WO2018173227A1 - 中性粒子ビーム処理装置 - Google Patents

中性粒子ビーム処理装置 Download PDF

Info

Publication number
WO2018173227A1
WO2018173227A1 PCT/JP2017/011874 JP2017011874W WO2018173227A1 WO 2018173227 A1 WO2018173227 A1 WO 2018173227A1 JP 2017011874 W JP2017011874 W JP 2017011874W WO 2018173227 A1 WO2018173227 A1 WO 2018173227A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrode
high frequency
frequency power
power source
Prior art date
Application number
PCT/JP2017/011874
Other languages
English (en)
French (fr)
Inventor
竜介 藤井
利泰 速水
Original Assignee
Sppテクノロジーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sppテクノロジーズ株式会社 filed Critical Sppテクノロジーズ株式会社
Priority to PCT/JP2017/011874 priority Critical patent/WO2018173227A1/ja
Priority to JP2019506860A priority patent/JPWO2018173227A1/ja
Priority to TW107109602A priority patent/TW201840250A/zh
Publication of WO2018173227A1 publication Critical patent/WO2018173227A1/ja

Links

Images

Definitions

  • the present invention relates to a neutral particle beam processing apparatus that is excellent in ion neutralization efficiency and capable of performing sufficient etching when used for etching.
  • a plasma processing apparatus in which a predetermined processing gas is supplied into a chamber to convert it into plasma, and a substrate disposed in the chamber is subjected to plasma processing such as etching processing by ions or the like in the plasma (for example, see Patent Document 1).
  • the neutral particle beam processing apparatus proposed in Patent Document 2 includes a chamber in which a generation chamber for generating a neutral particle beam is provided at an upper portion, and a processing chamber for processing a substrate by the neutral particle beam is provided in a lower portion.
  • a coil for converting the processing gas supplied to the generation chamber into plasma outside the chamber and a bias electrode disposed above the coil in the generation chamber in the chamber (patented)
  • a grid electrode) and a neutralization electrode disposed in the generation chamber in the chamber below the coil and neutralizing ions passing through the plasma generated by the coil (in Patent Document 2, , Orifice electrode) (see FIG. 4 of Patent Document 2).
  • Patent Document 2 high frequency power of 13.56 MHz is applied to the coil, high frequency power of 400 kHz is applied to the bias electrode (grid electrode), and the neutralization electrode (orifice electrode) is attached.
  • the grounding is described (paragraphs 0018 and 0021 of Patent Document 2).
  • the application timing of the high frequency power to the coil is turned on by synchronizing the application timing of the high frequency power to the coil and the application timing of the high frequency power to the bias electrode (grid electrode).
  • the application of high frequency power to the bias electrode (grid electrode) is turned on. (Patent Document 2, paragraphs 0022 to 0027, FIG. 3 and the like).
  • the present invention has been made to solve the above-described problems of the prior art, and is excellent in neutralizing efficiency of ions, and for example, a neutral particle beam process capable of performing sufficient etching when used for etching. It is an object to provide an apparatus.
  • the present invention provides a chamber in which a generation chamber for generating a neutral particle beam is provided at an upper portion, and a processing chamber for processing a substrate by the neutral particle beam is provided in a lower portion; A coil externally disposed around the generation chamber for converting the processing gas supplied to the generation chamber into plasma, and a bias electrode disposed above the coil in the generation chamber in the chamber And a neutralization electrode that is disposed below the coil in the generation chamber in the chamber and through which ions in plasma generated by the coil pass to neutralize the ions, A first high-frequency power source that applies high-frequency power to the coil; a DC power source that applies DC power to the bias electrode; and a second high-frequency power source that applies high-frequency power to the neutralization electrode , Pulse modulation means for controlling on / off of application of each power from the first high frequency power supply, the DC power supply, and the second high frequency power supply, and the pulse modulation means from the first high frequency power supply When turning on the application of power, the application of each
  • the neutral particle beam processing apparatus of the present invention when the application of power from the first high-frequency power source (application of high-frequency power to the coil) is turned off by the pulse modulation means, the DC power source and the second power source Application of each power from the high frequency power source (application of DC power to the bias electrode and application of high frequency power to the neutralization electrode) is turned on. If a negative DC power is applied from the DC power source to the bias electrode, the negative ions in the plasma in the generation chamber are accelerated toward the neutralization electrode by the repulsive force of the bias electrode. When the voltage of the high frequency power applied to the neutralization electrode is positive, the neutralization electrode is attracted by the attractive force of the neutralization electrode.
  • the neutral particle beam processing apparatus of the present invention can be used not only for substrate etching but also for substrate deposition.
  • the DC power supply preferably applies negative DC power to the bias electrode.
  • the negative ions (Cl ⁇ or SF 6 ⁇ ) in the plasma in the generation chamber are accelerated toward the neutralization electrode by the repulsive force of the bias electrode, It is possible to increase the conversion efficiency.
  • the DC power supply preferably applies positive DC power to the bias electrode.
  • the positive ions (Ar + or He + ) in the plasma in the generation chamber are accelerated toward the neutralization electrode by the repulsive force of the bias electrode. It is possible to increase efficiency.
  • Cl process gas supplied to the generator chamber, 2 a gas or SF 6 gas Cl
  • the plasma is a negative ion - or SF Both 6 ⁇ and positive ions Ar + or He + will be generated.
  • the DC power supply alternately applies negative DC power and positive DC power to the bias electrode.
  • the negative ions (Cl ⁇ or SF 6 ⁇ ) in the plasma in the generation chamber are caused by the repulsive force of the bias electrode.
  • the ion neutralization efficiency is excellent, and sufficient etching can be performed when used for etching, for example.
  • FIG. 1 is a schematic cross-sectional view illustrating a schematic configuration example of a neutral particle beam processing apparatus according to an embodiment of the present invention. It is explanatory drawing which shows typically the voltage of the electric power applied to the coil in 1st Embodiment of this invention, the electrode for bias, and the electrode for neutralization. It is explanatory drawing which shows typically the voltage of the electric power applied to the coil in 2nd Embodiment of this invention, the electrode for bias, and the electrode for neutralization. It is explanatory drawing which shows typically the voltage of the applied electric power to the coil in 3rd Embodiment of this invention, the electrode for bias, and the electrode for neutralization.
  • FIG. 1 is a schematic cross-sectional view showing a schematic configuration example of a neutral particle beam processing apparatus according to an embodiment (first embodiment to third embodiment) of the present invention.
  • the neutral particle beam processing apparatus 100 includes a chamber 1, a coil 2, a bias electrode 3, a neutralization electrode 4, a first high-frequency power source 5, A DC power source 6, a second high frequency power source 7, and pulse modulation means 8 are provided.
  • the neutral particle beam processing apparatus 100 according to this embodiment includes a gas supply source 9, a mounting table 10, and a vacuum pump 20.
  • a generation chamber 11 for generating a neutral particle beam is provided in the upper part
  • a processing chamber 12 for processing the substrate S placed on the mounting table 10 by the neutral particle beam is provided in the lower part.
  • the neutralization electrode 4 and the region above the neutralization electrode 4 correspond to the generation chamber 11, and the region below the neutralization electrode 4 corresponds to the processing chamber 12.
  • the vacuum pump 20 is connected to a pipe (not shown) communicating with the inside of the processing chamber 12, and when the substrate S is processed with a neutral particle beam, the inside of the chamber 1 is decompressed by evacuation by the vacuum pump 20. .
  • the coil 2 is a coil that is disposed around the generation chamber 11 outside the chamber 1 and converts the processing gas supplied from the gas supply source 9 to the generation chamber 11 into plasma.
  • the bias electrode 3 is disposed above the coil 2 in the generation chamber 11 in the chamber 1.
  • the bias electrode 3 is provided with a number of holes so that the processing gas supplied from the gas supply source 9 to the generation chamber 11 can pass therethrough.
  • the neutralization electrode 4 is disposed below the coil 2 in the generation chamber 11 in the chamber 1, and is an electrode for neutralizing the ions through which ions in the plasma generated by the coil 2 pass. is there.
  • the neutralizing electrode 4 is made of a conductor such as graphite and has a large number of orifices. Negative ions passing through the inside of the orifice formed in the neutralizing electrode 4 are neutralized mainly in the vicinity of the solid surface of the peripheral wall of the orifice, or the process gas remaining inside the orifice Neutralized by the charge exchange, and becomes a neutral particle beam.
