, and those having a softening point in the range of 50 to 120 ° C. are particularly preferable.
  • the curing accelerator accelerates the curing reaction of the curing agent.
  • a phosphorus compound, a tertiary amine, an imidazole, an organic acid metal salt, a Lewis acid examples include amine complex salts. These may be used alone or in combination of two or more.
  • the addition amount of the curing accelerator is, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
  • the organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin and the curing agent.
  • methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol examples include cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, and propylene glycol monomethyl ether acetate.
  • the method of obtaining a resist member using the solder resist resin material of the present invention is, for example, by applying the solder resist resin material on a substrate and evaporating and drying the organic solvent in a temperature range of about 60 to 100 ° C. Thereafter, there is a method in which a non-exposed portion is exposed with an ultraviolet solution or an electron beam through a photomask having a desired pattern formed, and an unexposed portion is developed with an alkaline aqueous solution, and further heated and cured in a temperature range of about 140 to 180 ° C. .
  • the acid value of the acid group-containing (meth) acrylate resin was measured by the neutralization titration method of JIS K 0070 (1992).
  • curable resin composition 100 g of acid group-containing (meth) acrylate resin obtained above, “EPICLON N-680” (cresol novolac type epoxy resin) manufactured by DIC Corporation 24 g, “Irgacure 907” [2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one] manufactured by BASF, and 13 g of diethylene glycol monomethyl ether acetate were blended to prepare a curable resin composition. Obtained.
  • the curable resin composition was apply
  • curable resin composition 100 g of the acid group-containing (meth) acrylate resin obtained previously, 24 g of “EPICLON N-680” (cresol novolac type epoxy resin) manufactured by DIC Corporation, Toagosei 10 g of “Lumicure DPA-600T” (composition containing dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in a molar ratio of 40/60), “Irgacure 907” [2-methyl-1- (4 -Methylthiophenyl) -2-morpholinopropan-1-one], 13 g of diethylene glycol monomethyl ether acetate, and 0.65 g of phthalocyanine green as a pigment were blended and kneaded by a roll mill to obtain a curable resin composition.
  • Step Tablet No. 2 was irradiated with ultraviolet rays of 500 mJ / cm 2 using a metal halide lamp. This was developed with a 1% by mass aqueous sodium carbonate solution for 180 seconds and evaluated by the number of remaining steps. The greater the number of remaining stages, the higher the photosensitivity.

Landscapes

  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

The present invention provides an acid-group-containing (meth)acrylate resin obtained from starting materials which comprises (A) an epoxy resin, (B) an unsaturated monocarboxylic acid or a derivative thereof, and (C) a polycarboxylic anhydride as essential reactants, wherein the epoxy resin (A) has a molecular structure which contains an ester bond portion derived from (a1) a polycarboxylic acid or a derivative thereof. This acid-group-containing (meth)acrylate resin can give cured objects having an excellent balance between elongation and heat resistance.

