WO2018168848A1 - センサ装置およびセンサネットワークシステム - Google Patents

センサ装置およびセンサネットワークシステム Download PDF

Info

Publication number
WO2018168848A1
WO2018168848A1 PCT/JP2018/009716 JP2018009716W WO2018168848A1 WO 2018168848 A1 WO2018168848 A1 WO 2018168848A1 JP 2018009716 W JP2018009716 W JP 2018009716W WO 2018168848 A1 WO2018168848 A1 WO 2018168848A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
sensor
unit
information
battery
Prior art date
Application number
PCT/JP2018/009716
Other languages
English (en)
French (fr)
Inventor
浩之 木藤
勝彦 岩津
中山 正樹
康行 関
拓 田口
謙太 金枝
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US16/493,384 priority Critical patent/US20200077333A1/en
Priority to EP18767658.0A priority patent/EP3598408A1/en
Priority to CN201880017689.5A priority patent/CN110419066A/zh
Publication of WO2018168848A1 publication Critical patent/WO2018168848A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/40Arrangements in telecontrol or telemetry systems using a wireless architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/84Measuring functions
    • H04Q2209/845Measuring functions where the measuring is synchronized between sensing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a sensor device and a sensor network system.
  • This application claims priority based on Japanese Patent Application No. 2017-047820 filed in Japan on March 13, 2017, the contents of which are incorporated herein by reference.
  • the multi-pop wireless sensor system information measured by the sensor device is collected in the master device.
  • a sensor device far from the master device transmits information to the master device via a sensor device close to the master device.
  • the information transmitted by the third sensor device is the second sensor device and the first sensor device. It is transmitted to the master device via the sensor device.
  • the first sensor device and the second sensor device not only transmit information about the device itself but also receive information from other devices and receive information. It also has a role of a repeater. In the repeater, it is necessary to wait for receiving information so that information from other devices can be received.
  • Patent Document 1 describes a data collection system in which slave stations that measure environmental data and perform transmission are wirelessly connected to each other, and the slave stations operate only with solar cells and function as relay stations. The system is described.
  • the slave station assigned to the repeater When the technique described in Patent Document 1 in which the slave station includes only the solar battery is applied to the multi-pop wireless sensor system, the slave station assigned to the repeater also waits for information, and thus consumes power. May become difficult to operate with power generated by solar cells.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sensor device and a sensor network system capable of fluidly operating a system according to power consumption in a multi-pop wireless system. To do.
  • a sensor device includes a sensor that detects environmental information, a sensor device communication unit that can transmit the detected environmental information to another sensor device, and A battery that supplies power to the sensor and the sensor device communication unit; and a sensor device side coupling unit that can be attached to and detached from the auxiliary battery that supplies power to the device, and when the auxiliary battery is not attached, It operates by supplying power from the battery, and when the auxiliary battery is mounted, it is configured to operate by supplying power from the battery or the auxiliary battery.
  • the auxiliary battery when the auxiliary battery is mounted, the auxiliary battery is switched to the auxiliary battery when the voltage of the auxiliary battery satisfies a predetermined standard.
  • the sensor device may be configured to transmit the environment information received from the first other sensor device to the second other sensor device.
  • the sensor device communication unit steadily switches between a wake-up mode and a sleep mode that consumes less power than the wake-up mode.
  • communication may be performed with a sensor device communication unit of another sensor device operating in the wake-up mode.
  • the sensor device communication unit synchronizes communication timing with the other sensor device, and then communicates with the sensor device of the other sensor device. It may be configured to communicate with the unit.
  • the sensor device is configured to switch between operating with power supplied from the battery and operating with power supplied from the battery or the auxiliary battery. May be provided.
  • the sensor device communication unit can further transmit information on the voltage of the battery or information on the voltage of the auxiliary battery to the other sensor device. There may be.
  • the sensor device communication unit further includes information on a state of a switch for setting a power supply for supplying power to the other sensor device. It may be possible to transmit.
  • the sensor device communication unit may be capable of transmitting information related to a power supply for supplying power to the other sensor device. Good.
  • the sensor device communication unit further transmits information on the radio wave intensity between the sensor device and the other sensor device to the other sensor device. It may be possible.