  • the positive ions passing through the inside of the orifice formed in the neutralizing electrode 4 are neutralized mainly in the vicinity of the solid surface of the peripheral wall of the orifice or the processing gas remaining in the inside of the orifice. Or neutralized by colliding with electrons emitted from the surface of the neutralizing electrode and recombining to form a neutral particle beam.
  • the first high frequency power supply 5 applies high frequency power to the coil 2.
  • the frequency of the high frequency power applied to the coil 2 is, for example, 100 MHz.
  • a magnetic field is formed by applying high-frequency power from the first high-frequency power source 5 to the coil 2, and the processing gas supplied to the generation chamber 11 is turned into plasma by an electric field induced by the magnetic field. That is, inductively coupled plasma (Inductively Coupled Plasma) is generated by the first high frequency power supply 5 and the coil 2.
  • the DC power supply 6 applies DC power to the bias electrode 3.
  • the DC power source 6 applies a negative DC power to the bias electrode 3.
  • the DC power source 6 applies positive DC power to the bias electrode 3.
  • the DC power source 6 alternately applies negative DC power and positive DC power to the bias electrode 3.
  • the absolute value of the voltage applied by the DC power supply 6 is, for example, 100V.
  • the second high frequency power source 7 applies high frequency power to the neutralizing electrode 4.
  • the frequency of the high frequency power applied to the neutralization electrode 4 is lower than the frequency of the high frequency power applied to the coil 2, for example, 600 kHz.
  • the pulse modulation means 8 includes a pulse generator 81 whose output signal frequency and duty ratio are variable, and switches 82, 83, and 84 that are switched on and off in accordance with the output signal (pulse signal) of the pulse generator 81.
  • the switch 82 is connected to the output terminal of the first high frequency power source 5, the switch 83 is connected to the output terminal of the DC power source 6, and the switch 84 is connected to the output terminal of the second high frequency power source 7.
  • Each power from the first high-frequency power source 5, the DC power source 6, and the second high-frequency power source 7 is switched by turning on / off the switches 82 to 84 in accordance with the on / off of the pulse signal output from the pulse generator 81. ON / OFF of the application of is controlled.
  • FIG. 2 is an explanatory diagram schematically showing the voltage of the power applied to the coil 2, the bias electrode 3 and the neutralization electrode 4 in the first embodiment.
  • 2A is a diagram showing the voltage of each applied power
  • Vs shown in FIG. 2A means the voltage of the high frequency power applied to the coil 2 from the first high frequency power supply 5
  • Vb is A voltage of DC power applied from the DC power supply 6 to the bias electrode 3 is meant
  • Vn means a voltage of high frequency power applied from the second high frequency power supply 7 to the neutralization electrode 4.
  • the pulse modulation means 8 has a DC power source 6 and a second high frequency power source 7 when the application of power from the first high frequency power source 5 is turned on (when the voltage Vs is on). Is turned off (voltage Vb and voltage Vn are turned off).
  • the pulse modulation means 8 turns on the application of each power from the DC power supply 6 and the second high frequency power supply 7 when the application of power from the first high frequency power supply 5 is turned off (when the voltage Vs is off). (The voltage Vb and the voltage Vn are turned on).
  • the frequency of the output signal of the pulse generator 81 included in the pulse modulation means 8 is set to about 5 kHz to 20 kHz, for example. Further, the duty ratio (on duty ratio) of the output signal of the pulse generator 81 included in the pulse modulation means 8 is set to about 5% to 95%, for example.
  • the switch 82 is turned on, and the high frequency power voltage Vs applied to the coil 2 from the first high frequency power supply 5 is turned on.
  • the switches 83 and 84 are turned on, and the DC power voltage Vb applied from the DC power source 6 to the bias electrode 3 and the second high frequency power source 7
  • the high-frequency power voltage Vn applied to the neutralization electrode 4 is turned on.
  • the on / off switching frequency of the voltages Vs, Vb, and Vn shown in FIG. 2A is determined, and according to the duty ratio of the output signal of the pulse generator 81.
  • the on / off time ratios of the voltages Vs, Vb, and Vn shown in FIG. 2A are determined.
  • the processing gas supplied from the gas supply source 9 to the generation chamber 11 is Cl 2 gas or SF 6 gas. Accordingly, Cl ⁇ or SF 6 ⁇ that is mainly negative ions is generated in the plasma generated in the generation chamber 11. For this reason, in the first embodiment, when the application from the DC power source 6 is turned on as shown at time Ta in FIG. 2A, the DC power source 6 applies DC power of the negative voltage Vb to the bias electrode 3. Apply. As a result, as shown in FIG. 2B, negative ions (Cl ⁇ or SF 6 ⁇ ) in the plasma in the generation chamber 11 are directed toward the neutralization electrode 4 by the repulsive force Fr of the bias electrode 3. To accelerate.
  • the repulsive force Fr increases as the negative ions are closer to the bias electrode 3 and decreases as the neutralization electrode 4 is approached. Further, when the high-frequency power voltage Vn applied to the neutralization electrode 4 is positive, negative ions in the plasma in the generation chamber 11 are neutralized by the neutralizing electrode 4 due to the attractive force Fa of the neutralization electrode 4. Will be drawn into. The attractive force Fa increases as negative ions are located closer to the neutralization electrode 4. As described above, the neutralization efficiency of negative ions can be increased.
  • FIG. 3 is an explanatory diagram schematically showing voltages Vs, Vb, and Vn of applied power to the coil 2, the bias electrode 3, and the neutralization electrode 4 in the second embodiment.
  • FIG. 3A is a diagram showing the voltage of each applied power
  • FIG. 3B is a diagram schematically showing the state of plasma in the generation chamber 11 at time Tc in FIG. 3A.
  • the second embodiment differs from the first embodiment in the type of processing gas supplied from the gas supply source 9 to the generation chamber 11 and the polarity of the voltage Vb applied to the bias electrode 3 by the DC power supply 6. . Since other parts are the same as those in the first embodiment, only differences from the first embodiment will be described below.
  • the processing gas supplied from the gas supply source 9 to the generation chamber 11 is Ar gas or He gas. Accordingly, Ar + or He + that is mainly positive ions is generated in the plasma generated in the generation chamber 11. For this reason, in the second embodiment, when the application from the DC power supply 6 is turned on as shown at time Tc in FIG. 3A, the DC power supply 6 applies the DC power of the positive voltage Vb to the bias electrode 3. Apply. Thereby, as shown in FIG. 3B, positive ions (Ar + or He + ) in the plasma in the generation chamber 11 are accelerated toward the neutralization electrode 4 by the repulsive force Fr of the bias electrode 3. To do.
  • the repulsive force Fr increases as the positive ions are closer to the bias electrode 3 and decreases as the neutralization electrode 4 is approached. Further, the positive ions in the plasma in the generation chamber 11 are neutralized by the attractive force Fa of the neutralizing electrode 4 when the voltage Vn of the high frequency power applied to the neutralizing electrode 4 is negative. Will be drawn into.
  • the attractive force Fa increases as the positive ions are closer to the neutralization electrode 4. As described above, the neutralization efficiency of positive ions can be increased.
  • FIG. 4 is an explanatory diagram schematically showing voltages Vs, Vb, and Vn of power applied to the coil 2, the bias electrode 3, and the neutralization electrode 4 in the third embodiment.
  • FIG. 4A is a diagram showing the voltage of each applied power
  • FIG. 4B is a diagram showing a specific configuration example of the DC power source 6 and the pulse modulation means 8 in the third embodiment.
  • the third embodiment differs from the first embodiment in the type of processing gas supplied from the gas supply source 9 to the generation chamber 11 and the polarity of the voltage Vb applied to the bias electrode 3 by the DC power supply 6. . Since other parts are the same as those in the first embodiment, only differences from the first embodiment will be described below.
  • the processing gas supplied from the gas supply source 9 to the generation chamber 11 is a mixed gas of Cl 2 gas or SF 6 gas and Ar gas or He gas. Accordingly, in the plasma generated in the generation chamber 11, both Cl ⁇ or SF 6 ⁇ that are negative ions and Ar + or He + that are positive ions are generated. For this reason, in the third embodiment, as shown in FIG. 4A, when the application from the DC power supply 6 is turned on, the pulse modulation means 8 causes the negative voltage Vb to be applied from the DC power supply 6 to the bias electrode 3. DC power and DC power of positive voltage Vb are applied alternately. In the example shown in FIG.
  • the switch 83 of the pulse modulation means 8 includes a switch 83a connected to the output terminal of the DC power supply 6a and a switch 83b connected to the output terminal of the DC power supply 6b. Then, the switches 83a and 83b are alternately switched on and off in accordance with the on / off of the pulse signal output from the pulse generator 81, whereby the DC power source 6a and the DC power source 6b are alternately switched to the bias electrode 3.
  • the configuration in which the DC power of the negative voltage Vb output from the DC power supply 6a and the DC power of the positive voltage Vb output from the DC power supply 6b are alternately applied to the bias electrode 3 can be exemplified. .