Description

酸基含有(メタ)アクリレート樹脂及びソルダーレジスト用樹脂材料Acid group-containing (meth) acrylate resin and solder resist resin material
 本発明は、硬化物における伸度と耐熱性とのバランスに優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関する。 The present invention provides an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the resin, an insulating material comprising the curable resin composition, and a solder resist The present invention relates to a resin material and a resist member.
 プリント配線基板用のソルダーレジスト用樹脂材料には、エポキシ樹脂をアクリル酸でアクリレート化した後、酸無水物を反応させて得られる酸基含有エポキシアクリレート樹脂が広く用いられている。ソルダーレジスト用樹脂材料に対する要求性能は、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、柔軟性、誘電特性等に優れることなど様々なものが挙げられる。 As a resin material for a solder resist for a printed wiring board, an acid group-containing epoxy acrylate resin obtained by reacting an acid anhydride after an epoxy resin is acrylated with acrylic acid is widely used. The required performance for the resin material for solder resist includes various properties such as curing with a small exposure amount, excellent alkali developability, and excellent heat resistance, strength, flexibility, dielectric properties, etc. in the cured product.
 従来知られているソルダーレジスト用樹脂材料として、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂及びビスフェノールFの反応生成物に、更に、アクリル酸と無水テトラヒドロフタル酸とを反応させて得られる酸基含有エポキシアクリレート樹脂が知られている(下記特許文献1参照)。特許文献1記載の酸基含有エポキシアクリレート樹脂は、硬化物におけるはんだ耐性や耐熱性に優れる特徴を有するものの、硬化物における伸度が非常に低く、硬化物に割れが生じ易く信頼性に劣る、フレキシブル基板等、柔軟性が求められる用途に適さない等の課題があった。 As a conventionally known resin material for solder resist, an acid obtained by further reacting a reaction product of cresol novolak type epoxy resin, dicyclopentadiene type epoxy resin and bisphenol F with acrylic acid and tetrahydrophthalic anhydride. A group-containing epoxy acrylate resin is known (see Patent Document 1 below). Although the acid group-containing epoxy acrylate resin described in Patent Document 1 has characteristics that are excellent in solder resistance and heat resistance in a cured product, the elongation in the cured product is very low, and the cured product is easily cracked and has poor reliability. There existed problems, such as not being suitable for the use for which a softness | flexibility is calculated | required, such as a flexible substrate.
特表2012-503690号公報Special table 2012-503690 gazette
 したがって、本発明が解決しようとする課題は、硬化物における伸度と耐熱性とのバランスに優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することにある。 Therefore, the problem to be solved by the present invention is an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the acid group, and the curable resin composition. An insulating material, a resin material for solder resist, and a resist member are provided.
 本発明者らは上記課題を解決するため鋭意検討を行った結果、酸基含有エポキシ(メタ)アクリレート樹脂の反応原料であるエポキシ樹脂として、ポリカルボン酸又はその誘導体由来のエステル結合部位を分子構造中に有するものを用いることにより、光感度やアルカリ現像性等の性能を維持しつつ、硬化物における伸度と耐熱性のバランスに優れる樹脂材料となることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an ester bond site derived from a polycarboxylic acid or a derivative thereof has a molecular structure as an epoxy resin that is a reaction raw material of an acid group-containing epoxy (meth) acrylate resin. By using what is contained therein, it has been found that the resin material has an excellent balance between elongation and heat resistance in a cured product while maintaining performance such as photosensitivity and alkali developability, and the present invention has been completed. It was.
 即ち、本発明は、エポキシ樹脂(A)、不飽和モノカルボン酸又はその誘導体(B)、及びポリカルボン酸無水物(C)を必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記エポキシ樹脂(A)が、ポリカルボン酸又はその誘導体(a1)由来のエステル結合部位を分子構造中に有するものである酸基含有(メタ)アクリレート樹脂に関する。 That is, the present invention is an acid group-containing (meth) acrylate resin comprising an epoxy resin (A), an unsaturated monocarboxylic acid or derivative thereof (B), and a polycarboxylic acid anhydride (C) as essential reaction raw materials. The epoxy resin (A) relates to an acid group-containing (meth) acrylate resin having an ester bond site derived from a polycarboxylic acid or a derivative thereof (a1) in the molecular structure.
 本発明はさらに、前記酸基含有(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性樹脂組成物に関する。 The present invention further relates to a curable resin composition containing the acid group-containing (meth) acrylate resin and a photopolymerization initiator.
 本発明はさらに、前記硬化性樹脂組成物の硬化物に関する。 The present invention further relates to a cured product of the curable resin composition.
 本発明はさらに、前記硬化性樹脂組成物からなる絶縁材料に関する。 The present invention further relates to an insulating material comprising the curable resin composition.
 本発明はさらに、前記硬化性樹脂組成物からなるソルダーレジスト用樹脂材料に関する。 The present invention further relates to a solder resist resin material comprising the curable resin composition.
 本発明はさらに、前記ソルダーレジスト用樹脂材料からなるレジスト部材に関する。 The present invention further relates to a resist member made of the resin material for solder resist.
 本発明によれば、硬化物における伸度と耐熱性とのバランスに優れる酸基含有(メタ)アクリレート樹脂、これを含有する硬化性樹脂組成物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することができる。 According to the present invention, an acid group-containing (meth) acrylate resin excellent in the balance between elongation and heat resistance in a cured product, a curable resin composition containing the resin, an insulating material comprising the curable resin composition, and a solder A resist resin material and a resist member can be provided.
図1は、実施例1で得られた酸基含有(メタ)アクリレート樹脂(1)のGPCチャート図である。1 is a GPC chart of the acid group-containing (meth) acrylate resin (1) obtained in Example 1. FIG.
 以下、本発明を詳細に説明する。
 本発明の酸基含有(メタ)アクリレート樹脂は、エポキシ樹脂(A)、不飽和モノカルボン酸又はその誘導体(B)、及びポリカルボン酸無水物(C)を必須の反応原料とし、前記エポキシ樹脂(A)が、ポリカルボン酸又はその誘導体(a1)由来のエステル結合部位を分子構造中に有することを特徴とする。
Hereinafter, the present invention will be described in detail.
The acid group-containing (meth) acrylate resin of the present invention comprises an epoxy resin (A), an unsaturated monocarboxylic acid or derivative thereof (B), and a polycarboxylic acid anhydride (C) as essential reaction materials, and the epoxy resin. (A) has an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure.
 本発明において(メタ)アクリレート樹脂とは、分子中にアクリロイル基、メタクリロイル基、或いはその両方を有する樹脂のことをいう。また、(メタ)アクリロイル基とは、アクリロイル基、メタクリロイル基の一方或いは両方のことをいい、(メタ)アクリレートとは、アクリレート及びメタクリレートの総称である。 In the present invention, the (meth) acrylate resin refers to a resin having an acryloyl group, a methacryloyl group, or both in the molecule. The (meth) acryloyl group means one or both of an acryloyl group and a methacryloyl group, and (meth) acrylate is a general term for acrylate and methacrylate.
 前記エポキシ樹脂(A)は、分子構造中にポリカルボン酸又はその誘導体(a1)由来のエステル結合部位を有することを特徴とする。当該特徴は、硬化物における伸度と耐熱性とのバランスに優れる酸基含有(メタ)アクリレート樹脂を得るための必須の要件である。前記エポキシ樹脂(A)は、分子構造中にポリカルボン酸又はその誘導体(a1)由来のエステル結合部位を有し、かつ、分子構造中に複数のエポキシ基を有するものであれば、その他の具体構造は特に限定されず、また、どのように製造したものであってもよい。前記エポキシ樹脂(A)の具体例の一例としては、前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)とを必須の反応原料として得られるエポキシ樹脂が挙げられる。 The epoxy resin (A) is characterized by having an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure. This feature is an essential requirement for obtaining an acid group-containing (meth) acrylate resin that has an excellent balance between elongation and heat resistance in the cured product. The epoxy resin (A) is not limited as long as it has an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure and has a plurality of epoxy groups in the molecular structure. The structure is not particularly limited, and any structure may be used. As an example of the said epoxy resin (A), the epoxy resin obtained by using the said polycarboxylic acid or its derivative (a1) and raw material epoxy resin (a2) as an essential reaction raw material is mentioned.
 前記ポリカルボン酸又はその誘導体(a1)は、分子構造中にカルボキシ基を2つ以上有する化合物や、その酸ハロゲン化物、酸無水物等が挙げられる。前記ポリカルボン酸又はその誘導体(a1)は、カルボキシ基由来の反応点を2つ以上有し、エステル結合による架橋剤として機能するものであれば、その他の具体構造は特に限定されず、多種多様な化合物を用いることができる。前記ポリカルボン酸又はその誘導体(a1)が有するカルボキシ基由来官能基の数や種類は、前記原料エポキシ樹脂(a2)との反応性や、所望の硬化物性能等に応じて適宜選択される。中でも、硬化物における伸度と耐熱性とのバランスに一層優れる酸基含有(メタ)アクリレート樹脂となることから、カルボキシ基を2つ有するジカルボン酸化合物が好ましい。ジカルボン酸化合物の具体例としては、下記構造式(1)で表される化合物等が挙げられる。 Examples of the polycarboxylic acid or its derivative (a1) include compounds having two or more carboxy groups in the molecular structure, acid halides, acid anhydrides and the like thereof. The polycarboxylic acid or its derivative (a1) is not particularly limited as long as it has two or more reactive points derived from a carboxy group and functions as a cross-linking agent by an ester bond. Compounds can be used. The number and type of the carboxy group-derived functional group of the polycarboxylic acid or its derivative (a1) is appropriately selected according to the reactivity with the raw material epoxy resin (a2), the desired cured product performance, and the like. Especially, since it becomes acid group containing (meth) acrylate resin which is further excellent in the balance of the elongation and heat resistance in hardened | cured material, the dicarboxylic acid compound which has two carboxy groups is preferable. Specific examples of the dicarboxylic acid compound include compounds represented by the following structural formula (1).
Figure JPOXMLDOC01-appb-C000002
(式中Xは脂肪族炭化水素基、脂環構造含有炭化水素基、芳香環含有炭化水素基、及びこれらが有する水素原子の一つ乃至複数がアルコキシ基、アリールオキシ基、ハロゲン原子等で置換された構造部位である。)
Figure JPOXMLDOC01-appb-C000002
(Wherein X represents an aliphatic hydrocarbon group, an alicyclic structure-containing hydrocarbon group, an aromatic ring-containing hydrocarbon group, and one or more of the hydrogen atoms contained therein are substituted with an alkoxy group, an aryloxy group, a halogen atom, etc. It is a structured part.)
 前記構造式(1)中のXについて、前記脂肪族炭化水素基は直鎖型でも分岐型でもよく、不飽和結合を一つ乃至複数有していてもよい。中でも、硬化物における伸度と耐熱性とのバランスに一層優れる酸基含有(メタ)アクリレート樹脂となることから、炭素原子数1~6のアルキレン基であることが好ましい。前記脂環構造含有炭化水素基が有する脂環構造としては、シクロペンタン構造、シクロヘキサン構造、ノルボルナン構造、ノルボルネン構造、トリシクロデカン構造、ジシクロペンタジエン構造、アダマンタン構造等が挙げられる。前記脂環構造含有炭化水素基は、これらの脂環構造を一つ乃至複数有していれば、脂環構造同士の結合基或いは脂環構造とカルボキシ基との結合基として脂肪族炭化水素基等を含有していてもよい。結合基としての脂肪族炭化水素基は、炭素原子数1~6のアルキレン基であることが好ましい。前記芳香環含有炭化水素基が有する芳香環構造としては、ベンゼン環、ナフタレン環、アントラセン環等が挙げられる。前記芳香環含有炭化水素基は、これらの芳香環を一つ乃至複数有していれば、芳香環同士の結合基或いは脂芳香環とカルボキシ基との結合基として脂肪族炭化水素基等を含有していてもよい。結合基としての脂肪族炭化水素基は、炭素原子数1~6のアルキレン基であることが好ましい。また、前記アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基等、炭素原子数1~6程度のアルコキシ基が挙げられる。前記アリールオキシ基としては、ベンゼンオキシ基、ナフチルオキシ基、及びこれらの芳香核上の水素原子の一つ乃至複数が脂肪族炭化水素基、アルコキシ基、ハロゲン原子等で置換された構造部位が挙げられる。前記ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Referring to X in the structural formula (1), the aliphatic hydrocarbon group may be linear or branched, and may have one or more unsaturated bonds. Among them, an alkylene group having 1 to 6 carbon atoms is preferable because the acid group-containing (meth) acrylate resin is further excellent in the balance between elongation and heat resistance in the cured product. Examples of the alicyclic structure of the alicyclic structure-containing hydrocarbon group include a cyclopentane structure, a cyclohexane structure, a norbornane structure, a norbornene structure, a tricyclodecane structure, a dicyclopentadiene structure, and an adamantane structure. As long as the alicyclic structure-containing hydrocarbon group has one or more of these alicyclic structures, an aliphatic hydrocarbon group as a bonding group between the alicyclic structures or a bonding group between the alicyclic structure and the carboxy group. Etc. may be contained. The aliphatic hydrocarbon group as the linking group is preferably an alkylene group having 1 to 6 carbon atoms. Examples of the aromatic ring structure possessed by the aromatic ring-containing hydrocarbon group include a benzene ring, a naphthalene ring, and an anthracene ring. If the aromatic ring-containing hydrocarbon group has one or more of these aromatic rings, it contains an aliphatic hydrocarbon group or the like as a bonding group between aromatic rings or a bonding group between an alicyclic ring and a carboxy group. You may do it. The aliphatic hydrocarbon group as the linking group is preferably an alkylene group having 1 to 6 carbon atoms. Examples of the alkoxy group include alkoxy groups having about 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, a propyloxy group, a butyloxy group, a pentyloxy group, and a hexyloxy group. Examples of the aryloxy group include a benzeneoxy group, a naphthyloxy group, and a structural site in which one or more of hydrogen atoms on the aromatic nucleus are substituted with an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, or the like. It is done. Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