  • the storage A control unit that discards the environment information stored in the unit.
  • the sensor device communication unit can receive setting information for the own device, and the sensor device sets the own device based on the setting information. It may be configured.
  • the senor includes a plurality of sensors that detect different types of environmental information, and the setting information includes one sensor used among the plurality of sensors. Information indicating the above may be included.
  • the setting information may include information on a time interval for transmitting the environment information.
  • a sensor network system receives the environmental information from the sensor device of the first aspect and the sensor device, and the environmental information and the sensor device.
  • the sensor device includes, in the environment information, an identification number for identifying the own device, identification information of the master device that is the transmission destination, and voltage information of the battery of the own device. Or, it is configured to transmit at least one of the voltage information of the attached auxiliary battery and the information on the power generation capacity of the auxiliary battery to another master device or directly to the master device. Or the environmental information received from another sensor device is further transmitted to the master device via another sensor device or directly.
  • the master device when the sensor device is provided with a plurality of sensors, is configured to indicate whether to use any of the sensors of the plurality of sensors.
  • the system can be fluidly operated according to the power consumption in the multi-pop wireless system.
  • FIG. 1 is a diagram showing a schematic configuration of a multi-hop sensor network system according to the present embodiment. It is a block diagram which shows the structural example of the sensor system which concerns on this embodiment. It is a block diagram which shows the structural example of the master apparatus which concerns on this embodiment. It is a figure which shows the example of the predetermined reference
  • FIG. 1 is a diagram illustrating a schematic configuration of a multi-hop sensor network system 1 according to the present embodiment.
  • a multi-hop sensor network system 1 includes a plurality of sensor systems 2-1, 2-2,... (SS), a master device 6 (M), and a server 7. Is done.
  • SS sensor systems
  • M master device 6
  • server 7 server 7. Is done.
  • a sensor system 2 when one of the sensor systems 2-1, 2-2,... Is not specified, it is referred to as a sensor system 2.
  • the sensor system 2 directly transmits environmental information measured by a sensor included in the device itself (or environmental information including environmental data measured by the sensor) to the master device 6 or via the other sensor system 2 to the master device 6. Send to.
  • the timing which the sensor system 2 transmits environmental information is a predetermined time interval, for example, once every 5 minutes.
  • the sensor system 2 receives the setting information of the predetermined time interval from the master device 6, and sets the time interval according to the received setting information.
  • Master device 6 receives information from all sensor systems 2 connected to sensor network system 1 and manages all sensor systems 2. Further, the master device 6 transmits setting information and firmware to the sensor system 2 as necessary. The master device 6 transmits information including environment information received from the sensor system 2 to the server 7.
  • the server 7 stores information from the sensor system 2 received from the master device 6 and analyzes the stored data.
  • FIG. 2 is a block diagram illustrating a configuration example of the sensor system 2 according to the present embodiment.
  • the sensor system 2 includes a sensor device 3 and a DSC unit 5.
  • the sensor device 3 includes a primary battery 31 (battery), a primary battery voltage detection unit 32, a power storage unit voltage detection unit 33, a power supply switching switch 34, a power supply control unit 35 (control unit), a sensor system control unit 36, and a sensor unit. 37, a sensor device communication unit 38, a storage unit 39, a sensor device side coupling unit 40, and a power supply setting switch 41.
  • the power supply control unit 35 includes a voltage detection / comparison unit 351 and a power supply switching unit 352.
  • the sensor unit 37 includes a human sensor 371, a temperature sensor 372, a humidity sensor 373, an atmospheric pressure sensor 374, an illuminance sensor 375, and the like.
  • the type of sensor provided in the sensor unit 37 can be changed as appropriate.
  • the DSC unit 5 is an auxiliary battery including a solar cell 51, a DC / DC converter 52, a power storage unit 53, and a DSC unit side coupling unit 54.
  • the sensor device 3 transmits the measurement value measured by each sensor to the other sensor device 3 or the master device 6.
  • the sensor device 3 receives information (environmental information) from another sensor device 3 (first other sensor device), and further receives the received information as another sensor device 3 (second other sensor device). Alternatively, the data is transferred to the master device 6.