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】イオンの中性化効率に優れると共に、エッチングに用いる場合に十分なエッチングを行うことが可能な中性粒子ビーム処理装置を提供する。 【解決手段】本発明に係る中性粒子ビーム処理装置100は、チャンバ1と、コイル2と、バイアス用電極3と、コイルによって生成されたプラズマ中のイオンが通過して該イオンを中性化するための中性化用電極4と、コイルに高周波電力を印加する第1高周波電源5と、バイアス用電極に直流電力を印加する直流電源6と、中性化用電極に高周波電力を印加する第2高周波電源7と、パルス変調手段8と、を備える。パルス変調手段は、第1高周波電源からの電力の印加をオンにするときに、直流電源及び第2高周波電源からの各電力の印加をオフにし、第1高周波電源からの電力の印加をオフにするときに、直流電源及び第2高周波電源からの各電力の印加をオンにする制御を行う。

Description

中性粒子ビーム処理装置
 本発明は、イオンの中性化効率に優れると共に、エッチングに用いる場合に十分なエッチングを行うことが可能な中性粒子ビーム処理装置に関する。
 従来、チャンバ内に所定の処理ガスを供給してこれをプラズマ化し、プラズマ中のイオン等によって、チャンバ内に配置された基板にエッチング処理等のプラズマ処理を施すプラズマ処理装置が知られている(例えば、特許文献1参照)。
 正イオンや負イオンなどの荷電粒子を基板に照射するプラズマ処理装置の場合、基板が絶縁物であると、基板に電荷が蓄積するチャージアップ現象が生じて、基板を処理できなくなるという問題がある。また、空間電荷効果でイオンビームが発散するため、極めて微細な加工を行うことができないという問題もある。
 このため、近年、プラズマ中のイオンを中性化して中性粒子ビームを生成し、この中性粒子ビームを用いて基板にエッチング処理等を施す中性粒子ビーム処理装置が提案されている(例えば、特許文献2参照)。
 特許文献2で提案されている中性粒子ビーム処理装置は、中性粒子ビームを生成する生成室が上部に設けられ、中性粒子ビームによって基板を処理する処理室が下部に設けられたチャンバと、チャンバの外部において生成室の周りに配設され、生成室に供給された処理ガスをプラズマ化するためのコイルと、チャンバ内の生成室においてコイルの上方に配設されたバイアス用電極(特許文献2ではグリッド電極)と、チャンバ内の生成室においてコイルの下方に配設され、コイルによって生成されたプラズマ中の通過するイオンを中性化するための中性化用電極(特許文献2では、オリフィス電極)と、を備えている(特許文献2の図4等参照)。
 より具体的には、特許文献2には、コイルに13.56MHzの高周波電力を印加し、バイアス用電極(グリッド電極)に400kHzの高周波電力を印加し、中性化用電極(オリフィス電極)を接地することが記載されている(特許文献2の段落0018、0021)。そして、特許文献2には、コイルへの高周波電力の印加のタイミングと、バイアス用電極(グリッド電極)への高周波電力の印加のタイミングとを同期させて、コイルへの高周波電力の印加をオンにするときには、バイアス用電極(グリッド電極)への高周波電力の印加をオフにし、コイルへの高周波電力の印加をオフにするときには、バイアス用電極(グリッド電極)への高周波電力の印加をオンにすることが記載されている(特許文献2の段落0022~0027、図3等)。
 特許文献2に記載の中性粒子ビーム処理装置によれば、前述のプラズマ処理装置において生じるチャージアップ現象等の問題を解決できると考えられる。
 しかしながら、特許文献2に記載の装置では、生成室にあるプラズマ中のイオンを中性化用電極に向けて加速させる役割を担うのが、中性化用電極から離れたバイアス用電極のみである。中性化用電極はイオンの中性化のみを行っているに過ぎない。このため、特許文献2に記載の装置では、イオンの中性化効率が必ずしも十分ではないおそれがある。
 また、中性粒子ビーム処理装置を基板のエッチングに用いる場合、中性粒子ビームにできるだけ大きな運動エネルギーを与えることが重要である。しかしながら、特許文献2に記載の装置では、中性化用電極から離れた位置にあるバイアス用電極によって運動エネルギーを与えられたイオンが、中性化用電極に到達するまでの間に、プラズマ中の他の粒子と衝突する機会があり、運動エネルギーのロスが生じることで、必ずしも十分なエッチングを行うことができないおそれもある。
日本国特開2008-244224号公報 日本国特許第4073174号公報
 本発明は、上記従来技術の問題点を解決するべくなされたものであり、イオンの中性化効率に優れると共に、例えばエッチングに用いる場合に十分なエッチングを行うことが可能な中性粒子ビーム処理装置を提供することを課題とする。
 前記課題を解決するため、本発明は、中性粒子ビームを生成する生成室が上部に設けられ、前記中性粒子ビームによって基板を処理する処理室が下部に設けられたチャンバと、前記チャンバの外部において前記生成室の周りに配設され、前記生成室に供給された処理ガスをプラズマ化するためのコイルと、前記チャンバ内の前記生成室において前記コイルの上方に配設されたバイアス用電極と、前記チャンバ内の前記生成室において前記コイルの下方に配設され、前記コイルによって生成されたプラズマ中のイオンが通過して該イオンを中性化するための中性化用電極と、前記コイルに高周波電力を印加する第1高周波電源と、前記バイアス用電極に直流電力を印加する直流電源と、前記中性化用電極に高周波電力を印加する第2高周波電源と、前記第1高周波電源、前記直流電源及び前記第2高周波電源からの各電力の印加のオン・オフを制御するパルス変調手段と、を備え、前記パルス変調手段は、前記第1高周波電源からの電力の印加をオンにするときに、前記直流電源及び前記第2高周波電源からの各電力の印加をオフにし、前記第1高周波電源からの電力の印加をオフにするときに、前記直流電源及び前記第2高周波電源からの各電力の印加をオンにする、
ことを特徴とする中性粒子ビーム処理装置を提供する。