 前記ジカルボン酸化合物の中でも、硬化物における伸度と耐熱性とのバランスに一層優れる酸基含有(メタ)アクリレート樹脂となることから、前記構造式(1)中のXが脂環構造含有炭化水素基、又は脂環構造含有炭化水素基中の水素原子の一つ乃至複数がアルコキシ基、アリールオキシ基、ハロゲン原子等で置換された構造部位であるものが好ましい。更に、脂環構造としてシクロヘキサン構造を有するものがより好ましい。 Among the dicarboxylic acid compounds, an acid group-containing (meth) acrylate resin having a further excellent balance between elongation and heat resistance in a cured product is obtained, and therefore X in the structural formula (1) is an alicyclic structure-containing hydrocarbon. A group or a structure site in which one or more hydrogen atoms in the alicyclic structure-containing hydrocarbon group are substituted with an alkoxy group, an aryloxy group, a halogen atom or the like is preferable. Furthermore, what has a cyclohexane structure as an alicyclic structure is more preferable.
 前記原料エポキシ樹脂(a2)は、エポキシ基を複数有する樹脂であれば具体構造は特に限定されず、多種多様なものを用いることができる。中でも、硬化物における耐熱性が特に高い酸基含有(メタ)アクリレート樹脂となることから、樹脂構造中に芳香環を有するものが好ましい。その一例としては、フェノール性水酸基含有樹脂のポリグリシジルエーテル等が挙げられる。より具体的には、例えば、フェノール性水酸基含有化合物(P)の一種乃至複数種を反応原料とするノボラック型樹脂のポリグリシジルエーテル(以下「原料エポキシ樹脂(a2-1)」とする)や、フェノール性水酸基含有化合物(P)の一種乃至複数種と下記構造式(y-1)~(y-5)の何れかで表される化合物(y)とを必須の反応原料とする反応生成物のポリグリシジルエーテル(以下「原料エポキシ樹脂(a2-2)」とする)等が挙げられる。 The raw material epoxy resin (a2) is not particularly limited as long as it is a resin having a plurality of epoxy groups, and a wide variety of materials can be used. Especially, since it becomes acid group containing (meth) acrylate resin with especially high heat resistance in hardened | cured material, what has an aromatic ring in a resin structure is preferable. One example is polyglycidyl ether of phenolic hydroxyl group-containing resin. More specifically, for example, a polyglycidyl ether of a novolak type resin (hereinafter referred to as “raw material epoxy resin (a2-1)”) using one or more phenolic hydroxyl group-containing compounds (P) as a reaction raw material, A reaction product comprising one or more phenolic hydroxyl group-containing compounds (P) and a compound (y) represented by any one of the following structural formulas (y-1) to (y-5) as essential reaction raw materials And polyglycidyl ether (hereinafter referred to as “raw material epoxy resin (a2-2)”).
Figure JPOXMLDOC01-appb-C000003
[式中hは0又は1である。Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、iは0又は1~4の整数である。Zはビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。Yは炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1~4の整数である。]
Figure JPOXMLDOC01-appb-C000003
[In the formula, h is 0 or 1. R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is an integer of 0 or 1 to 4. Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group, and an alkyloxymethyl group. Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group. j is an integer of 1 to 4. ]
 前記フェノール性水酸基含有化合物(P)は、例えば、フェノール、ポリヒドロキシベンゼン、ナフトール、ポリヒドロキシナフタレン、アントラセノール、ポリヒドロキシアントラセン、ビフェノール、ビスフェノールの他、これらの芳香核上に一つ乃至複数の置換基を有する化合物等が挙げられる。芳香核上の置換基は、例えば、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基等が挙げられる。前記脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等が挙げられる。前記アルコキシ基は、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等が挙げられる。前記ハロゲン原子は、フッ素原子、塩素原子、臭素原子等が挙げられる。前記アリール基は、フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アリールオキシ基は、フェニルオキシ基、ナフチルオキシ基、アントリルオキシ基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前記アラルキル基は、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記アルキル基やアルコキシ基、ハロゲン原子等が置換した構造部位等が挙げられる。前前記フェノール性水酸基含有化合物(P)は一種類を単独で用いてもよいし、2種類以上を併用して用いてもよい。中でも、硬化物における伸度や耐熱性の他、現像性にも優れる酸基含有(メタ)アクリレート樹脂となることから、フェノール又はフェノールの芳香核上に一つ乃至複数の置換基を有する化合物が好ましく、フェノール又は炭素原子数1~6のアルキル基を一つ乃至複数有するアルキルフェノールが好ましい。 The phenolic hydroxyl group-containing compound (P) includes, for example, phenol, polyhydroxybenzene, naphthol, polyhydroxynaphthalene, anthracenol, polyhydroxyanthracene, biphenol, bisphenol, and one or more of these on the aromatic nucleus. Examples thereof include compounds having a substituent. Examples of the substituent on the aromatic nucleus include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group. The aliphatic hydrocarbon group may be either linear or branched, and may have an unsaturated bond in the structure. Specific examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, and a nonyl group. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, and a butoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Examples of the aryl group include a phenyl group, a naphthyl group, an anthryl group, and a structural site in which the aromatic hydrocarbon group, the alkoxy group, the halogen atom, or the like is substituted on the aromatic nucleus. Examples of the aryloxy group include a phenyloxy group, a naphthyloxy group, an anthryloxy group, and a structural site in which the alkyl group, alkoxy group, halogen atom, or the like is substituted on the aromatic nucleus. Examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, a naphthylethyl group, and a structural site in which the alkyl group, alkoxy group, halogen atom, or the like is substituted on the aromatic nucleus. The phenolic hydroxyl group-containing compound (P) may be used singly or in combination of two or more. Among them, since it becomes an acid group-containing (meth) acrylate resin having excellent developability in addition to elongation and heat resistance in the cured product, a compound having one or more substituents on the aromatic nucleus of phenol or phenol Preferable is phenol or alkylphenol having one or more alkyl groups having 1 to 6 carbon atoms.
 前記化合物(y)について、前記構造式(y-1)~(y-5)中のRは脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、その具体例は先に例示したもの等が挙げられる。前記化合物(y)の中でも、硬化物における伸度と耐熱性のバランスに一層優れる酸基含有(メタ)アクリレート樹脂となることから、前記構造式(y-1)で表される化合物が好ましい。 In the compound (y), R 1 in the structural formulas (y-1) to (y-5) is any of an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group. Specific examples thereof include those exemplified above. Among the compounds (y), the compound represented by the structural formula (y-1) is preferable because the acid group-containing (meth) acrylate resin is further excellent in the balance between elongation and heat resistance in the cured product.
 前記フェノール性水酸基含有化合物(P)を反応原料とするノボラック型樹脂は、一般的なノボラック樹脂と同様の製法にて製造することができる。ノボラック型樹脂の分子量等は、得られる原料エポキシ樹脂(a2-1)の軟化点が50~120℃程度になるよう調整することが好ましい。 The novolac resin using the phenolic hydroxyl group-containing compound (P) as a reaction raw material can be produced by the same production method as a general novolac resin. The molecular weight and the like of the novolac resin is preferably adjusted so that the softening point of the obtained raw material epoxy resin (a2-1) is about 50 to 120 ° C.
 前記フェノール性水酸基含有化合物(P)と前記化合物(y)との反応は、酸触媒条件下、70~180℃程度の温度条件下で加熱撹拌する方法により行うことができる。前記フェノール性水酸基含有化合物(P)と前記化合物(y)との反応割合は、前記化合物(y)1モルに対し、前記フェノール性水酸基含有化合物(P)が1.5~5モルとなる割合であることが好ましい。 The reaction between the phenolic hydroxyl group-containing compound (P) and the compound (y) can be carried out by a method of heating and stirring under acid catalyst conditions and at a temperature of about 70 to 180 ° C. The reaction ratio between the phenolic hydroxyl group-containing compound (P) and the compound (y) is such that the phenolic hydroxyl group-containing compound (P) is 1.5 to 5 moles per mole of the compound (y). It is preferable that
 前記フェノール性水酸基含有樹脂のポリグリシジルエーテル化反応は、公知慣用の方法にて行うことができる。その一例としては、例えば、前記フェノール性水酸基含有樹脂が有するフェノール性水酸基1モルに対して2~10モルのエピハロヒドリンを用い、フェノール性水酸基1モルに対し0.9~2.0モルの塩基性触媒を一括又は分割添加しながら20~120℃の温度で0.5~10時間反応させる方法が挙げられる。 The polyglycidyl etherification reaction of the phenolic hydroxyl group-containing resin can be performed by a known and conventional method. As an example, for example, 2 to 10 mol of epihalohydrin is used with respect to 1 mol of phenolic hydroxyl group contained in the phenolic hydroxyl group-containing resin, and 0.9 to 2.0 mol of basicity with respect to 1 mol of phenolic hydroxyl group. Examples thereof include a method of reacting at a temperature of 20 to 120 ° C. for 0.5 to 10 hours while adding the catalyst all at once or dividedly.
 前記原料エポキシ樹脂(a2)のエポキシ基当量は、硬化物における伸度や耐熱性の他、現像性にも優れる酸基含有(メタ)アクリレート樹脂となることから、160~400g/当量の範囲であることが好ましい。 The epoxy group equivalent of the raw material epoxy resin (a2) is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product, and is in the range of 160 to 400 g / equivalent. Preferably there is.
 前記原料エポキシ樹脂(a2)は、一種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、硬化物における伸度や耐熱性のバランスに一層優れる酸基含有(メタ)アクリレート樹脂となることから、前記原料エポキシ樹脂(a2-2)を必須の成分として用いることが好ましい。更に、得られる酸基含有(メタ)アクリレート樹脂において、硬化物における伸度や耐熱性の他にも様々な性能を付与することができ、各性能のバランス制御が容易となることから、前記原料エポキシ樹脂(a2)として複数種のエポキシ樹脂を用いることが好ましく、前記原料エポキシ樹脂(a2-1)と前記原料エポキシ樹脂(a2-2)とを併用することが好ましい。 The raw material epoxy resin (a2) may be used alone or in combination of two or more. Among these, the raw material epoxy resin (a2-2) is preferably used as an essential component because the acid group-containing (meth) acrylate resin is further excellent in the balance of elongation and heat resistance in the cured product. Furthermore, in the obtained acid group-containing (meth) acrylate resin, in addition to the elongation and heat resistance in the cured product, various performances can be imparted, and balance control of each performance becomes easy. It is preferable to use a plurality of types of epoxy resins as the epoxy resin (a2), and it is preferable to use the raw material epoxy resin (a2-1) and the raw material epoxy resin (a2-2) in combination.
 前記原料エポキシ樹脂(a2)の総質量に対する前記原料エポキシ樹脂(a2-2)の割合は30質量%以上であることが好ましく、30~80質量%の範囲であることがより好ましく、40~70質量%の範囲であることが特に好ましい。また、前記原料エポキシ樹脂(a2)の総質量に対する前記原料エポキシ樹脂(a2-1)と前記原料エポキシ樹脂(a2-2)との合計質量が50質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The ratio of the raw material epoxy resin (a2-2) to the total weight of the raw material epoxy resin (a2) is preferably 30% by mass or more, more preferably in the range of 30 to 80% by mass, and 40 to 70%. It is particularly preferable that the mass range. Further, the total mass of the raw material epoxy resin (a2-1) and the raw material epoxy resin (a2-2) with respect to the total mass of the raw material epoxy resin (a2) is preferably 50% by mass or more, and 80% by mass. More preferably.
 前記原料エポキシ樹脂(a2)として複数種を併用する場合、それぞれ別に製造した原料エポキシ樹脂(a2)を配合して用いてもよいし、フェノール性水酸基含有樹脂の段階で配合してポリグリシジルエーテル化したものを用いてもよい。 When two or more kinds are used together as the raw material epoxy resin (a2), the raw material epoxy resin (a2) produced separately may be used, or it may be used at the stage of the phenolic hydroxyl group-containing resin to be polyglycidyl etherified. You may use what you did.
 前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との反応は、例えば、エステル化触媒の存在下、100~150℃の温度範囲で行うことができる。前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との反応割合は、硬化物における伸度や耐熱性の他、現像性にも優れる酸基含有(メタ)アクリレート樹脂となることから、前記原料エポキシ樹脂(a2)の総質量に対し、前記ポリカルボン酸又はその誘導体(a1)を0.5~20質量%の範囲で用いることが好ましく、1~10質量%の範囲で用いることがより好ましい。 The reaction between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) can be performed, for example, in the presence of an esterification catalyst at a temperature range of 100 to 150 ° C. The reaction ratio between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product. From the above, it is preferable to use the polycarboxylic acid or its derivative (a1) in the range of 0.5 to 20% by mass, and in the range of 1 to 10% by mass, based on the total mass of the raw material epoxy resin (a2). It is more preferable.
