WO2018169056A1 - バラスト水処理装置 - Google Patents

バラスト水処理装置 Download PDF

Info

Publication number
WO2018169056A1
WO2018169056A1 PCT/JP2018/010477 JP2018010477W WO2018169056A1 WO 2018169056 A1 WO2018169056 A1 WO 2018169056A1 JP 2018010477 W JP2018010477 W JP 2018010477W WO 2018169056 A1 WO2018169056 A1 WO 2018169056A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
ballast water
ballast
water pipe
disinfectant
Prior art date
Application number
PCT/JP2018/010477
Other languages
English (en)
French (fr)
Inventor
藤原 茂樹
辻 猛志
剛 菅
真理 山下
耕太 原
Original Assignee
Jfeエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to EP18768511.0A priority Critical patent/EP3597606A4/en
Priority to KR1020197022572A priority patent/KR102197982B1/ko
Priority to CN201880018605.XA priority patent/CN110392671A/zh
Priority to JP2019506302A priority patent/JP6726414B2/ja
Publication of WO2018169056A1 publication Critical patent/WO2018169056A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J4/00Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
    • B63J4/002Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/49Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3132Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices
    • B01F25/31324Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit by using two or more injector devices arranged concentrically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/919Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings
    • B01F2025/9191Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component
    • B01F2025/919125Direction of flow or arrangement of feed and discharge openings characterised by the disposition of the feed and discharge openings characterised by the arrangement of the feed openings for one or more flows, e.g. for the mainflow and the flow of an additional component with feed openings in the center and at the circumference of the main flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/008Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/001Build in apparatus for autonomous on board water supply and wastewater treatment (e.g. for aircrafts, cruiseships, oil drilling platforms, railway trains, space stations)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention

