WO2018173616A1 - 芳香族ポリカーボネート樹脂成形品の製造方法 - Google Patents

芳香族ポリカーボネート樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2018173616A1
WO2018173616A1 PCT/JP2018/006477 JP2018006477W WO2018173616A1 WO 2018173616 A1 WO2018173616 A1 WO 2018173616A1 JP 2018006477 W JP2018006477 W JP 2018006477W WO 2018173616 A1 WO2018173616 A1 WO 2018173616A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
aromatic polycarbonate
resin molded
glycol
general formula
Prior art date
Application number
PCT/JP2018/006477
Other languages
English (en)
French (fr)
Inventor
淳也 早川
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to JP2019507466A priority Critical patent/JP6569838B2/ja
Publication of WO2018173616A1 publication Critical patent/WO2018173616A1/ja

Links

Images

Definitions

  • the present invention relates to a method for producing an aromatic polycarbonate resin molded article. Specifically, the present invention relates to a method for producing an aromatic polycarbonate resin molded article that improves the problem of yellowing during injection molding and has an extremely excellent hue.
  • the daylight generally includes a light guide member and a light source that causes light to enter the light guide member.
  • a constituent material of the light guide member polycarbonate resin is used from the viewpoint of transparency and heat resistance.
  • the light guide member is required to have an excellent hue with little yellow in addition to transparency and heat resistance. Since the light guide member is generally a lens component having a long optical path length, the light guide member may be colored such as yellowing in order to transmit light incident from the light source with high efficiency without being attenuated. Therefore, it is required to have an excellent hue.
  • Patent Document 1 discloses an aromatic polycarbonate resin composition in which an aromatic polycarbonate resin is blended with a phosphorus stabilizer and a fatty acid ester.
  • Patent Document 2 discloses two types of phosphite stabilizers as phosphorus stabilizers to be blended with the aromatic polycarbonate resin. An aromatic polycarbonate resin composition using the above is disclosed.
  • the aromatic polycarbonate resin deteriorates due to the heat received in the molding process, and the resulting molded product may be slightly yellowish.
  • the aromatic polycarbonate resin composition of Patent Document 2 improves the hue in the aromatic polycarbonate resin composition of Patent Document 1.
  • the molded article with a favorable hue is obtained compared with a normal aromatic polycarbonate resin composition.
  • a light guide member used in an automotive lighting device requires a remarkably excellent hue such as a YI value of a 300 mm long optical path of less than 18.
  • Conventional aromatic polycarbonate resin compositions cannot satisfy such required characteristics.
  • the pellets of the polycarbonate resin composition obtained by melting and kneading the raw materials are dried under predetermined conditions, and then put into a hopper of an injection molding machine to perform injection molding. Is called.
  • the obtained pellets are dried at 120 ° C. for 5 to 7 hours by a hot air circulation dryer, and then injection molding is performed.
  • Patent Document 3 proposes a vent-type multi-strip plasticizing unit that is free from bent at (a phenomenon in which melted raw material leaks out of the machine from the vent), saves time required for raw material replacement, and has low raw material loss.
  • This plasticizing unit is a plasticizing unit for a vent type injection molding machine that includes a raw material supply unit, a first stage, a mixing unit, and a second stage, and has a vent unit immediately after the mixing unit. The above multi-strip shape is used.
  • Patent Document 3 describes the following effects 1) and 2). 1) Since the spiral groove of the second stage has three or more stripes and the pitch is made larger than the pitch of the groove of the first stage, the molten resin does not stay in the vent portion, and vent-up can be prevented. The pressure in the first stage is stabilized if the raw material supply amount is adjusted by the monitoring means that visually checks the supply state of the raw material in the raw material supply unit, and the raw material supply amount supplied into the cylinder of the first stage is minimized. It is possible to prevent the vent up.
  • the molten resin is divided into multiple grooves and the contact area with the atmosphere increases, so that the volatile components from the inside of the raw material are volatilized. It becomes easy and can perform deaeration effectively. Since the depth of the groove portion can be reduced by using three or more strips, the amount of resin remaining in the groove can be remarkably reduced at the end of the operation, and the raw material change time and raw material loss are reduced. Can be significantly reduced.
  • Patent Document 3 neither describes nor suggests prevention of yellowing and improvement of hue at the time of injection molding of the aromatic polycarbonate resin composition. Patent Document 3 neither describes nor suggests an aromatic polycarbonate resin as a raw material resin.
  • Japanese Patent Application Laid-Open No. H10-228867 does not include any description suggesting that an inert gas is supplied to one of the vent and the pellet supply unit and an inert gas is supplied to the other or injection molding is performed while reducing the pressure.
  • An object of the present invention is to provide an aromatic polycarbonate resin molded article having a remarkably excellent hue with less yellowing due to molding than the molded article comprising the aromatic polycarbonate resin composition of Patent Documents 1 and 2. To do.
  • an aromatic polycarbonate resin obtained by blending a predetermined proportion of a stabilizer with an aromatic polycarbonate resin having a specific viscosity average molecular weight.
  • the pellets of the composition are provided with a vent, and the pellets are supplied in a starved state using an injection molding machine having a multi-flight structure with two or more second stage screws. It has been found that the above problem can be solved by supplying an inert gas and supplying an inert gas to the other or performing injection molding while reducing the pressure.
  • the gist of the present invention is as follows.
  • a screw having a flight, a pellet supply part provided on the proximal end side of the injection cylinder, an injection nozzle provided on the distal end side of the injection cylinder, and a vent provided in the middle part of the injection cylinder
  • an injection molding machine in which melt-kneading is performed via a first stage upstream of the vent and a second stage downstream of the first stage.
  • the flight of the screw in the second stage uses an injection molding machine having a multi-strip flight structure of three or more, and supplies the pellets in a starved state to the pellet supply unit of the injection molding machine.
  • a method for producing an aromatic polycarbonate resin molded article, wherein an inert gas is supplied to one of the vent and the pellet supply unit, and an inert gas is supplied to the other, or injection molding is performed while reducing the pressure.
  • the pitch width of the flight in the second stage is larger than the pitch width of the flight in the first stage, and the cross-sectional area of the groove per pitch formed by the flight in the second stage is the first
  • the stabilizer (B) includes a phosphite stabilizer having a spiro ring skeleton and a phosphite stabilizer not having a spiro ring skeleton, and the spiro in the aromatic polycarbonate resin composition.
  • the content of the phosphite stabilizer having a ring skeleton is lower than the content of a phosphite stabilizer not having the spiro ring skeleton, according to any one of [1] to [6] Method for producing an aromatic polycarbonate resin molded article.
  • the polyalkylene glycol compound is a branched polyalkylene glycol compound represented by the following general formula (III-1) and / or a linear polyalkylene glycol compound represented by the following general formula (III-2):
  • R represents an alkyl group having 1 to 3 carbon atoms.
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 1 to 23 carbon atoms, or an alkyl group having 1 to 23 carbon atoms, and n represents an integer of 10 to 400.
  • the branched polyalkylene glycol compound is polypropylene glycol (poly (2-methyl) ethylene glycol) and / or polybutylene glycol (poly (2-ethyl) ethylene glycol).
  • the polyalkylene glycol compound is a branched polyalkylene glycol compound represented by the following general formula (III-1) and / or a linear polyalkylene glycol compound represented by the following general formula (III-2): [8] The method for producing an aromatic polycarbonate resin molded article according to [8].
  • R represents an alkyl group having 1 to 3 carbon atoms.
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 1 to 23 carbon atoms, or an alkyl group having 1 to 23 carbon atoms, and n represents an integer of 10 to 400.
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 2 to 23 carbon atoms, or an alkyl group having 1 to 22 carbon atoms.
  • m represents an integer of 2 to 6
  • p represents an integer of 6 to 100.
  • the branched polyalkylene glycol compound is polypropylene glycol (poly (2-methyl) ethylene glycol) and / or polybutylene glycol (poly (2-ethyl) ethylene glycol).
  • the polyalkylene glycol compound comprises a linear alkylene ether unit represented by the following general formula (I) and a branched alkylene ether represented by the following general formula (II-1) or the following general formula (II-3)
  • n represents an integer of 3 to 6.
  • R 1 to R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. At least one of R 1 to R 4 is an alkyl group having 1 to 3 carbon atoms.
  • R 1 to R 8 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. At least one of R 1 to R 8 is an alkyl group having 1 to 3 carbon atoms.
  • the linear alkylene ether unit represented by the general formula (I) is a tetramethylene glycol having n of 4 in the general formula (I) as glycol, as described in [12] A method for producing an aromatic polycarbonate resin molded article.
  • the branched alkylene ether unit represented by the general formula (II-1) is (2-methyl) ethylene glycol (propylene glycol) and / or (2-ethyl) ethylene glycol (butylene glycol) as a glycol.
  • a light guide member is manufactured from an aromatic polycarbonate resin molded product manufactured by the method for manufacturing an aromatic polycarbonate resin molded product according to any one of [1] to [17]. Manufacturing method of optical member.
  • the degradation of the aromatic polycarbonate resin at the time of injection molding and the yellowing by it can be suppressed effectively, and the aromatic polycarbonate resin molded product which has a remarkably excellent hue can be manufactured.
  • the aromatic polycarbonate resin molded article produced according to the present invention is particularly useful as a light guide member, particularly as a light guide member for an automotive lighting device. Even if it is a long or thick light guide member, high light transmission is achieved. Efficiency can be obtained.
  • FIG. 7a shows a starvation feed
  • FIG. 7b shows a normal feed.
  • Aromaatic polycarbonate resin composition An aromatic polycarbonate resin composition used as a molding material (hereinafter sometimes referred to as “the aromatic polycarbonate resin composition of the present invention”) will be described.
  • the aromatic polycarbonate resin composition of the present invention contains 0.01 to at least one stabilizer (B) with respect to 100 parts by mass of the aromatic polycarbonate resin (A) having a viscosity average molecular weight of 10,000 to 30,000. 0.5 parts by mass are included.
  • the polycarbonate resin composition of the present invention may further contain a fatty acid ester (C) and a hue improver (D).
  • the aromatic polycarbonate resin (A) is an aromatic polycarbonate polymer obtained by reacting an aromatic hydroxy compound with a diester of phosgene or carbonic acid.
  • the aromatic polycarbonate polymer may have a branch.
  • the method for producing the aromatic polycarbonate resin is not particularly limited, and may be a conventional method such as a phosgene method (interfacial polymerization method) or a melting method (transesterification method).
  • aromatic dihydroxy compound examples include bis (4-hydroxyphenyl) methane, 2,2-bis (4-hydroxyphenyl) propane, and 2,2-bis (4-hydroxy-3-methylphenyl).
  • Propane 2,2-bis (4-hydroxy-3-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy) -3,5-dibromophenyl) propane, 4,4-bis (4-hydroxyphenyl) heptane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 4,4'-dihydroxybiphenyl, 3,3 ', 5 , 5′-tetramethyl-4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) Yl) sulfide, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) ketone.
  • 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is particularly preferable.
  • aromatic dihydroxy compound one kind may be used alone, or two or more kinds may be mixed and used.
  • the aromatic polycarbonate resin (A) in addition to the aromatic dihydroxy compound, a small amount of polyhydric phenol having 3 or more hydroxy groups in the molecule may be added. In this case, the aromatic polycarbonate resin (A) has a branch.
  • 1,1,1-tris (4-hydroxylphenyl) ethane or 1,3,5-tris (4-hydroxyphenyl) benzene is preferable.
  • the amount of polyhydric phenol used is preferably an amount of 0.01 to 10 mol%, more preferably 0.1 to 2 mol%, based on the aromatic dihydroxy compound (100 mol%). .
  • a carbonic acid diester is used as a monomer instead of phosgene.
  • Representative examples of carbonic acid diesters include substituted diaryl carbonates such as diphenyl carbonate and ditolyl carbonate, and dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate.
  • a carbonic acid diester can be used individually by 1 type or in mixture of 2 or more types. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable.
  • the carbonic acid diester may preferably be substituted with dicarboxylic acid or dicarboxylic acid ester in an amount of 50 mol% or less, more preferably 30 mol% or less.
  • dicarboxylic acid or dicarboxylic acid ester examples include terephthalic acid, isophthalic acid, diphenyl terephthalate, and diphenyl isophthalate.
  • a catalyst When producing an aromatic polycarbonate resin by a transesterification method, a catalyst is usually used. Although there is no restriction
  • the aromatic polycarbonate resin (A) can be copolymerized with a polymer or oligomer having a siloxane structure for the purpose of imparting flame retardancy and the like.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A) is 10,000 to 30,000.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A) is less than 10,000, the molded product obtained may have insufficient mechanical strength, and it may not be possible to obtain a product having sufficient mechanical strength.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A) exceeds 30,000, the melt viscosity of the aromatic polycarbonate resin (A) increases.
  • the aromatic polycarbonate resin composition is injection-molded and the light guide member, etc. In some cases, it is not possible to obtain excellent fluidity when producing a long molded article.
  • the amount of heat generated by the shearing of the resin increases and the resin deteriorates due to thermal decomposition. As a result, a molded product having an excellent hue may not be obtained.
  • the viscosity average molecular weight of the aromatic polycarbonate resin (A) is preferably 12,000 to 30,000, more preferably 13,000 to 25,000, and particularly preferably 13,000 to 20,000.
  • Viscosity average molecular weight is obtained by conversion from solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent.
  • the aromatic polycarbonate resin (A) may be a mixture of two or more aromatic polycarbonate resins having different viscosity average molecular weights.
  • an aromatic polycarbonate resin having a viscosity average molecular weight outside the above range may be mixed to be within the above viscosity average molecular weight range.
  • a phosphorus stabilizer is preferable, and in particular, a phosphite stabilizer having a spiro ring skeleton (hereinafter sometimes referred to as “first phosphite stabilizer”), and a spiro ring skeleton. It is preferable from a viewpoint of yellowing suppression to use together with the phosphite type stabilizer which does not have (it may be called "the 2nd phosphite type stabilizer” hereafter).
  • first phosphite stabilizer those represented by the following general formula (1) are preferable.
  • R 11 and R 12 each independently represents an alkyl group having 1 to 30 carbon atoms or an aryl group having 6 to 30 carbon atoms.
  • examples of the alkyl group having 1 to 30 carbon atoms include methyl group, ethyl group, propyl group, n-propyl group, n-butyl group, tert-butyl group, hexyl group, octyl group and the like. It is done.
  • examples of the aryl group having 6 to 30 carbon atoms include a phenyl group and a naphthyl group.
  • first phosphite stabilizer examples include distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, and bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, dicyclohexylpentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, and the like.
  • distearyl pentaerythritol diphosphite bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite Phosphite and bis (2,4-dicumylphenyl) pentaerythritol diphosphite are particularly preferably used.
  • the first phosphite stabilizer may be used alone or in combination of two or more.
  • the second phosphite stabilizer is not particularly limited as long as it is a phosphite stabilizer not having a spiro ring skeleton.
  • Examples of the second phosphite stabilizer include tris (diethylphenyl) phosphite, tris (di-iso-propylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, and tris (2,4-dithio).
  • Triaryl phosphite such as -tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, 2,2 '-Methylenebis (4,6-di-tert-butylphenyl) (2,4-di-tert-butylphenyl) phosphite, 2,2'-methylenebis (4,6-di-tert-butylphenyl) (2 -Tert-butyl-4-methylphenyl) phosphite, 2,2'-methylenebis (4-methyl-6-t rt-butylphenyl) (2-tert-butyl-4-methylphenyl) phosphite, 2,2′-ethylidenebis (4-methyl-6-tert-butylphenyl) (2-ter
  • the second phosphite stabilizer may be used alone or in combination of two or more.
  • phosphite stabilizers represented by the following general formula (2) are preferable.
  • R 13 to R 17 each independently represents a hydrogen atom, an aryl group having 6 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • examples of the alkyl group represented by R 13 to R 17 include a methyl group, an ethyl group, a propyl group, an n-propyl group, an n-butyl group, a tert-butyl group, a hexyl group, and an octyl group. Group and the like.
  • examples of the aryl group represented by R 13 to R 17 include a phenyl group and a naphthyl group.
  • the first phosphite stabilizer and the second phosphite stabilizer are used in combination as the stabilizer (B), the first phosphite stabilizer is used less than the second phosphite stabilizer. In particular, it is preferable from the viewpoint of suppressing yellowing during thermal aging.
  • the blending ratio of the first phosphite stabilizer in the total of the first phosphite stabilizer and the second phosphite stabilizer is preferably 3 to 50% by mass, more preferably 5 to 40% by mass. It is particularly preferably 10 to 35% by mass.
  • the total content of the first phosphite stabilizer and the second phosphite stabilizer in 100% by mass of the stabilizer (B) is preferably 50 to 100% by mass, and preferably 80 to 100% by mass. Is more preferable and 100% by mass is particularly preferable.
  • the stabilizer (B) When the total content of the first phosphite stabilizer and the second phosphite stabilizer in 100% by mass of the stabilizer (B) is less than 100% by mass, the stabilizer (B) In addition to the agent, other phosphorus stabilizers such as a phosphonite stabilizer and a phosphate stabilizer may be contained.
  • phosphonite stabilizers examples include tetrakis (2,4-di-tert-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,4-di-tert-butylphenyl) -4,3 ′.
  • phosphate stabilizer examples include tributyl phosphate, trimethyl phosphate, tricresyl phosphate, triphenyl phosphate, trichlorophenyl phosphate, triethyl phosphate, diphenyl cresyl phosphate, diphenyl monoorthoxenyl phosphate, tributoxyethyl phosphate, dibutyl phosphate, Examples include dioctyl phosphate and diisopropyl phosphate.