 本発明に係る中性粒子ビーム処理装置によれば、パルス変調手段によって、第1高周波電源からの電力の印加(コイルへの高周波電力の印加)がオフにされるときに、直流電源及び第2高周波電源からの各電力の印加(バイアス用電極への直流電力の印加及び中性化用電極への高周波電力の印加)がオンにされることになる。仮に、直流電源からバイアス用電極に負電圧の直流電力が印加されるのであれば、生成室にあるプラズマ中の負イオンは、バイアス用電極の斥力によって中性化用電極に向けて加速すると共に、中性化用電極に印加される高周波電力の電圧が正のときに中性化用電極の引力によって中性化用電極に引き込まれることになる。また、直流電源からバイアス用電極に正電圧の直流電力が印加されるのであれば、生成室にあるプラズマ中の正イオンは、バイアス用電極の斥力によって中性化用電極に向けて加速すると共に、中性化用電極に印加される高周波電力の電圧が負のときに中性化用電極の引力によって中性化用電極に引き込まれることになる。何れの場合も、生成室にあるプラズマ中のイオンを中性化用電極に引き込む役割を担うのは、バイアス用電極及び中性化電極の双方である。このため、イオンの中性化効率を高めることが可能である。
 また、本発明に係る中性粒子ビーム処理装置によれば、中性化電極によって中性化電極近傍にあるイオンが積極的に引き込まれるため、プラズマ中の他の粒子と衝突することによる運動エネルギーのロスが少ないイオンを中性化することができる。また、イオンの運動エネルギーが中性化電極に印加する高周波電力に追従し易いため、中性粒子ビームの運動エネルギーを制御し易くなる。このため、十分なエッチングを行うことが可能である。
 以上のように、本発明に係る中性粒子ビーム処理装置によれば、イオンの中性化効率に優れると共に、例えばエッチングに用いる場合に十分なエッチングを行うことが可能である。ただし、本発明に係る中性粒子ビーム処理装置は、基板のエッチング用途に限らず、基板の成膜用途に用いることも可能である。
 ここで、前記生成室に供給される処理ガスが、Clガス又はSFガスである場合には、プラズマ中には主として負イオンであるCl又はSF が生成されることになる。このため、前記直流電源は、前記バイアス用電極に負電圧の直流電力を印加することが好ましい。
 上記の好ましい構成によれば、生成室にあるプラズマ中の負イオン(Cl又はSF )が、バイアス用電極の斥力によって中性化用電極に向けて加速するため、負イオンの中性化効率を高めることが可能である。
 また、前記生成室に供給される処理ガスが、Arガス又はHeガスである場合には、プラズマ中には主として正イオンであるAr又はHeが生成されることになる。このため、前記直流電源は、前記バイアス用電極に正電圧の直流電力を印加することが好ましい。
 上記の好ましい構成によれば、生成室にあるプラズマ中の正イオン(Ar又はHe)が、バイアス用電極の斥力によって中性化用電極に向けて加速するため、正イオンの中性化効率を高めることが可能である。
 さらに、前記生成室に供給される処理ガスが、Clガス又はSFガスと、Arガス又はHeガスとの混合ガスである場合には、プラズマ中には、負イオンであるCl又はSF と、正イオンであるAr又はHeとの双方が生成されることになる。このため、前記直流電源は、前記バイアス用電極に負電圧の直流電力と正電圧の直流電力とを交互に印加することが好ましい。
 上記の好ましい構成によれば、バイアス用電極に負電圧の直流電力が印加されるタイミングにおいては、生成室にあるプラズマ中の負イオン(Cl又はSF )が、バイアス用電極の斥力によって中性化用電極に向けて加速する一方、バイアス用電極に正電圧の直流電力が印加されるタイミングにおいては、生成室にあるプラズマ中の正イオン(Ar又はHe)が、バイアス用電極の斥力によって中性化用電極に向けて加速することになる。このため、負イオン及び正イオンの双方の中性化効率を高めることが可能である。
 本発明によれば、イオンの中性化効率に優れると共に、例えばエッチングに用いる場合に十分なエッチングを行うことが可能である。
本発明の実施形態に係る中性粒子ビーム処理装置の概略構成例を示す模式断面図である。 本発明の第1実施形態におけるコイル、バイアス用電極及び中性化用電極への印加電力の電圧を模式的に示す説明図である。 本発明の第2実施形態におけるコイル、バイアス用電極及び中性化用電極への印加電力の電圧を模式的に示す説明図である。 本発明の第3実施形態におけるコイル、バイアス用電極及び中性化用電極への印加電力の電圧を模式的に示す説明図である。
 以下、添付図面を適宜参照しつつ、本発明の実施形態(第1実施形態~第3実施形態)について説明する。
 最初に、第1実施形態~第3実施形態に共通する中性粒子ビーム処理装置の構成について説明し、その後に、各実施形態について順に説明する。
 <中性粒子ビーム処理装置の構成>
 図1は、本発明の実施形態(第1実施形態~第3実施形態)に係る中性粒子ビーム処理装置の概略構成例を示す模式断面図である。
 図1に示すように、本実施形態に係る中性粒子ビーム処理装置100は、チャンバ1と、コイル2と、バイアス用電極3と、中性化用電極4と、第1高周波電源5と、直流電源6と、第2高周波電源7と、パルス変調手段8とを備えている。また、本実施形態に係る中性粒子ビーム処理装置100は、ガス供給源9と、載置台10と、真空ポンプ20とを備えている。
 チャンバ1には、中性粒子ビームを生成する生成室11が上部に設けられ、中性粒子ビームによって載置台10に載置された基板Sを処理する処理室12が下部に設けられている。具体的には、中性化用電極4と中性化用電極4より上側の領域とが生成室11に相当し、中性化用電極4より下側の領域が処理室12に相当する。真空ポンプ20は、処理室12内に連通する配管(図示せず)に接続されており、中性粒子ビームによって基板Sを処理する際、真空ポンプ20による真空引きによってチャンバ1内が減圧される。
 コイル2は、チャンバ1の外部において生成室11の周りに配設され、ガス供給源9から生成室11に供給された処理ガスをプラズマ化するためのコイルである。
 バイアス用電極3は、チャンバ1内の生成室11においてコイル2の上方に配設されている。バイアス用電極3には、ガス供給源9から生成室11に供給された処理ガスが通過し得るように、多数の穴が設けられている。