Definitions

  • the present invention relates to seawater, brackish water, fresh water and other water (ballast water contained in a ballast tank) that is taken from outside the ship, transported in a ballast water pipe in the ship, and contained in the ballast tank in the ship as ballast water.
  • a ballast water an agent that performs sterilization using the bactericidal action of free active chlorine (hereinafter referred to as a separate water).
  • chlorine-based disinfectant relates to a ballast water treatment apparatus provided with a disinfectant supply device configured to inject the ballast water pipe into the ballast water pipe.
  • the sterilizing agent supply device without being used for sterilizing brackish water, fresh water or other water, or a pipe connected to the sterilizing agent supply device, and a pump or valve attached to the piping At least a part of the chlorine-based disinfectant or its constituent substances (hereinafter referred to as a separate unit) remaining inside the tank, measuring device, etc. (hereinafter collectively referred to as “piping path” connected to the disinfectant supply device)
  • piping path connected to the disinfectant supply device
  • the present invention relates to a ballast water treatment apparatus provided with a mechanism that removes the “bactericide residue” from the inside by discharging the ball into the ballast water pipe.
  • ballast water treatment that sterilizes ship's ballast water with a disinfectant is, after filtering seawater taken from outside the ship, injecting chlorine-based disinfectant into the filtered seawater, Sterilization treatment (hereinafter referred to as “sterilization treatment during flooding”) for sterilizing the ballast water contained in the ballast tank by storing the seawater in the ballast tank or irrigating the ballast tank with seawater after the sterilizing agent is injected; Contains a reducing substance that has the effect of reducing or eliminating the free active chlorine that has been oxidized by taking in the seawater already injected with the bactericide stored in the tank as ballast water from the ballast tank.
  • the outboard drainage is rendered harmless to a permissible level, and then Composed of two of the processing of the reduction process of drainage to the outboard (hereinafter referred to as “waste water during the reduction process").
  • reducing agent chemical
  • waste water during the reduction process treatment using an aqueous solution of a chlorinated chemical containing free effective chlorine as a chlorinated sterilant is known.
  • a chlorinated medicine means the chemical
  • Aqueous solutions of chlorinated drugs can be obtained by mixing chlorinated drugs that are liquid at room temperature with water or diluting with water, or by dissolving chlorinated drugs that are in the form of powder, granules, tablets, or other solids in water at room temperature. Can be prepared.
  • ballast water stored in a ballast tank using an aqueous solution of chlorinated chemicals When sterilizing ballast water stored in a ballast tank using an aqueous solution of chlorinated chemicals, it is used for sterilization of ballast water in the inside of the sterilizing agent supply device or the piping path connected to it after completion of the sterilization process during flooding.
  • the remaining aqueous solution of chlorinated chemicals remains.
  • This residue causes precipitation of the chlorinated drug or its component substances by concentration due to evaporation of the solvent water, or by a decrease in the solubility of the chlorinated drug in water accompanying a decrease in temperature (
  • the chlorinated drug is sodium dichloroisocyanurate, isocyanuric acid is precipitated as a solid).
  • the precipitation is particularly likely to occur in a liquid contact region between an aqueous solution of a chlorinated chemical and a pipe or a device such as a pump, a valve, a tank, or a measuring instrument attached to the pipe.
  • the deposits of chlorine-based chemicals or their component substances may grow, accumulate, and solidify in the disinfectant supply device or the piping path connected to it over time.
  • the fear becomes particularly large when the raw material of the bactericide is a solid chlorine-based chemical. This is because, when the raw material is solid, the evaporation of water as a solvent and the decrease in the solubility of the raw material in water are directly linked to the generation of precipitates of the components of the raw material.
  • the generation, accumulation, and solidification of the above deposits are caused by problems such as clogging of pipes, increased pressure loss and other distribution problems, malfunctions of equipment such as pumps, valves, tanks, and measuring equipment attached to the pipes (hereinafter collectively, This may cause “operation failure” due to the disinfectant residue), and thus hinder the normal execution of the ballast water treatment.
  • the aqueous solution of chlorine-based chemicals or at least part of the component substances remaining in the disinfectant supply device or in the piping path connected to the disinfectant supply device after sterilization during flooding is directed toward the ballast water piping.
  • a ballast water treatment device having a mechanism for discharging and removing it from the inside of a disinfectant supply device or a piping path connected thereto is known (Patent Document 1).
  • This mechanism is supplied from the disinfectant supply device after (A) the disinfectant residue existing in the disinfectant supply device or the piping path connected to the disinfectant, or after reacting with the reducing substance in advance. Injecting into the ballast water pipe from an injection part (sterilant injection part) or a dedicated injection part (residue injection part) for injecting the chlorine-based disinfectant into the ballast water pipe, Injecting the reducing agent from an injection part (reducing agent injection part) for injecting the reducing agent supplied from the reducing agent supply device into the ballast pipe at a position downstream of the residue injection part, or (B) Before injecting the disinfectant residue existing inside the disinfectant supply device or the piping path connected to it into the ballast water piping, after reacting with the reducing substance in advance, from the disinfectant injecting unit or the residue injecting unit In ballast piping By entering, the fungicide residue, the reducing agent is also to the reaction, reducing the free available chlorine from the disinfectant residue reduces or disappears, a mechanism for detoxification.
  • chlorinated fungicides are chlorinated isocyanuric acid compounds such as trichloroisocyanuric acid, sodium dichloroisocyanurate or its hydrate, potassium dichloroisocyanurate, and the like.
  • a typical example of the reducing agent is sodium sulfite or sodium thiosulfate or an aqueous solution thereof.
  • a typical example of the reducing substance in the above (B) is a reducing agent supplied from a reducing agent supply device or a diluted solution thereof.
  • the mechanism (A) since the reducing agent injection part is located downstream from the bactericide injection part or the residue injection part, if the seawater in the ballast water pipe is stopped, the ballast water The disinfectant residue injected into the pipe cannot be sufficiently reacted with the reducing agent injected into the ballast water pipe and cannot be rendered harmless. That is, when the seawater in the ballast water pipe is stopped, the mechanism (A) cannot sufficiently fulfill its role.
  • the present invention has been made in view of the above problems, and when removing a sterilizing agent residue from the inside of a piping path connected to the sterilizing agent supply device or the sterilizing agent supply device, seawater is generated in the ballast water pipe. Regardless of whether it is flowing or stopped, the disinfectant residue can be detoxified by reaction with the reducing agent, and the disinfectant supplying apparatus or the It is an object of the present invention to provide a ballast water treatment apparatus capable of wiping out the adverse effects of adverse effects on the piping path connected thereto.
  • a ballast water treatment device for solving the above-described problem is a ballast water treatment device for sterilizing ballast water stored in a ballast tank of a ship, and takes water from outside the ship.
  • a sterilizing agent supply device for supplying an aqueous solution of a chlorinated substance as a chlorinated disinfectant into a ballast water pipe for transferring the generated seawater, brackish water, fresh water or other water to the ballast tank;
  • a reducing agent supply device that supplies a reducing agent that reacts with a component substance into the ballast water pipe is connected to the sterilizing agent supply apparatus, and transfers the chlorinated sterilizing agent or the component substance toward the ballast water pipe.
  • a first pipe that is connected to the reducing agent supply device, a second pipe that transfers the reducing agent toward the ballast water pipe, and the first pipe and the second pipe are connected to each other. Injecting the chlorine-based disinfectant or its component substance transferred from the first pipe into the ballast water pipe and injecting the reducing agent transferred from the second pipe into the ballast water pipe And the chlorine-based disinfectant or its component substances are not mixed with the reducing agent until reaching the injection part through the first pipe, and After being supplied into the ballast water pipe, it is mixed with the reducing agent.
  • the ballast water treatment apparatus is the ballast water treatment apparatus according to the first aspect, wherein the chlorinated disinfectant or a component material thereof is not used for sterilization of ballast water. It is at least a part of what is left in the sterilizing agent supply device or the first pipe.
  • the ballast water treatment apparatus is the ballast water treatment apparatus according to the second aspect, wherein the chlorine-based disinfectant or a component substance thereof is used together with the reducing agent or the reducing agent described above. After being injected into the ballast water pipe from the injection part, it is injected into the ballast water pipe from the injection part.
  • ballast water treatment apparatuses according to the fourth to sixth aspects of the present invention are ballast water treatment apparatuses according to the first to third aspects, respectively, wherein the injecting section connects the first pipe to the inner pipe. And having a double pipe structure in which the second pipe is an outer pipe.
  • the ballast water treatment devices according to the seventh and ninth embodiments of the present invention are ballast water treatment devices according to fourth to sixth embodiments, respectively, wherein the tip of the first pipe is the second ballast water treatment device. It is arranged at a position closer to the cross-sectional center of the ballast water pipe than the tip of the pipe, and the first pipe extends into the ballast water pipe longer than the second pipe. To do.
  • ballast water treatment apparatuses according to the tenth and twelfth aspects of the present invention are ballast water treatment apparatuses according to the fourth to sixth aspects, respectively, wherein the tip of the first pipe is the ballast water pipe. It is characterized by being located in a range that is separated from the cross-sectional center by a distance half the cross-sectional radius in the direction past the cross-sectional center or in the opposite direction.
  • ballast water treatment apparatuses according to the thirteenth and fourteenth aspects of the present invention are ballast water treatment apparatuses according to the first and second aspects, respectively, and are circulated or stopped in the ballast water pipe.
  • the ballast water treatment apparatuses according to the fifteenth and sixteenth aspects of the present invention are ballast water treatment apparatuses according to the first and second aspects, respectively, and the return piping path is circulated within the ballast water pipe.
  • This is a piping path for returning seawater, brackish water, fresh water or other water that is stopped or stopped from a position downstream of the injection section to a position upstream of the injection section and downstream of the ballast pump. It is characterized by this.
  • the ballast water treatment apparatuses according to the seventeenth and eighteenth aspects of the present invention are the ballast water treatment apparatuses according to the thirteenth and fourteenth aspects, respectively, and the return piping path circulates within the ballast water pipe.
  • This is a piping path for returning seawater, brackish water, fresh water or other water that is stopped or stopped from a position downstream of the injection section to a position upstream of the injection section and downstream of the ballast pump. It is characterized by this.
  • the ballast water treatment apparatus is a ballast water treatment apparatus according to any one of the seventh to ninth aspects, wherein the tip of the first pipe extends from the cross-sectional center of the ballast water pipe. It is characterized by being located in a range that is separated by a distance half the cross-sectional radius in the direction that passes or vice versa.
  • the sterilizing agent supply device or the sterilizing agent residue present in the piping path connected to the sterilizing agent supply device is removed from the inside by injecting into the ballast water piping from the injecting portion.
  • At least one of the following effects 1 to 5 is achieved.
  • the effect of the first embodiment of the present invention is an effect common to the other embodiments of the present invention.
  • the disinfectant residue passes through the first pipe and the reducing agent passes through the second pipe, that is, both the disinfectant residue and the reducing agent are respectively present. From different pipes to the injection part, and then from the same injection part (more precisely, one or more openings provided in the same injection part that open into the ballast water pipe) It is injected into the ballast water pipe. Therefore, according to this first form, until both the disinfectant residue and the reducing agent both reach the same injection part and then merge, they do not contact or mix with each other and do not react and thus reduce Since no reaction heat is generated, the reduction reaction heat does not adversely affect the bactericide supply device or the piping path connected thereto.
  • both the disinfectant residue and the reducing agent are mixed into the ballast water from the same injection part. Since they are injected into the pipe, both substances are close to or in contact with each other immediately after the injection, and the opportunity to react with each other in the ballast water pipe after the injection is maintained. Therefore, according to the first embodiment, it is possible to reduce or eliminate free effective chlorine derived from the disinfectant residue regardless of whether seawater is stopped or flowing in the ballast water pipe. Thereby, the disinfectant residue can be finally detoxified.
  • the reaction between the disinfectant residue and the reducing agent occurs in the ballast water pipe having a large internal volume, and is also caused by seawater normally present in the ballast water pipe. Since the cooling action also works, the temperature rise due to the heat of the reduction reaction is suppressed by the cooling action of the seawater. Therefore, according to this 1st form, the said reduction reaction heat does not have a bad influence with respect to a disinfectant supply apparatus or the piping path
  • the heat of reduction reaction is applied to the disinfectant supply device and its components before the disinfectant residue and the reducing agent are injected into the ballast water pipe. Have no negative effect. Therefore, according to the first embodiment, a reducing agent having a high concentration of a substance having a reducing action or a substance having a stronger reducing action can be used.
  • the heat of reduction reaction generated in the ballast water pipe is usually in the ballast water pipe because of the large internal volume in the ballast water pipe. Since the cooling action by the existing seawater also works, it does not reach the point where the disinfectant supply device and its components are adversely affected. Therefore, according to the first embodiment, as the reducing agent, a substance having a high concentration of a reducing action or a substance having a stronger reducing action can be used.
  • the disinfectant residue corresponds to a chlorine-based disinfectant or a component material thereof, and a chlorine-based disinfectant for disinfecting ballast water stored in a ballast tank also corresponds to this. Therefore, the first embodiment of the present invention is not limited to the case where the substance injected into the ballast water pipe from the injection section through the first pipe is a disinfectant residue, and the ballast water stored in the ballast tank is not limited. The case where a chlorine-based disinfectant for sterilization is the substance is also included.
  • the substance injected into the ballast water pipe from the injection section through the first pipe is not used for sterilization of the ballast water, but the sterilizing agent supply device or the above It is limited to a case where it is at least a part of what remains in the first pipe, that is, a disinfectant residue.
  • the second embodiment has the same effect as the first embodiment of the present invention.
  • the timing for injecting a substance (including a disinfectant residue) into the ballast water pipe through the first pipe, and the reducing agent through the second pipe is supplied with the ballast water pipe.
  • the first and second embodiments of the present invention are not limited to any of the following cases (i) to (iii), and are not excluded in any case.
  • a substance is injected into the ballast water pipe through the first pipe, and simultaneously, a reducing agent is injected into the ballast water pipe through the second pipe.
  • the reducing agent Before the substance is injected into the ballast water pipe through the first pipe, the reducing agent is injected into the ballast water pipe through the second pipe.
  • the reducing agent is injected into the ballast water pipe through the second pipe.
  • the third embodiment of the present invention is limited to the above case (i) or (ii), and excludes the case (iii). Therefore, according to this 3rd form, the substance inject
  • both the disinfectant residue and the reducing agent are injected into the ballast water pipe 3 at the same time, or [c2] It is desirable to inject the reducing agent into the ballast water pipe 3 and make it exist in the seawater in the ballast water pipe 3, and then inject the disinfectant residue toward the place where the reducing agent is present. If the disinfectant residue is injected into the ballast water pipe 3 before the reducing agent, if the disinfectant residue is dense (especially when solidified material is contained), the reducing agent is sufficient in a shorter time. It becomes difficult to react.
  • the chlorine-based disinfectant or its component substance is injected into the ballast water pipe from the injection section together with the reducing agent or after the reducing agent is injected from the injection section into the ballast water pipe. Therefore, the mutual mixing and reaction of the two substances in the ballast water pipe can be efficiently advanced. Therefore, according to the third embodiment of the present invention, compared to the first or second embodiment, the substance (sterilant residue remaining in the ballast water pipe is injected from the injection section through the first pipe. The free effective chlorine contained in (including) can be reduced or eliminated, and the substance can be made harmless efficiently.
  • the injection section has a double pipe structure in which the first pipe is an inner pipe and the second pipe is an outer pipe.
  • the reducing agent is injected into the ballast water pipe from the second pipe into the ballast water pipe, the former bactericidal residue is encased in the latter reducing agent, and the bactericidal residue is reduced. It can be sufficiently mixed and reacted with the agent, and detoxification can be realized more easily or efficiently.
  • the tip of the first pipe is disposed closer to the cross-sectional center of the ballast water pipe than the tip of the second pipe. Then, the tip of the first pipe is more negative from the higher-speed ballast water flowing near the center of the cross section of the ballast water pipe than when the tip of the first pipe is near the inner wall surface of the ballast water pipe. Since the pressure is received, the negative pressure causes a suction force acting in the direction from the first pipe to the ballast water pipe at the tip of the first pipe. Therefore, according to the fifth and sixth embodiments of the present invention, even if the disinfectant residue has been solidified, deposited, or solidified and has decreased fluidity, it can be easily put into the ballast water pipe by the suction force. Can be moved to.
  • the tip of the first pipe is located closer to the cross-sectional center of the ballast water pipe than the tip of the second pipe, and coincides with the cross-sectional center. It is not necessary to extend to the position where it is.
  • the tip of the first pipe may extend to a position close to the cross-sectional center without reaching the cross-sectional center, or may extend to a position past the cross-sectional center.
  • the tip of the second pipe need not be disposed closer to the center of the cross section of the ballast water pipe than the tip of the first pipe.
  • the tip of the second pipe is also arranged near the center of the cross section. It is preferable to do.
  • the tip of the first pipe is separated from the center of the cross-section of the ballast water pipe by a distance half the cross-section radius in the direction past the center of the cross-section or in the opposite direction. Therefore, at the tip of the first pipe, a suction force acting from the inside of the first pipe to the inside of the ballast water pipe acts, and solidification, deposition, or solidification progresses and the fluidity is increased. Even if the disinfectant residue is lowered, it can be moved relatively easily into the ballast water pipe by the suction force.
  • seawater, brackish water, fresh water and other water in the ballast water pipe are returned. Since the return is made from the downstream side to the upstream side of the ballast water pipe through the pipe path, the stirring of the water to be treated is promoted. Therefore, when injecting a chlorine-based disinfectant into the water to be treated, the disinfecting effect can be promoted, and free effective chlorine derived from the chlorine-based disinfectant and the disinfectant residue remains in the water to be treated. In this case, the mixing and reaction of the chlorine-based disinfectant and / or the disinfectant residue and the reducing agent, and thus detoxification of the water to be treated can be promoted.
  • seawater, brackish water, fresh water, and other water in the ballast water pipe are injected.
  • the chlorine-based disinfectant is injected into the ballast water pipe from the injection part, the mixing of the chlorine-based disinfectant and the water to be treated, and thus sterilization is promoted.
  • the mixing and reaction of the bactericidal residue and the reducing agent can be further promoted, and the bactericidal residue can be made harmless efficiently.
  • the effects exhibited by the thirteenth and fourteenth aspects can be obtained.
  • the disinfectant residue can be rendered harmless by the reaction with the reducing agent, and is rendered harmless.
  • the fear of adverse effects on the bactericidal agent supply device and its components due to the heat of the reduction reaction generated at the time can be eliminated.
  • the "chlorine-based disinfectant or its component substance” supplied from the disinfectant supply device into the ballast water pipe is the disinfectant residue remaining in the disinfectant supply device or the piping path connected thereto. May be a chlorine-based disinfectant or a component material thereof.
  • the “injection part” for injecting the “chlorine-based disinfectant or its component substance” transferred from the first line into the ballast water line is connected to the first line, and the disinfectant residue Is injected into the ballast water pipe (a portion corresponding to “residue inlet Id” in Japanese Patent No.
  • chlorine is used to sterilize seawater to be stored in the ballast tank as ballast water.
  • Chlorine which also serves as an injection portion (a portion corresponding to “bactericidal agent inlet Is” in Japanese Patent No. 5924447) for injecting a “system sterilizing agent or its component substance” into the ballast water pipe (“bactericidal agent inlet in Japanese Patent No. 5924447”) And a portion corresponding to the residue injection port Is / Id ”.
  • the heat of reduction reaction generated by the reaction of the disinfectant residue with the reducing agent does not occur until both substances reach the injection part and then merge, Occurs only after being injected into the ballast water pipe, so that the adverse effect of the heat of reduction reaction does not affect the disinfectant supply device or the piping path connected thereto, but also the reducing agent supply device or the piping path connected thereto. It doesn't reach.
  • each form of the present invention is a reducing agent in which the seawater in the ballast water pipe to which the mixing device is attached is circulating, or the concentration of the substance having a reducing action is higher or the reducing action is stronger.
  • the present invention is not limited to the case where the seawater in the ballast water pipe is stopped or the case where a reducing agent having a lower concentration of the substance having a reducing action is used. However, it has the effect.
  • the chlorinated fungicide or its raw material or component is a chlorinated isocyanuric acid compound such as trichloroisocyanuric acid, sodium dichloroisocyanurate or its hydrate, potassium dichloroisocyanurate, etc.
  • the reducing agent frequently used in some cases is sodium sulfite or a hydrate thereof, sodium thiosulfate or a hydrate thereof, or an aqueous solution thereof.
  • the reducing agent is an aqueous solution of sodium sulfite or sodium thiosulfate
  • the fluidity is sufficiently high, so the tip of the second pipe must be placed closer to the center of the cross section of the ballast water pipe than the tip of the first pipe There is no.
  • the tip of the second pipe is also placed near the center of the cross section. Is preferable.
  • FIG. 2 is a view showing a first example of the structure of the injection portion of the ballast water treatment apparatus shown in FIG. 1
  • (A) is a sectional view in a plane including the central axis of the ballast water pipe
  • (B) is the drawing. It is sectional drawing in a surface perpendicular
  • FIG. 4 is a view showing a second example of the injection portion of the ballast water treatment apparatus shown in FIG.
  • FIG. 4 is a view showing a third example of the injection portion of the ballast water treatment apparatus shown in FIG. 1, (A) is a cross-sectional view in a plane including the central axis of the ballast water pipe, and (B) is the center. It is sectional drawing in the surface orthogonal to an axis.
  • FIG. 4 is a view showing a third example of the injection portion of the ballast water treatment apparatus shown in FIG. 1, (A) is a cross-sectional view in a plane including the central axis of the ballast water pipe, and (B) is the center. It is sectional drawing in the surface orthogonal to an axis.
  • FIG. 1 A is sectional drawing in the surface containing the center axis line of a ballast water piping
  • B is this center. It is sectional drawing in the surface orthogonal to an axis.
  • FIG. 1 figures which show the 5th example about the injection
  • FIG. 1 is a schematic block diagram of the ballast water treatment apparatus which concerns on 2nd embodiment of this invention.
  • (A) is a schematic block diagram of the ballast water treatment apparatus which concerns on 3rd embodiment of this invention
  • (B) is a figure which shows the modification about the return piping path
  • FIG. 1 is a schematic block diagram of an apparatus
  • FIG. 1 shows a ballast water flooding operation
  • C shows a residue reduction treatment operation
  • D shows a ballast water draining operation.
  • Chlorine-based drug means a drug capable of releasing free effective chlorine having a bactericidal action or a substance capable of releasing the free effective chlorine by disproportionation in an aqueous solution when dissolved in water as a solvent. In the present invention, it may be “solid” or “liquid”. “Solid” means a powder, granule, tablet or other solid state at normal temperature. In the present invention, “chlorine drug” does not need to be “solid”.
  • solid chlorinated drugs are trichloroisocyanuric acid, sodium dichloroisocyanurate and hydrates thereof, potassium dichloroisocyanurate, and the like.
  • the “chlorine-based disinfectant” is an agent that sterilizes using the disinfecting action of free effective chlorine, and a typical example thereof is an aqueous solution of a chlorine-based agent.
  • “Reducing agent” refers to a drug used to receive electrons from other substances, whether solid or not.
  • a chlorine-based disinfectant a chlorine-based disinfectant or its component substance It is a substance used to reduce free effective chlorine derived from Typical examples of the reducing agent are sodium sulfite or a hydrate thereof, sodium thiosulfate or a hydrate thereof, or an aqueous solution thereof.
  • “Ballast water piping” means that ballast water piping for distributing seawater taken from outside the ship toward the ballast tank or seawater drawn from outside the ship is distributed to the ballast tank. Regardless of whether or not seawater is flowing or stopped, it refers to a pipe constituting at least a part of the ballast water pipe.
  • FIG. 1 is a schematic configuration diagram of a ballast water treatment apparatus according to a first embodiment of the present invention.
  • a ship equipped with a ballast water treatment apparatus includes a water intake or sea chest 1 that takes seawater as ballast water from the outside of the ship, and a ballast tank 2 that contains or floods this ballast water.
  • the sea chest 1 and the ballast tank 2 are connected by a ballast water pipe 3.
  • the ballast water pipe 3 includes a ballast pump (P1) 4 for feeding the ballast water taken from the sea chest 1 to the ballast tank 2, a filtration device 5 for filtering off foreign matters and plankton in the ballast water, and filtration.
  • An injection unit 7 for injecting a chlorine-based disinfectant supplied from a disinfectant supply device 20 described later into the later ballast water, and a mixing device 6 for mixing the injected chlorine-based disinfectant into the ballast water are provided. .
  • a sterilizing agent supply device 20 for injecting into the ballast water pipe 3 a chlorine-based sterilizing agent for sterilizing the seawater in the ballast water pipe 3 at the time of flooding is supplied to the injection unit 7 provided in the ballast water pipe 3. Is connected.
  • the disinfectant supply device 20 is connected to the disinfectant dissolving device 21 and the disinfectant dissolving device 21 for producing a chlorine disinfectant that is an aqueous solution of a chlorine agent by dissolving a raw material chlorine disinfectant in water.
  • a piping path 22B for circulating a chlorine-based disinfectant discharged from the agent dissolving device 21, and the piping path 22B disinfects the chlorine-based disinfectant toward the ballast water pipe 3 (P2). ) 23.
  • the disinfectant dissolution apparatus 21 includes a dissolution tank (not shown) (hereinafter referred to as “dissolution tank S”).
  • the dissolution tank S receives solid chlorine-based chemicals and fresh water supplied from the outside.
  • a solid chlorine-based chemical is dissolved in clean water in S to create an aqueous solution of the chlorine-based chemical, and the aqueous solution of the chlorine-based chemical discharged from the dissolution tank S is used as a chlorine-based disinfectant by the disinfectant pump (P2) 23.
  • P2 disinfectant pump
  • the piping path 22B connected to the dissolution tank S, and further injected into the ballast water pipe 3 from the injection section 7 (more precisely, the opening 7a provided in the injection section 7) through the first pipe 22 and the valve 22A. Is configured to do.
  • a first pipe 22 is connected between the bactericide pump (P2) 23 and the injection part 7.
  • the first pipe 22 can be positioned as a part of the pipe path 22B, but can also be positioned as a pipe connected to the end of the pipe path 22B in order to extend the pipe path 22B toward the injection portion 7. .
  • the disinfectant supply device 20 is connected to the injection unit 7 through the first pipe 22 connected thereto.
  • a valve 22A (not shown in FIG. 1) is attached to the first pipe 22 between the disinfectant pump (P2) 23 and the injection part 7 (see FIG. 2).
  • seawater taken from outside the ship through the sea chest 1 is fed through the ballast water pipe 3 to the ballast tank 2 by the ballast pump (P1) 4.
  • the seawater is filtered by the filtration device 5, and the chlorine-based disinfectant supplied from the disinfectant supply device 20 is supplied from the injection unit 7 to the ballast water pipe 3 through the first pipe 22 with respect to the filtered seawater.
  • the seawater into which the chlorine-based disinfectant is injected is agitated by the mixing device 6, mixed with the seawater and the chlorine-based disinfectant, and the seawater after the disinfectant is injected into the ballast tank 2 as ballast water. Accommodate.
  • a typical example of a chlorine-based disinfectant used for sterilization during flooding is an aqueous solution of a chlorine-based agent containing free active chlorine having oxidizing properties.
  • An aqueous solution of a chlorine-based chemical can be prepared by mixing or diluting a liquid chlorine-based chemical with water or by dissolving a solid chlorine-based chemical in water at normal temperature.
  • the sterilizing agent supply device 20 including the lysis tank S and the piping path 22B provided in the sterilizing agent dissolving device 21) or the first pipe 22 or the valve 22A connected thereto is not left. At least a part of the chlorine-based disinfectant used or its component substances (that is, disinfectant residue) is left as it is or the inside of the disinfectant pump (P2) 23 that is introduced from the upstream side (preferably from the dissolution tank S).
  • a process (hereinafter referred to as “residue removal”) which is energized by the bactericide pump (P2) 23 together with water for cleaning (preferably clean water) and injected from the injection part 7 into the ballast water pipe 3 through the first pipe 22. Process ”).
  • the injection unit 7 is an injection port for injecting the chlorine-based disinfectant supplied from the disinfectant supply device 20 into the ballast water pipe 3 in the sterilization process during flooding. This is also an inlet for injecting the sterilant residue remaining inside the agent supply device 20 or the piping path connected to it into the ballast water pipe 3. Therefore, in Japanese Patent No. 5924447, “Stericide Inlet / residue Inlet Is” / Id ”.
  • the disinfectant supply device 20 or a piping path connected thereto There is a disinfectant residue not only in the piping but also in the interior (including the devices such as pumps, valves, tanks, and measuring devices attached thereto) (particularly in contact with the chlorine-based disinfectant). If the disinfectant residue is left unattended, the occurrence of deposits caused by concentration due to evaporation of moisture, deposition or solidification, and consequently malfunction due to the disinfectant residue. Moreover, depending on the material of the piping, it may cause corrosion of the piping.
  • the disinfectant residue becomes a source of chlorine-containing gas and is generated.
  • the main component of the chlorinated disinfectant is sodium dichloroisocyanurate
  • the disinfectant residue becomes a source of chlorine-containing gas and is generated.
  • the reduction treatment during drainage may be adversely affected.
  • the residue removal process the disinfectant residue remaining inside the disinfectant supply device 20 or the piping path connected to the disinfectant (particularly the wetted area with the chlorine-based disinfectant) is separated from the residue location. Therefore, it is possible to prevent or reduce the occurrence of malfunction due to the disinfectant residue and to suppress the progress of corrosion of the pipe. Even if there is a possibility that chlorine-containing gas is generated, it is possible to prevent the working environment from being deteriorated by the chlorine-containing gas. The adverse effect on subsequent reduction treatment during drainage can also be suppressed.
  • the seawater in the ballast water pipe 3 may be stopped or distributed.
  • the disinfectant residue includes (a) a substance formed by concentrating at least a part of the unused chlorine-based disinfectant or its component substances, and (b) a chlorine-based material that is a raw material of the chlorine-based disinfectant. It includes at least a part of at least one of an aqueous solution or liquid formed by mixing a drug and water, and (c) the mixture of (a) and (b) on the left.
  • a reducing agent supply device 30 for supplying a reducing agent to the seawater flowing through the ballast water pipe 3.
  • the reducing agent supply device 30 includes a reducing agent tank 31 that stores the reducing agent, and a piping path 32B that is connected to the reducing agent tank 31 and distributes the reducing agent discharged from the reducing agent tank 31.
  • 32B includes a reducing agent pump (P3) 33 for discharging the reducing agent toward the ballast water pipe 3.
  • P3 reducing agent pump
  • a second pipe 32 is connected between the reducing agent pump (P3) 33 and the injection part 7.
  • the second pipe 32 can be positioned as a part of the pipe path 32B, but can also be positioned as a pipe connected to the end of the pipe path 32B in order to extend the pipe path 32B toward the injection portion 7. .
  • the reducing agent supply device 30 is connected to the injection unit 7 through the second pipe 32 connected thereto.
  • a valve 32A not shown in FIG. 1 is attached to the second pipe 32 between the reducing agent pump (P3) 33 and the injection part 7 (see FIG. 2).
  • the reducing agent supply device 30 energizes the reducing agent discharged from the reducing agent tank 31 by a reducing agent pump (P3) 33, and sends it out through a piping path 32B connected to the reducing agent tank 31, and further the second piping. It is configured to inject into the ballast water pipe 3 from the injection portion 7 (more precisely, the opening 7a provided in the injection portion 7) through the valve 32 and the valve 32A.
  • P3 reducing agent pump
  • the reducing agent injected from the injection unit 7 into the ballast water pipe 3 through the second piping 32 from the reducing agent supply device 30 is sterilized from the same injection unit 7 through the first piping 22 from the sterilizing agent supply device 20.
  • the free effective chlorine derived from the fungicide residue is reduced or eliminated by contact or mixing with the agent residue, and by reaction, thereby detoxifying the fungicide residue.
  • the reducing agent supply device 30 may be a device for injecting a reducing agent for detoxifying the sterilizing agent residue during the residue removing process, and a reducing agent for detoxifying the sterilizing agent residue is sufficient. It may be a device dedicated to the residue removal treatment for injecting, and before the ballast water taken from the ballast tank 2 and filled with the sterilizing agent is drained out of the ship, the reductant is injected into the ballast water. It may also serve as a device for reduction treatment during drainage.
  • injection unit 7 The structure of the injection unit 7 and an example thereof will be separately described later (see FIGS. 2 to 7).
  • the ballast tank 2 is submerged with the ballast water into which the chlorine-based disinfectant is injected. After completion of the sterilization process during flooding, the supply of the chlorine-based disinfectant from the disinfectant dissolving device 21 in the disinfectant supply device 20 is stopped.