 前記エステル化反応触媒は、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。触媒の添加量は、前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との合計質量に対し0.05~5質量%の範囲で用いることが好ましい。 Examples of the esterification reaction catalyst include phosphorus compounds such as trimethylphosphine, tributylphosphine, and triphenylphosphine, and amine compounds such as triethylamine, tributylamine, and dimethylbenzylamine. These may be used alone or in combination of two or more. The amount of the catalyst added is preferably in the range of 0.05 to 5% by mass with respect to the total mass of the polycarboxylic acid or derivative (a1) and the raw material epoxy resin (a2).
 前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との反応は、必要に応じて有機溶媒中で行ってもよい。用いる有機溶媒の選択は、反応原料及び生成物である酸基含有(メタ)アクリレート樹脂の溶解性や、反応温度条件により適宜選択されるが、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジアルキレングリコールモノアルキルエーテルアセテート、ジアルキレングリコールアセテート等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上の混合溶媒としても良い。有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 The reaction between the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) may be performed in an organic solvent as necessary. The organic solvent to be used is appropriately selected depending on the solubility of the acid group-containing (meth) acrylate resin that is the reaction raw material and the product and the reaction temperature conditions. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, Examples include methoxypropanol, cyclohexanone, methyl cellosolve, dialkylene glycol monoalkyl ether acetate, dialkylene glycol acetate and the like. These may be used alone or as a mixed solvent of two or more. The amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
 また、前記エポキシ樹脂(A)としては、分子構造中にオキサゾリドン環構造を有するエポキシ樹脂を用いることもできる。 Further, as the epoxy resin (A), an epoxy resin having an oxazolidone ring structure in the molecular structure can also be used.
 前記分子構造中にオキサゾリドン環構造を有するエポキシ樹脂は、分子構造中にオキサゾリドン環構造を有するものであれば、その具体構造や製造方法等は特に限定されず、種々多様なものを用いることができる。前記分子構造中にオキサゾリドン環構造を有するエポキシ樹脂の一例としては、例えば、前述したフェノール性水酸基含有化合物(P)のポリグリシジルエーテル化物と、ポリイソシアネート化合物(a3)とを必須の反応原料とする反応生成物が挙げられる。 The epoxy resin having an oxazolidone ring structure in the molecular structure is not particularly limited as long as it has an oxazolidone ring structure in the molecular structure, and various kinds of resins can be used. . As an example of the epoxy resin having an oxazolidone ring structure in the molecular structure, for example, the polyglycidyl etherified product of the phenolic hydroxyl group-containing compound (P) described above and the polyisocyanate compound (a3) are used as essential reaction raw materials. Reaction products are mentioned.
 前記ポリイソシアネート化合物(a3)は、分子中に複数のイソシアネート基を有する化合物であれば、その具体構造や他の官能基の有無等は特に限定されず、種々多様なものを用いることができる。前記ポリイソシアネート化合物(a3)の具体例としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(2)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。これらポリイソシアネート化合物(a3)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 As long as the polyisocyanate compound (a3) is a compound having a plurality of isocyanate groups in the molecule, the specific structure and the presence or absence of other functional groups are not particularly limited, and various types can be used. Specific examples of the polyisocyanate compound (a3) include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; Alicyclic diisocyanate compounds such as norbornane diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate; aromas such as tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate Group diisocyanate compound; polymer having a repeating structure represented by the following structural formula (2) Ren polyphenyl polyisocyanate; these isocyanurate modified product, a biuret modified product, and allophanate modified compounds and the like. These polyisocyanate compounds (a3) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000004
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(2)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。mは0又は1~3の整数であり、lは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000004
[Wherein, R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 2 is each independently an alkyl group having 1 to 4 carbon atoms or a bonding point linked to a structural moiety represented by the structural formula (2) via a methylene group marked with *. m is 0 or an integer of 1 to 3, and l is an integer of 1 or more. ]
 前記不飽和モノカルボン酸又はその誘導体(B)は、アクリル酸やメタクリル酸等の一分子中に(メタ)アクリロイル基とカルボキシ基とを有する化合物や、その酸ハロゲン化物、酸無水物等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the unsaturated monocarboxylic acid or its derivative (B) include compounds having a (meth) acryloyl group and a carboxy group in one molecule such as acrylic acid and methacrylic acid, acid halides, acid anhydrides thereof, and the like. It is done. These may be used alone or in combination of two or more.
 前記ポリカルボン酸無水物(C)は、一分子中に二つ以上のカルボキシ基を有する化合物の酸無水物であれば、いずれのものも利用できる。具体的にはシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等のジカルボン酸化合物の酸無水物が挙げられる。ポリカルボン酸無水物(C)はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。中でも、硬化物における耐熱性に優れる酸基含有(メタ)アクリレート樹脂となる点では、フタル酸、イソフタル酸、テレフタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸等、分子構造中に環状構造を有する化合物の酸無水物が好ましい。また、現像性に優れる酸基含有(メタ)アクリレート樹脂となる点では、コハク酸無水物が好ましい。 As the polycarboxylic acid anhydride (C), any acid anhydride of a compound having two or more carboxy groups in one molecule can be used. Specifically, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, Examples thereof include acid anhydrides of dicarboxylic acid compounds such as hexahydrophthalic acid and methylhexahydrophthalic acid. Polycarboxylic acid anhydrides (C) may be used alone or in combination of two or more. Above all, in the point that it becomes an acid group-containing (meth) acrylate resin with excellent heat resistance in cured products, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, etc. An acid anhydride of a compound having a cyclic structure is preferred. Moreover, a succinic anhydride is preferable in that the acid group-containing (meth) acrylate resin is excellent in developability.
 本発明の酸基含有(メタ)アクリレート樹脂は、前記エポキシ樹脂(A)、前記不飽和モノカルボン酸又はその誘導体(B)、及び前記ポリカルボン酸無水物(C)を必須の反応原料とするものであればその製造方法は特に限定されず、例えば、反応原料の全てを一括で反応させる方法でも、順次反応させる方法でも、どちらでも良い。中でも、反応の制御が容易であることから、先に前記エポキシ樹脂(A)と不飽和モノカルボン酸又はその誘導体(B)とを反応させ、次いで前記ポリカルボン酸無水物(C)を反応させる方法が好ましい。該反応は、例えば、前記エポキシ樹脂(A)と不飽和モノカルボン酸又はその誘導体(B)とをエステル化反応触媒の存在下、100~150℃の温度範囲で反応させた後、反応系中にポリカルボン酸無水物(C)を加え、90~120℃の温度範囲で反応させる方法等により行うことができる。また、前記エポキシ樹脂(A)の製造と酸基含有(メタ)アクリレート樹脂の製造とを連続して行ってもよい。 The acid group-containing (meth) acrylate resin of the present invention uses the epoxy resin (A), the unsaturated monocarboxylic acid or its derivative (B), and the polycarboxylic acid anhydride (C) as essential reaction raw materials. If it is a thing, the manufacturing method will not be specifically limited, For example, either the method of reacting all the reaction raw materials collectively, or the method of reacting sequentially may be sufficient. Among them, since the reaction is easily controlled, the epoxy resin (A) is first reacted with the unsaturated monocarboxylic acid or derivative (B), and then the polycarboxylic acid anhydride (C) is reacted. The method is preferred. The reaction is performed, for example, by reacting the epoxy resin (A) with the unsaturated monocarboxylic acid or derivative (B) in the presence of an esterification reaction catalyst in a temperature range of 100 to 150 ° C. The polycarboxylic acid anhydride (C) can be added to the mixture and reacted in a temperature range of 90 to 120 ° C. Moreover, you may perform manufacture of the said epoxy resin (A), and manufacture of an acid group containing (meth) acrylate resin continuously.
 前記エポキシ樹脂(A)と不飽和モノカルボン酸又はその誘導体(B)との反応割合は、エポキシ樹脂(A)中のエポキシ基1モルに対し、不飽和モノカルボン酸又はその誘導体(B)を0.9~1.1モルの範囲で用いることが好ましい。また、前記ポリカルボン酸無水物(D)の反応割合は、エポキシ樹脂(A)中のエポキシ基1モルに対し、0.2~1.0モルの範囲で用いることが好ましい。 The reaction ratio of the epoxy resin (A) to the unsaturated monocarboxylic acid or its derivative (B) is the ratio of the unsaturated monocarboxylic acid or its derivative (B) to 1 mol of the epoxy group in the epoxy resin (A). It is preferably used in the range of 0.9 to 1.1 mol. The reaction rate of the polycarboxylic acid anhydride (D) is preferably in the range of 0.2 to 1.0 mol with respect to 1 mol of the epoxy group in the epoxy resin (A).
 前記エステル化触媒は、前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との反応で用いるものと同様の化合物が挙げられる。触媒の添加量は反応原料の合計質量に対し0.03~5質量%の範囲で用いることが好ましい。 Examples of the esterification catalyst include the same compounds as those used in the reaction of the polycarboxylic acid or its derivative (a1) with the raw material epoxy resin (a2). The addition amount of the catalyst is preferably in the range of 0.03 to 5% by mass with respect to the total mass of the reaction raw materials.
 反応は、必要に応じて有機溶媒中で行ってもよい。用いる有機溶媒は前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)との反応で用いるものと同様の化合物が挙げられる。有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。 The reaction may be performed in an organic solvent as necessary. Examples of the organic solvent to be used include the same compounds as those used in the reaction of the polycarboxylic acid or its derivative (a1) with the raw material epoxy resin (a2). The amount of the organic solvent used is preferably in the range of about 0.1 to 5 times the total mass of the reaction raw materials because the reaction efficiency is good.
 本発明の酸基含有(メタ)アクリレート樹脂の酸価は、硬化物における伸度や耐熱性の他、現像性にも優れる酸基含有(メタ)アクリレート樹脂となることから、40~90mgKOH/gの範囲であることが好ましい。なお、本願発明において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定される値である。 Since the acid value of the acid group-containing (meth) acrylate resin of the present invention is an acid group-containing (meth) acrylate resin that is excellent in developability in addition to elongation and heat resistance in the cured product, 40 to 90 mgKOH / g It is preferable that it is the range of these. In the present invention, the acid value of the acid group-containing (meth) acrylate resin is a value measured by a neutralization titration method of JIS K 0070 (1992).
 本発明の酸基含有(メタ)アクリレート樹脂は、分子構造中に重合性の(メタ)アクリロイル基を有することから、例えば、光重合開始剤を添加することにより硬化性樹脂組成物として利用することができる。 Since the acid group-containing (meth) acrylate resin of the present invention has a polymerizable (meth) acryloyl group in the molecular structure, for example, it can be used as a curable resin composition by adding a photopolymerization initiator. Can do.
 前記光重合開始剤は、照射する活性エネルギー線の種類等により適切なものを選択して用いればよい。また、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤と併用してもよい。光重合開始剤の具体例としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系光重合開始剤;ベンゾフェノン化合物等の分子内水素引き抜き型光重合開始剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 The photopolymerization initiator may be selected and used according to the type of active energy ray to be irradiated. Moreover, you may use together with photosensitizers, such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, a nitrile compound. Specific examples of the photopolymerization initiator include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) Alkylphenone photopolymerization initiators such as -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples include acylphosphine oxide photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone compounds. These may be used alone or in combination of two or more.
 前記光重合開始剤の市販品は、例えば、BASF社製「IRGACURE127」、「IRGACURE184」、「IRGACURE250」、「IRGACURE270」、「IRGACURE290」、「IRGACURE369E」、「IRGACURE379EG」、「IRGACURE500」、「IRGACURE651」、「IRGACURE754」、「IRGACURE819」、「IRGACURE907」、「IRGACURE1173」、「IRGACURE2959」、「IRGACURE MBF」、「IRGACURE TPO」、「IRGACURE OXE 01」、「IRGACURE OXE 02」、IGM RESINS社製「OMNIRAD184」、「OMNIRAD250」、「OMNIRAD369」、「OMNIRAD369E」、「OMNIRAD651」、「OMNIRAD907FF」、「OMNIRAD1173」等が挙げられる。 Commercially available products of the photopolymerization initiator include, for example, “IRGACURE127”, “IRGACURE184”, “IRGACURE250”, “IRGACURE270”, “IRGACURE290”, “IRGACURE369E”, “IRGACURE379EG”, “IRGACURE500”, “IRGACURE500”, manufactured by BASF. , “IRGACURE 754”, “IRGACURE 819”, “IRGACURE 907”, “IRGACURE 1173”, “IRGACURE 2959”, “IRGACURE MBF”, “IRGACURE TPO”, “IRGACURE OXE 01”, “IRGACUREOX 4” , "OMNIRAD250", "OM IRAD369 "," OMNIRAD369E "," OMNIRAD651 "," OMNIRAD907FF "," OMNIRAD1173 ", and the like.