  • phosphorus stabilizers may be used alone or in combination of two or more.
  • the blending ratio of the stabilizer (B) is 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the blending ratio of the stabilizer (B) is less than 0.01 parts by mass, yellowing cannot be sufficiently suppressed and a good hue cannot be obtained.
  • the blending ratio of the stabilizer (B) exceeds 0.5 parts by mass, the amount of gas at the time of molding increases or transfer failure due to mold deposit occurs, so that the transparency of the obtained molded product is lowered.
  • the blending ratio of the stabilizer (B) is preferably 0.03 to 0.4 parts by mass, more preferably 0.05 to 0.3 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). It is.
  • the aromatic polycarbonate resin composition of the present invention may contain a fatty acid ester (C).
  • a fatty acid ester (C) By containing the fatty acid ester (C), when producing an aromatic polycarbonate resin composition, the friction between the barrel and screw surface in the extruder and the resin is reduced, and the temperature rise of the polycarbonate resin during processing is prevented, There exists a tendency which can improve the hue of the molded article obtained.
  • Fatty acid ester (C) is a condensation compound of aliphatic carboxylic acid and alcohol.
  • Examples of the aliphatic carboxylic acid constituting the fatty acid ester (C) include saturated or unsaturated aliphatic monocarboxylic acid, dicarboxylic acid and tricarboxylic acid.
  • Aliphatic carboxylic acids also include alicyclic carboxylic acids.
  • the aliphatic carboxylic acid is preferably a monocarboxylic acid or dicarboxylic acid having 6 to 36 carbon atoms, and more preferably an aliphatic saturated monocarboxylic acid having 6 to 36 carbon atoms.
  • aliphatic carboxylic acid examples include palmitic acid, stearic acid, valeric acid, caproic acid, capric acid, lauric acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, melissic acid, tetratriacontanoic acid, montanic acid , Glutaric acid, adipic acid and azelaic acid.
  • the alcohol examples include saturated or unsaturated monohydric alcohols and polyhydric alcohols. These alcohols may have a substituent such as a fluorine atom, a chlorine atom, a bromine atom or an aryl group. Among these alcohols, monovalent or polyvalent saturated alcohols having 30 or less carbon atoms are preferable, and aliphatic saturated monohydric alcohols or polyhydric alcohols having 30 or less carbon atoms are more preferable. Aliphatic alcohols also include alicyclic alcohols.
  • Examples of the alcohol include octanol, decanol, dodecanol, tetradecanol, stearyl alcohol, behenyl alcohol, ethylene glycol, diethylene glycol, glycerin, pentaerythritol, 2,2-dihydroxyperfluoropropanol, neopentylene glycol, ditrimethylolpropane, dipentaerythritol. Etc.
  • fatty acid ester (C) examples include beeswax (mixture containing myristyl palmitate as a main component), hydrogenated oil, butyl stearate, behenyl behenate, octyldodecyl behenate, stearyl stearate, glycerin monopalmitate, glycerin monopalmitate Stearate, glycerol monooleate, glycerol distearate, glycerol tristearate, pentaerythritol monopalmitate, pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate, pentaerythritol tetrastearate, etc. .
  • fatty acid monoglycerides such as glycerin monopalmitate and glycerin monostearate are preferably used.
  • the friction between the barrel and screw surface in the extruder and the resin can be reduced, and the temperature rise of the polycarbonate resin during processing can be prevented.
  • the hue is particularly excellent and yellowing can be suppressed to a higher degree.
  • the aromatic polycarbonate resin composition of the present invention contains the fatty acid ester (C), the content varies depending on the type of the fatty acid ester (C) to be used, but the fatty acid ester (C) is too much or too little. ) May not be sufficiently obtained.
  • the content of the fatty acid ester (C) in the polycarbonate resin composition of the present invention is preferably 0.05 to 2 parts by mass, and 0.03 to 0.3 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A). Is more preferably 0.04 to 0.25 parts by mass, and particularly preferably 0.05 to 0.2 parts by mass.
  • the polycarbonate resin composition of the present invention may contain a hue improver (D).
  • the hue improver (D) is not particularly limited as long as it can improve the hue of the molded product obtained by blending it, and is not particularly limited.
  • Examples of the improver (D) include polyalkylene glycol compounds and specific diol compounds shown below.
  • 1 type (s) or 2 or more types of a polyalkylene glycol compound may be used, 1 type or 2 or more types of the diol compound shown below may be used, 1 of a polyalkylene glycol compound You may use together 1 type (s) or 2 or more types and the 1 type (s) or 2 or more types of the diol compound shown below.
  • polyalkylene glycol compound examples include a branched alkylene selected from linear alkylene ether units (P1) represented by the following general formula (I) and units represented by the following general formulas (II-1) to (II-4)
  • P1 linear alkylene ether units
  • II-1 units represented by the following general formulas (II-4)
  • a preferable example is a polyalkylene glycol copolymer (CP) having an ether unit (P2).
  • n represents an integer of 3 to 6.
  • R 1 to R 10 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. In each of the general formulas (II-1) to (II-4), at least one of R 1 to R 10 is an alkyl group having 1 to 3 carbon atoms.
  • linear alkylene ether unit (P1) represented by the general formula (I) when describing it as glycol, trimethylene glycol in which n is 3, tetramethylene glycol in which n is 4, pentamethylene in which n is 5 Glycol, and hexamethylene glycol where n is 6. Trimethylene glycol and tetramethylene glycol are preferable, and tetramethylene glycol is particularly preferable.
  • Trimethylene glycol is industrially obtained by hydroformylating ethylene oxide to obtain 3-hydroxypropionaldehyde and hydrogenating it, or 3-hydroxypropionaldehyde obtained by hydrating acrolein is hydrogenated with a Ni catalyst. Manufactured by the method. Trimethylene glycol is also produced by reducing glycerin, glucose, starch and the like to microorganisms by a bio method.
  • branched alkylene ether unit represented by the general formula (II-1) is described as glycol, (2-methyl) ethylene glycol (propylene glycol), (2-ethyl) ethylene glycol (butylene glycol), (2, 2-dimethyl) ethylene glycol (neopentyl glycol) and the like.
  • branched alkylene ether unit represented by the general formula (II-2) when described as glycol, (2-methyl) trimethylene glycol, (3-methyl) trimethylene glycol, (2-ethyl) trimethylene glycol, (3-ethyl) triethylene glycol, (2,2-dimethyl) trimethylene glycol, (2,2-methylethyl) trimethylene glycol, (2,2-diethyl) trimethylene glycol (ie neopentyl glycol), (3,3-dimethyl) trimethylene glycol, (3,3-methylethyl) trimethylene glycol, (3,3-diethyl) trimethylene glycol and the like.
  • branched alkylene ether unit represented by the general formula (II-3) when described as glycol, (3-methyl) tetramethylene glycol, (4-methyl) tetramethylene glycol, (3-ethyl) tetramethylene glycol, (4-ethyl) tetramethylene glycol, (3,3-dimethyl) tetramethylene glycol, (3,3-methylethyl) tetramethylene glycol, (3,3-diethyl) tetramethylene glycol, (4,4-dimethyl) Examples include tetramethylene glycol, (4,4-methylethyl) tetramethylene glycol, (4,4-diethyl) tetramethylene glycol, and (3-methyl) tetramethylene glycol is preferred.
  • branched alkylene ether unit represented by the general formula (II-4) when described as glycol, (3-methyl) pentamethylene glycol, (4-methyl) pentamethylene glycol, (5-methyl) pentamethylene glycol, (3-ethyl) pentamethylene glycol, (4-ethyl) pentamethylene glycol, (5-ethyl) pentamethylene glycol, (3,3-dimethyl) pentamethylene glycol, (3,3-methylethyl) pentamethylene glycol, (3,3-diethyl) pentamethylene glycol, (4,4-dimethyl) pentamethylene glycol, (4,4-methylethyl) pentamethylene glycol, (4,4-diethyl) pentamethylene glycol, (5,5- Dimethyl) pentamethylene glycol (5,5-methylethyl) pentamethylene glycol, and the like (5,5-diethyl) pentamethylene glycol.
  • the units represented by the general formulas (II-1) to (II-4) constituting the branched alkylene ether unit (P2) have been described by way of example for the sake of convenience. However, the present invention is not limited to these glycols. It may be an alkylene oxide or a polyether-forming derivative thereof.
  • polyalkylene glycol copolymer (CP) examples include a copolymer comprising a tetramethylene ether (tetramethylene glycol) unit and a unit represented by the general formula (II-1), particularly tetramethylene ether.
  • a copolymer comprising (tetramethylene glycol) units and 2-methylethylene ether (propylene glycol) units and / or (2-ethyl) ethylene glycol (butylene glycol) units is preferred.
  • a copolymer comprising tetramethylene ether units and 2,2-dimethyltrimethylene ether units, that is, neopentyl glycol ether units is also preferred.
  • a method for producing a polyalkylene glycol copolymer (CP) having a linear alkylene ether unit (P1) and a branched alkylene ether unit (P2) is known, and glycols, alkylene oxides or their polyether-forming properties as described above are known.
  • Derivatives can usually be produced by polycondensation using an acid catalyst.
  • the polyalkylene glycol copolymer (CP) may be a random copolymer or a block copolymer.
  • the terminal group of the polyalkylene glycol copolymer (CP) is preferably a hydroxyl group.
  • the polyalkylene glycol copolymer (CP) does not affect its performance even if one or both ends are blocked with alkyl ether, aryl ether, aralkyl ether, fatty acid ester, aryl ester, etc. Esterified products can be used as well.
  • the alkyl group constituting the alkyl ether may be linear or branched, and may be an alkyl group having 1 to 22 carbon atoms, such as methyl, ethyl, propyl, butyl, octyl, lauryl, stearyl. Groups and the like.
  • Preferred examples of the alkyl ether include polyalkylene glycol methyl ether, ethyl ether, butyl ether, lauryl ether, stearyl ether, and the like.
  • the aryl group constituting the aryl ether is preferably an aryl group having 6 to 22 carbon atoms, more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms, such as a phenyl group, a tolyl group, or a naphthyl group. And a phenyl group, a tolyl group and the like are preferable.
  • the aralkyl group is preferably an aralkyl group having 7 to 23 carbon atoms, more preferably 7 to 13 carbon atoms, still more preferably 7 to 11 carbon atoms, and examples thereof include a benzyl group and a phenethyl group. Particularly preferred.
  • the fatty acid constituting the fatty acid ester may be linear or branched, and may be a saturated fatty acid or an unsaturated fatty acid.
  • the fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 22 carbon atoms, for example, a monovalent saturated fatty acid, such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid.
  • the aryl group constituting the aryl ester is preferably an aryl group having 6 to 22 carbon atoms, more preferably 6 to 12 carbon atoms, still more preferably 6 to 10 carbon atoms, such as a phenyl group, a tolyl group, or a naphthyl group. And a phenyl group, a tolyl group and the like are preferable. Even if the end-capping group is an aralkyl group, it exhibits good compatibility with the aromatic polycarbonate resin (A), and thus can exhibit the same action as an aryl group.
  • the aralkyl group is preferably an aralkyl group having 7 to 23 carbon atoms, more preferably 7 to 13 carbon atoms, still more preferably 7 to 11 carbon atoms, and examples thereof include a benzyl group and a phenethyl group. Particularly preferred.
  • the polyalkylene glycol copolymer (CP) includes, among others, a copolymer composed of tetramethylene ether units and 2-methylethylene ether units, a copolymer composed of tetramethylene ether units and 3-methyltetramethylene ether units, tetra A copolymer composed of methylene ether units and 2,2-dimethyltrimethylene ether units is particularly preferred.
  • Commercially available products of such polyalkylene glycol copolymers include NOF's trade name (hereinafter the same) “Polyserine DCB”, Hodogaya Chemical Co., Ltd. “PTG-L”, Asahi Kasei Fibers Co., Ltd. “PTXG”, and the like. Can be mentioned.
  • a copolymer comprising tetramethylene ether units and 2,2-dimethyltrimethylene ether units can also be produced by the method described in JP-A-2016-125038.
  • Preferred examples of the polyalkylene glycol compound include a branched polyalkylene glycol compound represented by the following general formula (III-1) and a linear polyalkylene glycol compound represented by the following general formula (III-2). It is done.
  • the branched polyalkylene glycol compound represented by the following general formula (III-1) or the linear polyalkylene glycol compound represented by the following general formula (III-2) is a copolymer with other copolymer components. Although it may be a polymer, a homopolymer is preferred.
  • R represents an alkyl group having 1 to 3 carbon atoms.
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 1 to 23 carbon atoms, or an alkyl group having 1 to 23 carbon atoms.
  • n represents an integer of 10 to 400.
  • X and Y each independently represent a hydrogen atom, an aliphatic acyl group having 2 to 23 carbon atoms, or an alkyl group having 1 to 22 carbon atoms.
  • m represents an integer of 2 to 6
  • p represents an integer of 6 to 100.
  • the integer (degree of polymerization) n is 10 to 400, preferably 15 to 200, and more preferably 20 to 100.
  • the degree of polymerization n is less than 10, the amount of gas generated during molding increases, and molding defects due to gas, for example, unfilling, gas burnout, and transfer defects may occur.
  • the polymerization degree n exceeds 400, the effect of improving the hue of the aromatic polycarbonate resin composition may not be sufficiently obtained.
  • Examples of the branched polyalkylene glycol compound include a polypropylene glycol (poly (2-methyl) ethylene glycol) in which X and Y are hydrogen atoms and R is a methyl group in the general formula (III-1) and an ethyl group.
  • Butylene glycol (poly (2-ethyl) ethylene glycol) is preferred, and polybutylene glycol (poly (2-ethyl) ethylene glycol) is particularly preferred.
  • p degree of polymerization
  • p is an integer of 6 to 100, preferably 8 to 90, more preferably 10 to 80.
  • gas is generated during molding, which is not preferable.
  • polymerization degree p exceeds 100, the compatibility is lowered, which is not preferable.
  • linear polyalkylene glycol compound in general formula (III-2), X and Y are hydrogen atoms, m is 2, polyethylene glycol, m is 3, polytrimethylene glycol, and m is 4.
  • Preferred examples include polytetramethylene glycol, polypentamethylene glycol in which m is 5, and polyhexamethylene glycol in which m is 6. More preferred are polytrimethylene glycol, polytetramethylene glycol, esterified products or etherified products thereof. .
  • X and / or Y in the general formulas (III-1) and (III-2) may be an aliphatic acyl group or alkyl group having 1 to 23 carbon atoms.
  • fatty acid ester product either a linear or branched fatty acid ester can be used.
  • the fatty acid constituting the fatty acid ester may be a saturated fatty acid or an unsaturated fatty acid. Those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can also be used.
  • the fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 23 carbon atoms, such as a monovalent saturated fatty acid, specifically formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid.
  • Fatty acids can be used alone or in combination of two or more. Fatty acids also include fatty acids having one or more hydroxyl groups in the molecule.
  • fatty acid ester of branched polyalkylene glycol include polypropylene glycol stearate in which R is a methyl group, X and Y are aliphatic acyl groups having 18 carbon atoms in general formula (III-1), and R is Examples thereof include polypropylene glycol behenate in which a methyl group and X and Y are aliphatic acyl groups having 22 carbon atoms.
  • fatty acid esters of linear polyalkylene glycol include polyalkylene glycol monopalmitate, polyalkylene glycol dipalmitate, polyalkylene glycol monostearate, polyalkylene glycol distearate, polyalkylene glycol (Monopalmitic acid / monostearic acid) ester, polyalkylene glycol behenate and the like.
  • the alkyl group constituting the alkyl ether of the polyalkylene glycol may be either linear or branched, for example, carbon number such as methyl group, ethyl group, propyl group, butyl group, octyl group, lauryl group, stearyl group, etc. Examples thereof include 1 to 23 alkyl groups.
  • Preferable examples of the polyalkylene glycol compound include alkyl methyl ether, ethyl ether, butyl ether, lauryl ether, stearyl ether, and the like of polyalkylene glycol.
  • Examples of commercially available branched polyalkylene glycol compounds represented by the general formula (III-1) include NOF Corporation trade names (hereinafter the same) “Uniol D-1000” and “Uniol PB-1000”. .
  • Polyalkylene such as polyalkylene glycol copolymer (CP), branched polyalkylene glycol compound represented by general formula (III-1), linear polyalkylene glycol compound represented by general formula (III-2)
  • the number average molecular weight of the glycol compound is preferably 200 to 5,000, more preferably 300 or more, further preferably 500 or more, more preferably 4,000 or less, still more preferably 3,000 or less, particularly preferably 2000 or less, Particularly preferred is less than 1000, and most preferred is 800 or less.
  • the number average molecular weight of the polyalkylene glycol compound is a number average molecular weight calculated based on the hydroxyl value measured according to JIS K1577.
  • the diol compound used as the hue improver (D) is bisphenol A represented by the following general formula (3) (in the case where Z is —C (CH 3 ) 2 — in the following general formula (3)): ) Or a biphenol (when Z is a single bond (direct bond) in the following general formula (3)), and an aromatic polycarbonate resin (A) by containing a bisphenol A skeleton or a biphenol skeleton Is superior in hue improvement effect compared with general polyalkylene glycol compounds.
  • Z represents a single bond or —C (CH 3 ) 2 —.
  • R 21 and R 22 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 21 and R 22 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • x R 1 s may be the same or different.
  • the y R 22 s may be the same or different.
  • R 21 and R 22 are each independently preferably a hydrogen atom or a methyl group.
  • the polyalkylene glycol chain added to bisphenol A or biphenol is preferably a polyethylene glycol chain, a polypropylene glycol chain, or a polyethylene / propylene glycol chain.
  • the number average molecular weight of the diol compound is preferably 100 to 5,000, more preferably 300 or more, further preferably 500 or more, more preferably 3000 or less, still more preferably 2000 or less, and particularly preferably 1500 or less.
  • the number average molecular weight of the diol compound is a number average molecular weight calculated based on the hydroxyl value measured according to JIS K1577.
  • the OH terminal polyethyleneglycol substitution product of the bisphenol A (The product name "Bisol 18EN” by the Toho Chemical Industry Co., Ltd., the OH terminal polypropylene glycol substitution product of the bisphenol A (The Sanyo Chemical Industries make) Trade names such as New Pole (registered trademark) BP series), OH-terminated polyethylene glycol-polypropylene glycol copolymer substitution products of bisphenol A (trade name: UNILOVE (registered trademark) 50DB-22 manufactured by NOF Corporation), and the like.
  • the above diol compounds may be used alone or in combination of two or more.
  • the aromatic polycarbonate resin composition of the present invention contains a hue improver (D)
  • the content of the hue improver (D) varies depending on the type of the hue improver (D) used, but the aromatic polycarbonate resin ( A)
  • the amount is preferably 0.05 to 2 parts by mass with respect to 100 parts by mass. Even if the content of the hue improver is less than 0.05 parts by mass or more than 2 parts by mass, the hue of the obtained molded product tends to be inferior.
  • the content of the polyalkylene glycol compound in the aromatic polycarbonate resin composition of the present invention is 0.000 parts by mass with respect to 100 parts by mass of the aromatic polycarbonate resin (A).