 中性化用電極4は、チャンバ1内の生成室11においてコイル2の下方に配設され、コイル2によって生成されたプラズマ中のイオンが通過して該イオンを中性化するための電極である。中性化用電極4は、グラファイト等の導電体で形成されており、多数のオリフィスが形成されている。
 中性化用電極4に形成されたオリフィスの内部を通過する負イオンは、主として、オリフィスの周壁の固体表面近傍において中性化されるか、或いは、オリフィスの内部に残留している処理ガスとの電荷交換によって中性化され、中性粒子ビームとなる。また、中性化用電極4に形成されたオリフィスの内部を通過する正イオンは、主として、オリフィスの周壁の固体表面近傍において中性化されるか、オリフィスの内部に残留している処理ガスとの電荷交換によって中性化されるか、或いは、中性化用電極の表面から放出された電子と衝突して再結合することによって中性化され、中性粒子ビームとなる。
 第1高周波電源5は、コイル2に高周波電力を印加する。コイル2に印加する高周波電力の周波数は、例えば100MHzとされる。第1高周波電源5からコイル2に高周波電力が印加されることで磁界が形成され、この磁界によって誘起される電界により、生成室11に供給された処理ガスがプラズマ化する。すなわち、第1高周波電源5及びコイル2によって、誘導結合プラズマ(Inductively Coupled Plasma)が生成される。
 直流電源6は、バイアス用電極3に直流電力を印加する。後述の第1実施形態では、直流電源6は、バイアス用電極3に負電圧の直流電力を印加する。また、後述の第2実施形態では、直流電源6は、バイアス用電極3に正電圧の直流電力を印加する。さらに、後述の第3実施形態では、直流電源6は、バイアス用電極3に負電圧の直流電力と正電圧の直流電力とを交互に印加する。何れの実施形態でも、直流電源6が印加する電圧の絶対値は、例えば100Vとされる。
 第2高周波電源7は、中性化用電極4に高周波電力を印加する。中性化用電極4に印加する高周波電力の周波数は、コイル2に印加する高周波電力の周波数よりも低く、例えば600kHzとされる。
 パルス変調手段8は、出力信号の周波数やデューティ比が可変のパルス発生器81と、パルス発生器81の出力信号(パルス信号)に応じてオン・オフが切り替わるスイッチ82、83、84とを具備する。スイッチ82は、第1高周波電源5の出力端に接続され、スイッチ83は、直流電源6の出力端に接続され、スイッチ84は、第2高周波電源7の出力端に接続されている。パルス発生器81から出力されるパルス信号のオン・オフに応じて、スイッチ82~84のオン・オフが切り替わることで、第1高周波電源5、直流電源6及び第2高周波電源7からの各電力の印加のオン・オフが制御されることになる。
 <第1実施形態>
 以下、上記に説明した概略構成を有する中性粒子ビーム処理装置100の第1実施形態について説明する。
 図2は、第1実施形態におけるコイル2、バイアス用電極3及び中性化用電極4への印加電力の電圧を模式的に示す説明図である。図2(a)は、各印加電力の電圧を示す図であり、図2(a)に示すVsは、第1高周波電源5からコイル2に印加する高周波電力の電圧を意味し、Vbは、直流電源6からバイアス用電極3に印加する直流電力の電圧を意味し、Vnは、第2高周波電源7から中性化用電極4に印加する高周波電力の電圧を意味する。図2(b)は、図2(a)の時点Taにおける生成室11内のプラズマの状態を模式的に示す図である。図2(c)は、図2(a)の時点Tbにおける生成室11内のプラズマの状態を模式的に示す図である。
 図2(a)に示すように、パルス変調手段8は、第1高周波電源5からの電力の印加をオンにするとき(電圧Vsがオンのとき)に、直流電源6及び第2高周波電源7からの各電力の印加をオフにする(電圧Vb及び電圧Vnをオフにする)。一方、パルス変調手段8は、第1高周波電源5からの電力の印加をオフにするとき(電圧Vsがオフのとき)に、直流電源6及び第2高周波電源7からの各電力の印加をオンにする(電圧Vb及び電圧Vnをオンにする)。
 パルス変調手段8が具備するパルス発生器81の出力信号の周波数は、例えば、5kHz~20kHz程度に設定される。また、パルス変調手段8が具備するパルス発生器81の出力信号のデューティ比(オンデューティ比)は、例えば、5%~95%程度に設定される。パルス発生器81から出力されるパルス信号がオンのとき、スイッチ82がオンになり、第1高周波電源5からコイル2に印加する高周波電力の電圧Vsがオンになる。一方、パルス発生器81から出力されるパルス信号がオフのとき、スイッチ83、84がオンになり、直流電源6からバイアス用電極3に印加する直流電力の電圧Vbと、第2高周波電源7から中性化用電極4に印加する高周波電力の電圧Vnとがオンになる。パルス発生器81の出力信号の周波数に応じて、図2(a)に示す各電圧Vs、Vb及びVnのオン・オフの切り替え周波数が決まり、パルス発生器81の出力信号のデューティ比に応じて、図2(a)に示す各電圧Vs、Vb及びVnのオン・オフの時間比率が決まることになる。
 第1実施形態では、ガス供給源9から生成室11に供給される処理ガスは、Clガス又はSFガスである。したがい、生成室11で生成されるプラズマ中には主として負イオンであるCl又はSF が生成されることになる。このため、第1実施形態では、図2(a)に示す時点Taのように、直流電源6からの印加がオンの際に、直流電源6がバイアス用電極3に負電圧Vbの直流電力を印加する。これにより、図2(b)に示すように、生成室11にあるプラズマ中の負イオン(Cl又はSF )が、バイアス用電極3の斥力Frによって中性化用電極4に向けて加速する。この斥力Frは、負イオンがバイアス用電極3に近い位置にあるほど大きく、中性化用電極4に近づくにつれて小さくなる。また、生成室11にあるプラズマ中の負イオンが、中性化用電極4に印加される高周波電力の電圧Vnが正のときに中性化用電極4の引力Faによって中性化用電極4に引き込まれることになる。この引力Faは、負イオンが中性化用電極4に近い位置にあるほど大きくなる。以上のようにして、負イオンの中性化効率を高めることが可能である。