 前記光重合開始剤の添加量は、例えば、硬化性樹脂組成物の溶剤以外の成分の合計に対し0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The addition amount of the photopolymerization initiator is preferably in the range of 0.05 to 15% by mass, for example, in the range of 0.1 to 10% by mass with respect to the total of components other than the solvent of the curable resin composition. It is more preferable that
 本発明の硬化性樹脂組成物は、前記本発明の酸基含有(メタ)アクリレート樹脂以外の樹脂成分を含有しても良い。該樹脂成分は、例えば、ビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂等のエポキシ樹脂と(メタ)アクリル酸、ジカルボン酸無水物、必要に応じて不飽和モノカルボン酸無水物等を反応させて得られるような、樹脂中にカルボキシル基と(メタ)アクリロイル基とを有する樹脂や、各種の(メタ)アクリレートモノマー等が挙げられる。 The curable resin composition of the present invention may contain a resin component other than the acid group-containing (meth) acrylate resin of the present invention. The resin component is obtained, for example, by reacting an epoxy resin such as a bisphenol type epoxy resin or a novolak type epoxy resin with (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride as required. Examples thereof include resins having a carboxyl group and a (meth) acryloyl group in the resin, and various (meth) acrylate monomers.
前記(メタ)アクリレートモノマーは、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物; Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl ( Aliphatic mono (meth) acrylate compounds such as meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylbenzyl (me ) Acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benzylbenzyl (meth) acrylate , Mono (meth) acrylate compounds such as aromatic mono (meth) acrylate compounds such as phenylphenoxyethyl (meth) acrylate: (poly) oxyethylene chains in the molecular structure of the various mono (meth) acrylate monomers, (poly ) (Poly) oxyalkylene-modified mono (meth) acrylate compounds introduced with polyoxyalkylene chains such as oxypropylene chains and (poly) oxytetramethylene chains; the various mono (meth) acrylate compounds described above (Poly) lactone-modified mono (meth) obtained by introducing a lactone structure acrylate compound in the molecular structure;
 エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物; Aliphatic di (meth) acrylate compounds such as ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, hexanediol di (meth) acrylate and neopentyl glycol di (meth) acrylate 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate Such as alicyclic di (meth) acrylate compounds; aromatic di (meth) acrylate compounds such as biphenol di (meth) acrylate and bisphenol di (meth) acrylate; A polyoxyalkylene-modified di (meth) acrylate compound in which a (poly) oxyalkylene chain such as a (poly) oxyethylene chain, a (poly) oxypropylene chain, or a (poly) oxytetramethylene chain is introduced into the molecular structure of the compound; A lactone-modified di (meth) acrylate compound in which a (poly) lactone structure is introduced into the molecular structure of various di (meth) acrylate compounds;
 トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物; Aliphatic tri (meth) acrylate compounds such as trimethylolpropane tri (meth) acrylate and glycerin tri (meth) acrylate; (poly) oxyethylene chain in the molecular structure of the aliphatic tri (meth) acrylate compound, (poly) (Poly) oxyalkylene-modified tri (meth) acrylate compound introduced with (poly) oxyalkylene chain such as oxypropylene chain and (poly) oxytetramethylene chain; in the molecular structure of the aliphatic tri (meth) acrylate compound ( A lactone-modified tri (meth) acrylate compound having a poly) lactone structure;
 ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物等が挙げられる。 Tetra- or higher functional aliphatic poly (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate; (Poly) oxyalkylene-modified poly (meth) having 4 or more functionalities in which (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, or other (poly) oxyalkylene chain is introduced into the molecular structure Acrylate compounds; tetrafunctional or higher functional lactone-modified poly (meth) acrylate compounds in which a (poly) lactone structure is introduced into the molecular structure of the aliphatic poly (meth) acrylate compound.
  本発明の硬化性樹脂組成物は、塗工粘度調節等の目的で有機溶剤を含有してもよい。その種類や添加量は、所望の性能に応じて適宜調整される。一般には、硬化性樹脂組成物の合計に対し10~90質量%の範囲で用いられる。前記溶剤の具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル系溶剤が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。 The curable resin composition of the present invention may contain an organic solvent for the purpose of adjusting the coating viscosity. The kind and addition amount are appropriately adjusted according to the desired performance. Generally, it is used in the range of 10 to 90% by mass with respect to the total of the curable resin composition. Specific examples of the solvent include, for example, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; aromatics such as toluene and xylene. Solvents; cycloaliphatic, methylcyclohexane and other alicyclic solvents; carbitol, cellosolve, methanol, isopropanol, butanol, propylene glycol monomethyl ether and other alcohol solvents; alkylene glycol monoalkyl ether, dialkylene glycol monoalkyl ether, dialkylene glycol mono Examples include glycol ether solvents such as alkyl ether acetates. These may be used alone or in combination of two or more.
 本発明の硬化性樹脂組成物は、この他、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有しても良い。 In addition to this, the curable resin composition of the present invention may contain various additives such as inorganic fine particles and polymer fine particles, pigments, antifoaming agents, viscosity modifiers, leveling agents, flame retardants, and storage stabilizers. .
 本発明の酸基含有(メタ)アクリレート樹脂は、硬化物における伸度と耐熱性とのバランスに優れる特徴を有する。一般に、硬化物の伸度を挙げるためには樹脂構造中に柔軟な構造を導入する必要があるが、この場合、硬化物の耐熱性が著しく低下する傾向にある。本発明の酸基含有(メタ)アクリレート樹脂は、これら両立の難しい性能を共に高いレベルで兼備する点において、これまでの技術常識を覆す性能を有する。本発明の酸基含有(メタ)アクリレート樹脂は、硬化物における伸度と耐熱性とのバランスに優れる特徴が生かされる用途として、例えば、半導体デバイス関係の用途としては、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層として用いることができる。また、LCD、OELDに代表される薄型ディスプレイ関係の用途としては、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサーなどに好適に用いることができる。 The acid group-containing (meth) acrylate resin of the present invention is characterized by an excellent balance between elongation and heat resistance in a cured product. In general, in order to increase the elongation of a cured product, it is necessary to introduce a flexible structure into the resin structure, but in this case, the heat resistance of the cured product tends to be significantly reduced. The acid group-containing (meth) acrylate resin of the present invention has a performance that defeats the conventional technical knowledge in that both of these difficult performances are combined at a high level. The acid group-containing (meth) acrylate resin of the present invention is used as an application in which the balance between elongation and heat resistance in a cured product is utilized, for example, as a semiconductor device-related application, a solder resist, an interlayer insulating material, It can be used as a package adhesive layer such as a package material, an underfill material or a circuit element, or an adhesive layer between an integrated circuit element and a circuit board. In addition, thin film display applications such as LCD and OELD can be suitably used for thin film transistor protective films, liquid crystal color filter protective films, color filter pigment resists, black matrix resists, spacers, and the like.
 また、本発明の酸基含有(メタ)アクリレート樹脂は、硬化物における伸度と耐熱性の他、現像性にも優れることから、ソルダーレジスト用途に好適に用いることができる。本発明のソルダーレジスト用樹脂材料は、例えば、前記酸基含有(メタ)アクリレート樹脂、光重合開始剤及び各種の添加剤に加え、硬化剤、硬化促進剤、有機溶媒等の各成分を含んでなる。 Moreover, since the acid group-containing (meth) acrylate resin of the present invention is excellent in developability as well as elongation and heat resistance in a cured product, it can be suitably used for solder resist applications. The resin material for solder resist of the present invention includes, for example, each component such as a curing agent, a curing accelerator, and an organic solvent in addition to the acid group-containing (meth) acrylate resin, the photopolymerization initiator, and various additives. Become.
 前記硬化剤は、前記酸基含有(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。ここで用いるエポキシ樹脂は、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。これらのエポキシ樹脂の中でも、硬化物における耐熱性に優れることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が50~120℃の範囲であるものが特に好ましい。 The curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin. Examples of the epoxy resin used here include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin. Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol Examples include addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these epoxy resins, phenolic novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolac type epoxy resin, naphthol-phenol co-condensed novolak type epoxy resin because of excellent heat resistance in cured products. Novolak type epoxy resins such as naphthol-cresol co-condensed novolak type epoxy resins are preferable, and those having a softening point in the range of 50 to 120 ° C. are particularly preferable.
 前記硬化促進剤は、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1~10質量部の範囲で用いる。 The curing accelerator accelerates the curing reaction of the curing agent. When an epoxy resin is used as the curing agent, a phosphorus compound, a tertiary amine, an imidazole, an organic acid metal salt, a Lewis acid, Examples include amine complex salts. These may be used alone or in combination of two or more. The addition amount of the curing accelerator is, for example, in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent.
 前記有機溶媒は、前記酸基含有(メタ)アクリレート樹脂や硬化剤等の各種成分を溶解し得るものであれば特に限定されず、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。 The organic solvent is not particularly limited as long as it can dissolve various components such as the acid group-containing (meth) acrylate resin and the curing agent. For example, methyl ethyl ketone, acetone, dimethylformamide, methyl isobutyl ketone, methoxypropanol, Examples include cyclohexanone, methyl cellosolve, diethylene glycol monoethyl ether acetate, and propylene glycol monomethyl ether acetate.
 本発明のソルダーレジスト用樹脂材料を用いてレジスト部材を得る方法は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶剤を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して紫外線や電子線等にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~180℃程度の温度範囲で加熱硬化させる方法が挙げられる。 The method of obtaining a resist member using the solder resist resin material of the present invention is, for example, by applying the solder resist resin material on a substrate and evaporating and drying the organic solvent in a temperature range of about 60 to 100 ° C. Thereafter, there is a method in which a non-exposed portion is exposed with an ultraviolet solution or an electron beam through a photomask having a desired pattern formed, and an unexposed portion is developed with an alkaline aqueous solution, and further heated and cured in a temperature range of about 140 to 180 ° C. .
 以下に、実施例および比較例をもって本発明をより詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.
 本願実施例において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定した。 In the examples of the present application, the acid value of the acid group-containing (meth) acrylate resin was measured by the neutralization titration method of JIS K 0070 (1992).
 製造例1 エポキシ樹脂(A-1)の製造
 温度計、攪拌機、コンデンサーが装着された4つ口フラスコに、ビスフェノールA型エポキシ樹脂(DIC株式会社製「EPICLON 850S」エポキシ当量188g/当量)376g、ビスフェノールA6.6g、テトラブチルホスホニウムブロマイド(北興化学工業株式会社製「TBP-BB」)0.08gを仕込み、150℃まで昇温させて2時間反応させた。次いで、同温度条件下でトリレンジイソシアネート(三井化学製「TDI-80」)58gを3時間かけて滴下した。滴下終了後も加熱撹拌を続け、経時的にサンプリングしてIR測定を行い、イソシアネート基の吸収ピーク(2250~2280cm-1付近)が消失したことを確認して、分子中にオキサゾリドン環構造を有するエポキシ樹脂(A-1)431gを得た。得られたエポキシ樹脂(A-1)のエポキシ当量は338g/当量、JIS K7234に基づいて測定した軟化点は79℃、ASTM D4287に準拠し、ICI粘度計にて測定した150℃における溶融粘度は6.3dPa・sであった。