  • the information transmission destination is the master device 6 whether or not it passes through another sensor device 3 as shown in FIG. That is, the sensor device 3 is configured to transmit the environment information to the master device 6 via the other sensor device 3 or directly, or the environment information received from the other sensor device 3 is further transmitted to the other sensor device. 3 or directly to the master device 6.
  • the DSC unit 5 can be attached to and detached from the sensor device 3.
  • the primary battery 31 is, for example, a battery having a normal voltage value of 3.0V.
  • the primary battery 31 has a positive electrode connected to the input terminal b of the power supply changeover switch 34 via the primary battery voltage detector 32 and a negative electrode grounded.
  • the primary battery voltage detection unit 32 detects the voltage value V ⁇ b> 2 of the primary battery 31 and outputs the detected voltage value V ⁇ b> 2 to the power supply control unit 35.
  • the power storage unit voltage detection unit 33 detects the voltage value V1 output by the DSC unit 5 and information regarding the power generation capability of the DSC unit 5, and the detected voltage value V1 Information on the power generation capacity of the DSC unit 5 is output to the supply power control unit 35. Examples of the information regarding the power generation capability of the DSC unit 5 include the model number of the solar cell 51, the power generation method, the size of the panel, and the like.
  • the input terminal a of the power supply selector switch 34 is connected to the DSC unit 5 via the power storage unit voltage detection unit 33 and the sensor device side coupling unit 40, and the input terminal b is connected to the primary battery via the primary battery voltage detection unit 32.
  • the output terminal c is connected to the sensor system control unit 36, the sensor unit 37, and the sensor device communication unit 38.
  • the voltage output from the output terminal c is Vout.
  • the power supply changeover switch 34 receives the power supplied from the DSC unit 5 or the power of the primary battery 31 in accordance with the control of the power supply control unit 35, the sensor system control unit 36, the sensor unit 37, and the sensor. It switches so that it may supply to the apparatus communication part 38.
  • the power supply setting switch 41 is, for example, a slide switch or a DIP (Dual In-line Package) switch that is switched by the administrator of the sensor device 3 depending on whether or not the DSC unit 5 is connected.
  • the first state of the power supply setting switch 41 is a state where the DSC unit 5 is not connected, and the second state is a state where the DSC unit 5 is connected.
  • the supply power control unit 35 compares each voltage value detected by the primary battery voltage detection unit 32 and the power storage unit voltage detection unit 33 with a predetermined reference stored in the own unit, and switches the supply power according to the comparison result. Control is performed to switch the switch 34.
  • the predetermined standard will be described later.
  • the power supply control unit 35 also outputs the detected voltage values, information regarding the power generation capability of the DSC unit 5, and the switching state of the power supply changeover switch 34 to the sensor system control unit 36. Further, the power supply control unit 35 detects the state of the power supply setting switch 41 and, if it is in the first state, controls to connect the power supply switch 34 to the primary battery 31 regardless of the comparison result. .
  • the power supply control unit 35 detects the state of the power supply setting switch 41, and if it is in the second state, each voltage value detected by the primary battery voltage detection unit 32 and the power storage unit voltage detection unit 33, and its own unit Is compared with a predetermined reference stored in the memory, and control is performed so as to switch the power supply selector switch 34 in accordance with the comparison result. That is, the power supply setting switch 41 is configured to switch between the operation of the sensor device 3 by supplying power from the primary battery 31 and the operation of the sensor device 3 by supplying power from the primary battery 31 or the DSC unit 5. Has been.
  • the voltage detection / comparison unit 351 compares each voltage value detected by the primary battery voltage detection unit 32 and the power storage unit voltage detection unit 33 with a predetermined reference stored by itself.
  • the voltage detection / comparison unit 351 generates a switching signal for the power supply switching switch 34 according to the comparison result, and outputs the generated switching signal to the power supply switching unit 352. Furthermore, the voltage detection / comparison unit 351 detects the state of the power supply setting switch 41. If the first state, the voltage detection / comparison unit 351 generates a switching signal for connecting the power supply switch 34 to the primary battery 31 regardless of the comparison result.