  • the amount is preferably 1 to 1.5 parts by mass, more preferably 0.2 to 1.2 parts by mass, and still more preferably 0.4 to 1.0 parts by mass.
  • the content of the polyalkylene glycol compound and the diol compound in the aromatic polycarbonate resin composition of the present invention is the above-described preferable content.
  • the total content is preferably from 0.1 to 1.5 parts by weight, more preferably from 0.2 to 1.2 parts by weight, based on 100 parts by weight of the aromatic polycarbonate resin (A). 5 to 1.0 part by mass is more preferable.
  • the aromatic polycarbonate resin composition of the present invention includes, as optional components, an antioxidant, a mold release agent, an ultraviolet absorber, a fluorescent whitening agent, a dye / pigment, a flame retardant, an anti-resistance, as long as the object of the present invention is not impaired.
  • Impact modifiers, antistatic agents, lubricants, plasticizers, compatibilizers, fillers, and the like may be blended.
  • ⁇ Method for producing aromatic polycarbonate resin composition pellet> In order to produce the pellets of the aromatic polycarbonate resin composition of the present invention, for example, a method may be mentioned in which each component is blended in a lump or divided, melt kneaded and pelletized. Examples of the method of blending each component include a method using a tumbler, a Henschel mixer, etc., and a method of quantitatively feeding to a hopper of an extruder with a feeder and mixing.
  • melt-kneading it is preferable to use, for example, a single-screw kneading extruder, a twin-screw kneading extruder, and the strand of the aromatic polycarbonate resin composition extruded from the discharge nozzle at the tip of the extruder is taken up by a take-off roller, After conveying and cooling in the water tank, the pellets of the aromatic polycarbonate resin composition can be obtained by cutting into a predetermined size with a pelletizer.
  • the injection molding machine used in the present invention has a multi-flight flight structure in which the second stage screw after the vent has three or more flights, and the molten resin is divided into a multi-thread spiral groove, By increasing the exposed area, discharge of volatile components such as the residual monomer and additive decomposition product can be performed more efficiently.
  • an inert gas is supplied to one of the vent and the pellet supply unit to the injection molding machine, and the other is an inert gas.
  • the oxygen concentration in the injection cylinder is lowered, and the resin coloring cause substance generated during the melting of the resin is purged, yellowing due to oxidative deterioration of the resin, and resin coloring by the coloring cause substance The reaction can be suppressed.
  • the water vapor generated from the pellets can efficiently discharge the volatile components that cause yellowing by entraining the volatile components and evaporating from the vent. Therefore, the obtained molded product is more excellent in hue.
  • FIGS. 1 to 6 are configuration diagrams showing an example of an injection molding machine preferably used in the present invention, in which members having the same functions are denoted by the same reference numerals.
  • the upstream side and the downstream side in the injection direction of the injection molding machine are simply referred to as “upstream” and “downstream”, respectively.
  • the proximal end of the injection molding machine refers to the most upstream part of the injection molding machine, and the distal end refers to the most downstream part.
  • a pellet supply device 10 is provided immediately above the pellet supply port 1a on the injection direction base end side of the injection cylinder 1. The pellet supply apparatus 10 will be described later.
  • An injection nozzle 3 is provided at the front end side of the injection cylinder 1 in the injection direction.
  • a head portion 2 a of the screw 2 is inserted into the nozzle 3.
  • a heating heater 4 is attached to the outer periphery of the injection cylinder 1.
  • the screw 2 of the injection molding machine shown in FIGS. 1 to 3 includes a first stage X composed of a single flight part 2A and a mixing part 2M in which a single flight is spirally formed on the outer peripheral surface of the screw shaft, and a flight (FIG. 1 has a second stage Y composed of a multi-flight flight part 2B formed in a spiral shape, and vents 5A and 5B are provided upstream of the second stage Y (immediately after the mixing part 2M). Is provided.
  • inert gas nozzle a nozzle (hereinafter referred to as “inert gas nozzle”) 7 ⁇ / b > B for blowing an inert gas such as nitrogen (N 2 ) is inserted in the lower part of the hopper of the pellet supply device 10.
  • the vent 5A is provided with a pressure reducing pipe 6A.
  • V is a pressure reducing valve and P is a vacuum pump.
  • the vent 5A has a sealed structure.
  • an inert gas nozzle 6B is inserted into a vent 5B whose upper part is opened, and a decompression pipe 7A having a decompression valve V and a vacuum pump P at the lower part of the hopper of the pellet supply device 10. Is provided.
  • an inert gas nozzle 6B is inserted into the vent 5B, and an inert gas nozzle 7B is also inserted under the hopper of the pellet supply device 10.
  • the inert gas nozzle 7B is inserted into the screw feeder 11 at the lower part of the hopper 20 of the pellet feeder 10 as shown in FIG. 7a.
  • vents 5A and 5B are provided at one place in the middle of the injection direction of the injection cylinder 1, and therefore, from the vents 5A and 5B, as described above, substances that cause resin coloring. Can be discharged efficiently.
  • the causative substance of resin coloring can be discharged more efficiently.
  • inert gas such as nitrogen (N 2 ) from the inert gas nozzles 6B and 7B, as described above, the oxygen concentration in the injection cylinder is lowered to prevent oxidative deterioration of the resin and to occur when the resin melts.
  • the resin causing coloration can be purged to prevent the resin from yellowing.
  • the color-causing substance generated when the resin is melted can be exhausted.
  • the flight structure of the second stage Y in which the vents 5A and 5B are provided is a multi-flight flight structure of three or more, so that the pitch width of the flight of the second stage Y (pitch width per one line) ) Larger than the pitch width of the flight of the first stage X, and the cross-sectional area of the groove per pitch formed by the flight of the second stage Y is equal to the pitch of the pitch formed by the flight of the first stage X. It can be made smaller than the cross-sectional area of the groove portion.
  • the molten resin extruded from the mixing unit 2M can be smoothly transferred to the second stage Y, and the molten resin is prevented from staying in the vents 5A and 5B, and in the second stage Y, the molten resin is melted. Since the resin is divided into multiple spiral grooves (spiral grooves formed between flights; referred to as “grooves” in the present invention) and the contact area with the outside increases, volatile components from the inside of the molten resin Is easily volatilized, and volatile components such as residual monomers and additive decomposition products from the vents 5A and 5B are discharged more effectively.
  • the flight structure of the second stage Y is a multi-strip structure of three or more, the depth of the groove can be reduced, so that the amount of resin remaining in the groove at the end of the operation is significantly reduced. In the case of changing the raw material, the time and raw material loss can be reduced.
  • the vents 5A and 5B are provided on the downstream side of the first stage X serving as a plasticizing zone of the injection cylinder 1 and immediately after the first stage X. It is preferable that
  • the first stage X is an area for melting and plasticizing the pellets supplied by the pellet supply device 10, and in this first stage X, volatile components are generated from the pellets.
  • the molten resin from the plasticizing zone (first stage X) is further melted and compressed to degas volatile components, and the resin is stabilized and discharged before the subsequent discharge of the resin. It is a measuring zone that performs adjustment to suppress variation in quantity.
  • the vents 5A and 5B according to the present invention are preferably provided in the start point region of the melt compression zone of the second stage Y.
  • the length L 1 of the first stage X of the plasticizing zone is a region having a length of about 1/3 to 7/10 with respect to L.
  • the length L 2 of the second stage Y corresponds to the remaining portion, and the length of the melt compression zone in the second stage Y is about 1/10 to 3/10 of the total length L of the injection cylinder 1.
  • the length of the measuring zone is about 1/10 to 3/10 of the total length L of the injection cylinder 1.
  • the vents 5A and 5B may be provided at only one place, or may be provided at a plurality of places in the injection direction of the injection cylinder 1, but the most upstream vent is located at the above position. It is preferable that
  • the diameter of the vents 5A and 5B is usually about 10 to 20 cm.
  • the multi-row structure is 3 or more.
  • the groove between individual flights becomes narrow, and problems such as an increase in frictional resistance between the inner wall surface of the groove and the molten resin occur. The following is preferable.
  • the mixing unit 2M a conventionally known dalmage type, barrier type, subflight type, wave type, or the like can be adopted.
  • the mixing unit 2M is not necessarily required, the mixing unit 2M is not provided, and the first stage X may be configured only by a single-flight flight screw.
  • Nitrogen, carbon dioxide, helium, argon, etc. can be used as the inert gas supplied from the vent and / or the pellet supply unit to the injection molding machine. Nitrogen is preferably used in terms of handleability and the like.
  • a metal nozzle having a hole diameter of about 2 to 10 mm can be used as the inert gas nozzle.
  • the supply amount of the inert gas is not particularly limited as long as a molded product having a desired hue can be obtained.
  • the supply amount of the inert gas is preferably set so that the oxygen concentration in the atmosphere measured by an oxygen concentration meter provided in the inert gas supply unit is 5% or less, particularly 0 to 2% by volume. .
  • an oxygen concentration meter can be provided in the inert gas blowing part vicinity of the inert gas nozzle 6B inserted in the vent 5B.
  • an oxygen concentration meter may be inserted together with the inert gas nozzle 7B to measure the oxygen concentration.
  • the inert gas may be supplied only to the vent or only to the pellet supply unit.
  • the inert gas may be supplied to both the vent and the pellet supply unit, but the side of the vent and pellet supply unit that does not supply the inert gas is depressurized.
  • the inert gas may be supplied by all the vents, the inert gas may be supplied by only some of the vents, or the inert gas may be supplied by some of the vents. However, the other vent may be decompressed.
  • an inert gas nozzle When supplying the inert gas to the pellet supply unit to the injection molding machine, as shown in FIG. 7a, an inert gas nozzle is inserted into the lower part of the hopper to supply the inert gas, and to the pellet supply port 1a of the injection cylinder. An inert gas nozzle may be inserted to supply the inert gas.
  • the vent can be effectively decompressed by making the opening a sealed structure.
  • the decompression pipe 7A When depressurizing the pellet supply unit, the decompression pipe 7A may be inserted in place of the inert gas nozzle 7B shown in FIG. 7a to depressurize the screw feeder 11 at the lower part of the hopper 20 of the pellet supply apparatus 10, and the pellet supply The pressure may be reduced by inserting a decompression pipe into the port 1a.
  • the decompression can be performed using, for example, the following vacuum pump.
  • Anlet Corporation dry roots type vacuum pump FT2-20 (final pressure 8 kPa (60 Torr))
  • Dry roots type vacuum pump FT2-80 (ultimate pressure 5.3 kPa (40 Torr)) manufactured by Anlet.
  • the pellets of the aromatic polycarbonate resin composition are supplied to the injection molding machine by starvation feed. Below, this supply method is demonstrated with reference to FIG.
  • pellets are supplied by being dropped by their own weight from a pellet supply hopper 20 attached to a pellet supply port 1a on the base end side of an injection cylinder of an injection molding machine.
  • the part from the hopper 20 through the supply port 1a of the injection cylinder to the screw 2 is filled with pellets 30 as shown in FIG. 7b (hereinafter, the supply method shown in FIG. ").
  • the pellet 30 from the hopper 20 is used by using the pellet feeder 10 having the screw feeder 11 capable of adjusting the amount of the pellet 30 fed from the hopper 20.
  • a predetermined amount is introduced into the supply port 1a of the injection cylinder 1 by rotation of the screw feeder 11 instead of dropping due to its own weight.
  • the screw bed (screw groove portion of the screw) of the screw 2 immediately below the supply port 1a is not covered with pellets, but a part thereof is exposed. .
  • Supplying pellets in such a state is called starvation feed.
  • pellets When pellets are supplied in a starved state, a gap where no pellet is present is formed in the supply port 1a portion of the injection cylinder 1, and gas components generated in the injection cylinder 1 are discharged out of the system through this gap. become.
  • the pellet supply port 1a comes to perform the same function as the vent, further improving the efficiency of discharging volatile components and water vapor, and further improving the hue of the obtained molded product.
  • the starvation feed is performed while supplying an inert gas to the pellet supply unit, the inert gas supplied to the pellet supply unit easily enters the injection cylinder, and the components that cause the resin coloring are effectively removed. Can be purged.
  • the gas components in the injection cylinder can be efficiently discharged through the pellet supply part, and the effect of reducing the oxidation of the resin due to the decompression can be enhanced. .
  • the pellet supply part of the injection molding machine used in the present invention includes a monitoring means and a pellet supply amount adjusting means.
  • the raw material resin pellets in the hopper 20 are dropped to the supply port 1a of the injection cylinder 1 while the supply amount is controlled by the screw feeder 11.
  • the supply state of the pellets at the supply port 1a is photographed by an imaging means provided in the supply device 10, and is always visible on the monitor. Adjustment of the pellet supply amount may be performed manually while the operator visually recognizes the monitor, or may be performed automatically using analysis software on the monitor screen.
  • Pellet feeders for performing starvation feed are commercially available.
  • “HF-I type” manufactured by Nippon Oil Machinery Co., Ltd. used in Examples described later can be used.
  • the pellets of the aromatic polycarbonate resin composition supplied to the injection molding machine preferably have a water content of 200 ppm or more.
  • the amount of moisture in the pellet is preferably as large as possible, more preferably 300 ppm or more, and even more preferably 500 ppm or more.
  • the water content is preferably 3000 ppm or less, more preferably 2500 ppm or less, and still more preferably 2000 ppm or less.
  • the pellets having the above moisture content can be obtained by adjusting the drying conditions of the pellets supplied to the injection molding machine, or by using the pellets obtained by the above method as they are without drying.
  • the moisture content of the pellets of the aromatic polycarbonate resin composition obtained by cooling in a water tank and pelletizing with a pelletizer as described above is about 500 to 2000 ppm.
  • such pellets can be supplied to an injection molding machine without drying. In this case, the pellet drying step can be omitted, and the production efficiency can be improved.
  • ⁇ Injection molding conditions> normal conditions can be adopted for the injection molding conditions except that an injection molding machine having a vent is used and, preferably, pellets having a predetermined water content are starved.
  • the cylinder temperature can be 260 to 320 ° C. and the mold temperature can be 60 to 120 ° C.
  • the method for producing an aromatic polycarbonate resin molded product of the present invention is particularly effective for producing a long molded product such as a light guide member.
  • a long molded product such as a light guide member.
  • L / D major axis / minor axis ratio
  • the obtained molded article is useful as a light guide member, particularly as a light guide member of an automobile lighting device.
  • the structure of the light guide member made of the aromatic polycarbonate resin molded product produced according to the present invention For example, a long main body portion and a protruding portion along the length direction of the main body portion are provided. And a plurality of prism portions formed.
  • Aromatic polycarbonate resin (A)] (A-1) Bisphenol A type aromatic polycarbonate resin produced by interfacial polymerization method Iupilon (registered trademark) S-3000 manufactured by Mitsubishi Engineering Plastics Viscosity average molecular weight 22,000 (A-2) Bisphenol A type aromatic polycarbonate resin produced by interfacial polymerization method Iupilon (registered trademark) H-4000 manufactured by Mitsubishi Engineering Plastics Viscosity average molecular weight 16,000 (A-3) Bisphenol A type aromatic polycarbonate resin produced by the interfacial polymerization method Iupilon (registered trademark) H-7000 manufactured by Mitsubishi Engineering Plastics Viscosity average molecular weight 14,000
  • [Phosphorus stabilizer (B)] (B-1) Product name “ADK STAB AS2112” (Tris (2,4-di-tert-butylphenyl) phosphite, second phosphite stabilizer) manufactured by ADEKA (B-2) Trade name “ADK STAB PEP-36” manufactured by ADEKA (bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, first phosphite stabilizer) (B-3) Product name “Doverphos S-9228” (bis (2,4-dicumylphenyl) pentaerythritol diphosphite, first phosphite stabilizer), manufactured by Properties & Characteristics
  • the extrudate was quenched in a water bath and cut and pelletized using a pelletizer to obtain pellets of an aromatic polycarbonate resin composition.
  • the unit of the mixing ratio of each component is parts by mass.
  • the PC molecular weight is the viscosity average molecular weight of the aromatic polycarbonate resin in the aromatic polycarbonate resin composition.
  • the first stage X has a single flight structure
  • the second stage Y has a three flight structure
  • the feeding method of pellets was the starvation feed shown in FIG. 7a.
  • vent and pellet supply unit were subjected to injection molding by reducing the pressure as follows or by supplying an inert gas.
  • the nitrogen gas flow rate is adjusted so that the oxygen concentration measured by an oxygen concentration meter provided near the inert gas nozzle is 0 ppm (below the measurement limit). did.
  • the inert gas supply of (3) and (4) is referred to as “nitrogen purge”.
  • the second stage has a multi-flight flight structure with three or more stripes, and using an injection molding machine equipped with a vent, pellets are used as a starvation feed, and one of the vent and the hopper serving as the pellet supply unit
  • an aromatic polycarbonate resin molded article having a good hue can be obtained in a 300 mm long optical path by supplying an inert gas to the other and performing injection molding while supplying an inert gas to the other or reducing the pressure. .
  • by reducing the pressure of the hopper and purging the vent with nitrogen it is possible to obtain a molded article with a remarkably good hue in a 300 mm long optical path.
  • the starvation feed is similarly performed, and the inert gas is supplied to one of the hoppers which are the vent and the pellet supply unit, and the inert gas is supplied to the other or injection molding is performed while reducing the pressure.
  • the hue is inferior to that of a three-flight structure.
  • the hue of the obtained molded product is further inferior.