  • a chlorine-based disinfectant for injecting into the ballast water pipe 3 from the injection unit 7 is an aqueous solution of a chlorine-based agent that can be dissolved in water in a dissolution tank S provided in the disinfectant dissolving device 21. It is. Injecting the chlorine-based disinfectant from the injection unit 7 into the ballast water pipe 3 is performed by using the disinfectant pump (P2) as an aqueous solution of the chlorine-based agent discharged from the pipe path 22B from the disinfectant dissolving device 21 (particularly the dissolution tank S). This is performed by energizing by 23 and sending it through the first pipe 22 into the ballast water pipe 3 from the opening 7 a provided in the injection part 7. Agitation by the seawater mixing device 6 infused with the chlorine-based disinfectant promotes mixing of the seawater with the chlorine-based disinfectant, and thus sterilization of the seawater with the chlorine-based disinfectant.
  • the disinfectant residue remaining inside the device 20 or the first pipe 22 or the valve 22A connected thereto (particularly in contact with the chlorine-based disinfectant) is left as it is or upstream of the disinfectant pump (P2) 23 (
  • the first piping is energized by the sterilizing agent pump (P2) 23 together with water (preferably fresh water) for cleaning the inside introduced from the dissolving tank S) provided in the sterilizing agent dissolving device 21. 2 through injected from the injection unit 7 to the ballast water piping 3.
  • the sterilizing agent is injected into the ballast water pipe 3, that is, the residue removing operation starts after the sterilizing treatment at the time of flooding or in the seawater to be stored in the ballast tank 2 as ballast water.
  • the ballast water pipe 3 that is, the residue removing operation starts after the sterilizing treatment at the time of flooding or in the seawater to be stored in the ballast tank 2 as ballast water.
  • the disinfectant residue is injected into the ballast water pipe 3 from the injection section 7 through the first pipe 22, or before the supply of the reductant, a reductant supplied from the reducing agent supply device 30 is supplied.
  • the ballast water pipe 3 is injected from the same injection part 7 through the second pipe 32.
  • the sterilizing agent pump (P2) 23 When shifting from the sterilization operation during submergence to the residue removal operation, it is preferable to continue the transfer without stopping the operation of the sterilizing agent pump (P2) 23. If the disinfectant pump (P2) 23 is stopped, even if the discontinuation is temporary, there is a possibility that a chlorine-based disinfectant or other substance may remain somewhere in the disinfectant supply device 20 or a piping path connected thereto. It is.
  • the reductant is injected into the ballast water pipe 3 regardless of whether the ballast pump (P1) 4 is in operation or after the end of operation, and whether the seawater in the ballast water pipe 3 is stopped or distributed. It doesn't matter if you do it. However, in order to more effectively detoxify the disinfectant residue in the ballast water pipe 3, it is desirable that seawater in the ballast water pipe 3 is flowing, and the ballast water pipe on the downstream side of the injection unit 7. It is further desirable that the mixing device 6 is installed in the unit 7.
  • ballast water pipe 3 After injecting the disinfectant residue and the reducing agent from the injection part 7 into the seawater in the ballast water pipe 3, regardless of whether the seawater is stopped or in circulation in the ballast water pipe 3, [a1]
  • the ballast water pipe 3 is kept in the ballast water pipe 3 without being sent to the ballast tank 3 and then discharged out of the ship during the reduction operation at the time of drainage. It is housed as a part, and then discharged outside the ship during reduction operation during drainage.
  • the seawater is temporarily or over a long time in the circulation path or the closed-circular pipe path constituted by the ballast water pipe 3 or including it (immediately before the reduction treatment operation at the time of drainage) Up to).
  • the seawater into which the disinfectant residue and the reducing agent are injected is sent to the ballast tank 2
  • the water may be sent to the ballast tank 2 through the ballast water pipe 3, and a valve is connected to the ballast water pipe 3.
  • the water may be fed to the ballast tank 2 through another pipe that can be connected by opening and closing.
  • ballast water (seawater already injected with a bactericidal agent) is taken from the ballast tank 2, and the reducing agent is injected into the ballast water.
  • the free effective chlorine contained in the ballast water is reduced or eliminated to a level that allows outboard drainage, detoxified, and then drained outboard.
  • the free effective chlorine is derived from a chlorine-based disinfectant used for sterilization of seawater or a component material thereof during the sterilization process during flooding.
  • ballast water treatment device will perform a reduction treatment during drainage. Do not drive.
  • the ballast water treatment apparatus according to the first embodiment of the present invention is configured and operated as described above, so that at least one of the following advantages 1 to 7 is provided.
  • Have [Advantage 1] The disinfectant residue does not contact or mix with the reducing agent until it reaches the injection section 7, and therefore does not generate heat of reduction reaction. Therefore, the reduction reaction heat does not adversely affect the sterilizing agent supply device 20 or the piping path connected thereto. For the same reason as described above, the reduction reaction heat does not adversely affect the reducing agent supply device 30 or the piping path (including the second piping 32 and the valve 32A) connected thereto.
  • the ballast water treatment apparatus since the ballast water treatment apparatus according to the first embodiment of the present invention has the above-mentioned advantages, there is a disinfectant removal treatment (treatment for detoxification of the disinfectant residue) subsequent to the sterilization treatment during flooding. Is not adversely affected by the heat of reduction reaction generated by the reaction between the disinfectant residue and the reducing agent, or the ballast pump (P1) 4 is in operation or after the operation is completed, or the ballast. Regardless of whether the seawater is flowing or stopped in the water pipe, it is executed and the occurrence of problems represented by malfunctions due to the disinfectant residue is prevented or reduced, thus disinfecting the disinfectant
  • the ballast water treatment including the reduction treatment during drainage following the treatment is also executed normally.
  • the injecting unit 7 is attached to the ballast water piping 3, and the first piping 22 and the reducing device for transferring the chlorine-based disinfectant or the disinfectant residue into the ballast water piping 3.
  • a second pipe 32 for transferring the agent into the ballast water pipe 3 is connected, and one or a plurality of openings 7 a that open toward the ballast water pipe 3 are provided.
  • the injection portion 7 shown in FIG. 7 has one opening 7a, and the injection portion 7 shown in FIGS. 2 to 6 has a plurality of openings 7a (73, 73). It is to be prepared.
  • One of the first pipe 22 and the second pipe 32 is not connected to the other upstream of the injection unit 7.
  • the injection part 7 may have a double pipe structure in which one of at least a part of the first pipe 22 and at least a part of the second pipe 32 forms the other inner pipe (FIGS. 2 to 5). 6). According to this structure, it becomes the external appearance provided with one injection
  • the injection part 7 is not limited to what has the said double pipe structure.
  • the injection part shown in FIGS. 2 to 6 has the double pipe structure, and the injection part shown in FIG. 7 does not have the double pipe structure.
  • the second pipe 32 is ballasted more than the first pipe 22.
  • the reducing agent that should be injected into the ballast water pipe 3 from the opening 73 of the second pipe 32 surrounds the opening 72 at the tip of the first pipe 22 or It may enter the opening 72 and cause an unexpected failure.
  • the first pipe 32 is more than the first pipe 22.
  • the ballast water pipe 3 when the ballast water pipe 3 is extended, the chlorine-based disinfectant and the disinfectant residue that should be injected into the ballast water pipe 3 from the opening 73 of the first pipe 22 are in the second pipe 32.
  • the opening 73 may be surrounded or penetrated into the opening 72 and may cause an unexpected failure. Therefore, when the injection part 7 has a double pipe structure, the second pipe 32 is preferably not extended into the ballast water pipe 3 more than the first pipe 22 in order to avoid an unexpected failure. (See FIGS. 2 to 6).
  • 2 (A) and 2 (B) has a double pipe structure in which the first pipe 22 is an inner pipe and the second pipe 32 is an outer pipe.
  • the openings 72 and 73 at the tips of both the tubes 22 and 23 are both arranged in the vicinity of the inner wall position of the ballast water pipe 3.
  • the “inner wall position of the ballast water pipe 3” is not removed unless the injection part 7 exists. Means the position of the inner wall that would have existed in (and so on).
  • extension length the extension lengths of the first pipe 22 and the second pipe 32 in the injection part 7 shown in FIG. 2 are about zero (zero).
  • the injection section 7 shown in FIGS. 3A and 3B has a double pipe structure in which the first pipe 22 is an inner pipe and the second pipe 32 is an outer pipe, similar to that shown in FIG. Although having a pipe structure, unlike the one shown in FIG. 2, the opening 72 at the tip of the first pipe 22 is arranged near the center of the cross section of the ballast water pipe 3.
  • the inner radius of the ballast water pipe 3 is R
  • the extension length of the first pipe 22 in the injection portion 7 shown in FIG. 3 is about R
  • that of the second pipe 32 is about zero ( Zero).
  • the injection section 7 shown in FIGS. 4A and 4B has a double pipe structure in which the first pipe 22 is an inner pipe and the second pipe 32 is an outer pipe, as shown in FIG. Although it has a tube structure, the opening 72 at the tip of the first pipe 22 extends to the vicinity of the center of the cross section of the ballast water pipe 3 as shown in FIG. Unlike the above, the second pipe 32 protrudes into the ballast water pipe 3, and the opening 73 at the tip thereof is extended in length and is arranged at a position larger than zero (zero) and smaller than R. .
  • the injection section 7 shown in FIGS. 5A and 5B has a double pipe structure in which the first pipe 22 forms an inner pipe and the second pipe 32 forms an outer pipe, as shown in FIG. Although it has a pipe structure, the second pipe 32 protrudes into the ballast water pipe 3 as in the case shown in FIG. Is larger than zero) and smaller than R. Unlike the one shown in FIG. 4, the opening 72 at the tip of the first pipe 22 extends beyond the center of the cross section of the ballast water pipe 3. The length is larger than R and smaller than 2R.
  • the injection section 7 shown in FIGS. 6A and 6B has a double pipe structure in which the first pipe 22 is an inner pipe and the second pipe 32 is an outer pipe, similar to that shown in FIG. Although having a pipe structure, unlike the one shown in FIG. 2, the opening 72 at the tip of the first pipe 22 is closer to the inner wall position of the ballast pipe 3 than the center of the cross section of the ballast water pipe 3. It is arranged.
  • the extension length of the second pipe 32 is about zero (zero), and the extension length of the first pipe 22 is larger than zero (zero) and smaller than R.
  • the injection part 7 shown in FIG. 7 does not have a double pipe structure as shown in FIGS. 2 to 6, and the first pipe 22 and the second pipe 32 are both
  • the ballast water pipe 3 does not protrude into the ballast water pipe 3 and is connected to the same injection section 7.
  • the injection part 7 is designed in a shape that does not stop inside the injection part 7 even though the injected disinfectant residue and reducing agent are close to each other inside the injection part 7 and contact with each other.
  • the internal volume is small.
  • the first pipe 22 is bent toward the downstream direction near the tip thereof so that the opening 72 faces the downstream direction (chlorine-based disinfectant). Or the discharge direction of the disinfectant residue may be arranged in parallel with the axial direction of the ballast water pipe 3). Further, as shown in FIGS. 2 to 7, the first pipe 22 is a straight pipe that is cut off at an angle so that the front end of the first pipe 22 opens greatly toward the downstream side. May be.
  • the injection section 7 shown in each of FIGS. 2 to 7 includes a first pipe 22 and a second pipe 32 separately but close to each other.
  • both the disinfectant residue that has reached the injection section 7 through the first pipe 22 and the reducing agent that has reached the injection section 7 through the second pipe 32 are in contact with or in close proximity to each other. It is injected into the water pipe 3. Therefore, when the injection part 7 is used, the two substances are brought into contact with each other regardless of whether seawater is flowing or stopped in the ballast water pipe 3 when the both substances are injected into the ballast water pipe 3. Or after mixing, the mutual contact or mixing of the two substances and the reaction associated therewith can be maintained in the ballast water pipe 3, and thus free free from the disinfectant residue. Reduction or disappearance of chlorine can be promoted, and finally, detoxification of the disinfectant residue can be promoted.
  • the disinfectant residue is removed from the opening 72 at the tip of the first pipe 22 and the second pipe 23.
  • the reducing agent is injected into the ballast water pipe 3 from the opening 73 at the tip of the first, the former disinfectant residue is encased in the latter reducing agent. Can be sufficiently mixed and reacted, and the detoxification can be realized more easily or efficiently.
  • the injection part 7 shown in FIG. 7 is designed in such a shape that the disinfectant residue and the reducing agent do not stop inside, and its internal volume is basically small. Therefore, the disinfectant residue and the reducing agent do not stagnate while being excessively contacted or mixed inside the injection part 7 before they move into the ballast water pipe 3, and thus excessive heat of reduction reaction is generated.
  • a similar negative pressure is also generated at each end of the first pipe 22 and the second pipe 32 in the injection section 7 having the double pipe structure shown in FIG.
  • the opening 72 at the front end of the first pipe 22 and the opening 73 at the front end of the second pipe 32 are at substantially the same position in the vicinity of the inner wall position of the ballast water pipe 3, the first pipe 22 and The negative pressure that each tip of the second pipe 32 receives from the ballast water pipe 3 is relatively small. Therefore, when the fluidity of the disinfectant residue is low (for example, when the disinfectant residue is accumulated or solidified), the negative pressure is applied from the first pipe 22 to the ballast water pipe 3. It is not easy to use to move the disinfectant residue. The same can be said for the injection part 7 shown in FIG.
  • the opening 7 a common to the first pipe 22 and the second pipe 32 is located at the inner wall position of the ballast water pipe 3. Because it is located in the vicinity). Therefore, in the case of the injection part 7 shown in FIGS. 2 and 7 respectively, the movement of the disinfectant residue from the first pipe 22 into the ballast water pipe 3 is exclusively performed by the disinfectant by the pump 23. This is due to urging of the residue (extrusion from the first pipe 22 into the ballast water pipe 3).
  • the negative pressure is set to the first pressure in any of the injection portions 7 shown in FIGS. It is relatively easy to use for moving the reducing agent from the second pipe 32 to the ballast water pipe 3.
  • the insides of the first pipe 22 and the second pipe 32 are also provided at the tips of the first pipe 22 and the second pipe 32.
  • a negative pressure is generated which acts to suck the substance into the ballast water pipe 3.
  • the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is relatively large (the inner diameter of the ballast water pipe 3, the amount of seawater, the flow rate, and other conditions are the same as in FIG. 2). If there is, the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is larger in the case of FIG. 3 than in the case of FIG. Further, the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is greater than the negative pressure that the tip of the second pipe 32 receives from the seawater that flows through the ballast water pipe 3.
  • the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is There is no significant difference between the case and the case of FIG. This is because the position of the opening 72 at the tip of the first pipe 22 is not significantly different between the case of FIG. 3 and the case of FIG.
  • the negative pressure that the tip of the second pipe 32 receives from the seawater flowing through the ballast water pipe 3 is The case of 4 is larger than the case of FIG. This is because the position of the opening 73 at the tip of the second pipe 32 is closer to the cross-sectional center of the ballast water pipe 3 in the case of FIG. 4 than in the case of FIG.
  • the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is The case is slightly smaller than the case of FIG. This is because the position of the opening 72 at the tip of the first pipe 22 is closer to the cross-sectional center of the ballast water pipe 3 in the case of FIG. 3 than in the case of FIG.
  • the negative pressure that the tip of the second pipe 32 receives from the seawater flowing through the ballast water pipe 3 is The case of 5 is slightly larger than the case of FIG. This is because the position of the opening 73 at the tip of the second pipe 32 is closer to the center of the cross section of the ballast water pipe 3 in the case of FIG. 5 than in the case of FIG.
  • the negative pressure that the tip of the first pipe 22 receives from the seawater flowing through the ballast water pipe 3 is The case is slightly smaller than the case of FIG. This is because the position of the opening 72 at the tip of the first pipe 22 is closer to the center of the cross section of the ballast water pipe 3 in the case of FIG. 3 than in the case of FIG.
  • the tip of the first pipe 22 passes from the cross-sectional center of the ballast water pipe 3 to the cross-sectional center. Or in the opposite direction, it is located in a range that is separated by a distance half the cross-sectional radius (in other words, the extension length of the first pipe 22 is in the range of 0.5R or more and 1.5R or less). If it exists, the negative pressure which the front-end
  • the residue removal process is performed after the completion of the sterilization process during flooding, It is desirable to execute as soon as practicable (at the latest within 1 hour after the completion of the sterilization treatment during flooding).
  • the raw material of the chlorine-based disinfectant is a solid chlorine-based agent (for example, a chlorinated isocyanuric acid compound such as trichloroisocyanuric acid, sodium dichloroisocyanurate or its hydrate, potassium dichloroisocyanurate, etc.)
  • the reducing agent that is frequently used is sodium sulfite or a hydrate thereof, sodium thiosulfate or a hydrate thereof, or an aqueous solution thereof. Since the fluidity is sufficiently high if the reducing agent is an aqueous solution of sodium sulfite or sodium thiosulfate, the tip of the second pipe 32 is arranged closer to the center of the cross section of the ballast water pipe than the tip of the first pipe 22.
  • the tip of the second pipe 32 is also arranged near the center of the cross section. It is preferable to do.
  • any injection part 7 shown in FIGS. 2 to 7 may be used. If the disinfectant residue and the reducing agent are injected into the ballast water pipe 3 from the same injection unit 7 by the pump (23, 33), any of the injection units 7 shown in FIGS. 2 to 7 is used. [B1] By injecting the bactericide residue and the reducing agent from the same injection part 7, both substances can be injected into the ballast water pipe 3 in contact with each other or in close proximity to each other. [B2] Both substances Is injected into the ballast water pipe 3 by a pump (23, 33), so that the seawater in the ballast water pipe 3 can be stirred and contact or mixing of both substances, and thus the reaction can be promoted. This is because mutual contact or mixing can be achieved efficiently.
  • the injection portion shown in FIGS. 2 and 7 is used. It is preferable to use any one of the injection portions 7 shown in FIGS.
  • the disinfectant residue injected into the ballast water pipe 3 from the opening 72 at the tip of the first pipe 22 is urged by the pump 23. Therefore, it collides with the inner wall of the ballast water pipe 3, and the collision generates turbulent flow in the seawater in the ballast water pipe 3, thereby mixing well with the seawater in the ballast water pipe 3, and for a relatively short time. This is because the ballast water pipe 3 is uniformly distributed.
  • both the disinfectant residue and the reducing agent are injected into the ballast water pipe 3 at the same time, or [c2 First, it is preferable to inject the reducing agent into the ballast water pipe 3 and make it exist in the seawater in the ballast water pipe 3, and then inject the disinfectant residue toward the place where the reducing agent is present. This is because if the disinfectant residue is injected into the ballast water pipe 3 before the reducing agent, the disinfectant residue is coarse (particularly when solidified material is contained) and reduced in a shorter time. This is because it becomes difficult to sufficiently react with the agent.
  • [C2] is more preferable than [c1] above, regardless of which injection part 7 shown in FIGS. 2 to 7 is used. This is because if the disinfectant residue is injected toward the place where the reducing agent is present after being present in the seawater in the ballast water pipe 3, the contact or mixing of the disinfectant residue and the reducing agent is more efficient. Because it goes to.
  • a substance having a high concentration of a reducing action or a substance having a stronger reducing action can be used as a reducing agent (see above). See 1.3 [Strength 4] and [Strength 5]).
  • a reducing agent By using such a reducing agent, it is possible to promote or thoroughly reduce or eliminate free effective chlorine derived from the fungicide residue, that is, detoxify the fungicide residue.
  • the injection pressure by the pump 23, the injection pressure by the pump 33, and the concentration and amount of the reducing agent correspond to actual operating conditions.
  • the ballast water pipe from the injection part 7 through the first pipe 22 is used by the pump 23 for the one corresponding to the sterilizing agent residue after one hour has passed.
  • FIG. 8 is a schematic configuration diagram of a ballast water treatment apparatus according to the second embodiment of the present invention.
  • the ballast water treatment apparatus shown in FIG. 8 is the same as the ballast water treatment apparatus shown in FIG. 1 except that a return piping path 10 is installed in the ballast water pipe 3.
  • the return piping path 10 includes a take-out portion 8 at a position between the mixing device 6 and the ballast tank 2, a return portion 9 at a position between the filtration device 5 and the injection portion 7, and a take-out portion 8 and the return portion 9.
  • a return pump (P4) 11 attached to the pipe and a total residual oxidant concentration measuring device (hereinafter referred to as a TRO meter). 12). Therefore, the seawater in the ballast water pipe 3 is extracted from the take-out part 8 by the return pump (P4) 11, is discharged to the return part 9 through the TRO meter 12, and returns to the ballast water pipe 3.
  • P4 total residual oxidant concentration measuring device
  • the extraction part 8 may be arranged at a position between the injection part 7 and the mixing device 6.
  • the return pipe path 10 has the return part 9 at a position between the take-out part 8 *, the pipe position 8a, the TRO meter 12, the feedback pump 11 and the filtration device 5 and the injection part 7 arranged at the position.
  • the ballast water treatment apparatus has the advantage that it can complete the detoxification of the disinfectant residue more efficiently or in a short time during the disinfectant residue treatment operation. Have.
  • the chlorine-based disinfectant injected into the ballast water pipe 3 and the seawater in the ballast water pipe 3 are vigorously mixed with each other during the sterilization operation during flooding. Therefore, the ballast water treatment apparatus according to the second embodiment is accommodated in the seawater circulated in the ballast water pipe 3 toward the ballast tank 2 and thus in the ballast tank 2 during the sterilization operation during flooding. It also has the advantage that it can promote the sterilization of the ballast water and can be completed more efficiently or in a short time.
  • the extraction portion 8 is positioned at a position between the mixing device 6 and the ballast tank 2 (that is, at a position between the injection portion 7 and the mixing device 6 (that is, a position upstream of the mixing device 6)). It is preferably arranged at a position downstream of the mixing device 6.
  • the free effective chlorine concentration in the seawater flowing through the return piping path 10 is measured using the TRO meter 12 attached to the return piping path 10, and the disinfectant is based on the measurement result. If the supply amount of the chlorine-based disinfectant to the seawater in the ballast water pipe 3 from the supply device 20 is controlled, the injection of the chlorine-based disinfectant into the ballast water stored in the ballast tank 2 is not excessive or The concentration of the chlorine-based disinfectant can be controlled so as to be within a predetermined range.
  • the return piping path 10 can be configured by using a pump provided in the TRO meter in place of the return pump (P4) 11. In this case, there is no need to add a feedback pump separately, which is reasonable, and an increase in the device price can be avoided.
  • a TRO meter can be substituted with an oxidation-reduction potential (ORP) measuring device.
  • ORP oxidation-reduction potential
  • the return piping path 10 can be configured by using the pump instead of the feedback pump (P4) 11, and therefore a feedback pump is added separately. This is reasonable and can avoid an increase in equipment price.
  • the TRO meter 12 may be installed in series with the pipe constituting the return pipe path 10. However, as described later, the TRO meter 12 is connected to the pipe constituting the return pipe path 10. It may be installed in parallel.
  • FIG. 9 is a schematic configuration diagram of a ballast water treatment apparatus according to the third embodiment of the present invention.
  • the depiction of the reducing agent supply device 30 is omitted for simplification of the drawing.
  • the return position of the return piping path 10, that is, the position of the return portion 9 is downstream of the ballast pump (P 1) 4, and upstream or downstream of the positions of the mixing device 6 and the injection portion 7.
  • the feedback unit 9 is provided at a position between the filtering device 5 and the injection unit 7.
  • the feedback unit 9 is provided at a position between the injection unit 7 and the mixing device 6 (inlet side).
  • the feedback unit 9 is provided at a position between the mixing device 6 (exit side) and the extraction unit 8. It is conceivable to set positions such as. In that case, it is preferable to set appropriately the mutual distance relationship of the injection
  • FIG. 9 (A) the case in (i) above is X, the distances X1 to X4, and the case in (ii) above is Y, and the distances Y1 to Y4 are set in the ballast water pipe 3.
  • the inner diameter may be set as D as follows.
  • the ballast water treatment apparatus has the advantage that the disinfection of the disinfectant residue can be completed more efficiently or in a short time during the disinfectant residue treatment operation. Have.
  • this ballast water treatment device promotes the sterilization of the seawater flowing toward the ballast tank 2 in the ballast water pipe 3 and, consequently, the ballast water contained in the ballast tank 2 during the sterilization operation during flooding. And can be completed more efficiently or in a short time.
  • the measurement result using the TRO meter 12 during the sterilization operation during flooding can be controlled.
  • the return piping path 10 can be configured by using a pump included in the TRO meter instead of the return pump (P4) 11.
  • the TRO meter can be replaced with an oxidation-reduction potential (ORP) measuring device. If the oxidation-reduction potential measuring device includes a pump, the pump is used instead of the feedback pump (P4) 11.
  • the return piping path 10 can be configured.
  • the TRO meter 12 may be installed in series with the pipe constituting the return pipe path 10, but is installed in parallel with the pipe. Also good. More specifically, as shown in FIG. 9B, a branch pipe 10A is provided in parallel to the pipes constituting the return pipe path 10, and the TRO meter 12 is arranged in the branch pipe 10A. When the valves 12A and 12B are provided before and after the valve 12A and 12B are opened, the concentration of free effective chlorine remaining in the seawater flowing through the branch pipe 10A is measured by the TRO meter 12. You may do it.
  • the fourth embodiment of the present invention is characterized in that the system including the return piping path 10 is unitized.
  • FIG. 10 is a schematic configuration diagram of a ballast water treatment apparatus according to the fourth embodiment of the present invention.
  • the depiction of the reducing agent supply device 30 is omitted for the sake of simplicity.
  • the 10 includes a piping unit 40.
  • the piping unit 40 is shown in FIG. 9 by providing flanges 41, 42, 43, and 44 as connecting portions to the outside of the piping system including the return piping path 10 shown in FIG. It is configured so that it can be detachably connected to the apparatus.
  • the ballast water pipe 3 is provided with a flange that faces the flanges 41, 42, the first pipe 22 is provided with a flange that faces the flange 43, and the second pipe 32 is faced with the flange 44. Since the flange is provided, the piping unit 40 can be attached and detached by connecting and disconnecting the flanges.
  • the ballast water treatment according to the present invention can be performed only by connecting the piping unit 40 to the corresponding portion.
  • a device can be configured. Therefore, at the time of installing the ballast water treatment apparatus, the work can be performed efficiently, and at the time of maintenance, it is only necessary to replace the old pipe unit 40 with the new pipe unit 40, thus simplifying the work. be able to.
  • the piping unit 40 shown in FIG. 10 is depicted as corresponding to the ballast water treatment apparatus shown in FIG. 9, but is also applicable to the ballast water treatment apparatus shown in FIG. Is possible.
  • the piping unit 40 may be unitized in the form which comprises the mixing apparatus 6 as shown in FIG. 10, it does not comprise the mixing apparatus 6 and only the mixing apparatus 6 can be replaced. It may be unitized in the form. If it unitizes in the form which comprises the mixing apparatus 6, installation of a ballast water treatment apparatus can be performed still more efficiently.
  • the fifth embodiment of the present invention relates to a case where there are a plurality of ballast tanks.
  • the fifth embodiment is not limited to the case in which there are two ballast tanks.
  • FIG. 11 is an explanatory diagram of the configuration and operation of the ballast water treatment apparatus according to the fifth embodiment of the present invention.
  • the configuration of this ballast water treatment apparatus corresponds to the arrangement of two ballast tanks in the configuration of the ballast water treatment apparatus according to the second embodiment shown in FIG. Therefore, in FIG. 11, the same reference numerals are given to the same parts as those shown in FIG. 8, and the description thereof will be omitted below.
  • the ballast tank 2 is composed of a first ballast tank 2A and a second ballast tank 2B, and the first ballast tank 2A and the second ballast tank 2B are connected to the ballast water pipe 3. They are arranged in parallel.
  • the injection unit 7 is connected to the ballast water pipe 3 between the filtration device 5 and the mixing device 6, and the take-out unit 8 of the return piping path 10 is connected to the ballast water pipe 3 on the outlet side of the mixing device 6.
  • the return parts 9 are respectively attached to the ballast water pipes 3 between the filtration device 5 and the injection part 7.
  • the ballast water pipe 3 is branched into a first branch pipe 3A and a second branch pipe 3B at a position M on the downstream side of the extraction portion 8.
  • the first branch pipe 3A and the second branch pipe 3B are connected to the first ballast tank 2A and the second ballast tank 2B, respectively, at a position N downstream of the first ballast tank 2A and the second ballast tank 2B. It joins and forms one pipe line again, and is connected to the ballast water pipe 3 at a position G on the inlet side of the ballast pump (P1) 4.
  • the ballast water pipe 3 includes the ballast water return path 13 that reaches the position N from the position M via the first ballast tank 2A or the second ballast tank 2B, and further returns from the position N to the position G. Yes.
  • FIG. 11 shows a ballast water drain pipe 14 that is not shown in FIGS. 8 to 10.
  • the ballast water drain pipe 14 is connected to the ballast water pipe 3 between the take-out portion 8 and the position M, and extends to the drain port 15 provided on the ship side.
  • the piping path shown in FIG. 11 (A) includes a plurality of valves. More specifically, the first valve 51 is provided in the ballast water pipe 3 between the sea chest 1 and the position G, the second valve 52 is provided in the first branch pipe 3A between the position M and the ballast tank 2A, and the ballast tank 2A.
  • the second branch pipe 3B is provided with a fifth valve 55
  • the ballast water return path 13 between position N and position G is provided with a sixth valve 56
  • the ballast water drain pipe 14 is provided with a seventh valve 57.
  • ballast water treatment apparatus has the following operation modes (the sterilization operation during flooding, the disinfectant residue treatment operation and the drainage reduction treatment operation) according to the selection as follows. Operate.
  • a part of the seawater is taken out from the take-out section 8 in the process of circulating in the ballast water pipe 3 toward the first ballast tank 2 ⁇ / b> A, in a state where the chlorine-based disinfectant is injected, and passes through the return pipe path 10. It returns to the ballast water piping 3 from the return part 9, and forms a circulation flow. Due to the circulating flow, the seawater is well agitated with the chlorine-based disinfectant and sufficiently mixed, so that the sterilization of the seawater is promoted.
  • partial ballast water a part of the ballast water in the first ballast tank 2A (hereinafter referred to as “partial ballast water”) is moved to the second ballast tank 2B. Therefore, the first valve 51, the second valve 52, the fifth valve 55, and the seventh valve 57 are closed, the third valve 53, the fourth valve 54, and the sixth valve 56 are opened, and the disinfectant pump (P2). 23 and the reducing agent pump (P3) 33 are driven, and the disinfectant residue energized by the disinfectant pump (P2) 23 is supplied from the injection unit 7 to the ballast water pipe 3 (with fresh water supplied separately in some cases). The reducing agent energized by the reducing agent pump (P3) 33 is injected into the ballast water pipe 3 from the reducing agent supply device 31.
  • the disinfectant residue is removed from the inside of the disinfectant supply device 20 or the piping path connected thereto. Further, the partial ballast water is circulated toward the second ballast tank 2 ⁇ / b> B through the position of the injection portion 7 through a path indicated by a thick line in FIG. 11C, and is positioned via the ballast water return path 13. G is returned to the ballast water pipe 3 and moved to the second ballast tank 2B. In the course of the movement, a part of the part of the ballast water is taken out from the take-out part 8 in a state in which the sterilizing agent residue and the reducing agent are injected, and from the return part 9 through the return pipe path 10. 3 to form a circulating flow. As a result, the disinfectant residue and the reducing agent are sufficiently agitated and mixed, and the disinfectant component in the disinfectant residue is reduced. In this state, it is accommodated in the second ballast tank 2B.
  • ballast water in the second ballast tank 2B is in a state in which the free effective chlorine derived from the chlorine-based disinfectant and the disinfectant residue is sufficiently reduced and rendered harmless.
  • the remaining part of the ballast water in the first ballast tank 2A (hereinafter referred to as “remaining ballast water”) is discharged out of the ship. Therefore, the first valve 51, the second valve 52, the fourth valve 54, and the fifth valve 55 are closed, the third valve 53, the sixth valve 56, and the seventh valve 57 are opened, and the disinfectant pump (P2).
  • ballast water pipe 3 from the reducing agent supply device 31. Then, the remaining ballast water is injected into the reducing agent in the process of moving from the ballast drain pipe 14 to the drain port 15 through the position of the injection section 7 along the path indicated by the thick line in FIG. Is detoxified and discharged outside the ship.
  • ballast water pipe 3 A part of the remaining ballast water is taken out from the take-out part 8 and returned to the ballast water pipe 3 from the return part 9 via the return pipe path 10, thereby forming a circulation flow. Yes, but you don't have to do that.
  • the ballast water contained in one ballast tank is at least temporarily transferred to another ballast tank. Stirring of water proceeds. Therefore, when a chlorine-based disinfectant is injected into the ballast water (during sterilization during flooding), the disinfecting effect is promoted, and the ballast water is derived from a chlorine-based disinfectant or a disinfectant residue. When free active chlorine remains (during disinfectant residue treatment or drainage reduction treatment), the mixing and reaction with the injected reducing agent proceeds and the detoxification of the ballast water is promoted. .
  • ballast water treatment apparatus according to the fifth embodiment of the present invention focuses on the first ballast tank 2A, but also applies to the description focused on the second last tank 2B. Even when the ballast tank 2 includes three or more ballast tanks 2A, 2B, 2C,..., The description focusing on any of the ballast tanks also applies as it is.
  • the example of the ballast water treatment apparatus shown in FIG. 11 supplies not only a chlorine-based disinfectant but also a reducing agent to seawater for ballast water treatment, but the fifth embodiment of the present invention is However, the present invention is not limited to this example.
  • the fifth embodiment includes an example in which only a chlorine-based disinfectant is supplied.
  • the ballast tank 2 may be provided with a plurality of ballast tanks as in the fifth embodiment of the present invention.
  • a position M is set between the outlet 8 of the ballast water treatment apparatus shown in FIGS. 8 to 10 and the ballast tank 2 and the ballast tank 2
  • a position G is set on the inlet side of the ballast pump (P1) 4.
  • the configuration from the position M to the ballast tank 2 may be replaced with the configuration from the position M to the position N shown in FIG. 11, and the ballast water return path 13 may be newly provided between the position N and the position G.
  • the operation of the ballast water treatment apparatus shown in FIGS. 8 to 10 in which the ballast tank 2 includes a plurality of ballast tanks can be described as described above based on FIG.
  • the present invention is configured to inject the chlorine-based chemical or its component substance and the reducing agent into the ballast water pipe from the same inlet through the respective separate pipes, Regardless of whether seawater is flowing or stopped in the ballast water pipe, the disinfectant residue can be detoxified by reaction with the reducing agent, and the heat of reduction reaction generated during the detoxification. The concerns about adverse effects caused by can be eliminated.
  • it is possible to realize a ballast water treatment apparatus that can normally perform ballast water treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