 なお、ガス供給源9から生成室11に供給される処理ガスがSFガスである場合、生成されるプラズマ中に、負イオンであるSF 以外に、正イオンであるSF が存在する場合も考えられる。この正イオンは、図2(a)に示す時点Tbのように、コイル2に印加する高周波電力の電圧Vsがオンのときに電子温度が高くなって多く生成されると考えられる。したがい、コイル2に印加する高周波電力の電圧Vsがオンのときに、仮にバイアス用電極3に印加する直流電力の電圧Vbをオン(負電圧)にした状態(すなわち、直流電力の電圧Vbを常時オンにした状態)では、バイアス用電極3に多くの正イオン(SF )が蓄積されることで、バイアス用電極3を負電圧に維持することが妨げられると考えられる。したがい、前述のように、第1高周波電源5からの電力の印加をオンにするとき(電圧Vsがオンのとき)に、直流電源6からの電力の印加をオフにする(電圧Vbをオフにする)ことで、バイアス用電極3への正イオン(SF )の蓄積を防止している。第1高周波電源5からコイル2への電力の印加をオンにするとき(電圧Vsがオンのとき)には、直流電源6からバイアス用電極3への電力の印加をオフにする(電圧Vbをオフにする)と共に、第2高周波電源7から中性化用電極4への電力の印加をオフにする(電圧Vnをオフにする)ため、図2(c)に示すように、生成室11にあるプラズマ中の正イオン(SF )には、バイアス用電極3の斥力や中性化用電極4の引力が働くことがない。
 <第2実施形態>
 図3は、第2実施形態におけるコイル2、バイアス用電極3及び中性化用電極4への印加電力の電圧Vs、Vb及びVnを模式的に示す説明図である。図3(a)は、各印加電力の電圧を示す図であり、図3(b)は、図3(a)の時点Tcにおける生成室11内のプラズマの状態を模式的に示す図である。
 第2実施形態は、第1実施形態と比べて、ガス供給源9から生成室11に供給される処理ガスの種類と、直流電源6がバイアス用電極3に印加する電圧Vbの極性とが異なる。他の部分については、第1実施形態と同様であるため、第1実施形態と異なる点についてのみ、以下に説明する。
 第2実施形態では、ガス供給源9から生成室11に供給される処理ガスは、Arガス又はHeガスである。したがい、生成室11で生成されるプラズマ中には主として正イオンであるAr又はHeが生成されることになる。このため、第2実施形態では、図3(a)に示す時点Tcのように、直流電源6からの印加がオンの際に、直流電源6がバイアス用電極3に正電圧Vbの直流電力を印加する。これにより、図3(b)に示すように、生成室11にあるプラズマ中の正イオン(Ar又はHe)が、バイアス用電極3の斥力Frによって中性化用電極4に向けて加速する。この斥力Frは、正イオンがバイアス用電極3に近い位置にあるほど大きく、中性化用電極4に近づくにつれて小さくなる。また、生成室11にあるプラズマ中の正イオンが、中性化用電極4に印加される高周波電力の電圧Vnが負のときに中性化用電極4の引力Faによって中性化用電極4に引き込まれることになる。この引力Faは、正イオンが中性化用電極4に近い位置にあるほど大きくなる。以上のようにして、正イオンの中性化効率を高めることが可能である。
 <第3実施形態>
 図4は、第3実施形態におけるコイル2、バイアス用電極3及び中性化用電極4への印加電力の電圧Vs、Vb及びVnを模式的に示す説明図である。図4(a)は、各印加電力の電圧を示す図であり、図4(b)は、第3実施形態における直流電源6及びパルス変調手段8の具体的構成例を示す図である。
 第3実施形態は、第1実施形態と比べて、ガス供給源9から生成室11に供給される処理ガスの種類と、直流電源6がバイアス用電極3に印加する電圧Vbの極性とが異なる。他の部分については、第1実施形態と同様であるため、第1実施形態と異なる点についてのみ、以下に説明する。
 第3実施形態では、ガス供給源9から生成室11に供給される処理ガスは、Clガス又はSFガスと、Arガス又はHeガスとの混合ガスである。したがい、生成室11で生成されるプラズマ中には、負イオンであるCl又はSF と、正イオンであるAr又はHeとの双方が生成されることになる。このため、第3実施形態では、図4(a)に示すように、直流電源6からの印加がオンの際に、パルス変調手段8によって、直流電源6からバイアス用電極3に負電圧Vbの直流電力と正電圧Vbの直流電力とが交互に印加される。図4(a)に示す例では、直流電源6からの印加がオンになった際(第1高周波電源5からの印加がオフになった際)に、先に負電圧Vbの直流電力が印加され、次に直流電源6からの印加がオンになった際(第1高周波電源5からの印加がオフになった際)に、正電圧Vbの直流電力が印加されている。
 具体的には、第3実施形態では、例えば、図4(b)に示すように、直流電源6を、負電圧Vbの直流電力を出力する直流電源6aと、正電圧Vbの直流電力を出力する直流電源6bとを具備する構成とする。また、パルス変調手段8のスイッチ83を、直流電源6aの出力端に接続されるスイッチ83aと、直流電源6bの出力端に接続されるスイッチ83bとを具備する構成とする。そして、パルス発生器81から出力されるパルス信号のオン・オフに応じて、スイッチ83a、83bのオン・オフが交互に切り替わることで、直流電源6aと直流電源6bとが交互にバイアス用電極3に接続され、これにより、直流電源6aから出力される負電圧Vbの直流電力と直流電源6bから出力される正電圧Vbの直流電力とがバイアス用電極3に交互に印加される構成を例示できる。
 第3実施形態では、バイアス用電極3に負電圧Vbの直流電力が印加されるタイミングにおいては、生成室11にあるプラズマ中の負イオン(Cl又はSF )が、バイアス用電極3の斥力Frによって中性化用電極4に向けて加速する一方、バイアス用電極3に正電圧Vbの直流電力が印加されるタイミングにおいては、生成室11にあるプラズマ中の正イオン(Ar又はHe)が、バイアス用電極3の斥力Frによって中性化用電極4に向けて加速することになる。このため、負イオン及び正イオンの双方の中性化効率を高めることが可能である。
1・・・チャンバ
2・・・コイル
3・・・バイアス用電極
4・・・中性化用電極
5・・・第1高周波電源
6・・・直流電源
7・・・第2高周波電源
8・・・パルス変調手段
11・・・生成室
12・・・処理室
100・・・中性粒子ビーム処理装置
S・・・基板