Production Example 1 Production of Epoxy Resin (A-1) In a four-necked flask equipped with a thermometer, stirrer, and condenser, 376 g of a bisphenol A type epoxy resin (“EPICLON 850S” epoxy equivalent of 188 g / equivalent) manufactured by DIC Corporation, 6.6 g of bisphenol A and 0.08 g of tetrabutylphosphonium bromide (“TBP-BB” manufactured by Hokuko Chemical Co., Ltd.) were charged, and the temperature was raised to 150 ° C. and reacted for 2 hours. Subsequently, 58 g of tolylene diisocyanate (“TDI-80” manufactured by Mitsui Chemicals) was added dropwise under the same temperature condition over 3 hours. After completion of the dropwise addition, heating and stirring are continued, sampling with time and IR measurement are performed, and it is confirmed that the absorption peak of the isocyanate group (near 2250 to 2280 cm −1 ) has disappeared, so that the molecule has an oxazolidone ring structure. 431 g of epoxy resin (A-1) was obtained. The epoxy equivalent of the obtained epoxy resin (A-1) was 338 g / equivalent, the softening point measured according to JIS K7234 was 79 ° C., and the melt viscosity at 150 ° C. measured with an ICI viscometer in accordance with ASTM D4287 was It was 6.3 dPa · s.
 実施例1 酸基含有(メタ)アクリレート樹脂(1)の製造
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート274g、DIC株式会社製「EPICLON HP-7200L」(ジシクロペンタジエン付加型フェノール樹脂のポリグリシジルエーテル、エポキシ基当量248g/当量)300g、DIC株式会社製「EPICLON N-695」(クレゾールノボラック型エポキシ樹脂、エポキシ基当量215g/当量)300gおよび1,4-シクロヘキサンジカルボン酸41g、ジブチルヒドロキシトルエン1.6g、トリフェニルフォスフィン1.9gを添加し、溶解させた後、窒素雰囲気下で120℃、3時間反応させた。メトキノン0.4g、アクリル酸45g、トリフェニルフォスフィン0.5gを添加し、空気を吹き込みながら120℃で15時間反応させた。更に、ジエチレングリコールモノメチルエーテルアセテート345g、テトラヒドロ無水フタル酸217gを加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(1)溶液を得た。酸基含有(メタ)アクリレート樹脂(1)の固形分酸価は80mgKOH/gであった。酸基含有(メタ)アクリレート樹脂(1)のGPCチャート図を図1に示す。
Example 1 Production of Acid Group-Containing (Meth) acrylate Resin (1) In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 274 g of diethylene glycol monomethyl ether acetate, “EPICLON HP-7200L” manufactured by DIC Corporation (di) 300 g of polyglycidyl ether of cyclopentadiene addition type phenolic resin, epoxy group equivalent 248 g / equivalent), “EPICLON N-695” (cresol novolak type epoxy resin, epoxy group equivalent 215 g / equivalent) manufactured by DIC Corporation, and 1,4- After adding and dissolving 41 g of cyclohexanedicarboxylic acid, 1.6 g of dibutylhydroxytoluene, and 1.9 g of triphenylphosphine, they were reacted at 120 ° C. for 3 hours in a nitrogen atmosphere. 0.4 g of methoquinone, 45 g of acrylic acid and 0.5 g of triphenylphosphine were added and reacted at 120 ° C. for 15 hours while blowing air. Furthermore, 345 g of diethylene glycol monomethyl ether acetate and 217 g of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 5 hours to obtain the target acid group-containing (meth) acrylate resin (1) solution. The solid content acid value of the acid group-containing (meth) acrylate resin (1) was 80 mgKOH / g. A GPC chart of the acid group-containing (meth) acrylate resin (1) is shown in FIG.
 実施例2 酸基含有(メタ)アクリレート樹脂(2)の製造
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート274g、DIC株式会社製「EPICLON HP-7200L」(ジシクロペンタジエン付加型フェノール樹脂のポリグリシジルエーテル、エポキシ基当量248g/当量)300g、DIC株式会社製「EPICLON N-695」(クレゾールノボラック型エポキシ樹脂、エポキシ基当量215g/当量)300gおよび1,4-シクロヘキサンジカルボン酸41g、ジブチルヒドロキシトルエン1.6g、トリフェニルフォスフィン1.9gを添加し、溶解させた後、窒素雰囲気下で120℃、3時間反応させた。メトキノン0.4g、アクリル酸45g、トリフェニルフォスフィン0.5gを添加し、空気を吹き込みながら120℃で15時間反応させた。更に、ジエチレングリコールモノメチルエーテルアセテート291g、無水コハク酸130gを加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(2)溶液を得た。酸基含有(メタ)アクリレート樹脂(2)の固形分酸価は80mgKOH/gであった。
Example 2 Production of Acid Group-Containing (Meth) acrylate Resin (2) In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 274 g of diethylene glycol monomethyl ether acetate, “EPICLON HP-7200L” manufactured by DIC Corporation (di) 300 g of polyglycidyl ether of cyclopentadiene addition type phenolic resin, epoxy group equivalent 248 g / equivalent), “EPICLON N-695” (cresol novolak type epoxy resin, epoxy group equivalent 215 g / equivalent) manufactured by DIC Corporation, and 1,4- After adding and dissolving 41 g of cyclohexanedicarboxylic acid, 1.6 g of dibutylhydroxytoluene, and 1.9 g of triphenylphosphine, they were reacted at 120 ° C. for 3 hours in a nitrogen atmosphere. 0.4 g of methoquinone, 45 g of acrylic acid and 0.5 g of triphenylphosphine were added and reacted at 120 ° C. for 15 hours while blowing air. Furthermore, 291 g of diethylene glycol monomethyl ether acetate and 130 g of succinic anhydride were added and reacted at 110 ° C. for 5 hours to obtain the target acid group-containing (meth) acrylate resin (2) solution. The solid content acid value of the acid group-containing (meth) acrylate resin (2) was 80 mgKOH / g.
 実施例3 酸基含有(メタ)アクリレート樹脂(3)の製造
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート334g、DIC株式会社製「EPICLON HP-7200L」(ジシクロペンタジエン付加型フェノール樹脂のポリグリシジルエーテル、エポキシ基当量248g/当量)369g、製造例1で得たエポキシ樹脂(A-1)369gおよび1,4-シクロヘキサンジカルボン酸41g、ジブチルヒドロキシトルエン1.9g、トリフェニルフォスフィン2.3gを添加し、溶解させた後、窒素雰囲気下で120℃、3時間反応させた。メトキノン0.5g、アクリル酸152g、トリフェニルフォスフィン0.5gを添加し、空気を吹き込みながら120℃で10時間反応させた。更に、ジエチレングリコールモノメチルエーテルアセテート225g、テトラヒドロ無水フタル酸256gを加えて110℃で5時間反応させ、目的とする酸基含有(メタ)アクリレート樹脂(2)溶液を得た。酸基含有(メタ)アクリレート樹脂(3)の固形分酸価は80mgKOH/gであった。
Example 3 Production of Acid Group-Containing (Meth) acrylate Resin (3) In a flask equipped with a thermometer, a stirrer, and a reflux condenser, 334 g of diethylene glycol monomethyl ether acetate, “EPICLON HP-7200L” manufactured by DIC Corporation (di) 369 g of cyclopentadiene addition type phenolic resin, glycine ether (epoxy group equivalent 248 g / equivalent), 369 g of epoxy resin (A-1) obtained in Production Example 1, 41 g of 1,4-cyclohexanedicarboxylic acid, 1.9 g of dibutylhydroxytoluene Then, 2.3 g of triphenylphosphine was added and dissolved, and then reacted at 120 ° C. for 3 hours in a nitrogen atmosphere. 0.5 g of methoquinone, 152 g of acrylic acid and 0.5 g of triphenylphosphine were added and reacted at 120 ° C. for 10 hours while blowing air. Furthermore, 225 g of diethylene glycol monomethyl ether acetate and 256 g of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 5 hours to obtain the target acid group-containing (meth) acrylate resin (2) solution. The solid content acid value of the acid group-containing (meth) acrylate resin (3) was 80 mgKOH / g.
 比較製造例1 酸基含有(メタ)アクリレート樹脂(1’)の製造
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート101g、DIC株式会社製「EPICLON N-680」(クレゾールノボラック型エポキシ樹脂、エポキシ基当量214g/当量)428g、ジブチルヒドロキシトルエン4g、メトキノン0.4gを加えて溶解させた。更にアクリル酸144g、トリフェニルフォスフィン1.6gを添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、ジエチレングリコールモノメチルエーテルアセテート311g、テトラヒドロ無水フタル酸160gを加えて110℃で2.5時間反応させ、酸基含有(メタ)アクリレート樹脂(1’)を得た。酸基含有(メタ)アクリレート樹脂(1’)の固形分酸価は54.4mgKOH/gであった。
Comparative Production Example 1 Production of Acid Group-Containing (Meth) acrylate Resin (1 ′) In a flask equipped with a thermometer, stirrer and reflux condenser, 101 g of diethylene glycol monomethyl ether acetate, “EPICLON N-680” manufactured by DIC Corporation (Cresol novolac type epoxy resin, epoxy group equivalent 214 g / equivalent) 428 g, dibutylhydroxytoluene 4 g, and methoquinone 0.4 g were added and dissolved. Furthermore, 144 g of acrylic acid and 1.6 g of triphenylphosphine were added, and an esterification reaction was performed at 120 ° C. for 10 hours while blowing air. Thereafter, 311 g of diethylene glycol monomethyl ether acetate and 160 g of tetrahydrophthalic anhydride were added and reacted at 110 ° C. for 2.5 hours to obtain an acid group-containing (meth) acrylate resin (1 ′). The solid content acid value of the acid group-containing (meth) acrylate resin (1 ′) was 54.4 mgKOH / g.
実施例4~6及び比較例1
 下記要領で硬化性樹脂組成物を調製し、各種評価試験を行った。結果を表1に示す。
Examples 4 to 6 and Comparative Example 1
A curable resin composition was prepared in the following manner, and various evaluation tests were performed. The results are shown in Table 1.
◆硬化物の耐熱性及び伸度の評価
・硬化性樹脂組成物の調製
 先で得た酸基含有(メタ)アクリレート樹脂100g、DIC株式会社製「EPICLON N-680」(クレゾールノボラック型エポキシ樹脂)24g、BASF社製「イルガキュア907」[2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン]5g、ジエチレングリコールモノメチルエーテルアセテート13gを配合して硬化性樹脂組成物を得た。
◆ Evaluation of heat resistance and elongation of cured product / Preparation of curable resin composition 100 g of acid group-containing (meth) acrylate resin obtained above, “EPICLON N-680” (cresol novolac type epoxy resin) manufactured by DIC Corporation 24 g, “Irgacure 907” [2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one] manufactured by BASF, and 13 g of diethylene glycol monomethyl ether acetate were blended to prepare a curable resin composition. Obtained.
・硬化物の作成
 ガラス基材の上に硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃で30分間乾燥させた。メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。
-Preparation of hardened | cured material The curable resin composition was apply | coated with the 50 micrometer applicator on the glass base material, and was dried for 30 minutes at 80 degreeC. After irradiating with 1000 mJ / cm 2 ultraviolet rays using a metal halide lamp, the cured product was peeled from the glass substrate by heating at 160 ° C. for 1 hour to obtain a cured product.
・硬化物の耐熱性の評価
 硬化物から6mm×40mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度(Tg)とし、以下の基準で耐熱性を評価した。
A:ガラス転移温度(Tg)が130℃以上
B:ガラス転移温度(Tg)が130℃未満
・ Evaluation of heat resistance of cured product A test piece of 6 mm × 40 mm was cut out from the cured product, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd.), tension method: frequency 1 Hz, heating rate 3 (° C./min), the temperature at which the change in the elastic modulus is maximum (the tan δ change rate is the largest) is defined as the glass transition temperature (Tg), and the heat resistance is evaluated according to the following criteria.
A: Glass transition temperature (Tg) is 130 ° C. or higher B: Glass transition temperature (Tg) is lower than 130 ° C.
・硬化物の伸度の評価
 硬化物から10mm×80mmの試験片を切り出し、引っ張り試験装置(島津製作所社製「機密万能試験器オートグラフAG-IS」)を用いて下記条件で伸度を測定し、評価した。
温度23℃、湿度50%、標線間距離20mm、支点間距離20mm、引っ張り速度10mm/分
A:伸度が3.5%以上
B:伸度が3%以上3.5%未満
C:伸度が3%未満
・ Evaluation of elongation of cured product A 10mm x 80mm test piece was cut out from the cured product, and the elongation was measured under the following conditions using a tensile tester ("Confidential Universal Tester Autograph AG-IS" manufactured by Shimadzu Corporation). And evaluated.
Temperature 23 ° C., humidity 50%, distance between marked lines 20 mm, distance between fulcrums 20 mm, pulling speed 10 mm / min A: elongation 3.5% or more B: elongation 3% or more and less than 3.5% C: elongation Less than 3%
◆光感度の評価
・硬化性樹脂組成物の調製
 先で得た酸基含有(メタ)アクリレート樹脂100g、DIC株式会社製「EPICLON N-680」(クレゾールノボラック型エポキシ樹脂)24g、東亞合成株式会社製「ルミキュアDPA-600T」(ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとをモル比40/60で含有する組成物)10g、BASF社製「イルガキュア907」[2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン]5g、ジエチレングリコールモノメチルエーテルアセテート13g、顔料としてフタロシアニングリーン0.65gを配合し、ロールミルにより混錬して硬化性樹脂組成物を得た。
◆ Evaluation of photosensitivity / Preparation of curable resin composition 100 g of the acid group-containing (meth) acrylate resin obtained previously, 24 g of “EPICLON N-680” (cresol novolac type epoxy resin) manufactured by DIC Corporation, Toagosei 10 g of “Lumicure DPA-600T” (composition containing dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate in a molar ratio of 40/60), “Irgacure 907” [2-methyl-1- (4 -Methylthiophenyl) -2-morpholinopropan-1-one], 13 g of diethylene glycol monomethyl ether acetate, and 0.65 g of phthalocyanine green as a pigment were blended and kneaded by a roll mill to obtain a curable resin composition.
・光感度の測定
 ガラス基材の上に硬化性樹脂組成物を50μmのアプリケーターで塗布し、80℃で30分乾燥させた。次いで、コダック社製のステップタブレットNo.2を介し、メタルハライドランプを用いて500mJ/cmの紫外線を照射した。これを1質量%の炭酸ナトリウム水溶液で180秒現像し、残存した段数で評価した。残存段数が多いほど光感度が高い。
-Measurement of photosensitivity A curable resin composition was applied onto a glass substrate with a 50 μm applicator and dried at 80 ° C. for 30 minutes. Next, Step Tablet No. 2 was irradiated with ultraviolet rays of 500 mJ / cm 2 using a metal halide lamp. This was developed with a 1% by mass aqueous sodium carbonate solution for 180 seconds and evaluated by the number of remaining steps. The greater the number of remaining stages, the higher the photosensitivity.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (10)