殺菌剤残留物の無害化の際に発生する還元反応熱による、殺菌剤供給装置等に対する悪影響を払拭できるバラスト水処理装置を提供することを課題とする。バラスト水をバラストタンク2へ向け流通させるバラスト水配管3内に塩素系殺菌剤を供給する殺菌剤供給装置20と、塩素系殺菌剤と反応する還元剤をバラスト水配管内に供給する還元剤供給装置30と、殺菌剤供給装置20内に残留した塩素系殺菌剤をバラスト水配管3内に移送する第一の配管22と、還元剤をバラスト水配管3内に移送する第二の配管32と、第一の配管22から移送される塩素系殺菌剤をバラスト水配管内に注入する注入部7とを備えており、第二の配管32は注入部7に接続されており、殺菌剤供給装置20内に残留した塩素系殺菌剤が、還元剤とともに、上記注入部7が備える開口部7aから上記バラスト水配管3内に注入される。

Description

バラスト水処理装置
 本発明は、船外から取水され、船内のバラスト水配管内を移送され、船内のバラストタンクにバラスト水として収容される海水、汽水、淡水その他の水(バラストタンクに収容されているバラスト水を含む。以下、説明の便宜上、海水で代表させる場合や総じて処理対象水と言う場合がある)を殺菌するために、遊離有効塩素が有する殺菌作用を利用して殺菌を行う薬剤(以下、別段の定義がなされている場合を除き、「塩素系殺菌剤」という)を当該バラスト水配管内に注入するように構成された殺菌剤供給装置を備えるバラスト水処理装置に関し、より詳しくは、当該海水、汽水、淡水その他の水の殺菌に使用されることなく当該殺菌剤供給装置、又は当該殺菌剤供給装置に接続する配管及びその配管に取り付けられたポンプ、バルブ、タンク、計測機器等の装置(以下、まとめて、殺菌剤供給装置に接続する「配管経路」という)の内部に残留した塩素系殺菌剤又はその成分物質のうちの少なくとも一部(以下、別段の定義がなされている場合を除き、「殺菌剤残留物」という)を当該バラスト水配管内に排出することにより当該内部から除去する機構を備えたバラスト水処理装置に関する。
 船舶のバラスト水を殺菌剤により殺菌するバラスト水処理の代表例は、大きくは、船外から取水した海水を濾過した後、濾過後の海水に塩素系殺菌剤を注入し、殺菌剤注入後の海水をバラストタンクに収容又は殺菌剤注入後の海水によりバラストタンクを漲水することにより、バラストタンクに収容されるバラスト水を殺菌する殺菌処理(以下「漲水時殺菌処理」という)と、バラストタンクにバラスト水として収容されていた殺菌剤注入済みの海水を、当該バラストタンクから取水し、引き続き、酸化性を有する遊離有効塩素を還元して低減又は消失させる作用を有する還元性物質を含有する薬剤(以下、別段の定義がなされている場合を除き、「還元剤」という)を注入することにより、船外排水が許される水準まで無害化し、その後、船外へ排水する還元処理(以下「排水時還元処理」という)の二つの処理から構成される。漲水時殺菌処理としては、遊離有効塩素を含有する塩素系薬剤の水溶液を塩素系殺菌剤として使用する処理が知られている。
 なお、塩素系薬剤とは、水中で、酸化性を有する遊離有効塩素を放出す薬剤をいう。塩素系薬剤の水溶液は、常温で液体の塩素系薬剤を水と混合もしくは水で希釈することにより又は常温で粉末、顆粒又は錠剤その他の固体の状態にある塩素系薬剤を水に溶解させることで用意することができる。
 塩素系薬剤の水溶液を用いてバラストタンクに収容されるバラスト水を殺菌する場合、漲水時殺菌処理終了後に、殺菌剤供給装置又はそれに接続する配管経路の内部に、バラスト水の殺菌に使用されなかった塩素系薬剤の水溶液が残留する。この残留物は、溶媒である水の蒸発による濃化により、あるいは、その温度の低下に伴う、塩素系薬剤の水に対する溶解度の低下により、塩素系薬剤又はその成分物質の析出の原因となる(たとえば、塩素系薬剤がジクロロイソシアヌル酸ナトリウムの場合は、イソシアヌル酸が固形物として析出する)。その析出は、塩素系薬剤の水溶液と配管又はその配管に取り付けられたポンプ、バルブ、タンク、計測機器等の装置との接液領域において特に起こり易い。
 塩素系薬剤又はその成分物質の析出物は、時間の経過に伴い殺菌剤供給装置又はそれに接続する配管経路の内部で成長し堆積し、固化するおそれがある。そのおそれは、殺菌剤の原料が固形の塩素系薬剤である場合に、特に大きくなる。原料が固形であると、溶媒である水の蒸発や水に対する原料の溶解度の低下は、該原料の成分の析出物の発生に直結するからである。
 上記析出物の発生・堆積・固化は、配管の閉塞、圧損増加その他の流通障害、配管に取り付けられたポンプ、バルブ、タンク、計測機器等の装置の機能不全などの不具合(以下、まとめて、殺菌剤残留物に起因する「動作不具合」という場合がある)の原因となり、ひいてはバラスト水処理の正常な実行の阻害要因となる。
 この問題を解決するため、漲水時殺菌処理後に殺菌剤供給装内又はそれに接続する配管経路の内部に残留した塩素系薬剤の水溶液又はその成分物質の少なくとも一部をバラスト水配管内に向けて排出し、殺菌剤供給装置又はそれに接続する配管経路の内部から除去する機構を備えたバラスト水処理装置が知られている(特許文献1)。
 この機構は、(A)殺菌剤供給装置又はそれに接続する配管経路の内部に存在する殺菌剤残留物を、還元性物質と予め反応させた後又は反応させることなく、殺菌剤供給装置から供給される塩素系殺菌剤をバラスト水配管内に注入するための注入部(殺菌剤注入部)又は専用の注入部(残留物注入部)からバラスト水配管内に注入し、その後、殺菌剤注入部又は残留物注入部よりも下流側位置で、還元剤供給装置から供給される還元剤をバラスト配管内に注入するための注入部(還元剤注入部)から当該還元剤を注入する、あるいは(B)殺菌剤供給装置又はそれに接続する配管経路の内部に存在する殺菌剤残留物を、バラスト水配管へ注入する前に、還元性物質と予め反応させた後、殺菌剤注入部又は残留物注入部からバラスト配管内に注入することにより、殺菌剤残留物を、還元剤又と反応させ、当該殺菌剤残留物に由来する遊離有効塩素を還元し、低減又は消失させ、無害化する機構である。
 なお、上記(A)及び(B)において、塩素系殺菌剤の代表例は、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はその水和物、ジクロロイソシアヌル酸カリウム等のような塩素化イソシアヌル酸化合物であり、還元剤の代表例は、亜硫酸ナトリウムもしくはチオ硫酸ナトリウム又はその水溶液である。また、上記(B)における還元性物質の代表例は、還元剤供給装置から供給される還元剤又はそれの希釈液である。
特許第5924447号
 しかしながら、上記(A)の機構の場合、還元剤注入部は殺菌剤注入部又は残留物注入部から離隔した下流側位置にあるので、バラスト水配管内の海水が停止していると、バラスト水配管内に注入された殺菌剤残留物を、バラスト水配管内に注入された還元剤と十分に反応させることができず、無害化できない。つまり、バラスト水配管内の海水が停止している場合には、上記(A)の機構はその役割を十分に果たすことができない。
 また、上記(B)の機構の場合、殺菌剤残留物を無害化するための還元性物質が有する還元作用を有する物質の濃度が高いと、殺菌剤残留物を還元する際に発生する還元反応熱(発熱)が過大となり、殺菌剤供給装置及びそれに接続する配管経路への悪影響が懸念される。さりとて、還元作用を有する物質の濃度が低い還元性物質を用いて殺菌剤残留物の無害化を行おうとすると、より多くの還元性物質が必要になり、該より多い還元性物質を確保するために必要な機器や装置を追加で用意しなければならなくなる。
 本発明は、上記の問題に鑑みてなされたものであり、殺菌剤供給装置又は殺菌剤供給装置に接続する配管経路の内部から殺菌剤残留物を除去する際に、バラスト水配管内で海水が流動しているか停止しているかを問わず、当該殺菌剤残留物を還元剤との反応により無害化することができるとともに、その無害化の際に発生する還元反応熱による、殺菌剤供給装置又はそれに接続する配管経路に対する悪影響の懸念を払拭することができるバラスト水処理装置を提供することを課題とする。
 上記課題を解決するための、本発明の第1の形態に係るバラスト水処理装置は、船舶のバラストタンクに収容されるバラスト水を殺菌するためのバラスト水処理装置であって、船外から取水された海水、汽水、淡水又はその他の水をバラストタンクに向けて移送するバラスト水配管内へ塩素系物質の水溶液を塩素系殺菌剤として供給する殺菌剤供給装置と、上記塩素系殺菌剤又はその成分物質と反応する還元剤を上記バラスト水配管内に供給する還元剤供給装置と、上記殺菌剤供給装置が接続され、上記塩素系殺菌剤又はその成分物質を上記バラスト水配管内に向けて移送する第一の配管と、上記還元剤供給装置が接続され、上記還元剤を上記バラスト水配管内に向けて移送する第二の配管と、上記第一の配管及び上記第二の配管が接続され、上記第一の配管から移送される上記塩素系殺菌剤又はその成分物質を上記バラスト水配管内に注入するとともに、上記第二の配管から移送される上記還元剤を上記バラスト水配管内に注入する注入部と、を備えており、上記塩素系殺菌剤又はその成分物質は、上記第一の配管を通じて上記注入部に到達するまでは上記還元剤と混合することがなく、上記注入部から上記バラスト水配管内へ供給された後に上記還元剤と混合することを特徴とするものである。
 本発明の第2の形態に係るバラスト水処理装置は、第1の形態に係るバラスト水処理装置であって、上記塩素系殺菌剤又はその成分物質は、バラスト水の殺菌に使用されることなく上記殺菌剤供給装置又は上記第一の配管内に残留したもののうちの少なくとも一部であることを特徴とするものである。
 本発明の第3の形態に係るバラスト水処理装置は、第2の形態に係るバラスト水処理装置であって、上記塩素系殺菌剤又はその成分物質は、上記還元剤とともに又は上記還元剤が上記注入部から上記バラスト水配管内に注入された後に、上記注入部から上記バラスト水配管内に注入される、ことを特徴とするものである。
 本発明の第4乃至第6の形態に係るバラスト水処理装置は、それぞれ、第1乃至第3の形態に係るバラスト水処理装置であって、上記注入部が、上記第一の配管を内管とし、上記第二の配管を外管とする二重管構造を有することを特徴とするものである。
 本発明の第7及び第9の形態に係るバラスト水処理装置は、それぞれ、第4乃至第6の形態に係るバラスト水処理装置であって、上記第一の配管の先端が、上記第二の配管の先端よりも上記バラスト水配管の断面中心に近い位置に配置されており、上記第一の配管は、上記第二の配管よりも長く上記バラスト水配管内に延伸していることを特徴とするものである。
 本発明の第10及び第12の形態に係るバラスト水処理装置は、それぞれ、第4乃至第6の形態に係るバラスト水処理装置であって、上記第一の配管の先端が、上記バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置していることを特徴とするものである。
 本発明の第13及び第14の形態に係るバラスト水処理装置は、それぞれ、第1及び第2の形態に係るバラスト水処理装置であって、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水(バラストタンクに収容されているバラスト水を含む)を、上記バラスト水配管の下流側の位置から、上記バラスト水配管の上流側であってバラストポンプの下流側の位置に帰還させる帰還配管経路を備えていることを特徴とするものである。
 本発明の第15及び第16の形態に係るバラスト水処理装置は、それぞれ、第1及び第2の形態に係るバラスト水処理装置であって、上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とするものである。
 本発明の第17及び第18の形態に係るバラスト水処理装置は、それぞれ、第13及び第14の形態に係るバラスト水処理装置であって、上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とするものである。
 なお、本発明に係るバラスト水処理装置には、第7乃至9の各形態に係るバラスト水処理装置であって、上記第一の配管の先端が、上記バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置していることを特徴とするものが含まれる。
 本発明の第1の形態によれば、殺菌剤供給装置又はそれに接続する配管経路の内部に存在する殺菌剤残留物を注入部からバラスト水配管内に注入することにより当該内部から除去する際、次に掲げる効果1乃至5のうちのいずれか、少なくとも一つを奏する。(言うまでもなく、本発明の第1の形態が奏する効果は、本発明のその他の各形態に共通する効果である。)
 [効果1] 本発明の第1の形態においては、殺菌剤残留物が第一の配管を通じて、還元剤が第二の配管を通じて、つまり、当該殺菌剤残留物と当該還元剤の両物質がそれぞれ別々の配管を経て注入部に至り、その後、同じ注入部(より正確には、その同じ注入部が備える一個又は複数個の開口部であって、バラスト水配管内へ向かって開口するもの)からバラスト水配管内へ注入される。それ故、この第1の形態によれば、殺菌剤残留物と還元剤の両物質のそれぞれが同じ注入部に到達しその後合流するまでは、互いに接触又は混合せず、反応せず、したがって還元反応熱を発生させることがないので、当該還元反応熱が殺菌剤供給装置又はそれに接続する配管経路に対して悪影響を及ぼすことはない。
 [効果2] 本発明の第1の形態においては、バラスト水配管内で海水が停止又は流動しているか否かを問わず、殺菌剤残留物と還元剤の両物質が同じ注入部からバラスト水配管内へ注入されるので、両物質は、その注入直後から互いに近接又は接触しており、注入後もバラスト水配管内で互いに接触又は混合し、反応する機会が維持される。それ故、この第1の形態によれば、バラスト水配管内で海水が停止又は流動していると否とにかかわらず、殺菌剤残留物に由来する遊離有効塩素を低減又は消失させることができ、それにより当該殺菌剤残留物を最終的に無害化することができる。
 [効果3] 本発明の第1の形態においては、殺菌剤残留物と還元剤との反応は、内容積の大きいバラスト水配管内で起こるので、また、バラスト水配管内に通常存在する海水による冷却作用も働くので、当該海水の冷却作用により当該還元反応熱による温度上昇は抑制される。したがって、この第1の形態によれば、当該還元反応熱が殺菌剤供給装置又はそれに接続する配管経路に対して悪影響を及ぼすことはない。
 [効果4] 本発明の第1の形態においては、上述のとおり、殺菌剤残留物と還元剤がバラスト水配管内に注入される前に還元反応熱が殺菌剤供給装置及びその構成要素に対して悪影響を及ぼすことはない。それ故、この第1に形態によれば、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いることができる。
 [効果5] 本発明の第1の形態においては、上述のとおり、バラスト水配管内で発生する還元反応熱は、バラスト水配管内の内容積の大きさゆえに、また、バラスト水配管内に通常存在する海水による冷却作用も働くので、殺菌剤供給装置及びその構成要素に悪影響が及ぶほどには到達しない。それ故、この第1の形態によれば、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いることができる。
 殺菌剤残留物は、塩素系殺菌剤又はその成分物質に該当するが、バラストタンクに収容されるバラスト水を殺菌するための塩素系殺菌剤もまたそれに該当する。したがって、本発明の第1の形態は、第一の配管を通じて注入部からバラスト水配管内に注入される物質が殺菌剤残留物である場合に限定されず、バラストタンクに収容されるバラスト水を殺菌するための塩素系殺菌剤が当該物質である場合も含まれる。
 これに対して、本発明の第2の形態は、第一の配管を通じて注入部からバラスト水配管内に注入される物質が、バラスト水の殺菌に使用されることなく上記殺菌剤供給装置又は上記第一の配管内に残留したもののうちの少なくとも一部、つまり殺菌剤残留物である場合に限定される。しかし、それ故に、この第2の形態は、本発明の第1の形態が奏するものと同じ効果を奏する。
 本発明の第1及び第2の各形態においては、第一の配管を通じて物質(殺菌剤残留物を含む)をバラスト水配管内に注入するタイミングと、第二の配管を通じて還元剤をバラスト水配管内に注入するタイミングとの関係に制限は設けられていない。そのため、本発明の第1及び第2の各形態は、次に掲げる(i)乃至(iii)のいずれかの場合に限られるものではなく、いずれの場合も除外しない。
(i)第一の配管を通じて物質をバラスト水配管内に注入するのと同時に、第二の配管を通じて還元剤をバラスト水配管内に注入する。
(ii)第一の配管を通じて物質をバラスト水配管内に注入する前に、第二の配管を通じて還元剤をバラスト水配管内に注入する。
(iii)第一の配管を通じて物質をバラスト水配管内に注入した後に、第二の配管を通じて還元剤をバラスト水配管内に注入する。
 しかし、上記(iii)の場合において、第一の配管を通じてバラスト水配管内に注入される物質が、粗密がある(特に固化物が含まれている)殺菌剤残留物であるときに、当該殺菌剤残留物を還元剤よりも先にバラスト水配管3内に注入してしまうと、より短時間で当該還元剤と十分に反応させることが難しくなる。殺菌剤残留物と還元剤を良好に接触又は混合させるためには、上記(i)及び上記(ii)は、上記(iii)よりも好ましい。
 これに対し、本発明の第3の形態は、上記(i)又は上記(ii)の場合に限られるものであり、上記(iii)の場合を除外するものである。それ故、この第3の形態によれば、第一の配管を通じてバラスト水配管内に注入される物質と還元剤をより良好に接触又は混合させることができる。
 殺菌剤残留物と還元剤を良好に接触又は混合させる必要があるので、[c1]殺菌剤残留物と還元剤の両物質を同時にバラスト水配管3内に注入する、又は、[c2] まず、還元剤をバラスト水配管3内に注入し、バラスト水配管3内の海水に存在させたうえで、その還元剤の存在場所に向けて殺菌剤残留物を注入するのが望ましい。殺菌剤残留物を還元剤よりも先にバラスト水配管3内に注入すると、殺菌剤残留物に粗密がある場合(特に、固化物が含まれている場合)、より短時間に還元剤と十分反応させることが難しくなる。本発明の第3の形態では、塩素系殺菌剤又はその成分物質は、還元剤とともに又は還元剤が注入部からバラスト水配管内に注入された後に、注入部からバラスト水配管内に注入されるので、バラスト水配管内での当該両物質の相互の混合と反応を効率的に進めることができる。それ故、本発明の第3の形態によれば、第1又は第2の形態の場合と比べて、第一の配管を通じて注入部からバラスト水配管内に注入される物質(殺菌剤残留物を含む)に含まれる遊離有効塩素の低減又は消失、ひいては当該物質の無害化を効率的に行うことができる。
 本発明の第4乃至第6の各形態によれば、注入部は、第一の配管を内管とし、第二の配管を外管とする二重管構造を有するので、第一の配管から殺菌剤残留物を、第二の配管から還元剤をそれぞれバラスト水配管内へ注入したとき、前者の殺菌剤残留物が、後者の還元剤により包み込まれた状態となり、当該殺菌剤残留物を還元剤と十分混合させ反応させることができ、その無害化をより容易に又は効率的に実現することができる。
 本発明の第7乃至第9の各形態において、第一の配管の先端は、第二の配管の先端よりもバラスト水配管の断面中心に近い位置に配置されている。すると、第一の配管の先端は、第一の配管の先端がバラスト水配管の内壁面近傍の位置にある場合よりも、バラスト水配管の断面中心近くを流れるより高速のバラスト水からより大きな負圧を受けることになるので、当該負圧により、第一の配管の先端には、第一の配管内からバラスト水配管内の方向へと作用する吸引力が働くことになる。それ故、本発明の第5及び第6の形態によれば、凝固、堆積又は固化が進んで流動性が低下した殺菌剤残留物であっても、当該吸引力により、バラスト水配管内に容易に移動させることができる。
 なお、本発明の第7乃至第9の各形態において、第一の配管の先端は、第二の配管の先端よりもバラスト水配管の断面中心に近い位置にあれば足り、当該断面中心と一致する位置にまで延伸している必要はない。当該第一の配管の先端は、当該断面中心に到達しないで断面中心に近い位置にまで延伸していてもよく、当該断面中心を過ぎた位置まで延伸していてもよい。また、当該第二の配管の先端は、第一の配管の先端よりもバラスト水配管の断面中心近くに配置している必要はない。しかし、還元剤の流動性が高い場合であれ、低い場合であれ、殺菌剤残留物と混合し易くすることが望まれる場合には、当該第二の配管の先端も、当該断面中心近くに配置している方が好ましい。
 本発明の第10乃至第12の各形態によれば、第一の配管の先端は、バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置しているので、第一の配管の先端には、第一の配管内からバラスト水配管内の方向へと作用する吸引力が働くことになり、凝固、堆積又は固化が進んで流動性が低下した殺菌剤残留物であっても、当該吸引力により、バラスト水配管内に比較的容易に移動させることができる。
 本発明の第13及び第14の各形態によれば、バラスト水配管内の海水、汽水、淡水その他の水(バラストタンクに収容されているバラスト水を含む。総じて処理対象水という。)を帰還配管経路を通じてバラスト水配管の下流側から上流側に帰還させるので、当該処理対象水の攪拌が促進される。そのため、当該処理対象水に塩素系殺菌剤を注入する場合には、その殺菌効果を促進させることができ、当該処理対象水に塩素系殺菌剤や殺菌剤残留物に由来する遊離有効塩素が残留している場合には、塩素系殺菌剤及び/又は殺菌剤残留物と還元剤との混合と反応、ひいては当該処理対象水の無害化を促進することができる。
 本発明の第15及び第16の各形態によれば、バラスト水配管内の海水、汽水、淡水その他の水(バラストタンクに収容されているバラスト水を含む。総じて処理対象水という。)を注入部の下流側から上流側に帰還させるので、注入部から塩素系殺菌剤をバラスト水配管内に注入する場合には、塩素系殺菌剤と当該処理対象水との混合、したがって殺菌を促進することができ、殺菌剤残留物と還元剤を注入する場合には、殺菌剤残留物と還元剤との混合と反応をより促進させ、殺菌剤残留物の無害化を効率的に進めることができる。
 本発明の第17及び第18の形態によれば、それぞれ、第13及び第14の形態が奏する効果に加えて、第15及び第16の形態が奏する効果を得ることができる。
 総じて、本発明によれば、バラスト水配管内で海水が流動しているか停止しているかを問わず、当該殺菌剤残留物を還元剤との反応により無害化することができるとともに、その無害化の際に発生する還元反応熱による、殺菌剤供給装置及びその構成要素に対する悪影響の懸念を払拭することができる。
 なお、次の点について付言しておく。