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

成形による黄変が少なく、著しく優れた色相を有する芳香族ポリカーボネート樹脂成形品を製造する。粘度平均分子量10,000~30,000の芳香族ポリカーボネート樹脂(A)100質量部に対し、少なくとも1種類の安定剤(B)を0.01~0.5質量部含むポリカーボネート樹脂組成物のペレットを、ベントを有すると共に、第2ステージのスクリューが3条以上の多条フライト構造とされた射出成形機で成形して芳香族ポリカーボネート樹脂成形品を製造する。該ペレットを、該射出成形機のペレット供給部に飢餓状態で供給すると共に、該ベント及びペレット供給部の一方に不活性ガスを供給し、他方に不活性ガスを供給するか或いは減圧しながら射出成形する。

Description

芳香族ポリカーボネート樹脂成形品の製造方法
 本発明は、芳香族ポリカーボネート樹脂成形品の製造方法に関する。詳しくは、本発明は、射出成形時の黄変の問題を改善し、著しく色相に優れた芳香族ポリカーボネート樹脂成形品を製造する方法に関する。
 自動車のヘッドランプ及びリアランプに常時点灯するデイライトを設置することにより、昼間の歩行者や対向車からの視認性を高める、自動車のデイライト化が進んでいる。デイライトは一般に、導光部材と、導光部材に光を入射させる光源とを備えている。導光部材の構成材料としては、透明性や耐熱性の観点から、ポリカーボネート樹脂が用いられている。導光部材には、透明性や耐熱性に加えて、黄色の少ない、優れた色相を有することが要求される。導光部材は、一般的に、光路長の長いレンズ部品であるため、光源から入射された光を減衰させることなく高効率で伝達するためには、導光部材には、黄変等の着色の問題がなく優れた色相を有することが求められている。
 導光部材用の芳香族ポリカーボネート樹脂組成物として、特許文献1に、芳香族ポリカーボネート樹脂にリン系安定剤及び脂肪酸エステルを配合した芳香族ポリカーボネート樹脂組成物が開示されている。
 特許文献1の芳香族ポリカーボネート樹脂組成物の色相と耐黄変性を更に改善したものとして、特許文献2には、芳香族ポリカーボネート樹脂に配合するリン系安定剤として、2種類のホスファイト系安定剤を用いた芳香族ポリカーボネート樹脂組成物が開示されている。
 芳香族ポリカーボネート樹脂組成物を用いて導光部材を成形した場合、成形過程で受ける熱で芳香族ポリカーボネート樹脂が劣化し、得られる成形品は僅かながら黄色味を帯びることがある。特許文献2の芳香族ポリカーボネート樹脂組成物は、特許文献1の芳香族ポリカーボネート樹脂組成物における色相を改善するものである。
 特許文献1及び2の芳香族ポリカーボネート樹脂組成物であれば、通常の芳香族ポリカーボネート樹脂組成物に比べて、色相が良好な成形品が得られる。しかし、自動車用照明装置に用いられる導光部材では、例えば、300mm長光路のYI値として18未満というような、著しく優れた色相が要求される。従来の芳香族ポリカーボネート樹脂組成物ではこのような要求特性を満足し得ない。
 ポリカーボネート樹脂組成物の射出成形に当っては、原料を溶融混練して得られたポリカーボネート樹脂組成物のペレットを、所定の条件で乾燥した後、射出成形機のホッパーに投入して射出成形が行われる。例えば、特許文献1の実施例では、得られたペレットを熱風循環式乾燥機により120℃で5~7時間乾燥した後、射出成形を行っている。
 特許文献3には、ベントアット(溶融した原料がベントから機外に漏出する現象)がなく、原料替えに要する時間を節約でき、原料ロスの少ないベント式多条可塑化ユニットが提案されている。この可塑化ユニットは、原料供給部、第1ステージ、ミキシング部、第2ステージからなり、ミキシング部直後にベント部を備えたベント式射出成形機用可塑化ユニットであり、第2ステージを3条以上の多条形状としたものである。
 特許文献3には、以下の1),2)の効果が記載されている。
1) 第2ステージの螺旋溝を3条以上の多条とし、そのピッチを、第1ステージの溝のピッチより大きくしたため、ベント部において溶融樹脂が滞留せず、ベントアップを防ぐことができる。原料供給部における原料の供給状態を視認するモニター手段により原料供給量を調整し、第1ステージのシリンダ内に供給される原料供給量を必要最小限とすれば、第1ステージ内の圧力を安定化させることができ、ベントアップを確実に防ぐことができる。
2) 第2ステージの螺旋溝を3条以上の多条としたことにより、溶融樹脂が多条の溝部に分割され、大気との接触面積が増加するので、原料内部からの揮発成分が揮発し易くなり、脱気を効果的に行える。3条以上の多条としたことにより、溝部の深さを浅くすることができるので、操作の終了時に、溝に残留する樹脂の量を格段に少なくすることができ、原料替え時間と原料ロスを格段に少なくすることができる。
 しかし、特許文献3には、芳香族ポリカーボネート樹脂組成物の射出成形時の黄変の防止、色相の改善についての記載も示唆もない。特許文献3には、原料樹脂としての芳香族ポリカーボネート樹脂の記載も示唆もない。特許文献3には、ベント及びペレット供給部の一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか或いは減圧しながら射出成形することを示唆する記載もない。
特開2007-204737号公報 特開2013-139097号公報 特開2014-100875号公報
 本発明は、特許文献1及び2の芳香族ポリカーボネート樹脂組成物からなる成形品よりも、更に成形による黄変が少なく、著しく優れた色相を有する芳香族ポリカーボネート樹脂成形品を提供することを目的とする。
 本発明者は、芳香族ポリカーボネート樹脂成形品の射出成形方法について鋭意研究を重ねた結果、特定の粘度平均分子量の芳香族ポリカーボネート樹脂に、所定の割合で安定剤を配合してなる芳香族ポリカーボネート樹脂組成物のペレットを、ベントを有し、第2ステージのスクリューが3条以上の多条フライト構造の射出成形機を用いて、ペレットを飢餓状態で供給すると共に、ベント及びペレット供給部の一方に不活性ガスを供給し、他方に不活性ガスを供給するか減圧しながら射出成形することにより、上記課題を解決し得ることを見出した。
 本発明は、以下を要旨とする。
[1] 粘度平均分子量10,000~30,000の芳香族ポリカーボネート樹脂(A)100質量部に対し、少なくとも1種類の安定剤(B)を0.01~0.5質量部含むポリカーボネート樹脂組成物のペレットを、射出成形機で成形して芳香族ポリカーボネート樹脂成形品を製造する方法であって、該射出成形機として、射出シリンダーと、該射出シリンダー内に回転可能に支持された、螺旋状のフライトを有するスクリューと、該射出シリンダーの基端側に設けられたペレット供給部と、該射出シリンダーの先端側に設けられた射出ノズルと、該射出シリンダーの途中部分に設けられたベントとを有し、該ベントよりも上流側の第1ステージと、該第1ステージの下流側の第2ステージを経て溶融混練が行われる射出成形機であって、該第2ステージにおける該スクリューのフライトは、3条以上の多条フライト構造とされている射出成形機を用い、該ペレットを、該射出成形機の該ペレット供給部に飢餓状態で供給すると共に、前記ベント及び該ペレット供給部の一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか或いは減圧しながら射出成形することを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
[2] [1]において、前記ポリカーボネート樹脂組成物が、さらに脂肪酸エステル(C)を0.05~2質量部含むことを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
[3] [1]において、前記ポリカーボネート樹脂組成物が、さらに色相改良剤(D)を0.05~2質量部含むことを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
[4] 前記第2ステージにおけるフライトのピッチ幅が、前記第1ステージにおけるフライトのピッチ幅よりも大きく、該第2ステージのフライトにより形成される1ピッチ当たりの溝部の断面積が、該第1ステージのフライトにより形成される1ピッチ当たりの溝部の断面積よりも小さいことを特徴とする[1]乃至[3]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[5] 前記ペレットの水分量が200ppm以上であることを特徴とする[1]乃至[4]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[6] 前記芳香族ポリカーボネート樹脂(A)の粘度平均分子量が13,000~25,000であることを特徴とする[1]乃至[5]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[7] 前記安定剤(B)が、スピロ環骨格を有するホスファイト系安定剤と、スピロ環骨格を有さないホスファイト系安定剤とを含み、前記芳香族ポリカーボネート樹脂組成物中の該スピロ環骨格を有するホスファイト系安定剤の含有量が、該スピロ環骨格を有さないホスファイト系安定剤の含有量よりも少ないことを特徴とする[1]乃至[6]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[8] 前記色相改良剤(D)が、ポリアルキレングリコール化合物であることを特徴とする[3]乃至[7]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[8] 前記ポリアルキレングリコール化合物が、下記一般式(III-1)で表される分岐型ポリアルキレングリコール化合物及び/又は下記一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物であることを特徴とする請求項8に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
Figure JPOXMLDOC01-appb-C000007
 一般式(III-1)中、Rは炭素数1~3のアルキル基を示す。XおよびYは、それぞれ独立に、水素原子、炭素数1~23の脂肪族アシル基、又は炭素数1~23のアルキル基を示し、nは10~400の整数を示す。
[8] 前記分岐型ポリアルキレングリコール化合物がポリプロピレングリコール(ポリ(2-メチル)エチレングリコール)および/又はポリブチレングリコール(ポリ(2-エチル)エチレングリコール)であることを特徴とする請求項9に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[9] 前記ポリアルキレングリコール化合物が、下記一般式(III-1)で表される分岐型ポリアルキレングリコール化合物及び/又は下記一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物であることを特徴とする[8]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
Figure JPOXMLDOC01-appb-C000008
 一般式(III-1)中、Rは炭素数1~3のアルキル基を示す。XおよびYは、それぞれ独立に、水素原子、炭素数1~23の脂肪族アシル基、又は炭素数1~23のアルキル基を示し、nは10~400の整数を示す。
Figure JPOXMLDOC01-appb-C000009
 一般式(III-2)中、X及びYは、それぞれ独立に、水素原子、炭素数2~23の脂肪族アシル基又は炭素数1~22のアルキル基を示す。mは2~6の整数、pは6~100の整数を示す。
[10] 前記分岐型ポリアルキレングリコール化合物がポリプロピレングリコール(ポリ(2-メチル)エチレングリコール)および/又はポリブチレングリコール(ポリ(2-エチル)エチレングリコール)であることを特徴とする[9]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[11] 前記直鎖型ポリアルキレングリコール化合物がポリテトラメチレングリコール単独重合体であることを特徴とする[9]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[12] 前記ポリアルキレングリコール化合物が、下記一般式(I)で表される直鎖アルキレンエーテル単位と下記一般式(II-1)又は下記一般式(II-3)で表される分岐アルキレンエーテル単位を有するポリアルキレングリコール共重合体であることを特徴とする[8]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
Figure JPOXMLDOC01-appb-C000010
 一般式(I)中、nは3~6の整数を示す。
Figure JPOXMLDOC01-appb-C000011
 一般式(II-1)中、R~Rは各々独立に水素原子又は炭素数1~3のアルキル基を示す。R~Rの少なくとも1つは炭素数1~3のアルキル基である。
Figure JPOXMLDOC01-appb-C000012
 一般式(II-3)中、R~Rは各々独立に水素原子又は炭素数1~3のアルキル基を示す。R~Rの少なくとも1つは炭素数1~3のアルキル基である。
[13] 前記一般式(I)で示される直鎖アルキレンエーテル単位が、グリコールとして、該一般式(I)におけるnが4であるテトラメチレングリコールであることを特徴とする[12]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[14] 前記一般式(II-1)で示される分岐アルキレンエーテル単位が、グリコールとして、(2-メチル)エチレングリコール(プロピレングリコール)及び/又は(2-エチル)エチレングリコール(ブチレングリコール)であることを特徴とする[12]又は[13]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[15] 前記一般式(II-3)で示される分岐アルキレンエーテル単位が、グリコールとして、(3-メチル)テトラメチレングリコールであることを特徴とする[12]又は[13]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[16] 前記色相改良剤(D)が、下記一般式(3)で表されるジオール化合物であることを特徴とする[3]乃至[7]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法。
Figure JPOXMLDOC01-appb-C000013
 一般式(3)中、Zは単結合又は-C(CH-を表す。R21,R22はそれぞれ独立に、水素原子、又は炭素数1~3のアルキル基を表す。
[17] 前記一般式(3)におけるR21,R22が、それぞれ独立に、水素原子又はメチル基であることを特徴とする[16]に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
[18] [1]乃至[17]のいずれかにのいずれかに記載の香族ポリカーボネート樹脂成形品の製造方法により製造された芳香族ポリカーボーネート樹脂成形品。
[19] 導光部材である[18]に記載の芳香族ポリカーボネート樹脂成形品。
[20] L/Dが30以上の長尺の成形品である[18]又は[19]に記載の芳香族ポリカーボネート樹脂成形品。
[21] [1]乃至[17]のいずれかに記載の芳香族ポリカーボネート樹脂成形品の製造方法により製造された芳香族ポリカーボーネート樹脂成形品より導光部材を製造することを特徴とする導光部材の製造方法。
 本発明によれば、射出成形時の芳香族ポリカーボネート樹脂の劣化、及びそれによる黄変を効果的に抑制し、著しく優れた色相を有する芳香族ポリカーボネート樹脂成形品を製造することができる。
 本発明によれば、300mm長光路成形品について測定した300mm長のYI値が18未満の著しく良好な色相の芳香族ポリカーボネート樹脂成形品を製造することが可能である。本発明により製造された芳香族ポリカーボネート樹脂成形品は、特に導光部材、とりわけ自動車用照明装置の導光部材として有用であり、長尺ないしは肉厚の導光部材であっても、高い光伝達効率を得ることができる。
本発明で用いる射出成形機の一例を示す構成図である。 本発明で用いる射出成形機の他の例を示す構成図である。 本発明で用いる射出成形機の別の例を示す構成図である。 本発明で用いる射出成形機の別の例を示す構成図である。 本発明で用いる射出成形機の別の例を示す構成図である。 本発明で用いる射出成形機の別の例を示す構成図である。 射出成形機へのペレットの供給方法の説明図であり、図7aは飢餓フィードを示し、図7bは通常フィードを示す。
 以下に本発明の実施の形態を詳細に説明する。
[芳香族ポリカーボネート樹脂組成物]
 成形材料として用いる芳香族ポリカーボネート樹脂組成物(以下「本発明の芳香族ポリカーボネート樹脂組成物」と称す場合がある。)について説明する。
 本発明の芳香族ポリカーボネート樹脂組成物は、粘度平均分子量10,000~30,000の芳香族ポリカーボネート樹脂(A)100質量部に対して、少なくとも1種類の安定剤(B)を0.01~0.5質量部含むものである。本発明のポリカーボネート樹脂組成物は更に脂肪酸エステル(C)や色相改良剤(D)を含有していてもよい。
<芳香族ポリカーボネート樹脂(A)>
 芳香族ポリカーボネート樹脂(A)は、芳香族ヒドロキシ化合物と、ホスゲン又は炭酸のジエステルとを反応させることによって得られる芳香族ポリカーボネート重合体である。芳香族ポリカーボネート重合体は分岐を有していてもよい。芳香族ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、ホスゲン法(界面重合法)、溶融法(エステル交換法)等の従来法によることができる。
 芳香族ジヒドロキシ化合物の代表的なものとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラメチル-4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ケトン等が挙げられる。
 上記芳香族ジヒドロキシ化合物の中では、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)が特に好ましい。
 芳香族ジヒドロキシ化合物は、1種類を単独で用いても、2種類以上を混合して用いてもよい。
 芳香族ポリカーボネート樹脂(A)を製造する際に、芳香族ジヒドロキシ化合物に加えてさらに分子中に3個以上のヒドロキシ基を有する多価フェノール等を少量添加してもよい。この場合、芳香族ポリカーボネート樹脂(A)は分岐を有するものになる。
 3個以上のヒドロキシ基を有する多価フェノールとしては、例えばフロログルシン、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-2、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプテン-3、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタンなどのポリヒドロキシ化合物、あるいは3,3-ビス(4-ヒドロキシアリール)オキシインドール(=イサチンビスフェノール)、5-クロルイサチン、5,7-ジクロルイサチン、5-ブロムイサチン等が挙げられる。この中でも、1,1,1-トリス(4-ヒドロキシルフェニル)エタン又は1,3,5-トリス(4-ヒドロキシフェニル)ベンゼンが好ましい。多価フェノールの使用量は、芳香族ジヒドロキシ化合物を基準(100モル%)として好ましくは0.01~10モル%となる量であり、より好ましくは0.1~2モル%となる量である。