  • the generated switching signal is output to the power supply switching unit 352.
  • the power supply switching unit 352 switches the power supply switching switch 34 in accordance with the switching signal output from the voltage detection / comparison unit 351.
  • the sensor system control unit 36 identifies an own device (the sensor device 3 in which the sensor system control unit 36 is provided) in the detection result information and measurement values (that is, environmental data) output from the sensor unit 37 ( The environment information is generated by adding an identification number), and the generated environment information is stored in the storage unit 39.
  • the sensor system control unit 36 outputs the environmental information stored in the storage unit 39 to the sensor device communication unit 38.
  • the sensor system control unit 36 discards the environment information stored in the storage unit 39 when the environment information cannot be transmitted three times in succession.
  • the sensor system control unit 36 discards the environment information stored in the storage unit 39 when the environmental information cannot be transmitted to the other sensor devices 3 and the master device 6 a predetermined number of times via the sensor device communication unit 38. Also good.
  • the environment information stored in the storage unit 39 by the sensor system control unit 36 is the latest environment data and certain identification information.
  • the sensor system control unit 36 may store only the latest environment data in the storage unit 39 without discarding certain identification information or the like from the storage unit 39.
  • the sensor system control unit 36 transmits the received environment information again to the other sensor device 3 or the master device 6 in order to further transfer the environment information received from the other sensor device 3 via the sensor device communication unit 38.
  • the data is output to the communication unit 38.
  • the sensor system control unit 36 temporarily stores the environment information received from the other sensor device 3 via the sensor device communication unit 38 in the storage unit 39, and again transmits the stored environment information to the sensor. You may output to the apparatus communication part 38.
  • the sensor system control unit 36 Based on the configuration received from the master device 6, the sensor system control unit 36 sets a sensor to be used and a time interval at which each sensor performs sensing. Thereby, optimal sensing for each of the plurality of sensor devices 3 can be realized with a minimum amount of power. Furthermore, when each sensor can shift to the power saving operation state, the sensor system control unit 36 may control the sensors that are not used to enter the power saving operation state.
  • the sensor system control unit 36 also includes the voltage value V2 of the primary battery 31 (or voltage information corresponding thereto), the voltage value V1 output by the DSC unit 5 (or voltage information corresponding thereto), DSC Information on the power generation capacity of the unit 5, information on the state of the power supply setting switch 41, and information indicating the state of the power supply selector switch 34 are generated, and the generated information is transmitted to the master device 6 via the sensor device communication unit 38. Also good.
  • the sensor system control part 36 is provided with a time measuring part, and performs time measuring.
  • the sensor device communication unit 38 of the sensor device 3 further supplies power to the other device 3 and the master device 6 by supplying power to the device itself (voltage value V2 of the primary battery 31 (or voltage information corresponding thereto).
  • the power supply control unit 35 and the sensor system control unit 36 may be a known computer including a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory) and the like that can perform the above control. Good. Details of control by the power supply control unit 35 and the sensor system control unit 36 may be defined by software that can be arbitrarily changed or updated by the administrator.
  • the sensor unit 37 outputs detection result information indicating the detection result or a measured value (that is, environmental data) to the sensor system control unit 36.
  • the human sensor 371 is a sensor for detecting a human location using, for example, infrared rays, ultrasonic waves, or visible light. The human sensor 371 outputs detection result information indicating the detection result to the sensor system control unit 36.
  • the temperature sensor 372 measures the temperature and outputs the measured value to the sensor system control unit 36.
  • the humidity sensor 373 measures humidity and outputs the measured value to the sensor system control unit 36.
  • the atmospheric pressure sensor 374 measures atmospheric pressure and outputs the measured value to the sensor system control unit 36.
  • the illuminance sensor 375 measures the illuminance and outputs the measured value to the sensor system control unit 36.
  • the sensor device communication unit 38 transmits information output from the sensor system control unit 36 to other sensor devices 3 and the master device 6. Further, the sensor device communication unit 38 outputs information received from the other sensor devices 3 and the master device 6 to the sensor system control unit 36.
  • the received information includes, for example, environmental information, an identifier for identifying the sensor device 3, and the like.