(付言1) 本発明における、殺菌剤供給装置からバラスト水配管内へ供給される「塩素系殺菌剤又はその成分物質」は、殺菌剤供給装置又はそれに接続する配管経路に残存する殺菌剤残留物に含まれる塩素系殺菌剤又はその成分物質であってもよい。また、本発明における、第一の配管が接続され、第一の配管から移送される「塩素系殺菌剤又はその成分物質」をバラスト水配管内に注入する「注入部」は、殺菌剤残留物をバラスト水配管内に注入する注入部(特許第5924447号における“残留物注入口Id”に相当する箇所)ではあるが、バラストタンクにバラスト水として収容されるべき海水を殺菌するために「塩素系殺菌剤又はその成分物質」をバラスト水配管内に注入する注入部(特許第5924447号における“殺菌剤注入口Is”に相当する箇所)を兼ねるもの(特許第5924447号における“殺菌剤注入口兼残留物注入口Is/Id”に相当する箇所)であってもよい。
(付言2) 本発明の各形態によれば、殺菌剤残留物が還元剤と反応して発生する還元反応熱は、両物質が注入部に到達しその後合流するまでは発生せず、両物質がバラスト水配管内に注入されてはじめて発生するので、還元反応熱の悪影響が、殺菌剤供給装置又はそれに接続する配管経路に及ばないだけでなく、還元剤供給装置又はそれに接続する配管経路にも及ばない。
(付言3) 上述の効果4及び/又は効果5に基づき、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いると、バラスト水配管内における殺菌剤残留物と還元剤の反応はより効率的に進むので、上述の効果2はより顕著となる。
(付言4) バラスト水配管内の海水が流通している場合には、バラスト水配管内に取り付けてある混合装置による攪拌作用により、バラスト水配管内に注入された殺菌剤残留物及び還元剤の接触又は混合、ひいては殺菌剤残留物の無害化を促進することができる。また、還元作用を有する物質の濃度がより高い又は還元作用がより強い還元剤であるほど、殺菌剤残留物(又は殺菌剤残留物に含有される塩素系殺菌剤もしくはその成分物質)に由来する遊離有効塩素をより効率的に還元し、低減又は消失させることができ、その無害化を促進することができる。総じて、殺菌剤残留物の無害化をより短時間で完了させる必要がある場合には、混合装置が取り付けられたバラスト水配管内で海水を流通させるのが望ましく、還元作用を有する物質の濃度がより高い又は還元作用がより強い還元剤を選択するのが望ましい。(このことは、本発明の各形態が、混合装置が取り付けられたバラスト水配管内の海水が流通している場合や、還元作用を有する物質の濃度がより高い又は還元作用がより強い還元剤を用いる場合に限定されるという意味ではない。本発明の各形態は、バラスト水配管内の海水が停止している場合や、還元作用を有する物質の濃度がより低い還元剤を用いる場合であっても、その効果を奏する。 
(付言5) 本発明の各形態において、塩素系殺菌剤又はその原料もしくは成分がトリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はその水和物、ジクロロイソシアヌル酸カリウム等のような塩素化イソシアヌル酸化合物である場合に使用される頻度が高い還元剤は、亜硫酸ナトリウム又はその水和物、チオ硫酸ナトリウム又はその水和物、あるいは、それらの水溶液である。還元剤が亜硫酸ナトリウム又はチオ硫酸ナトリウムの水溶液であれば十分流動性が高いので、第二の配管の先端は、第一の配管の先端よりもバラスト水配管の断面中心近くに配置している必要はない。しかし、還元剤の流動性が高い場合であれ、低い場合であれ、殺菌剤残留物と混合し易くすることが望まれる場合には、第二の配管の先端も、当該断面中心近くに配置している方が好ましい。
は本発明の第一の実施形態に係るバラスト水処理装置の概要構成図である。 (A)は図1に示されているバラスト水処理装置における注入部についての詳細図であり、(B)はその横断面を示す図である。 は図1に示されているバラスト水処理装置の注入部の構造の第一例を示す図であり、(A)はバラスト水配管の中心軸線を含む面での断面図、(B)は該中心軸線に直角な面での断面図である。 は図1に示されているバラスト水処理装置の注入部についての第二例を示す図であり、(A)はバラスト水配管の中心軸線を含む面での断面図、(B)は該中心軸線に直角な面での断面図である。 は図1に示されているバラスト水処理装置の注入部についての第三例を示す図であり、(A)はバラスト水配管の中心軸線を含む面での断面図、(B)は該中心軸線に直角な面での断面図である。 は図1に示されているバラスト水処理装置の注入部についての第四例を示す図であり、(A)はバラスト水配管の中心軸線を含む面での断面図、(B)は該中心軸線に直角な面での断面図である。 は図1に示されているバラスト水処理装置の注入部についての第五例を示す図であり、バラスト水配管の中心軸線を含む面での断面図ある。 は本発明の第二の実施形態に係るバラスト水処理装置の概要構成図である。 (A)は本発明の第三の実施形態に係るバラスト水処理装置の概要構成図であり、(B)は(A)での帰還配管経路についての変形例を示す図である。 は本発明の第四の実施形態に係るバラスト水処理装置の概要構成図である。 は本発明の第五の実施形態に係るバラスト水処理装置の構成及び動作の説明図であり、(A)は装置の概要構成図、(B)以降は図11(A)装置の異なる運転状態を示し、(B)はバラスト水漲水運転時、(C)は残留物還元処理運転時、(D)はバラスト水排水運転時を示す。
 以下、図面にもとづき、本発明の実施形態を詳細に説明する。その際、必要に応じて各図を参照しつつ説明するが、各図において同一部分又は相当する部分もしくは共通部分にはこれと同じ符号を付し、その繰り返しの説明は省略する。いうまでもなく、本発明は、図示された実施の形態に限定されない。
 本発明の実施形態の説明に先立ち、用いられる用語について説明する。本発明及びその実施形態においては、次に掲げる用語の意味又は解釈は、区別して別段の説明を行う場合を除き、以下のとおりとする。
 (1) 「塩素系薬剤」とは、溶媒である水に溶解したとき、水溶液中での不均化により、殺菌作用を有する遊離有効塩素を放出する薬剤又はその遊離有効塩素を放出し得る物質を生成する薬剤であり、本発明において「固形」、「液状」の場合がある。「固形」とは、常温において粉末、顆粒、錠剤その他の固体の状態にあることであり、本発明では、「塩素系薬剤」は「固形」である必要はない。
 「固形の塩素系薬剤」の代表例は、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム及びその水和物、ジクロロイソシアヌル酸カリウム等である。「塩素系殺菌剤」とは、遊離有効塩素が有する殺菌作用を利用して殺菌を行う薬剤であり、その代表例は、塩素系薬剤の水溶液である。
 (2) 「還元剤」とは、固形であると否と問わず、他の物質から電子を受け取るために用いる薬剤をいい、塩素系殺菌剤との関係では、塩素系殺菌剤又はその成分物質に由来する遊離有効塩素を還元するために用いる物質である。還元剤の代表例は、亜硫酸ナトリウム又はその水和物、チオ硫酸ナトリウム又はその水和物、あるいは、それらの水溶液である。
 (3) 「バラスト水配管」とは、船外から取水した海水をバラストタンクへ向けて流通させるためのバラスト水配管又は、船外から取水した海水をバラストタンクへ向けて流通させていると否とにかかわらず、あるいは海水が流動しているか停止しているかを問わず、当該バラスト水配管の少なくとも一部を構成する配管をいう。
 (4) 船舶のバラスト水としてバラストタンクに収容される前に、バラスト水処理の一環として殺菌剤により殺菌する漲水時殺菌処理が施される「海水」には、バラスト水としてバラストタンクに収容される水である限り、汽水又は淡水が含まれる。
 <本発明の第一の実施形態>
1. バラスト水処理装置
1.1 装置構成
 図1は、本発明の第一の実施形態に係るバラスト水処理装置の概要構成図である。
 図1において、本発明に係るバラスト水処理装置を搭載する船舶は、海水をバラスト水として船外から取水する取水口又はシーチェスト1と、このバラスト水を収容あるいは漲水するバラストタンク2とを有し、シーチェスト1とバラストタンク2とをバラスト水配管3で接続している。
 バラスト水配管3には、シーチェスト1から取水されたバラスト水をバラストタンク2へ向け送水するためのバラストポンプ(P1)4、バラスト水中の異物やプランクトンを濾過除去するための濾過装置5、濾過後のバラスト水に後述の殺菌剤供給装置20から供給された塩素系殺菌剤を注入する注入部7、注入された塩素系殺菌剤をバラスト水に混合するための混合装置6が設けられている。
 バラスト水配管3に設けられた注入部7には、バラスト水配管3内の海水を漲水時殺菌処理するための塩素系殺菌剤をバラスト水配管3内へ注入するための殺菌剤供給装置20が接続されている。殺菌剤供給装置20は、原料の塩素系薬剤を水に溶解させることで塩素系薬剤の水溶液である塩素系殺菌剤を製造する殺菌剤溶解装置21と、殺菌剤溶解装置21に接続し、殺菌剤溶解装置21から排出される塩素系殺菌剤を流通させる配管経路22Bとを備えており、配管経路22Bは、塩素系殺菌剤をバラスト水配管3に向けて排出するための殺菌剤ポンプ(P2)23を備えている。
 殺菌剤溶解装置21は、図示されてはいない溶解槽(以下「溶解槽S」という)を備えており、その外部から供給された固形の塩素系薬剤及び清水を溶解槽Sで受け、溶解槽S内で固形の塩素系薬剤を清水に溶解させて塩素系薬剤の水溶液を作り出し、溶解槽Sから排出される塩素系薬剤の水溶液を塩素系殺菌剤として、殺菌剤ポンプ(P2)23により付勢し、溶解槽Sに接続する配管経路22Bを通じて送出し、さらに第一の配管22及びバルブ22Aを通じて注入部7(正確には注入部7が備える開口部7a)からバラスト水配管3内へ注入するように構成されている。
 殺菌剤ポンプ(P2)23と注入部7との間には第一の配管22が接続されている。第一の配管22は、配管経路22Bの一部と位置付けることもできるが、配管経路22Bを注入部7に向けて延長するために、配管経路22Bの端部に接続した配管と位置付けることもできる。いずれの場合であれ、殺菌剤供給装置20は、それに接続する第一の配管22を通じて注入部7に接続される。第一の配管22には、殺菌剤ポンプ(P2)23と注入部7との間に、図1には図示されていないバルブ22Aが取り付けられている(図2参照)。
 この第一の実施形態では、漲水時殺菌処理において、船外からシーチェスト1を経て取水された海水を、バラストポンプ(P1)4によりバラストタンク2へ向けてバラスト水配管3内を送水する過程で、当該海水を濾過装置5で濾過し、濾過後の当該海水に対して、殺菌剤供給装置20から供給された塩素系殺菌剤を第一の配管22を通じて注入部7からバラスト水配管3内へ注入し、塩素系殺菌剤が注入された当該海水を混合装置6により攪拌し、当該海水と当該塩素系殺菌剤と混合し、殺菌剤注入後の当該海水をバラスト水としてバラストタンク2に収容する。
 漲水時殺菌処理に使用される塩素系殺菌剤の代表例は、酸化性を有する遊離有効塩素を含有する塩素系薬剤の水溶液である。塩素系薬剤の水溶液は、常温で液体の塩素系薬剤を水と混合もしくは希釈することにより又は常温で固形の塩素系薬剤を水に溶解させることで用意することができる。
 漲水時殺菌処理の終了後、殺菌剤供給装置20(殺菌剤溶解装置21が備える溶解槽S及び配管経路22Bを含む)又はそれに接続する第一の配管22もしくはバルブ22Aの内部に残留した未使用の塩素系殺菌剤又はその成分物質のうち少なくとも一部(つまり殺菌剤残留物)を、そのまま又は殺菌剤ポンプ(P2)23の上流側(好ましくは溶解槽S)から投入された当該内部を洗浄するための水(好ましくは清水)とともに、殺菌剤ポンプ(P2)23により付勢して、第一の配管22を通じて注入部7からバラスト水配管3内へ注入する処理(以下「残留物除去処理」という場合がある)を行う。
 注入部7は、上述のとおり、漲水時殺菌処理において、殺菌剤供給装置20から供給された塩素系殺菌剤をバラスト水配管3内へ注入する注入口であり、残留物除去処理において、殺菌剤供給装置20又はそれに接続する配管経路の内部に残留する殺菌剤残留物をバラスト水配管3内へ注入する注入口でもあるので、特許第5924447号における“殺菌剤注入口兼残留物注入口Is/Id”に相当する箇所である。
 漲水時殺菌処理の終了後又はバラストタンク2にバラスト水として収容されるべき海水への塩素系殺菌剤の供給を停止したときは、殺菌剤供給装置20又はそれに接続する配管経路(その定義に従って配管のみならず、それに取り付けられたポンプ、バルブ、タンク、計測装置等の装置を含む)の内部(特に塩素系殺菌剤との接液領域)に殺菌剤残留物が存在している。殺菌剤残留物を放置すると、水分の蒸発による濃化により起こる析出物の発生、堆積又は固化、ひいては殺菌剤残留物に起因する動作不具合が生じる。また、配管の材質によっては、その配管の腐食の原因となる。塩素系殺菌剤の原料である塩素系薬剤の種類によっては(例えば、塩素系薬剤の主成分がジクロロイソシアヌル酸ナトリウムである場合には)、殺菌剤残留物は塩素含有ガスの発生源となり、発生した塩素含有ガスによる作業環境の悪化が懸念される。これらの問題が生じると、排水時還元処理にも悪影響を与えかねない。
 これに対して、残留物除去処理は、殺菌剤供給装置20又はそれに接続する配管経路の内部(特に塩素系殺菌剤との接液領域)に残留した殺菌剤残留物を、その残留場所から別の場所(バラスト水配管3内)に除去する処理なので、その実行により、殺菌剤残留物に起因する動作不具合の発生を防止又は低減することができ、配管の腐食進行を抑制することができ、塩素含有ガスが発生するおそれがある場合であっても、塩素含有ガスによる作業環境の悪化を防止することができる。引き続く排水時還元処理への悪影響も抑えることができる。
 残留物除去処理時には、バラスト水配管3内の海水は停止していてもよく、流通していてもよい。また、殺菌剤残留物には、(a)その未使用の塩素系殺菌剤又はその成分物質のうち、少なくとも一部が濃化してできる物質、(b)塩素系殺菌剤の原料である塩素系薬剤と水とが混合してできる水溶液又は液状物、ならびに(c)左記(a)及び(b)の混合物のうちの少なくとも一つの少なくとも一部が含まれる。
 この第一の実施形態では、バラスト水配管3内を流通する海水に対して還元剤を供給する還元剤供給装置30も設けられている。
 還元剤供給装置30は、還元剤を収容する還元剤タンク31と、還元剤タンク31に接続し、還元剤タンク31から排出される還元剤を流通させる配管経路32Bとを備えており、配管経路32Bは、還元剤をバラスト水配管3に向けて排出するための還元剤ポンプ(P3)33を備えている。
 還元剤ポンプ(P3)33と注入部7との間には第二の配管32が接続されている。第二の配管32は、配管経路32Bの一部と位置付けることもできるが、配管経路32Bを注入部7に向けて延長するために、配管経路32Bの端部に接続した配管と位置付けることもできる。いずれの場合であれ、還元剤供給装置30は、それに接続する第二の配管32を通じて注入部7に接続される。第二の配管32には、還元剤ポンプ(P3)33と注入部7との間に、図1には図示されていないバルブ32Aが取り付けられている(図2参照)。
 還元剤供給装置30は、還元剤タンク31から排出される還元剤を、還元剤ポンプ(P3)33により付勢し、還元剤タンク31に接続する配管経路32Bを通じて送出し、さらに第二の配管32及びバルブ32Aを通じて注入部7(正確には、注入部7が備える開口部7a)から、バラスト水配管3内へ注入するように構成されている。
 還元剤供給装置30から第二の配管32を通じて注入部7からバラスト水配管3内へ注入された還元剤は、殺菌剤供給装置20から第一の配管22を通じて同じ注入部7から注入された殺菌剤残留物との接触又は混合、ひいては反応により、当該殺菌剤残留物に由来する遊離有効塩素を低減又は消失させ、これにより当該殺菌剤残留物を無害化させる。
 還元剤供給装置30は、残留物除去処理の際、殺菌剤残留物を無害化するための還元剤を注入するための装置であれば足り、殺菌剤残留物を無害化するための還元剤を注入するための残留物除去処理専用の装置であってもよく、バラストタンク2から取水した殺菌剤注入済みのバラスト水を船外へ排水する前に、当該バラスト水に還元剤を注入するための排水時還元処理用の装置を兼ねるものであってもよい。
 注入部7の構造及びその例については、別途後述する(図2乃至図7参照)。
1.2 装置の運転
 次に、本発明の第一の実施形態に係るバラスト水処理装置の運転について説明する。
 <1> 漲水時殺菌処理運転
 バラスト水処理装置の漲水時殺菌処理運転においては、船外からシーチェスト1を経て取水した海水を、バラストポンプ(P1)4によりバラストタンク2へ向けてバラスト水配管3内を送水し、その送水の過程で、当該海水を濾過装置5で濾過し、濾過後の当該海水に対して、殺菌剤供給装置20から第一の配管22を通じて注入部7からバラスト水配管3内へ塩素系殺菌剤を注入し、塩素系殺菌剤を注入した当該海水を混合装置6により攪拌した後、殺菌剤注入後の当該海水をバラスト水としてバラストタンク2に収容する。これにより、バラストタンク2を、塩素系殺菌剤が注入されたバラスト水により漲水する。漲水時殺菌処理の終了後は、殺菌剤供給装置20における殺菌剤溶解装置21からの塩素系殺菌剤の供給を停止する。
 注入部7からバラスト水配管3内へ注入するための塩素系殺菌剤は、殺菌剤溶解装置21が備える溶解槽S内で固形の塩素系薬剤を水に溶解させることでできる塩素系薬剤の水溶液である。注入部7からバラスト水配管3内への塩素系殺菌剤の注入は、殺菌剤溶解装置21(特に溶解槽S)から配管経路22Bから排出した塩素系薬剤の水溶液を、殺菌剤ポンプ(P2)23により付勢し、第一の配管22を通じて注入部7が備える開口部7aからバラスト水配管3内へ送出することにより行うものである。塩素系殺菌剤を注入した当該海水の混合装置6による攪拌は、当該海水の当該塩素系殺菌剤との混合、したがって当該海水の当該塩素系殺菌剤による殺菌を促進する。
  <2> 残留物除去処理運転
 バラスト水処理装置の残留物除去処理運転においては、漲水時殺菌処理の終了後又はバラストタンク2にバラスト水として収容されるべき海水への塩素系殺菌剤の供給停止後、バラストポンプ(P1)4が運転中であるか運転終了後であるかは問わず、また、バラスト水配管3内の海水が停止しているか流通しているかは問わず、殺菌剤供給装置20又はそれに接続する第一の配管22もしくはバルブ22Aの内部(特に塩素系殺菌剤との接液領域)に残留した殺菌剤残留物を、そのまま又は殺菌剤ポンプ(P2)23の上流側(好ましくは、殺菌剤溶解装置21が備える溶解槽S)から投入した当該内部を洗浄するための水(好ましくは清水)とともに、殺菌剤ポンプ(P2)23により付勢して、第一の配管22を通じて注入部7からバラスト水配管3内へ注入する。
 殺菌剤残留物のバラスト水配管3内へ注入、つまり残留物除去処理運転の開始は、漲水時殺菌処理の終了後又はバラストタンク2にバラスト水として収容されるべき海水への塩素系殺菌剤の供給停止後、2時間以内、望ましくは1時間以内、更に望ましくは実務的に可能な限り速やかに行う。
 殺菌剤残留物を第一の配管22を通じて注入部7からバラスト水配管3内へ注入するのと同時に又はその供給の直前もしくは一定時間前に、還元剤供給装置30から供給される還元剤を第二の配管32を通じて同じ注入部7からバラスト水配管3内へ注入する。これにより、バラスト水配管内で海水が流動しているか停止しているかを問わず、バラスト水配管内で殺菌剤残留物と還元剤の相互の接触又は混合、ひいては反応の機会が確保されるので、当該殺菌剤残留物は最終的に無害化される。
 漲水時殺菌処理運転から残留物除去処理運転へ移行する際には、殺菌剤ポンプ(P2)23の運転を停止することなく継続して当該移行を実行するのが好ましい。殺菌剤ポンプ(P2)23を停止すると、その停止が一時的であれ、殺菌剤供給装置20又はそれに接続する配管経路のどこかに塩素系殺菌剤その他の物質が残留してしまうおそれがあるからである。
 還元剤のバラスト水配管3内への注入は、バラストポンプ(P1)4が運転中であるか運転終了後であるかは問わず、また、バラスト水配管3内の海水が停止しているか流通しているかは問わない。尤も、バラスト水配管3内で殺菌剤残留物をより効率的に無害化するためには、バラスト水配管3内の海水が流動していることが望ましく、注入部7の下流側のバラスト水配管7に混合装置6が設置されていることが更に望ましい。
 殺菌剤残留物及び還元剤を注入部7からバラスト水配管3内の海水に注入した後は、当該海水がバラスト水配管3内で停止しているか流通しているかを問わず、当該海水を、[a1] バラストタンク3に送水することなくバラスト水配管3内に収容されたままとし、その後排水時還元処理運転時に船外へ排出する、又は [a2] バラストタンク2に送水し、バラスト水の一部として収容させ、その後排水時還元処理運転時に船外へ排出する。
 上記[a1]の場合、当該海水が、バラスト水配管3又はそれを含む形で構成される循環型の又は閉環状をなす配管経路で一時的に又は長時間にわたり(遅くとも排水時還元処理運転直前まで)循環するようにしてもよい。上記[a2]の場合、殺菌剤残留物及び還元剤が注入された海水をバラストタンク2に送水するときは、バラスト水配管3を通じてバラストタンク2へ送水してもよく、バラスト水配管3にバルブの開閉により接続可能な別の配管を通じてバラストタンク2へ送水してもよい。
 <3> 排水時還元処理運転
 バラスト水処理装置の排水時還元処理運転においては、バラストタンク2からバラスト水(殺菌剤注入済みの海水)を取水し、そのバラスト水に還元剤を注入することにより、そのバラスト水に含まれる遊離有効塩素を船外排水が許される水準まで低減又は消失させ、無害化し、その後、船外へ排水する。当該遊離有効塩素は、漲水時殺菌処理の際に海水の殺菌のために用いた塩素系殺菌剤又はその成分物質に由来するものである。
 バラストタンク2から取水したバラスト水に含まれる遊離有効塩素が、当該バラスト水に還元剤を注入するまでもなく船外排水が許される水準である場合には、バラスト水処理装置の排水時還元処理運転は行わない。
1.3 装置の長所
 本発明の第一の実施形態に係るバラスト水処理装置は、上述のように構成され、運転されるので、次に掲げる長所1乃至7のうちのいずれか、少なくとも一つを有する。
〔長所1〕 殺菌剤残留物は、注入部7に到達するまでは、還元剤と接触又は混合せず、したがって還元反応熱を発生させることがない。それ故、当該還元反応熱は、殺菌剤供給装置20又はそれに接続する配管経路に対して悪影響を与えない。
 なお、上記と同じ理由から、当該還元反応熱は、還元剤供給装置30又はそれに接続する配管経路(第二の配管32及びバルブ32Aを含む)に対しても悪影響を与えない。
〔長所2〕 バラスト水配管3内で殺菌剤残留物が還元剤と反応することで発生する還元反応熱の悪影響は、バラスト水配管3の内容積が大きいために、またバラスト水配管3内に通常存在する海水による冷却作用も働くので、殺菌剤供給装置20又はそれに接続する配管経路には及ばない。
 なお、上記と同じ理由から、当該還元反応熱の悪影響は、還元剤供給装置30又はそれに接続する配管経路にも及ばない。