 エステル交換法による重合においては、ホスゲンの代わりに炭酸ジエステルがモノマーとして使用される。炭酸ジエステルの代表的な例としては、ジフェニルカーボネート、ジトリルカーボネート等の置換ジアリールカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-tert-ブチルカーボネート等のジアルキルカーボネートが挙げられる。炭酸ジエステルは、1種類を単独で、又は2種類以上を混合して用いることができる。これらのなかでも、ジフェニルカーボネート、置換ジフェニルカーボネートが好ましい。
 炭酸ジエステルは、好ましくはその50モル%以下、さらに好ましくは30モル%以下の量を、ジカルボン酸又はジカルボン酸エステルで置換してもよい。ジカルボン酸又はジカルボン酸エステルとしては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル及びイソフタル酸ジフェニル等が挙げられる。ジカルボン酸又はジカルボン酸エステルで炭酸ジエステルの一部を置換した場合には、ポリエステルカーボネートが得られる。
 エステル交換法により芳香族ポリカーボネート樹脂を製造する際には、通常、触媒が使用される。触媒種に制限はないが、一般的にはアルカリ金属化合物、アルカリ土類金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物等の塩基性化合物が使用される。中でもアルカリ金属化合物及び/又はアルカリ土類金属化合物が特に好ましい。触媒は、単独で使用してもよく、2種類以上を組み合わせて使用してもよい。エステル交換法では、触媒をp-トルエンスルホン酸エステル等で失活させることが一般的である。
 芳香族ポリカーボネート樹脂(A)には、難燃性等を付与する目的で、シロキサン構造を有するポリマー又はオリゴマーを共重合させることができる。
 芳香族ポリカーボネート樹脂(A)の粘度平均分子量は、10,000~30,000である。芳香族ポリカーボネート樹脂(A)の粘度平均分子量が10,000未満である場合、得られる成形品の機械的強度が不足し、十分な機械的強度を有するものを得ることができない場合がある。芳香族ポリカーボネート樹脂(A)の粘度平均分子量が30,000を超える場合、芳香族ポリカーボネート樹脂(A)の溶融粘度が大きくなるため、例えば芳香族ポリカーボネート樹脂組成物を射出成形して導光部材等の長尺状の成形品を製造する際に優れた流動性を得ることができない場合がある。また、樹脂の剪断による発熱量が大きくなり、熱分解により樹脂が劣化する結果、優れた色相を有する成形品を得ることができない場合がある。
 芳香族ポリカーボネート樹脂(A)の粘度平均分子量は、好ましくは12,000~30,000であり、より好ましくは13,000~25,000、特に好ましくは13,000~20,000である。
 粘度平均分子量は、溶媒としてメチレンクロライドを用い、25℃の温度で測定した溶液粘度より換算して求めたものである。
 芳香族ポリカーボネート樹脂(A)は、粘度平均分子量の異なる2種以上の芳香族ポリカーボネート樹脂を混合したものであってもよい。この場合、粘度平均分子量が上記範囲外である芳香族ポリカーボネート樹脂を混合して上記粘度平均分子量の範囲内としたものであってもよい。
<安定剤(B)>
 安定剤(B)としては、リン系安定剤が好ましく、特に、スピロ環骨格を有するホスファイト系安定剤(以下「第1ホスファイト系安定剤」と称す場合がある。)と、スピロ環骨格を有さないホスファイト系安定剤(以下「第2ホスファイト系安定剤」と称す場合がある。)とを併用することが、黄変抑制の観点から好ましい。
 第1ホスファイト系安定剤としては、下記一般式(1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000014
 一般式(1)中、R11及びR12はそれぞれ独立に、炭素数1~30のアルキル基、又は炭素数6~30のアリール基を表す。
 一般式(1)中、炭素数1~30のアルキル基としては、メチル基、エチル基、プロピル基、n-プロピル基、n-ブチル基、tert-ブチル基、ヘキシル基、オクチル基などが挙げられる。炭素数6~30のアリール基としては、フェニル基、ナフチル基などが挙げられる。
 第1ホスファイト系安定剤としては、例えばジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられる。この中ではジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが特に好ましく用いられる。
 第1ホスファイト系安定剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 第2ホスファイト系安定剤は、スピロ環骨格を有さないホスファイト系安定剤であればよく、特に制限はない。第2ホスファイト系安定剤としては、例えばトリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト等のトリアリールフォスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト等の二価フェノール類を含み環状構造を有するトリアリールフォスファイト等が挙げられる。
 第2ホスファイト系安定剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 第2ホスファイト系安定剤の中でも、下記一般式(2)で表されるホスファイト系安定剤が好ましい。
Figure JPOXMLDOC01-appb-C000015
 一般式(2)中、R13~R17はそれぞれ独立に、水素原子、炭素数6~20のアリール基、又は炭素数1~20のアルキル基を表す。
 一般式(2)中、R13~R17で表されるアルキル基としては、例えばメチル基、エチル基、プロピル基、n-プロピル基、n-ブチル基、tert-ブチル基、ヘキシル基、オクチル基などが挙げられる。R13~R17で表されるアリール基としては、例えばフェニル基、ナフチル基などが挙げられる。
 安定剤(B)として、第1ホスファイト系安定剤と、第2ホスファイト系安定剤とを併用する場合、第1ホスファイト系安定剤を第2ホスファイト系安定剤より少なく用いることが、特に熱エージング時の黄変抑制の観点から好ましい。第1ホスファイト系安定剤及び第2ホスファイト系安定剤の合計に占める第1ホスファイト系安定剤の配合率は、好ましくは3~50質量%であり、より好ましくは5~40質量%であり、特に好ましくは10~35質量%である。
 安定剤(B)100質量%における第1ホスファイト系安定剤及び第2ホスファイト系安定剤の合計の含有率は、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、100質量%であることが特に好ましい。
 安定剤(B)100質量%における第1ホスファイト系安定剤及び第2ホスファイト系安定剤の合計の含有率が100質量%未満である場合、安定剤(B)は、上記ホスファイト系安定剤のほかに、ホスホナイト系安定剤、ホスフェート系安定剤等の他のリン系安定剤を含有していてもよい。
 ホスホナイト系安定剤としては、例えばテトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられる。
 ホスフェート系安定剤としては、例えばトリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェート等が挙げられる。
 これらの他のリン系安定剤についても、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 本発明の芳香族ポリカーボネート樹脂組成物において、安定剤(B)の配合割合は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.01~0.5質量部である。安定剤(B)の配合割合が0.01質量部未満である場合、黄変を十分に抑制することができず、良好な色相を得ることができない。安定剤(B)の配合割合が0.5質量部を超える場合は、成形時のガスが多くなったり、モールドデポジットによる転写不良が起こったりするため、得られる成形品の透明性が低下する。安定剤(B)の配合割合は、芳香族ポリカーボネート樹脂(A)100質量部に対して、好ましくは0.03~0.4質量部であり、より好ましくは0.05~0.3質量部である。
<脂肪酸エステル(C)>
 本発明の芳香族ポリカーボネート樹脂組成物は、脂肪酸エステル(C)を含有していてもよい。脂肪酸エステル(C)を含むことにより、芳香族ポリカーボネート樹脂組成物を製造する際、押出機内のバレル及びスクリュー表面と樹脂との摩擦を低下させ、加工時のポリカーボネート樹脂の温度上昇を防ぐことで、得られる成形品の色相を改善することができる傾向にある。
 脂肪酸エステル(C)は脂肪族カルボン酸とアルコールとの縮合化合物である。
 脂肪酸エステル(C)を構成する脂肪族カルボン酸としては、飽和又は不飽和の、脂肪族モノカルボン酸、ジカルボン酸及びトリカルボン酸が挙げられる。脂肪族カルボン酸は、脂環式カルボン酸も包含する。脂肪族カルボン酸としては、炭素数6~36のモノカルボン酸又はジカルボン酸が好ましく、炭素数6~36の脂肪族飽和モノカルボン酸がさらに好ましい。脂肪族カルボン酸の具体例としては、パルミチン酸、ステアリン酸、吉草酸、カプロン酸、カプリン酸、ラウリン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、メリシン酸、テトラトリアコンタン酸、モンタン酸、グルタル酸、アジピン酸及びアゼライン酸などが挙げられる。
 アルコールとしては、飽和又は不飽和の、一価アルコール及び多価アルコールが挙げられる。これらのアルコールは、フッ素原子、塩素原子、臭素原子、アリール基などの置換基を有していてもよい。これらのアルコールの中でも、炭素数30以下の一価又は多価の飽和アルコールが好ましく、炭素数30以下の脂肪族飽和一価アルコール又は多価アルコールがさらに好ましい。脂肪族アルコールは、脂環式アルコールも包含する。
 アルコールとしては、例えばオクタノール、デカノール、ドデカノール、テトラデカノール、ステアリルアルコール、ベヘニルアルコール、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、2,2-ジヒドロキシペルフルオロプロパノール、ネオペンチレングリコール、ジトリメチロールプロパン、ジペンタエリスリトール等が挙げられる。
 脂肪酸エステル(C)としては、例えば蜜ロウ(ミリスチルパルミテートを主成分とする混合物)、硬化油、ブチルステアレート、ベヘン酸ベヘニル、ベヘン酸オクチルドデシル、ステアリルステアレート、グリセリンモノパルミテート、グリセリンモノステアレート、グリセリンモノオレート、グリセリンジステアレート、グリセリントリステアレート、ペンタエリスリトールモノパルミテート、ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート、ペンタエリスリトールテトラステアレート等が挙げられる。
 中でも、グリセリンモノパルミテート、グリセリンモノステアレート等の脂肪酸モノグリセリドを用いることが好ましい。この場合、芳香族ポリカーボネート樹脂組成物を製造する際、押出機内のバレル及びスクリュー表面と樹脂との摩擦を低下させ、加工時のポリカーボネート樹脂の温度上昇を防ぐことができるため、得られる成形品の色相を特に優れたものとするとともに黄変をより高度に抑制することができるようになる。
 本発明の芳香族ポリカーボネート樹脂組成物が、脂肪酸エステル(C)を含む場合、その含有量は、用いる脂肪酸エステル(C)の種類によっても異なるが、多過ぎても少な過ぎても脂肪酸エステル(C)を含むことによる効果を十分に得ることができない場合がある。本発明のポリカーボネート樹脂組成物の脂肪酸エステル(C)の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.05~2質量部が好ましく、0.03~0.3質量部がより好ましく、0.04~0.25質量部がさらに好ましく、0.05~0.2質量部が特に好ましい。
<色相改良剤(D)>
 本発明のポリカーボネート樹脂組成物は色相改良剤(D)を含有していてもよい。
 色相改良剤(D)としては、これを配合することにより、得られる成形品の色相を良好なものとすることができるものであればよく、特に制限されるものではないが、代表的な色相改良剤(D)として、ポリアルキレングリコール化合物、以下に示す特定のジオール化合物が挙げられる。
 色相改良剤(D)としては、ポリアルキレングリコール化合物の1種又は2種以上を用いてもよく、以下に示すジオール化合物の1種又は2種以上を用いてもよく、ポリアルキレングリコール化合物の1種又は2種以上と、以下に示すジオール化合物の1種又は2種以上とを併用してもよい。
<ポリアルキレングリコール化合物>
 ポリアルキレングリコール化合物としては、下記一般式(I)で表される直鎖アルキレンエーテル単位(P1)と下記一般式(II-1)~(II-4)で表される単位から選ばれる分岐アルキレンエーテル単位(P2)を有するポリアルキレングリコール共重合体(CP)が好ましいものとして挙げられる。
Figure JPOXMLDOC01-appb-C000016
 一般式(I)中、nは3~6の整数を示す。
Figure JPOXMLDOC01-appb-C000017
 一般式(II-1)~(II-4)中、R~R10は各々独立に水素原子又は炭素数1~3のアルキル基を示す。それぞれの一般式(II-1)~(II-4)においてR~R10の少なくとも1つは炭素数1~3のアルキル基である。
 一般式(I)で示される直鎖アルキレンエーテル単位(P1)としては、それをグリコールとして記載すると、nが3であるトリメチレングリコール、nが4であるテトラメチレングリコール、nが5のペンタメチレングリコール、nが6のヘキサメチレングリコールが挙げられる。好ましくはトリメチレングリコール、テトラメチレングリコールであり、テトラメチレングリコールが特に好ましい。
 トリメチレングリコールは、工業的にはエチレンオキシドのヒドロホルミル化により3-ヒドロキシプロピオンアルデヒドを得、これを水添する方法、又はアクロレインを水和して得た3-ヒドロキシプロピオンアルデヒドをNi触媒で水素化する方法で製造される。バイオ法により、グリセリン、グルコース、澱粉等を微生物に還元させてトリメチレングリコールを製造することも行われている。
 一般式(II-1)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(2-メチル)エチレングリコール(プロピレングリコール)、(2-エチル)エチレングリコール(ブチレングリコール)、(2,2-ジメチル)エチレングリコール(ネオペンチルグリコール)などが挙げられる。
 一般式(II-2)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(2-メチル)トリメチレングリコール、(3-メチル)トリメチレングリコール、(2-エチル)トリメチレングリコール、(3-エチル)トリエチレングリコール、(2,2-ジメチル)トリメチレングリコール、(2,2-メチルエチル)トリメチレングリコール、(2,2-ジエチル)トリメチレングリコール(即ち、ネオペンチルグリコール)、(3,3-ジメチル)トリメチレングリコール、(3,3-メチルエチル)トリメチレングリコール、(3,3-ジエチル)トリメチレングリコールなどが挙げられる。
 一般式(II-3)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(3-メチル)テトラメチレングリコール、(4-メチル)テトラメチレングリコール、(3-エチル)テトラメチレングリコール、(4-エチル)テトラメチレングリコール、(3,3-ジメチル)テトラメチレングリコール、(3,3-メチルエチル)テトラメチレングリコール、(3,3-ジエチル)テトラメチレングリコール、(4,4-ジメチル)テトラメチレングリコール、(4,4-メチルエチル)テトラメチレングリコール、(4,4-ジエチル)テトラメチレングリコールなどが挙げられ、(3-メチル)テトラメチレングリコールが好ましい。
 一般式(II-4)で示される分岐アルキレンエーテル単位として、これをグリコールとして記載すると、(3-メチル)ペンタメチレングリコール、(4-メチル)ペンタメチレングリコール、(5-メチル)ペンタメチレングリコール、(3-エチル)ペンタメチレングリコール、(4-エチル)ペンタメチレングリコール、(5-エチル)ペンタメチレングリコール、(3,3-ジメチル)ペンタメチレングリコール、(3,3-メチルエチル)ペンタメチレングリコール、(3,3-ジエチル)ペンタメチレングリコール、(4,4-ジメチル)ペンタメチレングリコール、(4,4-メチルエチル)ペンタメチレングリコール、(4,4-ジエチル)ペンタメチレングリコール、(5,5-ジメチル)ペンタメチレングリコール、(5,5-メチルエチル)ペンタメチレングリコール、(5,5-ジエチル)ペンタメチレングリコールなどが挙げられる。
 以上、分岐アルキレンエーテル単位(P2)を構成する一般式(II-1)~(II-4)で表される単位を便宜的にグリコールを例として記載したが、これらグリコールに限らず、これらのアルキレンオキシドや、これらのポリエーテル形成性誘導体であってもよい。
 ポリアルキレングリコール共重合体(CP)として好ましいものを挙げると、テトラメチレンエーテル(テトラメチレングリコール)単位と一般式(II-1)で表される単位からなる共重合体が好ましく、特にテトラメチレンエーテル(テトラメチレングリコール)単位と2-メチルエチレンエーテル(プロピレングリコール)単位及び/又は(2-エチル)エチレングリコール(ブチレングリコール)単位からなる共重合体が好ましい。テトラメチレンエーテル単位と2,2-ジメチルトリメチレンエーテル単位、即ちネオペンチルグリコールエーテル単位からなる共重合体も好ましい。
 直鎖アルキレンエーテル単位(P1)と分岐アルキレンエーテル単位(P2)を有するポリアルキレングリコール共重合体(CP)を製造する方法は公知であり、上記したようなグリコール、アルキレンオキシドあるいはそのポリエーテル形成性誘導体を、通常、酸触媒を用いて重縮合させることによって製造することができる。
 ポリアルキレングリコール共重合体(CP)は、ランダム共重合体やブロック共重合体であってもよい。
 ポリアルキレングリコール共重合体(CP)の末端基はヒドロキシル基であることが好ましい。ポリアルキレングリコール共重合体(CP)は、その片末端あるいは両末端がアルキルエーテル、アリールエーテル、アラルキルエーテル、脂肪酸エステル、アリールエステルなどで封鎖されていてもその性能発現に影響はなく、エーテル化物又はエステル化物が同様に使用できる。
 アルキルエーテルを構成するアルキル基としては、直鎖状又は分岐状のいずれでもよく、炭素数1~22のアルキル基、例えばメチル基、エチル基、プロピル基、ブチル基、オクチル基、ラウリル基、ステアリル基等が挙げられる。アルキルエーテルとしては、ポリアルキレングリコールのメチルエーテル、エチルエーテル、ブチルエーテル、ラウリルエーテル、ステアリルエーテル等が好ましく例示できる。
 アリールエーテルを構成するアリール基としては、好ましくは炭素数6~22、より好ましくは炭素数6~12、さらに好ましくは炭素数6~10のアリール基が好ましく、例えばフェニル基、トリル基、ナフチル基等が挙げられ、フェニル基、トリル基等が好ましい。アラルキル基としては、好ましくは炭素数7~23、より好ましくは炭素数7~13、さらに好ましくは炭素数7~11のアラルキル基が好ましく、例えばベンジル基、フェネチル基等が挙げられ、ベンジル基が特に好ましい。
 脂肪酸エステルを構成する脂肪酸は、直鎖状又は分岐状のいずれでもよく、飽和脂肪酸であってもよく不飽和脂肪酸であってもよい。