  1.  エポキシ樹脂(A)、不飽和モノカルボン酸又はその誘導体(B)、及びポリカルボン酸無水物(C)を必須の反応原料とする酸基含有(メタ)アクリレート樹脂であって、前記エポキシ樹脂(A)が、ポリカルボン酸又はその誘導体(a1)由来のエステル結合部位を分子構造中に有するものである酸基含有(メタ)アクリレート樹脂。 An acid group-containing (meth) acrylate resin containing an epoxy resin (A), an unsaturated monocarboxylic acid or derivative thereof (B), and a polycarboxylic acid anhydride (C) as essential reaction raw materials, An acid group-containing (meth) acrylate resin in which A) has an ester bond site derived from polycarboxylic acid or its derivative (a1) in the molecular structure.
  2.  前記エポキシ樹脂(A)が、前記ポリカルボン酸又はその誘導体(a1)と原料エポキシ樹脂(a2)とを必須の反応原料とするものである請求項1記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth) acrylate resin according to claim 1, wherein the epoxy resin (A) comprises the polycarboxylic acid or its derivative (a1) and the raw material epoxy resin (a2) as essential reaction raw materials.
  3.  前記原料エポキシ樹脂(a2)として複数種のエポキシ樹脂を用いる請求項2記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth) acrylate resin according to claim 2, wherein plural kinds of epoxy resins are used as the raw material epoxy resin (a2).
  4.  前記原料エポキシ樹脂(a2)として、フェノール性水酸基含有化合物(P)の一種乃至複数種と、下記構造式(y-1)~(y-5)
    Figure JPOXMLDOC01-appb-C000001
    [式中hは0又は1である。Rはそれぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、iは0又は1~4の整数である。Zはビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。Yは炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1~4の整数である。]
    の何れかで表される化合物(y)とを必須の反応原料とする反応生成物のポリグリシジルエーテル(原料エポキシ樹脂(a2-2))を用いる請求項2記載の酸基含有(メタ)アクリレート樹脂。
    As the raw material epoxy resin (a2), one or more phenolic hydroxyl group-containing compounds (P) and the following structural formulas (y-1) to (y-5)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, h is 0 or 1. R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is an integer of 0 or 1 to 4. Z is any one of a vinyl group, a halomethyl group, a hydroxymethyl group, and an alkyloxymethyl group. Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group. j is an integer of 1 to 4. ]
    The acid group-containing (meth) acrylate according to claim 2, wherein the reaction product polyglycidyl ether (raw material epoxy resin (a2-2)) is used as an essential reaction material. resin.
  5.  前記原料エポキシ樹脂(a2)の30質量%以上が前記原料エポキシ樹脂(a2-2)である請求項4記載の酸基含有(メタ)アクリレート樹脂。 The acid group-containing (meth) acrylate resin according to claim 4, wherein 30% by mass or more of the raw material epoxy resin (a2) is the raw material epoxy resin (a2-2).
  6.  請求項1~5の何れか一つに記載の酸基含有(メタ)アクリレート樹脂と、光重合開始剤とを含有する硬化性樹脂組成物。 A curable resin composition comprising the acid group-containing (meth) acrylate resin according to any one of claims 1 to 5 and a photopolymerization initiator.
  7.  請求項6記載の硬化性樹脂組成物の硬化物。 A cured product of the curable resin composition according to claim 6.
  8.  請求項6記載の硬化性樹脂組成物からなる絶縁材料。 An insulating material comprising the curable resin composition according to claim 6.
  9.  請求項6記載の硬化性樹脂組成物からなるソルダーレジスト用樹脂材料。 A resin material for a solder resist comprising the curable resin composition according to claim 6.
  10.  請求項9記載のソルダーレジスト用樹脂材料からなるレジスト部材。 A resist member comprising the resin material for solder resist according to claim 9.
PCT/JP2018/007724 2017-03-22 2018-03-01 Acid-group-containing (meth)acrylate resin and resin material for solder resist WO2018173679A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507486A JP6660575B2 (en) 2017-03-22 2018-03-01 Acid group-containing (meth) acrylate resin and resin material for solder resist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017055791 2017-03-22
JP2017-055791 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173679A1 true WO2018173679A1 (en) 2018-09-27