  • the sensor device communication unit 38 measures RSSI (radio wave intensity) through communication with other sensor devices 3, and further, RSSI with other sensor devices 3 and each sensor device 3 to the master device 6. By acquiring the number of hops, a parent-child relationship and a communication path in communication are determined.
  • the sensor device communication unit 38 can further transmit information on the radio wave intensity between the own device and the other sensor device 3 to the other sensor device 3 or the master device 6.
  • the sensor device communication unit 38 of the sensor device 3 can receive the setting information for the own device from the master device 6 (or from the master device 6 via another sensor device 3), and the sensor device 3 can receive the setting information. It is configured to set its own device based on the information.
  • the setting information includes information that indicates one or more sensors to be used among the plurality of sensors. That is, it can be set which sensor is used among the plurality of sensors.
  • the setting information may include information regarding a time interval for transmitting the environment information.
  • the storage unit 39 temporarily stores environment information. Since the storage unit 39 does not store all the measured environment information, the capacity may be small.
  • the storage unit 39 may be configured by a RAM, a flash memory, or the like.
  • the sensor device side coupling portion 40 is, for example, a connector.
  • the DSC unit side coupling portion 54 of the DSC unit 5 is connected to the sensor device side coupling portion 40. That is, the DSC unit 5 that supplies power to the sensor device 3 can be attached to and detached from the sensor device side coupling unit 40.
  • the sensor device side coupling unit 40 is used to realize electrical coupling with the DSC unit side coupling unit 54, but may also serve to realize structural coupling with the DSC unit 5. That is, the sensor device side coupling portion 40 may be used to fix the DSC unit 5 to the sensor device 3.
  • the DSC (Dye Sensitized Solar Cell; dye-sensitized solar cell) unit 5 is an external power supply unit that supplies power generated by the solar cell 51 to the sensor device 3 when connected to the sensor device 3.
  • the solar cell 51 has a high illuminance intensity under outdoor sunlight (eg, 10 [lux]) from an environment where the illuminance intensity is low (eg, 10 [lux]) such as under a fluorescent lamp where sufficient power generation efficiency cannot be obtained with a general solar battery.
  • a high illuminance intensity under outdoor sunlight eg, 10 [lux]
  • an environment where the illuminance intensity is low eg, 10 [lux]
  • it is a dye-sensitized solar cell that can efficiently generate power up to (lux) environment.
  • the DC / DC converter 52 converts the voltage value of the power generated by the solar battery 51 and controls the power storage unit 53 to be charged with the converted power value.
  • the DC / DC converter 52 supplies the sensor device 3 with the power stored in the power storage unit 53 and the power generated by the solar cell 51 when the DSC unit 5 and the sensor device 3 are connected.
  • the power storage unit 53 is, for example, a lithium ion capacitor having a capacity of 40 F (Farad). Note that various power storage devices (for example, secondary batteries) can be used as appropriate for the power storage unit 53.
  • the power storage unit 53 stores the power generated by the solar cell 51 under the control of the DC / DC converter 52.
  • the power storage unit 53 has a positive electrode connected to the DC / DC converter 52 and the DSC unit side coupling unit 54, and a negative electrode grounded.
  • the DSC unit side coupling portion 54 is, for example, a connector.
  • the DSC unit side coupling portion 54 is connected to the sensor device side coupling portion 40 of the sensor device 3.
  • the DSC unit side coupling portion 54 is used to realize electrical coupling with the sensor device side coupling portion 40, but may also serve to realize structural coupling with the sensor device 3.
  • the sensor device 3 can be operated for about 1 to 2 years, for example, depending on the usage environment without using the power of the primary battery 31 included in the device, and without battery replacement.
  • the DSC unit 5 is coupled to the sensor device 3, for example, 4 years or 5 years depending on the usage environment without replacement of the battery using the primary battery 31 and the power supplied from the DSC unit 5 included in the own device.
  • the operation for about 10 years is possible.
  • FIG. 3 is a block diagram illustrating a configuration example of the master device 6 according to the present embodiment.