〔長所3〕 殺菌剤残留物と還元剤の両物質を同じ注入部7からバラスト水配管3内へ注入するので、バラストポンプ(P1)4が運転中であるか運転終了後であるかは問わず、バラスト水配管内で海水が流動しているか停止しているかを問わず、その注入直後から両物質を近接又は接触させることができ、注入後もバラスト水配管3内で両物質の相互の接触又は混合、ひいては反応の機会を確保することができ、故に当該殺菌剤残留物を最終的に無害化することができる。
〔長所4〕 殺菌剤残留物は、注入部7に到達するまでは、還元剤と反応せず、還元反応熱を発生させず、したがって還元反応熱を発生させることがなく、当該還元反応熱が殺菌剤供給装置20もしくは還元剤供給装置30又はそれに接続する配管経路に対して悪影響を与えることがないので、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いることができる。
〔長所5〕 バラスト水配管3内で殺菌剤残留物が還元剤と反応することで発生する還元反応熱の悪影響は殺菌剤供給装置20もしくは還元剤供給装置30又はそれに接続する配管経路には及ばないので、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いることができる。
 なお、上述の長所4及び/又は長所5に基づき、還元剤として、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を用いると、バラスト水配管内における殺菌剤残留物と還元剤の両物質の反応はより効率的に進むので、上述の長所2はより顕著となる。
 総じて、本発明の第一の実施形態に係るバラスト水処理装置は上述の長所を有するので、そこでは、漲水時殺菌処理に引き続く殺菌剤除去処理(殺菌剤残留物の無害化のための処理を含む)が、殺菌剤残留物と還元剤との反応により発生する還元反応熱の悪影響を受けることなく、あるいは、バラストポンプ(P1)4が運転中であるか運転終了後であるか又はバラスト水配管内で海水が流動しているか停止しているかに拠らずに、実行され、殺菌剤残留物に起因する動作不具合に代表される問題の発生が防止又は低減され、故に、殺菌剤除去処理に引き続く排水時還元処理を含むバラスト水処理も正常に実行される。
2. バラスト水処理装置が備える注入部
2.1 残留物除去処理における注入部の役割
 残留物除去処理において、殺菌剤残留物及び還元剤の両物質をバラスト水配管3内に注入する場合、同じ注入部7からその注入を行うと、その注入の際バラスト水配管3内で海水が流動しているか停止しているかを問わず、両物質を互いに近接又は接触させながらバラスト水配管3内に導入することができ、それによりバラスト水配管3内における殺菌剤残留物の還元剤との接触、混合及び反応、ひいては当該殺菌剤残留物に由来する遊離有効塩素の低減又は消失を促すことができるので、最終的に殺菌剤残留物の無害化を促進することができる。
 この殺菌剤残留物の無害化は、注入部7の構造の工夫により、さらに促進することができる。
 そこで、本発明の第一の実施形態に係るバラスト水処理装置が備える注入部7の構造及びその例について、図2乃至図7を参照しつつ説明する。
 なお、図2ではバルブ22A及びバルブ32Aが描写しているが、図3乃至図7ではその描写を省略している。
2.2 注入部の構造及びその例
 注入部7は、バラスト水配管3に取り付けられ、塩素系殺菌剤又は殺菌剤残留物をバラスト水配管3内に向けて移送する第一の配管22及び還元剤をバラスト水配管3内に向けて移送する第二の配管32が接続されており、バラスト水配管3内へ向かって開口する、一個又は複数個の開口部7aを備えている。図7に示されている注入部7は、一個の開口部7aを備えるものであり、図2乃至図6に示されている注入部7は、複数個の開口部7a(73,73)を備えるものである。第一の配管22及び第二の配管32のいずれか一方は、注入部7よりも上流において、他方に接続されていない。
 注入部7は、第一の配管22の少なくとも一部及び第二の配管32の少なくとも一部のうち一方が他方の内管をなす二重管構造を有していてもよい(図2乃至図6参照)。この構造によれば、バラスト水配管3に対し一個の注入部を備える外観となり、第一の配管22及び第二の配管32の両方が接続する注入部7を簡素に構成することができる。しかし、注入部7は当該二重管構造を有するものに限定されない。図2乃至図6に示されている注入部は、当該二重管構造を有するものであり、図7に示されている注入部は、当該二重管構造を有しないものである。
 注入部7が第一の配管22が内管をなし、第二の配管32が外管をなす二重管構造である場合には、第二の配管32が、第一の配管22よりもバラスト水配管3内に延伸していると、第二の配管32の開口部73からバラスト水配管3内へ注入されるはずの還元剤が第一の配管22の先端の開口部72を包囲し又は開口部72内へ侵入し、不測の故障の原因になり兼ねない。また、注入部7が第一の配管22が外管をなし、第二の配管32が内管をなす二重管構造である場合には、第一の配管32が、第一の配管22よりもバラスト水配管3内に延伸していると、第一の配管22の開口部73からバラスト水配管3内へ注入されるはずの塩素系殺菌剤や殺菌剤残留物が第二の配管32の開口部73を包囲し又は開口部72内へ侵入し、不測の故障の原因になり兼ねない。それ故、注入部7が二重管構造を有する場合、不測の故障を避けるために好ましくは、第二の配管32が、第一の配管22よりもバラスト水配管3内に延伸していないように設定する(図2乃至図6参照)。
 図2(A),(B)に示されている注入部7は、第一の配管22が内管、第二の配管32が外管をなす二重管構造を有している。この構造では、両管22,23の先端の開口部72,73は、いずれもバラスト水配管3の内壁位置の近傍に配置している。なお、注入部7をバラスト水配管3に取り付けるためにバラスト水配管3の内壁を除去している場合、「バラスト水配管3の内壁位置」は、その注入部7が存在しなければ除去されずに存在していたであろう当該内壁の位置を意味するものとする(以下同様)。
 以下、配管がバラスト水配管3内へ突出している場合における、バラスト水配管3の内壁位置から、バラスト水配管3の断面の半径方向に沿って計測した、当該配管の先端の位置までの間の最短距離を、「延伸長」と定義すると、図2に示されている注入部7における、第一の配管22と第二の配管32のそれぞれの延伸長は、約ゼロ(零)である。
 図3(A),(B)に示されている注入部7は、図2に示されたものと同様、第一の配管22が内管、第二の配管32が外管をなす二重管構造を有しているが、図2に示されたものと異なり、第一の配管22の先端の開口部72がバラスト水配管3の断面中心近傍に配置している。
 以下、バラスト水配管3の内半径をRとすると、図3に示されている注入部7における、第一の配管22の延伸長は約Rであり、第二の配管32のそれは約ゼロ(零)である。
 図4(A),(B)に示されている注入部7は、図2に示されたものと同様、第一の配管22が内管、第二の配管32が外管をなす二重管構造を有しているが、図3に示されたものと同様、第一の配管22の先端の開口部72がバラスト水配管3の断面中心近傍まで延伸しており、図3に示されたものと異なり、第二の配管32はバラスト水配管3内に突出しており、その先端の開口部73は、延伸長にして、ゼロ(零)より大きく、Rより小さい位置に配置している。
 図5(A),(B)に示されている注入部7は、図2に示されたものと同様、第一の配管22が内管、第二の配管32が外管をなす二重管構造を有しているが、図4に示されたものと同様、第二の配管32はバラスト水配管3内に突出しており、その先端の開口部73は、延伸長にして、ゼロ(零)より大きく、Rより小さい位置に配置しており、図4に示されたものと異なり、第一の配管22の先端の開口部72はバラスト水配管3の断面中心を超えた位置、延伸長にしてRより大きく、2Rより小さい位置に配置している。
 図6(A),(B)に示されている注入部7は、図2に示されたものと同様、第一の配管22が内管、第二の配管32が外管をなす二重管構造を有しているが、図2に示されたものと異なり、第一の配管22の先端の開口部72がバラスト水配管3の断面中心よりもバラスト配管3の内壁位置に近い位置に配置している。図6に示されている注入部7における、第二の配管32の延伸長は約ゼロ(零)であり、第一の配管22の延伸長は、ゼロ(零)より大きく、Rより小さい。
 図7に示されている注入部7は、図2乃至図6に示されているような二重管構造を有しておらず、第一の配管22及び第二の配管32は、いずれも、バラスト水配管3内に突出してはおらず、それぞれ、同じ注入部7に接続されており、第一の配管22を通じて注入部7に到達した殺菌剤残留物及び第二の配管32を通じて注入部7に到達した還元剤が互いに合流した後、単一又は共通の開口部7aからバラスト水配管3内に注入されるように構成されている。この注入部7は、注入された殺菌剤残留物や還元剤が注入部7の内部で近接し、多少なりとも接触するとはいえ、当該内部に停止しない形状に設計されており、基本的にその内容積は小さい。
 図2乃至図7に示されている注入部7において、第一の配管22は、その先端近くで下流方向に向けて曲げられ、開口部72が下流方向に面するように(塩素系殺菌剤や殺菌剤残留物の排出方向がバラスト水配管3の管軸方向と平行になるように)配置していてもよい。また、第一の配管22は、図2乃至図7に示されているように、直管のままでありながら、その先端が下流側に向け大きく開口するように斜めに切り取られた形態であってもよい。
2.3 注入部の長所
<1> 一般的な長所
 図2乃至図7のそれぞれに示されている注入部7には、第一の配管22及び第二の配管32が別個に、しかし互いに近接して接続されているので、第一の配管22を通じて注入部7に到達した殺菌剤残留物及び第二の配管32を通じて注入部7に到達した還元剤の両物質は互いに接触又は近接してバラスト水配管3内に注入される。そのため、当該注入部7を用いると、当該両物質のバラスト水配管3内への注入の際バラスト水配管3内で海水が流動しているか停止しているかを問わず、当該両物質を互いに接触又は混合させて注入することができ、注入後もバラスト水配管3内で当該両物質の相互の接触又は混合及びそれに伴う反応を維持することができ、ひいては当該殺菌剤残留物に由来する遊離有効塩素の低減又は消失を促すことができ、最終的に殺菌剤残留物の無害化を促進することができる。
 特に、図2乃至図6のそれぞれに示されている二重管構造を有する注入部7を用いると、第一の配管22の先端の開口部72から殺菌剤残留物を、第二の配管23の先端の開口部73から還元剤をそれぞれバラスト水配管3内へ注入したとき、前者の殺菌剤残留物が、後者の還元剤により包み込まれた状態となるので、当該殺菌剤残留物を還元剤と十分混合させ反応させることができ、その無害化をより容易に又は効率的に実現することができる。
 図7に示されている注入部7は、その内部に殺菌剤残留物や還元剤が停止しない形状に設計されており、基本的にその内容積は小さい。そのため、殺菌剤残留物及び還元剤は、それらがバラスト水配管3内に移動する前の注入部7の内部で過度に接触又は混合したまま停滞することはなく、したがって過度の還元反応熱が発生することはない。また、還元反応熱が発生したとしても、バラスト水配管3内には通常海水が存在し、その海水による冷却作用が働くので、その還元反応熱は殺菌剤供給装置20又はそれに接続する配管経路に悪影響を及ぼすことはない。
<2> バラスト水配管内で海水が比較的大きな流速で流れている場合
 海水が比較的大きな流速で流れているバラスト水配管3内に注入部7が備える開口部7a、72,73が露出していると、注入部7の内部から外部(バラスト水配管3内)に向かって、注入部7の内部の物質を吸引するように作用する負圧が発生する。この負圧を利用すれば、注入部7の内部から外部へ物質を移動させることが容易になる。
 図2に示されている二重管構造を有する注入部7における、第一の配管22及び第二の配管32の各先端にも、同様の負圧が発生する。ただし、第一の配管22の先端の開口部72と第二の配管32の先端の開口部73は、バラスト水配管3の内壁位置近傍の概ね同じの位置にあるので、第一の配管22及び第二の配管32の各先端がバラスト水配管3内から受ける負圧は相対的に小さい。そのため、殺菌剤残留物の流動性が低い場合(たとえば、殺菌剤残留物の堆積や固化が進んでいる場合)には、当該負圧を、第一の配管22内からバラスト水配管3内へ殺菌剤残留物を移動させるために利用することは容易でない。同様のことは、図7に示されている注入部7についてもいえる(この注入部7では、第一の配管22と第二の配管32に共通の開口部7aがバラスト水配管3の内壁位置近傍に配置しているからである)。それ故、図2及び図7にそれぞれ示されている注入部7の場合には、第一の配管22内からバラスト水配管3内へ殺菌剤残留物の移動は、専ら、ポンプ23による殺菌剤残留物の付勢(第一の配管22内からバラスト水配管3内への押し出し)によることになる。
 一方、還元剤の流動性が高い場合(たとえば、還元剤が常温において液体である場合)には、図2及び図7に示されているいずれの注入部7であれ、当該負圧を、第二の配管32内からバラスト水配管3内へ還元剤を移動させるために利用することは比較的容易である。
 図3に示されている二重管構造を有する注入部7における、第一の配管22及び第二の配管32の各先端にも、第一の配管22及び第二の配管32のそれぞれの内部の物質をバラスト水配管3内に吸引するように作用する負圧が発生する。ただし、第一の配管22の先端がバラスト水配管3を流れる海水から受ける負圧は相対的に大きい(バラスト水配管3の内径、海水の量及び流速その他の条件が図2の場合と同じであれば、第一の配管22の先端がバラスト水配管3を流れる海水から受ける負圧は、図3の場合の方が、図2の場合よりも大きい)。また、第一の配管22の先端がバラスト水配管3内を流れる海水から受ける負圧は、第二の配管32の先端がバラスト水配管3を流れる海水から受ける負圧よりも大きい。
 それ故、殺菌剤残留物の流動性が低い場合、第一の配管22内からバラスト水配管3内へ殺菌剤残留物を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図2の場合より容易である。一方、還元剤の流動性が高い場合であれば、第二の配管32内からバラスト水配管3内へ還元剤を移動させるために、バラスト水配管3内から受ける負圧を利用することは比較的容易である。
 バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第一の配管22の先端がバラスト水配管3を流れる海水から受ける負圧は、図3の場合と図4の場合とを比べても大差はない。第一の配管22の先端の開口部72の位置が、図3の場合と図4の場合とで大差がないからである。
 一方、バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第二の配管32の先端がバラスト水配管3を流れる海水から受ける負圧は、図4の場合の方が、図3の場合よりも大きい。第二の配管32の先端の開口部73の位置が、図4の場合の方が図3の場合よりも、バラスト水配管3の断面中心に近いからである。
 そのため、殺菌剤残留物の流動性が低い場合、第一の配管22内からバラスト水配管3内へ殺菌剤残留物を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図4の場合の方が、図2の場合より容易であり、その容易さは図3の場合に比べて大差はない。一方、第二の配管32内からバラスト水配管3内へ還元剤を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図3の場合よりも容易である。
 バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第一の配管22の先端がバラスト水配管3を流れる海水から受ける負圧は、図5の場合の方が図3の場合よりも多少小さい。第一の配管22の先端の開口部72の位置が、図3の場合の方が、図5の場合よりも、バラスト水配管3の断面中心に近いからである。
 一方、バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第二の配管32の先端がバラスト水配管3を流れる海水から受ける負圧は、図5の場合の方が、図3の場合よりも多少大きい。第二の配管32の先端の開口部73の位置が、図5の場合の方が図3の場合よりも、バラスト水配管3の断面中心に近いからである。
 そのため、殺菌剤残留物の流動性が低い場合、第一の配管22内からバラスト水配管3内へ殺菌剤残留物を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図5の場合には、図2の場合よりは容易であるが、図3の場合よりは容易でない。一方、第二の配管32内からバラスト水配管3内へ還元剤を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図3の場合よりも容易である。
 バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第一の配管22の先端がバラスト水配管3を流れる海水から受ける負圧は、図6の場合の方が図3の場合よりも多少小さい。第一の配管22の先端の開口部72の位置が、図3の場合の方が、図6の場合よりも、バラスト水配管3の断面中心に近いからである。
 一方、バラスト水配管3の内径、海水の量及び流速その他の条件が図3の場合と同じであれば、第二の配管32の先端がバラスト水配管3を流れる海水から受ける負圧は、図3の場合と図6の場合とを比べても大差はない。第一の配管22の先端の開口部72の位置が、図3の場合と図6の場合とで大差がないからである。
 そのため、殺菌剤残留物の流動性が低い場合、第一の配管22内からバラスト水配管3内へ殺菌剤残留物を移動させるために、バラスト水配管3内から受ける負圧を利用することは、図6の場合には、図2の場合よりは容易であるが、図3の場合よりは容易ではない。一方、第二の配管32内からバラスト水配管3内へ還元剤を移動させるために、バラスト水配管3内から受ける負圧を利用することの容易さは、図3の場合と大差はない。
 バラスト水配管3が450Aから600Aである場合、そのバラスト水配管3内を実際に流れる海水の速度に鑑みるに、第一の配管22の先端がバラスト水配管3の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置している(換言すれば、第一の配管22の延伸長が、0.5R以上、1.5R以下の範囲にある)のであれば、第一の配管22の先端が受ける負圧は、流動性を維持している殺菌剤残留物をバラスト水配管3内に吸引するに足る値となり、好ましい。なお、このことは、殺菌剤残留物の流動性が低下すると当該負圧を利用することが難しくなることを意味してもいるので、残留物除去処理は、漲水時殺菌処理の終了後、実務的に可能な限り速やかに(遅くとも漲水時殺菌処理の終了後1時間以内に)実行することが望ましい。
 塩素系殺菌剤の原料が固形の塩素系薬剤である場合(たとえば、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム又はその水和物、ジクロロイソシアヌル酸カリウム等のような塩素化イソシアヌル酸化合物である場合)に使用される頻度が高い還元剤は、亜硫酸ナトリウム又はその水和物、チオ硫酸ナトリウム又はその水和物、あるいは、それらの水溶液である。還元剤が亜硫酸ナトリウム又はチオ硫酸ナトリウムの水溶液であれば十分流動性が高いので、第二の配管32の先端は、第一の配管22の先端よりもバラスト水配管の断面中心近くに配置している必要はない。しかし、還元剤の流動性が高い場合であれ、低い場合であれ、殺菌剤残留物と混合し易くすることが望まれる場合には、第二の配管32の先端も、当該断面中心近くに配置している方が好ましい。
<3> バラスト水配管内の海水が停止し又は比較的小さい流速で流れている場合
 バラスト水配管3内の海水が停止し又は比較的小さい流速で流れていると、第一の配管22及び第二の配管23のそれぞれの先端がバラスト水配管3内から受ける負圧はゼロ(零)又は小さいので、本来のとおり、第一の配管22内からバラスト水配管3内へ殺菌剤残留物の移動はポンプ23による殺菌剤残留物の付勢(ポンプ23によるバラスト水配管3内への押し出し)により、第二の配管32内からバラスト水配管3内へ還元剤の移動は、ポンプ33による還元剤の付勢(ポンプ33によるバラスト水配管3内への押し出し)によることになる。
 この場合、図2乃至図7に示されたいずれの注入部7を用いてもよい。殺菌剤残留物及び還元剤をポンプ(23,33)により同一の注入部7からバラスト水配管3内へ注入するのであれば、図2乃至図7に示された注入部7のいずれを用いても、[b1]殺菌剤残留物及び還元剤を同じ注入部7から注入することで、両物質を互いに接触又は近接した状態でバラスト水配管3内へ注入することができ、[b2]両物質をポンプ(23,33)によりバラスト水配管3内へ注入することで、バラスト水配管3内の海水を攪拌し、両物質の接触又は混合、ひいては反応を促進することができるので、両物質の相互の接触又は混合を効率的に達成することができるからである。
 尤も、殺菌剤残留物をバラスト水配管3内で偏って分布しないようにすることが、還元剤との反応の促進に役立つと考えられる場合には、図2及び図7に示された注入部7よりも、図3乃至図6に示されたいずれかの注入部7を使用するのが好ましい。図3乃至図6に示された注入部7の場合、第一の配管22の先端の開口部72からバラスト水配管3内に注入される殺菌剤残留物は、ポンプ23により付勢されているので、バラスト水配管3の内壁に衝突し、その衝突によりバラスト水配管3内の海水中に乱流を発生させ、それによりバラスト水配管3内の海水と良好に混合し、相対的に短時間でバラスト水配管3内に均一に分布するようになるからである。
 図2乃至図7に示されたいずれの注入部7を用いる場合であっても、[c1]殺菌剤残留物と還元剤の両物質を同時にバラスト水配管3内に注入する、又は、[c2] まず、還元剤をバラスト水配管3内に注入し、バラスト水配管3内の海水に存在させたうえで、その還元剤の存在場所に向けて殺菌剤残留物を注入するのが好ましい。なぜならば、殺菌剤残留物を還元剤よりも先にバラスト水配管3内に注入すると、殺菌剤残留物に粗密がある場合(特に、固化物が含まれている場合)、より短時間に還元剤と十分反応させることが難しくなるからである。
 図2乃至図7に示されたいずれの注入部7を用いる場合であれ、上記[c2]の方が上記[c1]よりも好ましい。なぜならば、バラスト水配管3内の海水に存在させたうえで、その還元剤の存在場所に向けて殺菌剤残留物を注入すれば、殺菌剤残留物と還元剤の接触又は混合がより効率的に進むからである。
 図2乃至図7に示された注入部7のいずれを用いる場合であっても、還元作用を有する物質の濃度が高いもの又は還元作用がより強い物質を還元剤として使用することができる(前掲1.3の[長所4]及び[長所5]参照)。そのような還元剤を使用することにより、殺菌剤残留物に由来する遊離有効塩素の低減又は消失、つまり殺菌剤残留物の無害化を促進又は徹底することができる。