 脂肪酸エステルを構成する脂肪酸としては、炭素数1~22の1価又は2価の脂肪酸、例えば、1価の飽和脂肪酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキジン酸、ベヘン酸や、1価の不飽和脂肪酸、例えば、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸、また炭素数10以上の二価の脂肪酸、例えば、セバシン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、タプシア酸およびデセン二酸、ウンデセン二酸、ドデセン二酸が挙げられる。
 アリールエステルを構成するアリール基としては、好ましくは炭素数6~22、より好ましくは炭素数6~12、さらに好ましくは炭素数6~10のアリール基が好ましく、例えばフェニル基、トリル基、ナフチル基等が挙げられ、フェニル基、トリル基等が好ましい。末端封止する基は、アラルキル基であっても芳香族ポリカーボネート樹脂(A)と良好な相溶性を示すことから、アリール基と同様の作用を発現できる。アラルキル基としては、好ましくは炭素数7~23、より好ましくは炭素数7~13、さらに好ましくは炭素数7~11のアラルキル基が好ましく、例えばベンジル基、フェネチル基等が挙げられ、ベンジル基が特に好ましい。
 ポリアルキレングリコール共重合体(CP)としては、なかでもテトラメチレンエーテル単位と2-メチルエチレンエーテル単位からなる共重合体、テトラメチレンエーテル単位と3-メチルテトラメチレンエーテル単位からなる共重合体、テトラメチレンエーテル単位と2,2-ジメチルトリメチレンエーテル単位からなる共重合体が特に好ましい。このようなポリアルキレングリコール共重合体の市販品としては、日油社製商品名(以下同様)「ポリセリンDCB」、保土谷化学社製「PTG-L」、旭化成せんい社製「PTXG」などが挙げられる。
 テトラメチレンエーテル単位と2,2-ジメチルトリメチレンエーテル単位からなる共重合体は特開2016-125038号公報に記載の方法で製造することも可能である。
 ポリアルキレングリコール化合物としては、下記一般式(III-1)で表される分岐型ポリアルキレングリコール化合物又は下記一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物も好ましいものとして挙げられる。なお、下記一般式(III-1)で表される分岐型ポリアルキレングリコール化合物又は下記一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物は、他の共重合成分との共重合体であってもよいが、単独重合体が好ましい。
Figure JPOXMLDOC01-appb-C000018
 一般式(III-1)中、Rは炭素数1~3のアルキル基を示す。XおよびYは、それぞれ独立に、水素原子、炭素数1~23の脂肪族アシル基、又は炭素数1~23のアルキル基を示す。nは10~400の整数を示す。
Figure JPOXMLDOC01-appb-C000019
 一般式(III-2)中、X及びYは、それぞれ独立に、水素原子、炭素数2~23の脂肪族アシル基又は炭素数1~22のアルキル基を示す。mは2~6の整数、pは6~100の整数を示す。
 一般式(III-1)において、整数(重合度)nは、10~400であるが、好ましくは15~200、更に好ましくは20~100である。重合度nが10未満の場合、成形時のガス発生量が多くなり、ガスによる成形不良、例えば、未充填、ガスやけ、転写不良を発生する可能性がある。重合度nが400を超える場合、芳香族ポリカーボネート樹脂組成物の色相を向上させる効果が十分に得られないおそれがある。
 分岐型ポリアルキレングリコール化合物としては、一般式(III-1)中、X,Yが水素原子で、Rがメチル基であるポリプロピレングリコール(ポリ(2-メチル)エチレングリコール)やエチル基であるポリブチレングリコール(ポリ(2-エチル)エチレングリコール)が好ましく、特に好ましくはポリブチレングリコール(ポリ(2-エチル)エチレングリコール)である。
 一般式(III-2)において、p(重合度)は、6~100の整数であるが、好ましくは8~90、より好ましくは10~80である。重合度pが6未満の場合、成形時にガスが発生するので好ましくない。重合度pが100を超える場合、相溶性が低下するので好ましくない。
 直鎖型ポリアルキレングリコール化合物としては、一般式(III-2)中のX及びYが水素原子で、mが2であるポリエチレングリコール、mが3であるポリトリメチレングリコール、mが4であるポリテトラメチレングリコール、mが5であるポリペンタメチレングリコール、mが6であるポリヘキサメチレングリコールが好ましく挙げられ、より好ましくはポリトリメチレングリコール、ポリテトラメチレングリコールあるいはそのエステル化物又はエーテル化物である。
 ポリアルキレングリコール化合物として、その片末端あるいは両末端が脂肪酸またはアルコールで封鎖されていてもその性能発現に影響はなく、脂肪酸エステル化物またはエーテル化物を同様に使用することができる。従って、一般式(III-1),(III-2)中のX及び/又はYは炭素数1~23の脂肪族アシル基又はアルキル基であってもよい。
 脂肪酸エステル化物としては、直鎖状又は分岐状脂肪酸エステルのいずれも使用できる。脂肪酸エステルを構成する脂肪酸は、飽和脂肪酸であってもよく不飽和脂肪酸であってもよい。一部の水素原子がヒドロキシル基などの置換基で置換されたものも使用できる。
 脂肪酸エステルを構成する脂肪酸としては、炭素数1~23の1価又は2価の脂肪酸、例えば、1価の飽和脂肪酸、具体的には、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキジン酸、ベヘン酸、1価の不飽和脂肪酸、具体的には、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸、炭素数10以上の二価の脂肪酸、具体的には、セバシン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、タプシア酸及びデセン二酸、ウンデセン二酸、ドデセン二酸が挙げられる。
 脂肪酸は1種又は2種以上組み合せて使用できる。脂肪酸には、1つ又は複数のヒドロキシル基を分子内に有する脂肪酸も含まれる。
 分岐型ポリアルキレングリコールの脂肪酸エステルの好ましい具体例としては、一般式(III-1)において、Rがメチル基、XおよびYが炭素数18の脂肪族アシル基であるポリプロピレングリコールステアレート、Rがメチル基、XおよびYが炭素数22の脂肪族アシル基であるポリプロピレングリコールベヘネートが挙げられる。直鎖型ポリアルキレングリコールの脂肪酸エステルの好ましい具体例としては、ポリアルキレングリコールモノパルミチン酸エステル、ポリアルキレングリコールジパルミチン酸エステル、ポリアルキレングリコールモノステアリン酸エステル、ポリアルキレングリコールジステアリン酸エステル、ポリアルキレングリコール(モノパルミチン酸・モノステアリン酸)エステル、ポリアルキレングリコールベヘネート等が挙げられる。
 ポリアルキレングリコールのアルキルエーテルを構成するアルキル基としては、直鎖状又は分岐状のいずれでもよく、例えばメチル基、エチル基、プロピル基、ブチル基、オクチル基、ラウリル基、ステアリル基等の炭素数1~23のアルキル基が挙げられる。ポリアルキレングリコール化合物としては、ポリアルキレングリコールのアルキルメチルエーテル、エチルエーテル、ブチルエーテル、ラウリルエーテル、ステアリルエーテル等が好ましく例示できる。
 一般式(III-1)で表される分岐型ポリアルキレングリコール化合物の市販品としては、日油社製商品名(以下同様)「ユニオールD-1000」、「ユニオールPB-1000」などが挙げられる。
 ポリアルキレングリコール共重合体(CP)、一般式(III-1)で表される分岐型ポリアルキレングリコール化合物、一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物等のポリアルキレングリコール化合物の数平均分子量は、200~5,000が好ましく、より好ましくは300以上、さらに好ましくは500以上、より好ましくは4,000以下、さらに好ましくは3,000以下、特に好ましくは2000以下、とりわけ好ましくは1000未満であり、800以下であることが最も好ましい。数平均分子量が上記上限を超えると、相溶性が低下する傾向がある。数平均分子量が上記下限を下回ると成形時にガスが発生する傾向がある。ポリアルキレングリコール化合物の数平均分子量はJIS K1577に準拠して測定した水酸基価に基づいて算出した数平均分子量である。
<ジオール化合物>
 本発明において、色相改良剤(D)として用いるジオール化合物は、下記一般式(3)で表される、ビスフェノールA(下記一般式(3)において、Zが-C(CH-の場合)又はビフェノール(下記一般式(3)において、Zが単結合(直接結合)の場合)のポリアルキレングリコール付加物であり、ビスフェノールA骨格又はビフェノール骨格を含むことにより芳香族ポリカーボネート樹脂(A)との親和性が良好であり、一般的なポリアルキレングリコール化合物に比べて色相の改善効果に優れたものである。
Figure JPOXMLDOC01-appb-C000020
 一般式(3)中、Zは単結合又は-C(CH-を表す。R21,R22はそれぞれ独立に、水素原子、又は炭素数1~3のアルキル基を表す。
 一般式(3)において、R21及びR22はそれぞれ独立に、水素原子、又は炭素数1~3のアルキル基を表す。一般式(3)において、x個のRは、同一であってもよく異なるものであってもよい。y個のR22も、同一であってもよく異なるものであってもよい。R21及びR22はそれぞれ独立に、好ましくは水素原子又はメチル基である。ビスフェノールA又はビフェノールに付加するポリアルキレングリコール鎖は、ポリエチレングリコール鎖、ポリプロピレングリコール鎖、或いはポリエチレン・プロピレングリコール鎖であることが好ましい。
 ジオール化合物の数平均分子量は、100~5,000が好ましく、より好ましくは300以上、さらに好ましくは500以上、より好ましくは3000以下、さらに好ましくは2000以下、特に好ましくは1500以下である。数平均分子量が上記上限を超えると、相溶性が低下する傾向がある。数平均分子量が、上記下限を下回ると成形時にガスが発生する傾向がある。ジオール化合物の数平均分子量はJIS K1577に準拠して測定した水酸基価に基づいて算出した数平均分子量である。
 ジオール化合物の市販品としては、特に限定されないが、ビスフェノールAのOH末端ポリエチレングリコール置換体(東邦化学工業社製 商品名「ビスオール 18EN」、ビスフェノールAのOH末端ポリプロピレングリコール置換体(三洋化成工業社製 商品名ニューポール(登録商標)BPシリーズ等)、ビスフェノールAのOH末端ポリエチレングリコール-ポリプロピレングリコール共重合置換体(日油社製 商品名ユニルーブ(登録商標)50DB-22)などが挙げられる。
 上記ジオール化合物は、1種類を単独で用いても、2種類以上を併用してもよい。
<色相改良剤(D)の含有量>
 本発明の芳香族ポリカーボネート樹脂組成物が色相改良剤(D)を含む場合、色相改良剤(D)の含有量は、用いる色相改良剤(D)の種類によっても異なるが、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.05~2質量部であることが好ましい。色相改良剤の含有量が0.05質量部未満であっても、2質量部を超えても、得られる成形品の色相が劣る傾向がある。
 色相改良剤(D)としてポリアルキレングリコール化合物を用いる場合、本発明の芳香族ポリカーボネート樹脂組成物中のポリアルキレングリコール化合物の含有量は、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.1~1.5質量部が好ましく、0.2~1.2質量部がより好ましく、0.4~1.0質量部がさらに好ましい。
 色相改良剤(D)としてポリアルキレングリコール化合物と上記ジオール化合物を用いる場合、本発明の芳香族ポリカーボネート樹脂組成物中のポリアルキレングリコール化合物及び上記ジオール化合物の含有量は、各々上記の好適含有量の範囲において、その合計の含有量が、芳香族ポリカーボネート樹脂(A)100質量部に対し、0.1~1.5質量部が好ましく、0.2~1.2質量部がより好ましく、0.5~1.0質量部がさらに好ましい。
<その他の成分>
 本発明の芳香族ポリカーボネート樹脂組成物には、本発明の目的を損なわない範囲で、任意成分としてさらに酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、染顔料、難燃剤、耐衝撃改良剤、帯電防止剤、滑剤、可塑剤、相溶化剤、充填剤等が配合されてもよい。
<芳香族ポリカーボネート樹脂組成物ペレットの製造方法>
 本発明の芳香族ポリカーボネート樹脂組成物のペレットを製造するには、例えば、各成分を一括又は分割して配合し、溶融混練してペレット化する方法が挙げられる。各成分の配合方法としては、例えばタンブラー、ヘンシェルミキサー等を使用する方法、フィーダーにより定量的に押出機のホッパーに供給して混合する方法などが挙げられる。溶融混練には、例えば単軸混練押出機、二軸混練押出機等を使用することが好ましく、押出機先端の吐出ノズルから押出された芳香族ポリカーボネート樹脂組成物のストランドを、引き取りローラーにより引き取り、水槽内を搬送して冷却した後、ペレタイザーで所定の大きさにカットして芳香族ポリカーボネート樹脂組成物のペレットを得ることができる。
[射出成形方法]
 本発明の芳香族ポリカーボネート樹脂組成物のペレットを用いて本発明に従って射出成形を行う方法について説明する。
<メカニズム>
 本発明の芳香族ポリカーボネート樹脂成形品の製造方法において、後述の通り、ベントを有すると共に第2ステージにおけるスクリューが3条以上のフライトを有する多条フライト構造とされている射出成形機を用いて、芳香族ポリカーボネート樹脂組成物のペレットを飢餓状態で供給する(以下、「飢餓フィード」と称す場合がある。)と共に、ベント及び射出成形機へのペレット供給部の一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか減圧しながら射出成形することにより、成形時の黄変を防止して色相が良好な芳香族ポリカーボネート樹脂成形品を得ることができるメカニズムは以下のように考えられる。
 ベントを有する射出成形機であれば、射出シリンダーにおけるペレットの溶融可塑化でペレットから発生した残留モノマーや添加剤分解物等の揮発成分をベントから排出させることができ、これらの成分が成形品中に残留することによる黄変を防止することができる。特に、本発明で用いる射出成形機は、ベント以降の第2ステージのスクリューが3条以上のフライトを有する多条フライト構造とされており、溶融樹脂が多条の螺旋溝内に分割され、その表出面積が大きくなることで、上記の残留モノマーや添加剤分解物等の揮発成分の排出がより一層効率的に行われるようになる。
 このように、ベントからの残留モノマーや添加剤分解物等の揮発成分の排出の際に、ベント及び射出成形機へのペレット供給部の一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか減圧することにより、射出シリンダー内の酸素濃度を下げると共に樹脂の溶融時に発生する樹脂の着色原因物質をパージして、樹脂の酸化劣化及による黄変、着色原因物質による樹脂の着色反応を抑制することができる。
 ベント及び射出成形機へのペレット供給部の双方に不活性ガスを供給した場合は、不活性ガスにより射出シリンダー内の酸素濃度を下げると共に、樹脂の着色原因となる物質をパージすることが可能となり、樹脂の着色反応を抑制することができる。
 ベント及び射出成形機へのペレット供給部の一方に不活性ガスを供給し、他方を減圧した場合は、不活性ガス供給側において樹脂着色の原因物質をパージする効果と、減圧側において、樹脂着色の原因物質を排気する効果により、樹脂の着色を有効に防止することができる。
 これに対して、ベント及び射出成形機へのペレット供給部を共に減圧した場合は、スクリューシリンダーの空隙から酸素が侵入する場合があり、本発明の効果を得ることはできない。
 ペレットを飢餓フィードとすることにより、後述の通り、ペレットの供給部からも水蒸気や揮発成分を排出することが可能となり、より一層良好な色相の成形品を得ることができるようになる。
 射出成形機に供するペレットが所定量以上の水分を含むと、ペレットから発生した水蒸気が、揮発成分を巻き込んでベントから揮散することで、黄変の原因となる揮発成分を効率的に排出させることができるようになるため、得られる成形品は、より色相に優れたものとなる。
<射出成形機>
 図1~6を参照して、本発明の芳香族ポリカーボネート樹脂成形品の製造方法で好適に用いられる射出成形機を説明する。
 図1~6は、本発明に好適に用いられる射出成形機の一例を示す構成図であり、同一機能を奏する部材に同一符号を付してある。
 以下において、射出成形機の射出方向の上流側及び下流側を、それぞれ単に「上流」、「下流」と称す。射出成形機の基端とは、射出成形機の最上流部をさし、先端とは最下流部をさす。
 1は、射出シリンダーであり、内部にスクリュー2が配置されている。射出シリンダー1の射出方向基端側のペレット供給口1aの直上には、ペレット供給装置10が設けられている。ペレット供給装置10については後述する。
 射出シリンダー1の射出方向先端側には、射出ノズル3が設けられている。ノズル3内にスクリュー2のヘッド部2aが挿入されている。射出シリンダー1の外周には加熱用ヒーター4が装着されている。
 図1~3の射出成形機のスクリュー2は、スクリュー軸の外周面に1条のフライトが螺旋状に形成された1条フライト部2Aとミキシング部2Mからなる第1ステージXと、フライト(図1においては3条のフライト)が螺旋状に形成された多条フライト部2Bからなる第2ステージYとを有し、第2ステージYの上流部分(ミキシング部2Mの直後)にベント5A,5Bが設けられている。
 図1の射出成形機では、ペレット供給装置10のホッパーの下部に、窒素(N)等の不活性ガス吹き込み用のノズル(以下「不活性ガスノズル」と称す。)7Bが挿入されており、ベント5Aに、減圧用の配管6Aが設けられている。Vは減圧バルブ、Pは真空ポンプである。
 ベント5Aは、密閉構造とされている。
 図2の射出成形機では、上部が開放されたベント5Bに、不活性ガスノズル6Bが挿入されており、ペレット供給装置10のホッパーの下部に減圧バルブVと真空ポンプPを有する減圧用の配管7Aが設けられている。
 図3の射出成形機では、ベント5Bに、不活性ガスノズル6Bが挿入されており、ペレット供給装置10のホッパーの下部にも不活性ガスノズル7Bが挿入されている。
 図1,3において、不活性ガスノズル7Bは、図7aに示されるように、ペレット供給装置10のホッパー20下部のスクリューフィーダー11部分に挿入されている。
 図1~3の射出成形機では、射出シリンダー1の射出方向の途中部分の1箇所にベント5A,5Bが設けられているため、このベント5A,5Bから、前述の通り、樹脂着色の原因物質を効率的に排出することができる。特にベント5Aを減圧する図1の射出成形機では、樹脂着色の原因物質をより効率的に排出することができる。不活性ガスノズル6B,7Bより、窒素(N)等の不活性ガスを吹き込むことにより、前述の通り、射出シリンダー内の酸素濃度を下げ、樹脂の酸化劣化を防止すると共に、樹脂の溶融時に発生する樹脂の着色原因物質をパージして、樹脂の黄変を防止することができる。ペレット供給装置10のホッパーの下部を減圧する図2の射出成形機では樹脂溶融時に発生する着色原因物質を排気することができる。
 本発明では、ベント5A,5Bが設けられている第2ステージYのフライト構造を3条以上の多条フライト構造としたことにより、第2ステージYのフライトのピッチ幅(1条当たりのピッチ幅)を第1ステージXのフライトのピッチ幅よりも大きく、また、第2ステージYのフライトにより形成される1ピッチ当たりの溝部の断面積を、第1ステージXのフライトにより形成される1ピッチ当たりの溝部の断面積よりも小さくすることができる。このため、ミキシング部2Mから押し出される溶融樹脂をスムーズに第2ステージYに移送することができ、ベント5A,5B部分に溶融樹脂が滞留することが防止されると共に、第2ステージYにおいて、溶融樹脂が多条の螺旋溝(フライト同士の間に形成される螺旋溝。本発明では「溝部」と称す。)に分割され、外部との接触面積が増加するので、溶融樹脂内部からの揮発成分が揮発し易くなり、ベント5A,5Bからの残留モノマーや添加剤分解物等の揮発成分の排出がより一層効果的に行われるようになる。