  • the master device 6 includes a master device communication unit 61, a data transmission / reception unit 62, a transmission data storage unit 63, a master control unit 64, a sensor data conversion / calculation unit 65, a sensor device management unit 66, and a sensor station.
  • a management unit 67, a cloud connection management unit 68, and a specific low-power wireless transmission / reception unit 69 are provided.
  • the master device communication unit 61 transmits the information output from the data transmission / reception unit 62 using the transmission / reception unit corresponding to the communication partner device. Further, the master device communication unit 61 receives information using a transmission / reception unit corresponding to the communication partner device, and outputs the received information to the data transmission / reception unit 62.
  • the master device communication unit 61 includes a LAN (Local Area Network) transmission / reception unit 611 that performs communication using wired communication, a short-range wireless transmission / reception unit 612 that performs communication using a wireless communication standard such as Wi-Fi, A 3G / LTE transmission / reception unit 613 that performs communication using a telephone communication network, a Modbus transmission / reception unit 614 that performs serial communication using Modbus Protocol, and the like are provided.
  • LAN Local Area Network
  • a 3G / LTE transmission / reception unit 613 that performs communication using a telephone communication network
  • Modbus transmission / reception unit 614 that performs serial communication using Modbus Protocol, and the like are provided.
  • the data transmission / reception unit 62 outputs the transmission data output from the master control unit 64 to the master device communication unit 61. In addition, the data transmission / reception unit 62 receives the information output from the master device communication unit 61 and outputs the received information to the master control unit 64. The data transmission / reception unit 62 modulates the transmission signal and demodulates the reception signal according to the device of the transmission / reception partner. The data transmission / reception unit 62 temporarily stores information that could not be transmitted in the transmission data storage unit 63, and performs retransmission when transmission is possible.
  • the transmission data storage unit 63 temporarily stores information that could not be transmitted.
  • the master control unit 64 controls each functional unit of the master device 6.
  • the sensor data conversion / calculation unit 65 performs operations such as analysis and conversion of information received from the sensor device 3.
  • the sensor device management unit 66 performs management of each sensor device 3 included in the sensor network system 1, various settings for each sensor device 3, individual control for each sensor device 3, and the like.
  • the sensor device management unit 66 refers to the voltage value V1 and voltage value V2 (or voltage information corresponding to each) of each sensor device 3 included in the received information and the state of the power supply selector switch 34. For example, when the voltage value of the primary battery 31 is less than a predetermined value and troubles in operation occur, it may be notified as maintenance information that battery replacement is necessary.
  • the sensor device management unit 66 may also propose the optimal DSC unit mounting for each of the plurality of sensor devices 3 with reference to the information regarding the power generation capability of the DSC unit 5 included in the received information.
  • the sensor station management unit 67 provides a management function of internal storage, external output, and external reading of the settings of the master device 6.
  • the cloud connection management unit 68 performs registration of the sensor device 3 to the cloud, storage of settings, reception of instructions from the cloud, and the like.
  • the transmission data storage unit 63 may be composed of a RAM, a flash memory, or the like, and includes a master control unit 64, a sensor data conversion / calculation unit 65, a sensor device management unit 66, a sensor station management unit 67, and a cloud connection management unit.
  • 68 may be a known computer including a CPU, a RAM, a ROM and the like capable of performing the above control, calculation, and management.
  • the specific low power wireless transmission / reception unit 69 transmits / receives information to / from the sensor system 2 by the specific low power wireless.
  • the specific low power wireless transmission / reception unit 69 transmits the information output from the master control unit 64 to the sensor system 2.
  • the specific low power wireless transmission / reception unit 69 outputs the received information to the master control unit 64.
  • the configuration example of the master device 6 described above is merely an example, and some of all the functional units described above may be included, or other functional units may not be included.
  • the master device 6 can change the setting of the sensor device 3. For example, when each of the sensor devices 3 includes five sensors, which of the five sensors is operated, the time interval at which each sensor of the five sensors performs sensing, the time interval of regular communication Such a configuration can be freely set for each sensor device 3. In other words, when the sensor device 3 includes a plurality of sensors, the master device 6 can instruct the sensor device 3 which one of the plurality of sensors is used. The procedure will be described below.