 本発明の第一の実施形態に係るバラスト水処理装置(図1参照)を模擬した設備において、ポンプ23による注入圧力、ポンプ33による注入圧力、還元剤の濃度及び量を実際の運転条件に相当するように選択したうえで、漲水時殺菌処理に相当する処理の終了後1時間経過後の殺菌剤残留物に相当するものをポンプ23により第一の配管22を通じて注入部7からバラスト水配管3内へ注入し、当該還元剤をポンプ33により第二の配管32を通じて同じ注入部7からバラスト水配管3内へ注入する実験を、450Aと600Aの二種類のバラスト水配管3を模擬した配管について行ったところ、図3乃至図6に示されたいずれの注入部7(第一の配管22の延伸長が、0.5R以上、1.5R以下の範囲にあるものに限る)を用いても、注入部7の上流側4Rと下流側4Rの範囲で、船外への排水が許される水準まで殺菌剤残留物に由来する遊離有効塩素が低減することが確認された。なお、その遊離有効塩素の計測は、当該実験のバラスト水配管3を模擬した配管に取り付けた全残留酸化性物質濃度計測装置(以下、TRO計という)により計測した。
 <本発明の第二の実施形態>
 450Aと600Aの二種類のバラスト水配管3について行った上記の実験の結果とは別に、バラスト水配管3内に存在する海水と塩素系殺菌剤と還元剤との混合効果をさらに高める方が望ましいケースがある。例えば、殺菌剤残留物の固化が進行していると、それを注入部7からバラスト水配管3内に注入しても海水中に均一に分散しないので、還元剤を注入しても、その還元剤と未反応のままで殺菌剤残留物が長時間バラスト水配管3内に残留する可能性がある。還元剤と未反応のまま残る殺菌剤残留物の無害化をより短時間で実現するには、上記の混合効果を高める必要がある。本発明の第二の実施形態は、そのようなケースにおいて役に立つ。
 図8は、本発明の第二の実施形態に係るバラスト水処理装置の概要構成図である。この図8に示されているバラスト水処理装置は、バラスト水配管3に帰還配管経路10が設置されている点を除き、図1に示されているバラスト水処理装置と同じである。帰還配管経路10は、混合装置6とバラストタンク2との間の位置に取出部8、濾過装置5と注入部7との間の位置に帰還部9、ならびに、取出部8と帰還部9との間を接続し、取出部8から帰還部9への海水の流通を可能にする配管とその配管に取り付けられた帰還ポンプ(P4)11及び全残留酸化性物質濃度計測装置(以下、TRO計という)12を備えている。そのため、バラスト水配管3内の海水は、帰還ポンプ(P4)11により、取出部8から引き抜かれ、TRO計12を経て、帰還部9に排出され、バラスト水配管3内へと帰還する。
 取出部8は、注入部7と混合装置6の間の位置に配置していてもよい。その場合、帰還配管経路10は、当該位置に配置している取出部8*、配管位置8a、TRO計12、帰還ポンプ11及び濾過装置5と注入部7との間の位置に帰還部9を備える。
 この第二の実施形態では、バラスト水配管3内の海水が流通しているか停止しているかを問わず、当該海水はバラスト水配管3内の海水はバラスト水配管3と帰還配管経路10との間を循環する。その結果、バラスト水配管3内に注入された殺菌剤残留物と還元剤は、当該海水とともに流れる過程で激しく攪拌され、互いに混合する。殺菌剤残留物の固化が進んでいても、激しく攪拌されるので、当該海水中に均一に分散し、還元剤と均一に反応する。それ故、この第二の実施形態に係るバラスト水処理装置は、殺菌剤残留物処理運転の際、殺菌剤残留物の無害化をより効率的に又は短時間に完了させることができるという長所を有する。
 また、この第二の実施形態では、漲水時殺菌処理運転の際、バラスト水配管3内に注入された塩素系殺菌剤とバラスト水配管3内の海水が互いに激しく混合する。それ故、この第二の実施形態に係るバラスト水処理装置は、漲水時殺菌処理運転の際、バラスト水配管3内をバラストタンク2に向かって流通している海水、ひいてはバラストタンク2に収容されるバラスト水の殺菌を促進させ、より効率的に又は短時間に完了させることができるという長所も有する。
 なお、バラスト水配管3内の海水を、混合装置6を通過するように、バラスト水配管3と帰還配管経路10との間を循環させると、混合装置6を通過させない場合と比べて、当該海水はより激しく攪拌される。それ故、取出部8は、注入部7と混合装置6の間の位置(つまり混合装置6の上流側の位置)に配置させるよりも、混合装置6とバラストタンク2との間の位置(つまり混合装置6の下流側の位置)に配置させるのが好ましい。
 漲水時殺菌処理運転の際には、帰還配管経路10に取り付けたTRO計12を用いて、帰還配管経路10を流通する海水中の遊離有効塩素濃度を計測し、その計測結果に基づき殺菌剤供給装置20からのバラスト水配管3内の海水への塩素系殺菌剤の供給量を制御すれば、バラストタンク2に収容されるバラスト水への塩素系殺菌剤の注入が過剰にならないように又は塩素系殺菌剤の濃度を所定範囲内に収まるように制御することができる。
 TRO計が具備するポンプを、帰還ポンプ(P4)11の代わりに用いて帰還配管経路10を構成することができる。この場合、帰還ポンプを別途追加せずに済み、合理的であり、装置価格の上昇を避けることができる。
 TRO計を酸化還元電位(ORP)計測装置で代用することができる。この場合、酸化還元電位計測装置がポンプを具備しているのであれば、当該ポンプを帰還ポンプ(P4)11の代わりに用いて帰還配管経路10を構成することができるので、帰還ポンプを別途追加せずに済み、合理的であり、装置価格の上昇を避けることができる。
 TRO計12は、図8に示されているように、帰還配管経路10を構成する配管に対して直列に設置されていてもよいが、後述のように、帰還配管経路10を構成する配管に対して並列に設置されていてもよい。
 <本発明の第三の実施形態>
 図9は、本発明の第三の実施形態に係るバラスト水処理装置の概要構成図である。図9では、図面の簡明化のため、還元剤供給装置30の描写は省略されている。
 この図9において、帰還配管経路10の帰還位置、つまり帰還部9の位置は、バラストポンプ(P1)4の下流側であって、混合装置6そして注入部7の位置に対して上流側又は下流側に選択的に設定できる。例えば、
 (i)図9(A)にて実線で示されているように、帰還部9を濾過装置5と注入部7との間の位置に設ける、
 (ii)図9(A)にて太破線で示されているように、帰還部9を注入部7と混合装置6(入口側)との間の位置に設ける。
 (iii)図9(A)で細破線で示されるように、帰還部9を混合装置6(出口側)と取出部8との間の位置に設ける、
等の位置の設定が考えられる。その場合、注入部7、取出部8、帰還部9そして混合装置6の相互の距離関係を適切に設定することが好ましい。図9(A)内に記入したように、上記(i)における場合をXとして、各距離X1~X4、そして上記(ii)における場合をYとして、各距離Y1~Y4をバラスト水配管3の内径をDとして次のように設定するとよい。
 Xの場合、
  X1:(0.1~10)D
  X2:(2~10)D
  X3:(0.1~10)D
  X4:(2.2~10)D
 Yの場合、
  Y1:(0.1~5)D
  Y2:(2~10)D
  Y3:(0.1~5)D
  Y4:(2.2~15)D
である。各距離を上述のように選定する理由は、次の通りである。
 (a)帰還配管経路10の帰還部9、取出部8と混合装置6との距離X1,X2,Y1,Y2が下限値より小さいと、混合装置6の入口、出口でのバラスト水流れの乱れにより、帰還ポンプ(P4)11により帰還するバラスト水の取出、帰還が不安定になり支障が生じることとなり不適であるからである。
 (b)上記距離X1,X2,Y1,Y2が上限値より大きいと、帰還配管経路10の長さが過剰に長くなって圧力損失が大きくなり帰還ポンプ(P4)11の能力が大きいものを必要とするため装置コストが増加し不適となるからである。
 (c)帰還配管経路10の帰還部9、取出部8と注入部7との距離X3,X4,Y3,Y4が下限値より小さいと、帰還配管経路10から流入する又は帰還配管経路10へ流出する帰還バラスト水の流れの影響を受けて、注入部7から供給される殺菌剤の注入が不安定になり支障が生じることとなり不適である。
 (d)上記距離X3,X4,Y3,Y4が上限値より大きいと、帰還配管経路10の長さが過剰に長くなって圧力損失が大きくなり、帰還ポンプ(P4)11の能力が大きいものを必要とするため装置コストが増加し不適となるからである。
 この第三の実施形態では、第二の実施形態と同様、バラスト水配管3に帰還配管経路10が設けられているので、バラスト水配管3内を流通している又は停止している海水を、バラスト水配管3の下流側の取出部8から上流側の帰還部9に帰還させることができ、それにより、バラスト水配管3内に存在する海水を激しく攪拌することができる。それ故、この第三の実施形態に係るバラスト水処理装置は、殺菌剤残留物処理運転の際、殺菌剤残留物の無害化をより効率的に又は短時間に完了させることができるという長所を有する。また、このバラスト水処理装置は、漲水時殺菌処理運転の際、バラスト水配管3内をバラストタンク2に向かって流通している海水、ひいてはバラストタンク2に収容されるバラスト水の殺菌を促進させ、より効率的に又は短時間に完了させることができるという長所も有する。
 なお、この第三の実施形態では、第二の実施形態と同様、帰還配管経路10に取り付けたTRO計12を用いることにより、漲水時殺菌処理運転の際、TRO計12を用いた計測結果に基づき殺菌剤供給装置20からのバラスト水配管3内の海水への塩素系殺菌剤の供給量を制御することができる。TRO計が具備するポンプを、帰還ポンプ(P4)11の代わりに用いて帰還配管経路10を構成することができる。そして、TRO計を酸化還元電位(ORP)計測装置で代用することができ、酸化還元電位計測装置がポンプを具備しているのであれば、当該ポンプを帰還ポンプ(P4)11の代わりに用いて帰還配管経路10を構成することができる。
 TRO計12は、図9(A)に示されているように、帰還配管経路10を構成する配管に対して直列に設置されていてもよいが、当該配管に対して並列に設置されていてもよい。より具体的には、図9(B)に示されているように、帰還配管経路10を構成する配管に対して並列に分岐管10Aを設けて、分岐管10AにTRO計12を配置するとともに、その前後にバルブ12A,12Bを設け、バルブ12A,12Bを開にしたときに、分岐管10A内を流通している海水中に残留している遊離有効塩素の濃度をTRO計12により計測するようにしてもよい。
<本発明の第四の実施形態>
 本発明の第四の実施形態は、帰還配管経路10を含む系をユニット化したことに特徴がある。
 図10は、本発明の第四の実施形態に係るバラスト水処理装置の概要構成図である。図10では、図面の簡明化のため、還元剤供給装置30の描写は省略されている。
 図10に示されているバラスト水処理装置は、配管ユニット40を備えている。配管ユニット40は、図9に示されている帰還配管経路10を含む配管系に、その系外との接続部としてフランジ41,42,43,44を設けることで、図9に示されている装置に対して取り外し自在に接続できるように構成されている。バラスト水配管3には、フランジ41,42と対面するフランジが設けられ、第一の配管22には、フランジ43に対面するフランジが設けられ、第二の配管32には、フランジ44に対面するフランジが設けられているので、フランジ間の接続と切り離しにより、配管ユニット40の取付けと取り外しが可能である。
 それ故、この第四の実施形態によれば、帰還配管経路を備えていない既存のバラスト水処理装置であっても、対応部分に配管ユニット40を接続するだけで、本発明に係るバラスト水処理装置を構成することができる。そのため、バラスト水処理装置の設置時においては、その作業を効率的に行うことができ、保守時においては、古い配管ユニット40を新しい配管ユニット40に交換するだけで済むので、作業を簡単にすることができる。
 なお、図10に示されている配管ユニット40は、図9に示されているバラスト水処理装置に対応するものとして描かれているが、図8に示されているバラスト水処理装置にも適用可能である。
 また、配管ユニット40は、図10に示されているように混合装置6を具備する形でユニット化されていてもよいが、混合装置6を具備せず、混合装置6のみの交換が可能な形でユニット化されていてもよい。混合装置6を具備する形でユニット化すれば、バラスト水処理装置の設置をさらに効率的に行うことができる。
<本発明の第五の実施形態>
 本発明の第五の実施形態は、バラストタンクが複数個ある場合に関する。ここでは、説明の簡明化のため、バラストタンクが二個ある例について説明するが、この第五の実施形態は、バラストタンクが二個ある場合に限定されない。
 図11は、本発明の第五の実施形態に係るバラスト水処理装置の構成及び動作の説明図である。このバラスト水処理装置の構成は、図8に示されている第二の実施形態に係るバラスト水処理装置の構成において、バラストタンクを二つ配したものに相当する。そこで、図11において、図8に示されている部位と共通するものには同一の符号を付し、以下において、その説明は省略する。
 図11(A)では、バラストタンク2は、第一バラストタンク2Aと第二バラストタンク2Bの二つから成り、第一バラストタンク2Aと第二バラストタンク2Bは、バラスト水配管3に対しては並列に配設されている。注入部7は、濾過装置5と混合装置6との間のバラスト水配管3に、帰還配管経路10の取出部8は、混合装置6の出口側のバラスト水配管3に、帰還配管経路10の帰還部9は、濾過装置5と注入部7との間のバラスト水配管3に、それぞれ取り付けられている。
 バラスト水配管3は、取出部8の下流側の位置Mで、第一分岐管3Aと第二分岐管3Bに分岐されている。第一分岐管3A及び第二分岐管3Bは、それぞれ、第一バラストタンク2A及び第二バラストタンク2Bに接続されており、第一バラストタンク2Aと第二バラストタンク2Bの下流側の位置Nで合流して再び一つの管路をなし、バラストポンプ(P1)4の入口側の位置Gでバラスト水配管3に接続されている。つまり、バラスト水配管3は、位置Mから、第一バラストタンク2A又は第二バラストタンク2Bを経由して、位置Nに至り、さらに位置Nから位置Gに帰還するバラスト水帰還路13を備えている。
 図11には、図8乃至図10には図示されていない、バラスト水排水管14が示されている。バラスト水排水管14は、取出部8と位置Mとの間でバラスト水配管3に接続されており、船側に設けられた排水口15にまで延びている。
 図11(A)に示されている配管経路は、複数個の弁を備えている。より詳しくは、シーチェスト1と位置Gとの間のバラスト水配管3に第一弁51を、位置Mとバラストタンク2Aとの間の第一分岐管3Aに第二弁52を、バラストタンク2Aと位置Nとの間の第一分岐管3Aに第三弁53を、位置Mとバラストタンク2Bとの間の第二分岐管3Bに第四弁54を、バラストタンク2Bと位置Nとの間の第二分岐管3Bに第五弁55を、位置Nと位置Gとの間のバラスト水帰還路13に第六弁56を、バラスト水排水管14に第七弁57を、それぞれ備えている。
 上記の複数個の弁の開閉の切り替えにより、船外から取水され、バラスト水配管3内を流通する海水がバラスト水として収容されるべき又はバラスト水帰還路13に排出されるバラスト水が収容されているバラストタンク2(2A,2B)が選択される。本発明の第五の実施形態に係るバラスト水処理装置は、その選択に応じた運転モード(漲水時殺菌処理運転、殺菌剤残留物処理運転及び排水時還元処理運転)で、次のように動作する。
 <1> 漲水時殺菌処理運転
 船外から取水した海水をバラスト水として第一バラストタンク2Aに漲水する場合には、第三弁53、第四弁54、第六弁56、第七弁57を閉とし、第一弁51と第二弁52を開とするとともに、殺菌剤ポンプ(P2)23と帰還ポンプ(P4)11を駆動(還元剤ポンプ(P3)33は停止)し、殺菌剤ポンプ(P2)23により付勢した塩素系殺菌剤を注入部7からバラスト水配管3内に注入する。すると、当該海水は、図11(B)にて太線で示される経路で、注入部7の位置を経て、第一バラストタンク2Aに向かって流通し、その流通の過程で塩素系殺菌剤が注入されるので、当該海水は、塩素系殺菌剤が注入された状態で、第一分岐管3Aを経て第一バラストタンク2Aに収容される。
 当該海水の一部は、第一バラストタンク2Aに向かってバラスト水配管3内を流通する過程で、塩素系殺菌剤が注入された状態で、取出部8から取出されて帰還配管経路10を経て帰還部9からバラスト水配管3へ戻されて循環流を形成する。その循環流により、当該海水は塩素系殺菌剤と良好に攪拌され、十分に混合されるので、当該海水の殺菌が促進される。
 <2> 殺菌剤残留物処理運転
 船外から取水した海水に対する漲水時殺菌処理の終了(したがって殺菌剤溶解装置21からの塩素系殺菌剤の供給は停止)後、できるだけ早期(望ましくは停止後1時間以内)に殺菌剤供給装置20又はそれに接続する配管経路の内部に残留している殺菌剤残留物を当該内部から除去し、還元処理を施して無害化する。
 そこで、先ず、第一バラストタンク2A内のバラスト水の一部(以下「一部バラスト水」という)を第二バラストタンク2Bへ移動させる。そのために、第一弁51、第二弁52、第五弁55、第七弁57を閉とし、第三弁53、第四弁54、第六弁56を開として、殺菌剤ポンプ(P2)23と還元剤ポンプ(P3)33を駆動するとともに、殺菌剤ポンプ(P2)23により付勢した殺菌剤残留物を(場合によっては別途供給された清水とともに)注入部7からバラスト水配管3内に注入し、還元剤供給装置31から還元剤ポンプ(P3)33により付勢した還元剤をバラスト水配管3内に注入する。すると、殺菌剤供給装置20又はそれに接続する配管経路の内部から殺菌剤残留物が除去される。また、当該一部バラスト水は、図11(C)にて太線で示される経路で、注入部7の位置を経て、第二バラストタンク2Bに向かって流通し、バラスト水帰還路13を経て位置Gからバラスト水配管3へ戻されて第二バラストタンク2Bへ移動する。その移動の過程で、当該一部バラスト水の一部は、殺菌剤残留物と還元剤が注入された状態で、取出部8から取出されて帰還配管経路10を経て帰還部9からバラスト水配管3へ戻され、それにより、循環流を形成する。その結果、殺菌剤残留物と還元剤とが十分に攪拌・混合され、殺菌剤残留物中の殺菌剤成分が還元されるので、当該一部バラスト水は、殺菌剤残留物が十分に無害化された状態で第二バラストタンク2Bに収容される。
 <3> 排水時還元運転
 第二バラストタンク2B内のバラスト水は、塩素系殺菌剤や殺菌剤残留物に由来する遊離有効塩素が十分に還元されて、無害化された状態にある。かかる状態で、第一バラストタンク2A内のバラスト水の残部(以下「残部バラスト水」という)を船外へ排出する。そのために、第一弁51、第二弁52、第四弁54、第五弁55を閉とし、第三弁53、第六弁56、第七弁57を開とし、殺菌剤ポンプ(P2)23を停止して還元剤ポンプ(P3)33を駆動するとともに、還元剤供給装置31から還元剤ポンプ(P3)33により付勢した還元剤をバラスト水配管3内に注入する。すると、当該残部バラスト水は、図11(D)にて太線で示される経路で、当該注入部7の位置を経て、バラスト排水管14から排水口15へと移動する過程で、還元剤が注入され、無害化され、船外に排出される。
 なお、当該残部バラスト水の一部は、取出部8から取出されて帰還配管経路10を経て帰還部9からバラスト水配管3へ戻され、それにより、循環流を形成するように構成してもよいが、そのように構成しなくてもよい。
 このように、バラストタンク2が複数個のバラストタンクを備えていると、ある一つのバラストタンクに収容されているバラスト水が、少なくとも一時的に、別のバラストタンクに移動する過程で、当該バラスト水の攪拌が進む。それ故、当該バラスト水に塩素系殺菌剤が注入されている場合(漲水時殺菌処理時)には、その殺菌効果が促進され、当該バラスト水に塩素系殺菌剤や殺菌剤残留物に由来する遊離有効塩素が残留している場合(殺菌剤残留物処理時又は排水時還元処理時)には、注入された還元剤との混合と反応が進み、当該バラスト水の無害化が促進される。
 本発明の第五の実施形態に係るバラスト水処理装置の動作に関する上述の説明は、第一バラストタンク2Aに着目したものであるが、第二ラストタンク2Bに着目した説明にもそのまま当て嵌まり、バラストタンク2が三個以上のバラストタンク2A,2B,2C,・・・を備える場合であっても、そのうちの任意のバラストタンクに着目した説明にもそのまま当て嵌まる。
 図11に示されているバラスト水処理装置の例は、バラスト水処理のために塩素系殺菌剤のみならず還元剤をも海水に供給するものであるが、本発明の第五の実施形態は、この例に限定されない。この第五の実施形態には、塩素系殺菌剤のみを供給する例も含まれる。
 図8乃至図10に示されているバラスト水処理装置は、本発明の第五の実施形態の場合ように、バラストタンク2が複数個のバラストタンクを備えるものであってもよい。その場合、図8乃至図10に示されているバラスト水処理装置の取出口8とバラストタンク2との間に位置Mを設定し、バラストポンプ(P1)4の入口側に位置Gを設定するとともに、位置Mからバラストタンク2までの構成を図11に示されている位置Mから位置Nまでの構成に置き換え、位置Nと位置Gとの間にバラスト水帰還路13を新設すればよい。図8乃至図10に示されているバラスト水処理装置であって、バラストタンク2が複数個のバラストタンクを備えるものの動作については、図11に基づき、上述のとおり説明できる。
<まとめ>
 本発明は、塩素系薬剤又はその成分物質及び還元剤を、それぞれ別々の配管を通じて、いずれも同じ注入口からバラスト水配管内に注入するように構成されているので、残留物除去処理の際、バラスト水配管内で海水が流動しているか停止しているかを問わず、該殺菌剤残留物を該還元剤との反応により無害化することができ、その無害化の際に発生する還元反応熱による悪影響の懸念を払拭することができる。総じて、本発明によれば、バラスト水処理を正常に実行することができるバラスト水処理装置を実現することができる。
 本発明は、その実施形態に限定されるものではなく、本発明の技術的範囲は、均等の範囲にまで及ぶものである。本明細書における各用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。
 2 バラストタンク
 3 バラスト水配管
 4 バラストポンプ
 5 濾過装置
 7 注入部
 8 取出部
 9 帰還部
 10 帰還配管経路
 11 帰還ポンプ
 12 TRO計
 13 バラスト水帰還路
 14 バラスト水排水管
 20 殺菌剤供給装置
 22 第一の配管
 23 ポンプ(殺菌剤ポンプ)
 30 還元剤供給装置
 32 第二の配管
 33 ポンプ(還元剤ポンプ)
 40 配管ユニット
 7a、72、73 開口部
 R: バラスト水配管の内半径