 第2ステージYのフライト構造を3条以上の多条構造としたことにより、溝部の深さを浅くすることができるので、操作の終了時に、溝に残留する樹脂の量を格段に少なくすることができ、原料替えの際には、そのための時間と原料ロスを低減することができる。
 ベント5A,5Bから、揮発成分を効率的に排出するために、ベント5A,5Bは、射出シリンダー1の可塑化ゾーンとなる第1ステージXよりも下流側に、第1ステージXの直後に設けられていることが好ましい。
 第1ステージXは、ペレット供給装置10により供給されたペレットを溶融、可塑化するための領域であり、この第1ステージXにおいて、ペレットから揮発成分が発生する。
 第2ステージYは、可塑化ゾーン(第1ステージX)からの溶融樹脂を更に溶融させると共に圧縮して揮発成分を脱気する領域と、それに続く樹脂の吐出前に樹脂を安定化させ、吐出量のバラツキを抑えるための調整を行う計量ゾーンとである。本発明に係るベント5A,5Bは、第2ステージYの溶融圧縮ゾーンの始点領域に設けられていることが好ましい。
 通常、可塑化ゾーンとなる第1ステージXの長さLは、射出シリンダー1の全長(ここで射出シリンダーの全長とは、射出シリンダーにペレットを供給するための供給口1aの中心からスクリュー2のヘッド部2aの基端部までの長さをいう。)Lに対して、1/3~7/10程度の長さの領域である。第2ステージYの長さLはその残部に該当し、第2ステージYのうち溶融圧縮ゾーンの長さは、射出シリンダー1の全長Lの1/10~3/10程度である。計量ゾーンの長さは、射出シリンダー1の全長Lの1/10~3/10程度である。
 ベント5A,5Bは、図1に示す通り、1箇所のみに設けられていてもよく、射出シリンダー1の射出方向の複数箇所に設けられていてもよいが、最も上流側のベントが上記の位置であることが好ましい。
 ベント5A,5Bの口径は、通常10~20cm程度である。
 第2ステージYのフライトが2条では、多条構造とすることによる効果を十分に発揮することができないため、本発明では3条以上の多条構造とする。ただし、フライトの条数を過度に多くすると、個々のフライト間の溝部が狭くなり、溝部の内壁面と溶融樹脂との摩擦抵抗が大きくなるなどの問題が生じるため、フライトの条数は5条以下とすることが好ましい。
 ミキシング部2Mとしては、従来周知のダルメージ型、バリヤ型、サブフライト型、ウェーブ型などを採用することができる。ミキシング部2Mは必ずしも必要とされず、ミキシング部2Mを設けず、第1ステージXを1条フライト構造のスクリューのみで構成してもよい。
 図4~6は、それぞれ、図1~3におけるミキシング部2Mを省略した射出成形機を示し、このような射出成形機であってもそれぞれ図1~3の射出成形機におけると同様の効果を得ることができる。
<不活性ガス>
 ベント及び/又は射出成形機へのペレット供給部から供給する不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン等を用いることができる。取り扱い性等において窒素が好適に用いられる。
 不活性ガスノズルとしては、孔径2~10mm程度の金属製ノズルを用いることができる。
 不活性ガスの供給量は所望の色相の成形品が得られる程度であればよく、特に制限はない。不活性ガスの供給量は例えば、不活性ガスの供給部に設けた酸素濃度計で測定される雰囲気中の酸素濃度が5%容積以下、特に0~2容積%となる程度とすることが好ましい。
 酸素濃度計は、ベント5Bであればベント5B内に挿入された不活性ガスノズル6Bの不活性ガス吹き出し部近傍に設けることができる。
 ペレット供給部の例えばホッパーの下部に不活性ガスノズル7Bを挿入した場合は、この不活性ガスノズル7Bと共に酸素濃度計を挿入して酸素濃度の測定を行なえばよい。
 不活性ガスの供給は、ベントのみに行ってもよく、ペレットの供給部のみに行ってもよい。不活性ガスの供給は、ベントとペレットの供給部の両方に行ってもよいが、ベント及びペレットの供給部のうち、不活性ガスの供給を行わない側は、減圧とする。複数のベントを有する場合、すべてのベントで不活性ガスの供給を行ってもよく、一部のベントのみで不活性ガスの供給を行ってもよいし、一部のベントで不活性ガスを供給し、他のベントを減圧としてもよい。
 射出成形機へのペレット供給部に不活性ガスを供給する場合、図7aのように、ホッパーの下部に不活性ガスノズルを挿入して不活性ガスを供給する他、射出シリンダーのペレット供給口1aに不活性ガスノズルを挿入して不活性ガスを供給してもよい。
<減圧処理>
 射出成形機のベント又はペレットの供給部を減圧する場合、図1,2に示すように真空ポンプP及び真空バルブVを有する配管6A,7Aをベント或いはペレットの供給部に接続して真空引きすればよい。
 この場合、ベントについては、図1,4に示すように、開口部を密閉構造とすることにより、効率的に減圧することが可能となる。
 ペレットの供給部を減圧する場合、図7aに示す不活性ガスノズル7Bの代りに減圧用配管7Aを挿入してペレット供給装置10のホッパー20下部のスクリューフィーダー11部分を減圧してもよく、ペレット供給口1aに減圧用配管を挿入して減圧してもよい。
 減圧は、例えば、下記の真空ポンプを用いて行うことができる。
 アンレット社製ドライルーツ式真空ポンプFT2-20(到達圧力8kPa(60Torr))
 アンレット社製ドライルーツ式真空ポンプFT2-80(到達圧力5.3kPa(40Torr))。
<飢餓フィード>
 本発明では射出成形機への芳香族ポリカーボネート樹脂組成物のペレットの供給を飢餓フィードで行う。
 以下に、この供給方法について、図7を参照して説明する。
 通常、ペレットは、図7bに示す通り、射出成形機の射出シリンダーの基端側のペレット供給口1aに取り付けられたペレット供給ホッパー20より、その自重で落下させて供給される。この場合、ホッパー20から射出シリンダーの供給口1aを経てスクリュー2に到る部分は、図7bに示す通り、ペレット30で充満された状態となる(以下、図7bに示す供給方法を「通常フィード」と称す。)。
 これに対して、飢餓フィードを行う場合は、図7aに示すように、ホッパー20からのペレット30の供給量を調整可能なスクリューフィーダー11を有するペレット供給装置10を用い、ホッパー20からのペレット30が、自重による落下ではなく、スクリューフィーダー11の回転で所定量が射出シリンダー1の供給口1aに投入されるようにする。このように、ペレット30の投入量を制御することにより、供給口1aの直下のスクリュー2のスクリューベット(スクリューのねじ溝部分)はペレットで覆われることなく、その一部が露出した状態となる。このような状態でペレットを供給することを飢餓フィードという。
 飢餓状態でペレットを供給した場合、射出シリンダー1の供給口1a部分にはペレットの存在しない空隙が形成され、この空隙を経て射出シリンダー1内で発生したガス成分等が系外へ排出されるようになる。ペレット供給口1aが、ベントと同様の機能を果たすようになり、揮発成分や水蒸気の排出効率がより一層向上し、得られる成形品の色相が更に改善される。
 ペレットの供給部に不活性ガスを供給しつつ飢餓フィードを行うと、ペレットの供給部に供給された不活性ガスが射出シリンダー内に侵入し易くなり、樹脂着色の原因となる成分を効果的にパージすることができる。
 ペレットの供給部を減圧した状態で飢餓フィードを行うと、射出シリンダー内のガス成分を、ペレットの供給部を経て効率的に排出することができ、減圧による樹脂の酸化防止効果を高めることができる。
 飢餓フィードをより確実に実施するために、本発明で用いる射出成形機のペレット供給部は、モニター手段とペレット供給量の調整手段を備えていることが好ましい。ペレット供給手段によるペレットの供給量を、ペレット供給部のモニター手段の画像解析に基づいて調整することで、より良好な飢餓フィードを行うことが可能となる。
 ホッパー20内の原料樹脂ペレットを、スクリュフィーダー11により供給量を制御して射出シリンダー1の供給口1aに落下させる。この供給口1aにおけるペレットの供給状態を、供給装置10内に設けられた撮像手段により撮影し、モニターにより、常時視認可能とする。ペレットの供給量の調整は、操作者がモニターを視認しながら手動で行ってもよく、モニター画面の解析ソフトを利用して自働的に行ってもよい。
 飢餓フィードを行うためのペレット供給装置は市販されており、例えば、後述の実施例で用いた日本油機製「HF-I型」等を用いることができる。
<ペレットの水分量>
 射出成形機に供給する芳香族ポリカーボネート樹脂組成物のペレットは、水分量200ppm以上であることが好ましい。
 揮発成分の排出効率の面から、ペレットの水分量は多い程好ましく、この水分量は300ppm以上であることがより好ましく、500ppm以上であることが更に好ましい。ただし、計量安定性の観点から、水分量は3000ppm以下であることが好ましく、2500ppm以下であることがより好ましく、2000ppm以下であることが更に好ましい。
 上記の水分量のペレットは、射出成形機に供給するペレットの乾燥条件を調節することにより、或いは、前述の方法で得られたペレットを乾燥せずにそのまま用いることにより得ることができる。
 通常、前述のように水槽で冷却し、ペレタイザーでペレット化して得られた芳香族ポリカーボネート樹脂組成物のペレットの水分量は500~2000ppm程度である。本発明では、このようなペレットを乾燥を行うことなく射出成形機に供給することができる。この場合には、ペレットの乾燥工程を省略することができ、生産効率の向上を図ることもできる。
<射出成形条件>
 本発明においては、上記のように、ベントを有する射出成形機を用い、好ましくは所定の水分量のペレットを飢餓フィードすること以外は、射出成形条件については通常の条件を採用することができる。例えば、シリンダー温度は260~320℃、金型温度は60~120℃で行うことができる。
〔成形品〕
 本発明の芳香族ポリカーボネート樹脂成形品の製造方法は、特に導光部材のような長尺の成形品の製造に有効である。例えば、本発明をL/D(長径/短径比)が30以上の長尺成形品の製造に適用した場合において、長さ方向においても良好な色相の成形品を得ることができる。
 得られた成形品は、導光部材、特に自動車用照明装置の導光部材として有用である。
 本発明により製造される芳香族ポリカーボネート樹脂成形品よりなる導光部材の構成には特に制限はなく、例えば、長尺状の本体部と、この本体部に、その長さ方向に沿って突設された複数のプリズム部とで構成されたものが挙げられる。
 このような導光部材と光源を有する照明装置では、光源から、導光部材の本体部の一方の端面又は両方の端面から入射された光が、プリズム部で導光され、本体部の光出射面から出射される。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 以下の実施例及び比較例において用いた材料は次のとおりである。
[芳香族ポリカーボネート樹脂(A)]
(A-1)界面重合法で製造されたビスフェノールA型芳香族ポリカーボネート樹脂
三菱エンジニアリングプラスチックス社製 ユーピロン(登録商標)S-3000
粘度平均分子量22,000
(A-2)界面重合法で製造されたビスフェノールA型芳香族ポリカーボネート樹脂
三菱エンジニアリングプラスチックス社製 ユーピロン(登録商標)H-4000
粘度平均分子量16,000
(A-3)界面重合法で製造されたビスフェノールA型芳香族ポリカーボネート樹脂
三菱エンジニアリングプラスチックス社製 ユーピロン(登録商標)H-7000
粘度平均分子量14,000
[リン系安定剤(B)]
(B-1)ADEKA社製、商品名「アデカスタブAS2112」(トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、第2ホスファイト系安定剤)
(B-2)ADEKA社製、商品名「アデカスタブPEP-36」(ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、第1ホスファイト系安定剤)
(B-3)Properties&Characteristics社製、商品名「Doverphos S-9228」(ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、第1ホスファイト系安定剤)
[脂肪酸エステル(C)]
(C-1)理研ビタミン(株)製、商品名「リケマールS-100A」(グリセリンモノステアレート)
[色相改良剤(D)]
(D-1)日油社製、商品名「ユニオールPB-700」(ポリブチレングリコール(ポリ(2-エチル)エチレングリコール)、数平均分子量700)
(D-2)東邦化学工業社製、商品名「ビスオール 18EN」(ビスフェノールA OH末端ポリエチレングリコール置換体、数平均分子量1,000)
(D-3)日油社製、商品名「ポリセリンDCB-1000」(ポリオキシテトラメチレングリコール-ポリオキシ(2-メチル)エチレングリコール共重合体、数平均分子量:1,000)
(D-4)ポリオキシテトラメチレングリコール-ポリオキシ(2-エチル)エチレングリコール共重合体(PTMG-PBGと略す)、数平均分子量:800
(D-5)日油社製、商品名「ユニルーブ50DB-22」(ポリオキシエチレン-ポリオキシプロピレン-ビスフェノールAエーテル(ランダムタイプ)、数平均分子量:750)
(D-6)日油社製、商品名「ポリセリンDC-1800E」(ポリオキシテトラメチレングリコール-ポリオキシエチレングリコール共重合体、数平均分子量:1,800)
(D-7)保土谷化学社製、商品名「PTG-L」(ポリオキシテトラメチレングリコール-ポリオキシ(3-メチル)テトラメチレングリコール共重合体、数平均分子量:1,000)
(D-8)三菱ケミカル社製、商品名「PTMG1000」(ポリテトラメチレングリコール単独重合体、数平均分子量:1,000)
[実施例I-1~6、II-1~36]
<ペレットの製造>
 表1,4~9に示す割合となるように上記(A)~(C)成分又は(A),(B),(D)成分を配合し、タンブラーミキサーで均一に混合し、混合物を得た。この混合物を、フルフライトスクリューとベントとを備えた単軸押出機(製品名:VS-40、いすず化工機社製)に供給し、スクリュー回転数70rpm、吐出量10kg/時間、バレル温度250℃の条件で混練し、押出ノズル先端から、ストランド状に押出した。押出物を水槽にて急冷し、ペレタイザーを用いてカットしてペレット化し、芳香族ポリカーボネート樹脂組成物のペレットを得た。
 表1,4~9において、各成分の配合割合の単位は質量部である。PC分子量は、芳香族ポリカーボネート樹脂組成物中の芳香族ポリカーボネート樹脂の粘度平均分子量である。
<射出成形>
 上記のようにして得られた芳香族ポリカーボネート樹脂組成物のペレットを用い、図1~3の通り、第1ステージXが1条フライト構造で、第2ステージYが3条フライト構造であり、第2ステージYの始点部分にベントを有し、ホッパー部にはペレット供給装置(日本油機製「HF-I型」)を備えた射出成形機(住友重機社SE75DUZ)(スクリューの直径D=28cm、ミキシング部=ダルメージ型)を使用して、射出成形を行った。
 ペレットのフィード方法は図7aに示す飢餓フィードとした。
 ベント及びペレット供給部(ホッパー)は、以下の通り減圧とするか、或いは不活性ガスを供給して射出成形を行った。
(1) ベントを減圧する場合
 ベントの開口を閉じ、ベントに減圧配管を挿入し、(株)アンレット製ドライルーツ式真空ポンプ「FT2-20」を接続して減圧した。
(2) ペレット供給部を減圧する場合
 ホッパー下部のスクリューフィーダー部に減圧配管を挿入し、(株)アンレット製ドライルーツ式真空ポンプ「FT2-80」を接続して減圧した。
(3) ベントに不活性ガスを供給する場合
 ベントに不活性ガスノズル(口径5mm)を挿入し、窒素ガスを供給した。
(4) ペレット供給部に不活性ガスを供給する場合
 ホッパー下部のスクリューフィーダー部に不活性ガスノズル(口径5mm)を挿入し、窒素ガスを供給した。
 上記(3),(4)の場合、窒素ガスは、不活性ガスノズルの近傍に設けた酸素濃度計で測定される酸素濃度が0ppm(測定限界以下)となるように、窒素ガスの流量を調整した。以下、(3),(4)の不活性ガス供給を「窒素パージ」と称す。
 成形は、シリンダー温度280℃、金型温度80℃で行い、300mmの長光路成形品(6mm×4mm×300mm、L/D=75)を製造した。成形に先立ち、用いたペレットの水分量をカールフィッシャー水分計(三菱ケミカル社製水分計/VA-100)にて測定したところ、いずれも2000ppmであった。
<色相評価>
 得られた長光路成形品について、長光路分光透過色計(日本電色工業社製「ASA1」)を使用して300mm長光路のYI値を測定した。
 結果を表1,4~9に示す。
[比較例I-1~16、II-1~42]
 表1~10に示す割合となるように上記(A)~(C)成分又は(A),(B),(D)成分を配合し、第2ステージYが3条フライト構造ではなく2条フライト構造となっている射出成形機を用いて、表1~10に示す条件で、実施例I-1~6、II-1~36と同様に射出成形を行い、同様に得られた長光路成形品の色相の評価を行った。ただし、比較例I-7、I-8、I-11~14、II-37、II-38、II-41、II-42では、ペレットのフィード方法は図7aに示す飢餓フィードではなく、図7bに示す通常フィードとした。また、比較例I-7~10、II-37~40では、ベントのない射出成形機を用いた。結果を表1~10に示す。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表1~10より、第2ステージが3条以上の多条フライト構造であり、かつベントを備える射出成形機を用いて、ペレットを飢餓フィードとすると共に、ベント及びペレット供給部であるホッパーの一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか減圧しながら射出成形を行うことにより、300mm長光路において、色相が良好な芳香族ポリカーボネート樹脂成形品を得ることができることが分かる。特に、ホッパー部を減圧とし、ベント部を窒素パージすることにより、300mm長光路において著しく色相が良好な成形品を得ることができる。
 これに対して、同様に飢餓フィードを行い、かつベント及びペレット供給部であるホッパーの一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか減圧しながら射出成形を行っても、射出成形機の第2ステージが2条のフライト構造であると、3条のフライト構造の場合に比べて色相に劣るものとなる。射出成形機の第2ステージが2条のフライト構造で通常フィードを行った場合やベントのない射出成形機を用いた場合には、得られる成形品の色相は更に劣るものとなる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年3月23日付で出願された日本特許出願2017-057666、2017年3月23日付で出願された日本特許出願2017-057667及び2017年3月31日付で出願された日本特許出願2017-071398に基づいており、その全体が引用により援用される。
 1 射出シリンダー
 2 スクリュー
 2A 1条フライト部
 2B 多条フライト部
 2M ミキシング部
 X 第1ステージ
 Y 第2ステージ
 3 射出ノズル
 4 加熱用ヒーター
 5A,5B ベント
 6A,7A 減圧用配管
 6B,7B 不活性ガスノズル
 10 ペレット供給装置
 11 スクリューフィーダー
 20 ホッパー
 30 ペレット