Claims (4)

  1.  中性粒子ビームを生成する生成室が上部に設けられ、前記中性粒子ビームによって基板を処理する処理室が下部に設けられたチャンバと、
     前記チャンバの外部において前記生成室の周りに配設され、前記生成室に供給された処理ガスをプラズマ化するためのコイルと、
     前記チャンバ内の前記生成室において前記コイルの上方に配設されたバイアス用電極と、
     前記チャンバ内の前記生成室において前記コイルの下方に配設され、前記コイルによって生成されたプラズマ中のイオンが通過して該イオンを中性化するための中性化用電極と、
     前記コイルに高周波電力を印加する第1高周波電源と、
     前記バイアス用電極に直流電力を印加する直流電源と、
     前記中性化用電極に高周波電力を印加する第2高周波電源と、
     前記第1高周波電源、前記直流電源及び前記第2高周波電源からの各電力の印加のオン・オフを制御するパルス変調手段と、
    を備え、
     前記パルス変調手段は、前記第1高周波電源からの電力の印加をオンにするときに、前記直流電源及び前記第2高周波電源からの各電力の印加をオフにし、前記第1高周波電源からの電力の印加をオフにするときに、前記直流電源及び前記第2高周波電源からの各電力の印加をオンにする、
    ことを特徴とする中性粒子ビーム処理装置。
  2.  前記生成室に供給される処理ガスは、Clガス又はSFガスであり、
     前記直流電源は、前記バイアス用電極に負電圧の直流電力を印加する、
    ことを特徴とする請求項1に記載の中性粒子ビーム処理装置。
  3.  前記生成室に供給される処理ガスは、Arガス又はHeガスであり、
     前記直流電源は、前記バイアス用電極に正電圧の直流電力を印加する、
    ことを特徴とする請求項1に記載の中性粒子ビーム処理装置。
  4.  前記生成室に供給される処理ガスは、Clガス又はSFガスと、Arガス又はHeガスとの混合ガスであり、
     前記直流電源は、前記バイアス用電極に負電圧の直流電力と正電圧の直流電力とを交互に印加する、
    ことを特徴とする請求項1に記載の中性粒子ビーム処理装置。
PCT/JP2017/011874 2017-03-23 2017-03-23 中性粒子ビーム処理装置 WO2018173227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/011874 WO2018173227A1 (ja) 2017-03-23 2017-03-23 中性粒子ビーム処理装置
JP2019506860A JPWO2018173227A1 (ja) 2017-03-23 2017-03-23 中性粒子ビーム処理装置
TW107109602A TW201840250A (zh) 2017-03-23 2018-03-21 中性粒子束處理裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/011874 WO2018173227A1 (ja) 2017-03-23 2017-03-23 中性粒子ビーム処理装置