  • the administrator of the sensor network system 1 connects a notebook computer or the like to the master device 6, registers all the sensor devices 3 included in the sensor network system 1 in the master device 6, and configures the configuration of each sensor device 3. Also set (manual setting by the administrator). Each of the sensor devices 3 requests the master device 6 to configure its own device after the initial setting.
  • the request signal of the sensor device 3 includes the identifier of the own device.
  • the master device 6 transmits an instruction to transmit the sensor environment information to the master device 6 in an emergency such as a disaster, which is shorter than the initial setting, for example, every 1 minute. Also good.
  • the master device 6 When the master device 6 receives a configuration request from each sensor device 3, the master device 6 transmits it to the sensor device 3 that requested the set configuration as a response to the request.
  • the sensor device 3 sets its own device based on the configuration to the own device sent as a response to the request. Thus, the sensor device 3 does not have an input key for an administrator for performing various settings including the configuration of the own device.
  • FIG. 4 is a diagram illustrating an example of a predetermined reference used for comparison by the voltage detection / comparison unit 351 of the sensor device 3 according to the present embodiment.
  • the power supply selector switch 34 is controlled so as to output electric power as Vout.
  • the voltage detection / comparison unit 351 outputs the power of the DSC unit 5 having the voltage value V1 as Vout.
  • the power supply selector switch 34 is controlled.
  • the voltage detection / comparison unit 351 When the voltage value V1 of the DSC unit 5 is less than 3V and the voltage value V2 of the primary battery 31 is 2.5V or more, the voltage detection / comparison unit 351 outputs the power of the primary battery with the voltage value V2 as Vout.
  • the power supply selector switch 34 is controlled.
  • the voltage detection / comparison unit 351 When the voltage value V1 of the DSC unit 5 is less than 3V and the voltage value V2 of the primary battery 31 is less than 2.5V, the voltage detection / comparison unit 351 outputs the power of the DSC unit 5 having the voltage value V1 as Vout.
  • the power supply selector switch 34 is controlled.
  • the threshold values are 2.5V and 3V.
  • the threshold value may be a value corresponding to the voltage of the primary battery 31 or the voltage value supplied from the DSC unit 5.
  • the power supply control unit 35 switches to the DSC unit 5 when the voltage (voltage value V1) of the DSC unit 5 satisfies a predetermined standard. It may be configured to switch to the primary battery 31 when the voltage does not satisfy a predetermined standard.
  • the power supply control unit 35 switches to the DSC unit 5 when the voltage (voltage value V1) of the DSC unit 5 is equal to or higher than a predetermined threshold. May be configured to switch to the primary battery 31 when the voltage is less than the threshold.
  • the voltage detection / comparison unit 351 detects the state of the power supply setting switch 41 and determines whether or not the DSC unit 5 is connected.
  • the present invention is not limited to this.
  • the voltage value V1 is 0V.
  • the voltage detection / comparison unit 351 determines that the DSC unit 5 is not coupled, connects the power supply selector switch 34 to the primary battery 31, and outputs power with a voltage value of V2. You may switch to.
  • the sensor device 3 of the present embodiment includes the sensor device side coupling portion 40 that can connect the DSC unit 5 to the sensor device 3 and receive power supply from the DSC unit 5 as well.
  • the sensor device 3 can switch the power supplied to the load by comparing the voltage value V1 supplied from the DSC unit 5, the voltage value V2 of the primary battery 31, and a threshold value.
  • the DSC unit 5 when the DSC unit 5 that is an external power supply is coupled, the voltage value of the primary battery 31 and the voltage value of the power storage unit 53 in the unit are detected and determined thresholds are set. By switching the power supply by value, the power supply is optimized, and a more stable long-term system operation is possible.
  • the sensor device 3 supplies the power of the built-in primary battery 31 to the loads of the sensor system control unit 36, the sensor unit 37, and the sensor device communication unit 38.
  • the sensor device 3 When the DSC unit 5 is coupled, the sensor device 3 is supplied with power from the DSC unit 5 to the load.
  • the power storage unit 53 When the power storage unit 53 is discharged, the sensor device 3 is switched to the primary battery 31 by the power supply changeover switch 34 to supply power to the load.