Claims (21)

  1.  粘度平均分子量10,000~30,000の芳香族ポリカーボネート樹脂(A)100質量部に対し、少なくとも1種類の安定剤(B)を0.01~0.5質量部含むポリカーボネート樹脂組成物のペレットを、射出成形機で成形して芳香族ポリカーボネート樹脂成形品を製造する方法であって、
     該射出成形機として、
     射出シリンダーと、該射出シリンダー内に回転可能に支持された、螺旋状のフライトを有するスクリューと、該射出シリンダーの基端側に設けられたペレット供給部と、該射出シリンダーの先端側に設けられた射出ノズルと、該射出シリンダーの途中部分に設けられたベントとを有し、
     該ベントよりも上流側の第1ステージと、該第1ステージの下流側の第2ステージを経て溶融混練が行われる射出成形機であって、
     該第2ステージにおける該スクリューのフライトは、3条以上の多条フライト構造とされている射出成形機を用い、
     該ペレットを、該射出成形機の該ペレット供給部に飢餓状態で供給すると共に、
     前記ベント及び該ペレット供給部の一方に不活性ガスを供給し、かつ他方に不活性ガスを供給するか或いは減圧しながら射出成形することを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
  2.  請求項1において、前記ポリカーボネート樹脂組成物が、さらに脂肪酸エステル(C)を0.05~2質量部含むことを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
  3.  請求項1において、前記ポリカーボネート樹脂組成物が、さらに色相改良剤(D)を0.05~2質量部含むことを特徴とする芳香族ポリカーボネート樹脂成形品の製造方法。
  4.  前記第2ステージにおけるフライトのピッチ幅が、前記第1ステージにおけるフライトのピッチ幅よりも大きく、該第2ステージのフライトにより形成される1ピッチ当たりの溝部の断面積が、該第1ステージのフライトにより形成される1ピッチ当たりの溝部の断面積よりも小さいことを特徴とする請求項1乃至3のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  5.  前記ペレットの水分量が200ppm以上であることを特徴とする請求項1乃至4のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  6.  前記芳香族ポリカーボネート樹脂(A)の粘度平均分子量が13,000~25,000であることを特徴とする請求項1乃至5のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  7.  前記安定剤(B)が、スピロ環骨格を有するホスファイト系安定剤と、スピロ環骨格を有さないホスファイト系安定剤とを含み、前記芳香族ポリカーボネート樹脂組成物中の該スピロ環骨格を有するホスファイト系安定剤の含有量が、該スピロ環骨格を有さないホスファイト系安定剤の含有量よりも少ないことを特徴とする請求項1乃至6のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  8.  前記色相改良剤(D)が、ポリアルキレングリコール化合物であることを特徴とする請求項3乃至7のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  9.  前記ポリアルキレングリコール化合物が、下記一般式(III-1)で表される分岐型ポリアルキレングリコール化合物及び/又は下記一般式(III-2)で表される直鎖型ポリアルキレングリコール化合物であることを特徴とする請求項8に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     一般式(III-1)中、Rは炭素数1~3のアルキル基を示す。XおよびYは、それぞれ独立に、水素原子、炭素数1~23の脂肪族アシル基、又は炭素数1~23のアルキル基を示し、nは10~400の整数を示す。
    Figure JPOXMLDOC01-appb-C000002
     一般式(III-2)中、X及びYは、それぞれ独立に、水素原子、炭素数2~23の脂肪族アシル基又は炭素数1~22のアルキル基を示す。mは2~6の整数、pは6~100の整数を示す。
  10.  前記分岐型ポリアルキレングリコール化合物がポリプロピレングリコール(ポリ(2-メチル)エチレングリコール)および/又はポリブチレングリコール(ポリ(2-エチル)エチレングリコール)であることを特徴とする請求項9に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  11.  前記直鎖型ポリアルキレングリコール化合物がポリテトラメチレングリコール単独重合体であることを特徴とする請求項9に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  12.  前記ポリアルキレングリコール化合物が、下記一般式(I)で表される直鎖アルキレンエーテル単位と下記一般式(II-1)又は下記一般式(II-3)で表される分岐アルキレンエーテル単位を有するポリアルキレングリコール共重合体であることを特徴とする請求項8に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     一般式(I)中、nは3~6の整数を示す。
    Figure JPOXMLDOC01-appb-C000004
     一般式(II-1)中、R~Rは各々独立に水素原子又は炭素数1~3のアルキル基を示す。R~Rの少なくとも1つは炭素数1~3のアルキル基である。
    Figure JPOXMLDOC01-appb-C000005
     一般式(II-3)中、R~Rは各々独立に水素原子又は炭素数1~3のアルキル基を示す。R~Rの少なくとも1つは炭素数1~3のアルキル基である。
  13.  前記一般式(I)で示される直鎖アルキレンエーテル単位が、グリコールとして、該一般式(I)におけるnが4であるテトラメチレングリコールであることを特徴とする請求項12に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  14.  前記一般式(II-1)で示される分岐アルキレンエーテル単位が、グリコールとして、(2-メチル)エチレングリコール(プロピレングリコール)及び/又は(2-エチル)エチレングリコール(ブチレングリコール)であることを特徴とする請求項12又は13に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  15.  前記一般式(II-3)で示される分岐アルキレンエーテル単位が、グリコールとして、(3-メチル)テトラメチレングリコールであることを特徴とする請求項12又は13に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  16.  前記色相改良剤(D)が、下記一般式(3)で表されるジオール化合物であることを特徴とする請求項3乃至7のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     一般式(3)中、Zは単結合又は-C(CH-を表す。R21,R22はそれぞれ独立に、水素原子、又は炭素数1~3のアルキル基を表す。
  17.  前記一般式(3)におけるR21,R22が、それぞれ独立に、水素原子又はメチル基であることを特徴とする請求項16に記載の芳香族ポリカーボネート樹脂成形品の製造方法。
  18.  請求項1乃至17のいずれか1項に記載の香族ポリカーボネート樹脂成形品の製造方法により製造された芳香族ポリカーボーネート樹脂成形品。
  19.  導光部材である請求項18に記載の芳香族ポリカーボネート樹脂成形品。
  20.  L/Dが30以上の長尺の成形品である請求項18又は19に記載の芳香族ポリカーボネート樹脂成形品。
  21.  請求項1乃至17のいずれか1項に記載の芳香族ポリカーボネート樹脂成形品の製造方法により製造された芳香族ポリカーボーネート樹脂成形品より導光部材を製造することを特徴とする導光部材の製造方法。
PCT/JP2018/006477 2017-03-23 2018-02-22 芳香族ポリカーボネート樹脂成形品の製造方法 WO2018173616A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019507466A JP6569838B2 (ja) 2017-03-23 2018-02-22 芳香族ポリカーボネート樹脂成形品の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017057667 2017-03-23
JP2017-057666 2017-03-23
JP2017057666 2017-03-23
JP2017-057667 2017-03-23
JP2017071398 2017-03-31
JP2017-071398 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018173616A1 true WO2018173616A1 (ja) 2018-09-27

Family

ID=63585221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006477 WO2018173616A1 (ja) 2017-03-23 2018-02-22 芳香族ポリカーボネート樹脂成形品の製造方法

Country Status (2)

Country Link
JP (1) JP6569838B2 (ja)
WO (1) WO2018173616A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110431A1 (ja) * 2018-11-29 2020-06-04 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
WO2020183834A1 (ja) * 2019-03-12 2020-09-17 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
JP2020152883A (ja) * 2019-03-12 2020-09-24 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035263A (ja) * 1973-08-02 1975-04-03
JP2016145325A (ja) * 2015-02-03 2016-08-12 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2016166277A (ja) * 2015-03-09 2016-09-15 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂成形品の製造方法
WO2016199783A1 (ja) * 2015-06-08 2016-12-15 出光興産株式会社 ポリカーボネート樹脂組成物及び光学成形品
JP2016210895A (ja) * 2015-05-08 2016-12-15 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および薄肉光学部品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3527933B2 (ja) * 1995-11-10 2004-05-17 日精樹脂工業株式会社 射出成形方法
CN105008108B (zh) * 2013-04-15 2017-06-23 三菱重工塑胶科技股份有限公司 注射成形装置以及注射成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035263A (ja) * 1973-08-02 1975-04-03
JP2016145325A (ja) * 2015-02-03 2016-08-12 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2016166277A (ja) * 2015-03-09 2016-09-15 三菱エンジニアリングプラスチックス株式会社 芳香族ポリカーボネート樹脂成形品の製造方法
JP2016210895A (ja) * 2015-05-08 2016-12-15 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物および薄肉光学部品
WO2016199783A1 (ja) * 2015-06-08 2016-12-15 出光興産株式会社 ポリカーボネート樹脂組成物及び光学成形品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020110431A1 (ja) * 2018-11-29 2020-06-04 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
JP6719857B1 (ja) * 2018-11-29 2020-07-08 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
WO2020183834A1 (ja) * 2019-03-12 2020-09-17 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物
JP2020152883A (ja) * 2019-03-12 2020-09-24 三菱エンジニアリングプラスチックス株式会社 光学部材用ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
JP6569838B2 (ja) 2019-09-04
JPWO2018173616A1 (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6720656B2 (ja) 芳香族ポリカーボネート樹脂成形品の製造方法
US7148313B2 (en) Polycarbonate resin composition and molded articles thereof
JP6569838B2 (ja) 芳香族ポリカーボネート樹脂成形品の製造方法
JP6303707B2 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
WO2016125625A1 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
CN107949604B (zh) 芳香族聚碳酸酯树脂组合物及其成型品
JP6464835B2 (ja) 芳香族ポリカーボネート樹脂成形品の製造方法
JP5991420B2 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
KR101832126B1 (ko) 방향족 폴리카보네이트 수지 조성물 및 그 성형품
WO2019198321A1 (ja) ポリカーボネート樹脂組成物ペレット、ペレットの製造方法及びその成形品
JP6543969B2 (ja) 芳香族ポリカーボネート樹脂成形品の製造方法
JP6828511B2 (ja) 芳香族ポリカーボネート樹脂組成物の成形品
WO2017090310A1 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
JP5991447B1 (ja) 芳香族ポリカーボネート樹脂組成物及びその成形品
JP2021084938A (ja) ポリカーボネート樹脂組成物及びその成形品
JP2005325320A (ja) ポリカーボネート樹脂組成物およびその成形品
JP6578972B2 (ja) 芳香族ポリカーボネート樹脂成形品の製造方法
JP7087956B2 (ja) ポリカーボネート樹脂組成物ペレットの製造方法及び成形品の製造方法
CN111918906B (zh) 聚碳酸酯树脂组合物粒料、粒料的制造方法及其成型品
JP7334593B2 (ja) ポリカーボネート樹脂組成物の製造方法及び成形品の製造方法
JP7305967B2 (ja) ポリカーボネート樹脂組成物ペレットの製造方法及び成形品の製造方法
JP7305966B2 (ja) ポリカーボネート樹脂組成物ペレット及びその成形品
JP2020037666A (ja) ポリカーボネート樹脂組成物ペレット及びその成形品
JP7113141B2 (ja) ポリカーボネート樹脂組成物及び樹脂成形体
JP2019189809A (ja) ポリカーボネート樹脂組成物ペレット及びその成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18771361

Country of ref document: EP

Kind code of ref document: A1