Publications (1)

Publication Number Publication Date
WO2018173227A1 true WO2018173227A1 (ja) 2018-09-27

Family

ID=63586364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011874 WO2018173227A1 (ja) 2017-03-23 2017-03-23 中性粒子ビーム処理装置

Country Status (3)

Country Link
JP (1) JPWO2018173227A1 (ja)
TW (1) TW201840250A (ja)
WO (1) WO2018173227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244638A1 (ja) * 2021-05-19 2022-11-24 東京エレクトロン株式会社 プラズマ処理装置及びrfシステム
JP7374362B2 (ja) 2019-11-26 2023-11-06 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289584A (ja) * 2001-03-26 2002-10-04 Ebara Corp 表面処理方法
JP2002289581A (ja) * 2001-03-26 2002-10-04 Ebara Corp 中性粒子ビーム処理装置
JP2005259873A (ja) * 2004-03-10 2005-09-22 Oki Electric Ind Co Ltd エッチング方法
JP2009290025A (ja) * 2008-05-29 2009-12-10 Tohoku Univ 中性粒子照射型cvd装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289584A (ja) * 2001-03-26 2002-10-04 Ebara Corp 表面処理方法
JP2002289581A (ja) * 2001-03-26 2002-10-04 Ebara Corp 中性粒子ビーム処理装置
JP2005259873A (ja) * 2004-03-10 2005-09-22 Oki Electric Ind Co Ltd エッチング方法
JP2009290025A (ja) * 2008-05-29 2009-12-10 Tohoku Univ 中性粒子照射型cvd装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374362B2 (ja) 2019-11-26 2023-11-06 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
WO2022244638A1 (ja) * 2021-05-19 2022-11-24 東京エレクトロン株式会社 プラズマ処理装置及びrfシステム

Also Published As

Publication number Publication date
JPWO2018173227A1 (ja) 2019-07-18
TW201840250A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
US6849857B2 (en) Beam processing apparatus
US7029594B2 (en) Plasma processing method
US20140263182A1 (en) Dc pulse etcher
JP6009171B2 (ja) 基板処理装置
WO2002078042A2 (en) Neutral particle beam processing apparatus
JP5636038B2 (ja) プラズマを用いた処理システムを動作させる方法
TWI571903B (zh) A plasma processing apparatus and a plasma processing method
WO2018173227A1 (ja) 中性粒子ビーム処理装置
JPH05148644A (ja) スパツタリング装置
KR100903295B1 (ko) 이온빔 발생 장치 및 이온 빔 발생 방법
US6909086B2 (en) Neutral particle beam processing apparatus
US5519213A (en) Fast atom beam source
KR100972371B1 (ko) 복합 플라즈마 소스 및 이를 이용한 가스 분리 방법
WO2012011171A1 (ja) エッチング装置
US6858838B2 (en) Neutral particle beam processing apparatus
US7316764B2 (en) System and method for performing sputter etching using independent ion and electron sources and a substrate biased with an a-symmetric bi-polar DC pulse signal
US7060931B2 (en) Neutral beam source having electromagnet used for etching semiconductor device
CN111916327B (zh) 多频率多阶段的等离子体射频输出的方法及其装置
JP2008108745A (ja) 中性粒子ビーム処理装置
JPH05331634A (ja) スパッタリング装置
Hutsel et al. Charged-particle emission and self-biasing of a piezoelectric transformer plasma source
JP2019003899A (ja) イオン生成装置及びイオン生成方法
JP6666599B2 (ja) 基板処理装置
CN104599928A (zh) 一种游离气体的方法
KR100735668B1 (ko) 개선된 이온빔 소오스 및 이온빔 추출방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506860

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17901491

Country of ref document: EP

Kind code of ref document: A1