Family

ID=63585402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007724 WO2018173679A1 (en) 2017-03-22 2018-03-01 Acid-group-containing (meth)acrylate resin and resin material for solder resist

Country Status (3)

Country Link
JP (1) JP6660575B2 (en)
TW (1) TW201840625A (en)
WO (1) WO2018173679A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046520A (en) * 2019-09-20 2021-03-25 日鉄ケミカル&マテリアル株式会社 Epoxy acrylate resin, alkali-soluble resin, resin composition containing the same and cured product thereof
EP4230668A1 (en) * 2022-02-22 2023-08-23 DIC Corporation Epoxy ester resin, vinyl-modified epoxy ester resin, resin composition, paint, and article coated with the paint

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936246A (en) * 1975-12-19 1984-02-28 バイエル・アクチエンゲゼルシヤフト Resin composition
WO2002077058A1 (en) * 2001-03-23 2002-10-03 Taiyo Ink Manufacturing Co., Ltd. Resin curable with actinic energy ray, photocurable/thermosetting resin composition containing the same, and cured article obtained therefrom
WO2003087186A1 (en) * 2002-03-29 2003-10-23 Taiyo Ink Manufacturing Co., Ltd. Unsaturated polybranched compounds, curable compositions containing the same and cured articles thereof
JP2004045792A (en) * 2002-07-12 2004-02-12 Taiyo Ink Mfg Ltd Photosetting/thermosetting resin composition and its cured material
JP2004067814A (en) * 2002-08-05 2004-03-04 Showa Highpolymer Co Ltd Polycarboxylic acid resin, polycarboxylic acid resin composition and its cured product
JP2004300303A (en) * 2003-03-31 2004-10-28 Taiyo Ink Mfg Ltd Unsaturated group-containing multibranched compound, curable composition containing the same and its cured product
JP2005206803A (en) * 2003-12-22 2005-08-04 Japan U-Pica Co Ltd Acid-modified epoxy (meth)acrylate compound, photosensitive thermosetting resin composition containing the same, and cured product of the same
JP2006321953A (en) * 2005-05-20 2006-11-30 Japan U-Pica Co Ltd Acid-modified epoxy(meth)acrylate compound and photosensitive thermosetting resin composition containing the compound and its cured product
JP2008116813A (en) * 2006-11-07 2008-05-22 Taiyo Ink Mfg Ltd Alkali developable photosensitive resin composition and printed wiring board using the same
WO2009025190A1 (en) * 2007-08-21 2009-02-26 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, active-energy-ray-curable resin composition utilizing the same, and use of the same
WO2010113478A1 (en) * 2009-03-31 2010-10-07 太陽インキ製造株式会社 Curable resin composition and printed wiring board
JP2010248308A (en) * 2009-04-13 2010-11-04 Japan U-Pica Co Ltd Polyfunctional epoxy(meth)acrylate compound, photosensitive thermosetting resin composition containing the same, and cured article of the same
JP2011001509A (en) * 2009-06-22 2011-01-06 Air Water Inc Epoxy (meth)acrylate resin, curable resin composition, and cured product thereof
JP2011144230A (en) * 2010-01-13 2011-07-28 Japan U-Pica Co Ltd Polyfunctional epoxy (meth)acrylate compound and photosensitive thermosetting resin composition comprising the compound, and cured product thereof
JP2011257687A (en) * 2010-06-11 2011-12-22 Toagosei Co Ltd Photosensitive resin composition, solder resist and photosensitive dry film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153978A (en) * 2005-12-02 2007-06-21 Nippon Shokubai Co Ltd Acid-modified epoxy (meth)acrylate and photosensitive resin composition for image formation
JP2013151595A (en) * 2012-01-25 2013-08-08 Unitika Ltd Thermosetting resin composition, and cured product obtained by thermosetting the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936246A (en) * 1975-12-19 1984-02-28 バイエル・アクチエンゲゼルシヤフト Resin composition
WO2002077058A1 (en) * 2001-03-23 2002-10-03 Taiyo Ink Manufacturing Co., Ltd. Resin curable with actinic energy ray, photocurable/thermosetting resin composition containing the same, and cured article obtained therefrom
WO2003087186A1 (en) * 2002-03-29 2003-10-23 Taiyo Ink Manufacturing Co., Ltd. Unsaturated polybranched compounds, curable compositions containing the same and cured articles thereof
JP2004045792A (en) * 2002-07-12 2004-02-12 Taiyo Ink Mfg Ltd Photosetting/thermosetting resin composition and its cured material
JP2004067814A (en) * 2002-08-05 2004-03-04 Showa Highpolymer Co Ltd Polycarboxylic acid resin, polycarboxylic acid resin composition and its cured product
JP2004300303A (en) * 2003-03-31 2004-10-28 Taiyo Ink Mfg Ltd Unsaturated group-containing multibranched compound, curable composition containing the same and its cured product
JP2005206803A (en) * 2003-12-22 2005-08-04 Japan U-Pica Co Ltd Acid-modified epoxy (meth)acrylate compound, photosensitive thermosetting resin composition containing the same, and cured product of the same
JP2006321953A (en) * 2005-05-20 2006-11-30 Japan U-Pica Co Ltd Acid-modified epoxy(meth)acrylate compound and photosensitive thermosetting resin composition containing the compound and its cured product
JP2008116813A (en) * 2006-11-07 2008-05-22 Taiyo Ink Mfg Ltd Alkali developable photosensitive resin composition and printed wiring board using the same
WO2009025190A1 (en) * 2007-08-21 2009-02-26 Nippon Kayaku Kabushiki Kaisha Reactive carboxylate compound, active-energy-ray-curable resin composition utilizing the same, and use of the same
WO2010113478A1 (en) * 2009-03-31 2010-10-07 太陽インキ製造株式会社 Curable resin composition and printed wiring board
JP2010248308A (en) * 2009-04-13 2010-11-04 Japan U-Pica Co Ltd Polyfunctional epoxy(meth)acrylate compound, photosensitive thermosetting resin composition containing the same, and cured article of the same
JP2011001509A (en) * 2009-06-22 2011-01-06 Air Water Inc Epoxy (meth)acrylate resin, curable resin composition, and cured product thereof
JP2011144230A (en) * 2010-01-13 2011-07-28 Japan U-Pica Co Ltd Polyfunctional epoxy (meth)acrylate compound and photosensitive thermosetting resin composition comprising the compound, and cured product thereof
JP2011257687A (en) * 2010-06-11 2011-12-22 Toagosei Co Ltd Photosensitive resin composition, solder resist and photosensitive dry film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021046520A (en) * 2019-09-20 2021-03-25 日鉄ケミカル&マテリアル株式会社 Epoxy acrylate resin, alkali-soluble resin, resin composition containing the same and cured product thereof
JP7479130B2 (en) 2019-09-20 2024-05-08 日鉄ケミカル&マテリアル株式会社 Epoxy acrylate resin, alkali-soluble resin, resin composition containing same, and cured product thereof
EP4230668A1 (en) * 2022-02-22 2023-08-23 DIC Corporation Epoxy ester resin, vinyl-modified epoxy ester resin, resin composition, paint, and article coated with the paint

Also Published As

Publication number Publication date
JPWO2018173679A1 (en) 2019-06-27
JP6660575B2 (en) 2020-03-11
TW201840625A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
JP6579412B2 (en) Acid group-containing (meth) acrylate resin and solder resist resin material
JP6669311B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP6660575B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP6541016B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
KR102516535B1 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist and resist member
JP7005940B2 (en) Modified (meth) acrylate resin and resin material for solder resist
JP7183761B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7206782B2 (en) Acid group-containing epoxy (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7310253B2 (en) Amideimide resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP6828410B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP7188053B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7288167B2 (en) Polyamideimide resin containing ethylenically unsaturated group, acid group and secondary hydroxyl group, polyamideimide resin containing ethylenically unsaturated group and acid group, and production method
JP7275898B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7264004B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7196587B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7228093B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7228103B2 (en) Acid group-containing (meth)acrylate resin composition, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7066989B2 (en) Acid group-containing (meth) acrylate resin and resin material for solder resist
JP7192480B2 (en) Curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7215105B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP7151411B2 (en) Acid group-containing (meth)acrylate resin, curable resin composition, cured product, insulating material, resin material for solder resist, and resist member
JP2022006901A (en) Acid group-containing meth(acrylate) resin, curable resin composition, cured product, insulation material, resin material for solder resist and resist member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507486

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18770897

Country of ref document: EP

Kind code of ref document: A1