Claims (18)

  1.  船舶のバラストタンクに収容されるバラスト水を殺菌するためのバラスト水処理装置であって、
     船外から取水された海水、汽水、淡水又はその他の水をバラストタンクに向けて移送するバラスト水配管内へ塩素系薬剤の水溶液を塩素系殺菌剤として供給する殺菌剤供給装置と、
     上記塩素系殺菌剤又はその成分物質と反応する還元剤を上記バラスト水配管内に供給する還元剤供給装置と、
     上記殺菌剤供給装置が接続され、上記塩素系殺菌剤又はその成分物質を上記バラスト水配管内に向けて移送する第一の配管と、
     上記還元剤供給装置が接続され、上記還元剤を上記バラスト水配管内に向けて移送する第二の配管と、
     上記第一の配管及び上記第二の配管が接続され、上記第一の配管から移送される上記塩素系殺菌剤又はその成分物質を上記バラスト水配管内に注入するとともに、上記第二の配管から移送される上記還元剤を上記バラスト水配管内に注入する注入部と、
    を備えており、
     上記塩素系殺菌剤又はその成分物質は、上記第一の配管を通じて上記注入部に到達する前に上記還元剤と混合することがなく、上記注入部から上記バラスト水配管内へ供給された後に上記還元剤と混合する
    ことを特徴とするバラスト水処理装置。
  2.  上記塩素系殺菌剤又はその成分物質は、バラスト水の殺菌に使用されることなく上記殺菌剤供給装置又は上記第一の配管内に残留したもののうちの少なくとも一部であることを特徴とする請求項1に記載のバラスト水処理装置。
  3.  上記塩素系殺菌剤又はその成分物質は、上記還元剤とともに又は上記還元剤が上記注入部から上記バラスト水配管内に注入された後に、上記注入部から上記バラスト水配管内に注入される、ことを特徴とする請求項2に記載のバラスト水処理装置。
  4.  上記注入部は、上記第一の配管を内管とし、上記第二の配管を外管とする二重管構造を有することを特徴とする請求項1に記載のバラスト水処理装置。
  5.  上記注入部は、上記第一の配管を内管とし、上記第二の配管を外管とする二重管構造を有することを特徴とする請求項2に記載のバラスト水処理装置。
  6.  上記注入部は、上記第一の配管を内管とし、上記第二の配管を外管とする二重管構造を有することを特徴とする請求項3に記載のバラスト水処理装置。
  7.  上記第一の配管の先端は、上記第二の配管の先端よりも上記バラスト水配管の断面中心に近い位置に配置されており、上記第一の配管は、上記第二の配管よりも長く上記バラスト水配管内に延伸していることを特徴とする請求項4に記載のバラスト水処理装置。
  8.  上記第一の配管の先端は、上記第二の配管の先端よりも上記バラスト水配管の断面中心に近い位置に配置されており、上記第一の配管は、上記第二の配管よりも長く上記バラスト水配管内に延伸していることを特徴とする請求項5に記載のバラスト水処理装置。
  9.  上記第一の配管の先端は、上記第二の配管の先端よりも上記バラスト水配管の断面中心に近い位置に配置されており、上記第一の配管は、上記第二の配管よりも長く上記バラスト水配管内に延伸していることを特徴とする請求項6に記載のバラスト水処理装置。
  10.  上記第一の配管の先端は、上記バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置していることを特徴とする請求項4に記載のバラスト水処理装置。
  11.  上記第一の配管の先端は、上記バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置していることを特徴とする請求項5に記載のバラスト水処理装置。
  12.  上記第一の配管の先端は、上記バラスト水配管の断面中心から断面中心を過ぎる方向へ又はその逆方向へ断面半径の半分の距離だけ離れる範囲に位置していることを特徴とする請求項6に記載のバラスト水処理装置。
  13.  上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記バラスト水配管の下流側の位置から、上記バラスト水配管の上流側であってバラストポンプの下流側の位置に帰還させる帰還配管経路を備えていることを特徴とする請求項1に記載のバラスト水処理装置。
  14.  上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記バラスト水配管の下流側の位置から、上記バラスト水配管の上流側であってバラストポンプの下流側の位置に帰還させる帰還配管経路を備えていることを特徴とする請求項2に記載のバラスト水処理装置。
  15.  上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とする請求項1に記載のバラスト水処理装置。
  16.  上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とする請求項2に記載のバラスト水処理装置。
  17.  上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とする請求項13に記載のバラスト水処理装置。
  18.  上記帰還配管経路は、上記バラスト水配管内で流通する又は停止している海水、汽水、淡水又はその他の水を、上記注入部の下流側の位置から、上記注入部の上流側であってバラストポンプの下流側の位置に帰還させる配管経路であることを特徴とする請求項14に記載のバラスト水処理装置。
     
     
PCT/JP2018/010477 2017-03-16 2018-03-16 バラスト水処理装置 WO2018169056A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18768511.0A EP3597606A4 (en) 2017-03-16 2018-03-16 BALLAST WATER PURIFICATION DEVICE
KR1020197022572A KR102197982B1 (ko) 2017-03-16 2018-03-16 밸러스트수 처리 장치
CN201880018605.XA CN110392671A (zh) 2017-03-16 2018-03-16 压载水处理装置
JP2019506302A JP6726414B2 (ja) 2017-03-16 2018-03-16 バラスト水処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-051565 2017-03-16
JP2017051565 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018169056A1 true WO2018169056A1 (ja) 2018-09-20

Family

ID=63523583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010477 WO2018169056A1 (ja) 2017-03-16 2018-03-16 バラスト水処理装置

Country Status (5)

Country Link
EP (1) EP3597606A4 (ja)
JP (1) JP6726414B2 (ja)
KR (1) KR102197982B1 (ja)
CN (1) CN110392671A (ja)
WO (1) WO2018169056A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301446A (ja) * 2006-05-09 2007-11-22 Sanyo Shizai Kk 水道元栓直結型残留塩素除去器および残留塩素除去方法
JP2013091438A (ja) * 2011-10-26 2013-05-16 National Maritime Research Institute バラスト水処理装置、このバラスト水処理装置を搭載した船舶、及びバラスト水処理方法
JP2013252509A (ja) * 2012-05-08 2013-12-19 Jfe Engineering Corp 静止型混合装置及びこれを有するバラスト水処理装置
JP2015016761A (ja) * 2013-07-10 2015-01-29 栗田工業株式会社 バラスト水の処理システムおよびバラスト水の処理方法
JP5924447B1 (ja) 2015-11-18 2016-05-25 Jfeエンジニアリング株式会社 船舶
JP2017113710A (ja) * 2015-12-24 2017-06-29 栗田工業株式会社 バラスト水の制御装置及びバラスト水処理システムの制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924447B2 (ja) 1980-04-30 1984-06-09 富士通株式会社 表示画面数値演算装置
KR100963351B1 (ko) * 2005-06-10 2010-06-14 제이에프이 엔지니어링 가부시키가이샤 밸러스트수 처리 장치 및 처리 방법
KR100883444B1 (ko) * 2008-07-24 2009-02-17 (주) 테크윈 발라스트수 처리 장치 및 방법
JP2011098269A (ja) * 2009-11-05 2011-05-19 Jfe Engineering Corp バラスト水処理装置
KR101411403B1 (ko) * 2012-07-06 2014-07-02 삼성중공업 주식회사 잔류 염소와의 접촉 시간을 확보하기 위한 선박 평형수 처리 장치
JP6266379B2 (ja) * 2014-02-26 2018-01-24 住友重機械マリンエンジニアリング株式会社 バラスト水処理システム
KR20160087620A (ko) * 2015-01-14 2016-07-22 (주)코리아오션텍 이종 유체의 주입 및 배출을 위한 이중 배관 및 이를 포함하는 선체 부상 유도장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301446A (ja) * 2006-05-09 2007-11-22 Sanyo Shizai Kk 水道元栓直結型残留塩素除去器および残留塩素除去方法
JP2013091438A (ja) * 2011-10-26 2013-05-16 National Maritime Research Institute バラスト水処理装置、このバラスト水処理装置を搭載した船舶、及びバラスト水処理方法
JP2013252509A (ja) * 2012-05-08 2013-12-19 Jfe Engineering Corp 静止型混合装置及びこれを有するバラスト水処理装置
JP2015016761A (ja) * 2013-07-10 2015-01-29 栗田工業株式会社 バラスト水の処理システムおよびバラスト水の処理方法
JP5924447B1 (ja) 2015-11-18 2016-05-25 Jfeエンジニアリング株式会社 船舶
JP2017113710A (ja) * 2015-12-24 2017-06-29 栗田工業株式会社 バラスト水の制御装置及びバラスト水処理システムの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597606A4

Also Published As

Publication number Publication date
KR20190102051A (ko) 2019-09-02
JPWO2018169056A1 (ja) 2019-11-07
CN110392671A (zh) 2019-10-29
EP3597606A1 (en) 2020-01-22
KR102197982B1 (ko) 2021-01-04
JP6726414B2 (ja) 2020-07-22
EP3597606A4 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP6465168B2 (ja) バラスト水処理方法及びバラスト水処理装置
JP2018023975A5 (ja)
JP2017177108A5 (ja)
JP2017100129A5 (ja)
CN101193824B (zh) 压载水处理装置和压载水处理方法
JP2011098269A (ja) バラスト水処理装置
WO2018169056A1 (ja) バラスト水処理装置
JP2018099666A (ja) バラスト水処理装置及び配管ユニット
JP2018047886A (ja) 船舶及びバラスト水処理方法
WO2018168665A1 (ja) バラスト水処理装置およびバラスト水処理方法
JP6756298B2 (ja) バラスト水処理装置及びバラスト水処理方法
JP6720883B2 (ja) 船舶
WO2017086407A1 (ja) 船舶、バラスト水処理装置及びバラスト水処理方法
JP2023136258A (ja) 水処理装置
JP5141161B2 (ja) 廃液処理装置
JP2012217914A (ja) バラスト水処理装置
JP2002331030A (ja) 透析液流通装置及びその洗浄方法
JP2006158518A (ja) 人工透析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019506302

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197022572

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018768511

Country of ref document: EP

Effective date: 20191016