  • the sensor device 3 is switched to the DSC unit 5 by the power supply switching switch 34 and resumes power supply from the power storage unit 53 to the load. That is, when the DSC unit 5 is not attached, the sensor device 3 of the present embodiment operates by supplying power from the primary battery 31, and when the DSC unit 5 is attached, the primary battery 31 or the DSC unit. It is comprised so that it may operate
  • the operation can be performed by utilizing the sensor device side coupling unit 40 prepared for the sensor device 3. Later, connection of the DSC unit 5 and power supply to the sensor device 3 from the DSC unit 5 become possible. Thereby, according to this embodiment, the sensor apparatus 3 can be operated for a long period of time.
  • FIG. 5 is a diagram illustrating an operation example of the sensor device communication unit 38 of each of the plurality of sensor devices 3 according to the present embodiment.
  • FIG. 5 shows an example using three sensor devices 3-1, sensor device 3-2, and sensor device 3-3.
  • the sensor device 3-1 transmits information to the master device 6 (not shown in FIG. 5) via the sensor device 3-3.
  • the sensor device 3-2 also transmits information to the master device 6 via the sensor device 3-3.
  • the horizontal axis represents time
  • the vertical axis represents voltage
  • the L (low) level represents the sleep state of the sensor device
  • the H (high) level represents the wake-up state of the sensor device.
  • the sensor device communication units 38 of the sensor device 3-1, the sensor device 3-2, and the sensor device 3-3 are in a sleep state (power saving state).
  • the sensor device communication units 38 of the sensor device 3-1, the sensor device 3-2, and the sensor device 3-3 change from the sleep state to the wakeup state at predetermined time intervals (for example, every 1 to 2 seconds). Then, the sensor device communication units 38 of the sensor device 3-1, the sensor device 3-2, and the sensor device 3-3 transition to the sleep state again after the wake-up state.
  • the sensor device communication unit 38 of the sensor device 3-2 transmits a transmission request to the sensor device 3-3.
  • the sensor device communication unit 38 of the sensor device 3-3 receives the transmission request transmitted by the sensor device 3-2.
  • the sensor device communication unit 38 of the sensor device 3-2 transmits data (measurement information and environment information) to the sensor device 3-3.
  • the sensor device communication unit 38 of the sensor device 3-3 receives data (measurement information and environment information) transmitted by the sensor device 3-2.
  • the sensor device communication unit 38 of the sensor device 3-1 transmits a transmission request to the sensor device 3-3.
  • the sensor device communication unit 38 of the sensor device 3-3 receives the transmission request transmitted by the sensor device 3-1.
  • the sensor device communication unit 38 of the sensor device 3-1 transmits data (measurement information, environment information) to the sensor device 3-3.
  • the sensor device communication unit 38 of the sensor device 3-3 receives data (measurement information and environment information) transmitted by the sensor device 3-1.
  • the communication interval (interval between time t1 and time t9) at which the sensor device communication unit 38 of the sensor device 3-2 transmits a transmission request to the sensor device 3-3 is, for example, 5 minutes. The same applies to 1 (interval between time t5 and time t13).
  • the sensor device communication unit 38 wakes up from the sleep state at a predetermined time interval (for example, every 1 to 2 seconds) even when transmission such as the interval between the time t4 and the time t9 is not performed in the sensor device 3-2. It goes up.
  • the sensor device communication unit 38 included in each of the sensor devices 3 of the present embodiment can switch between the wake-up mode and the sleeve mode. And the sensor apparatus communication part 38 limits the time slot
  • the sensor device communication unit 38 of the sensor device 3 of the present embodiment performs intermittent operation after synchronizing a plurality of sensor devices 3, and is in a sleep state for most of the time, for example, every 1 to 2 seconds. If necessary, data is transmitted / received. Thereby, the power consumption of the sensor apparatus 3 can be reduced and it can be operated for a long time.
  • FIG. 6 is a diagram illustrating an example of a construction procedure in the sensor network system 1 according to the present embodiment.
  • Step S ⁇ b> 1 Each of the plurality of sensor devices 3 acquires an identifier of the own device from the master device 6 at the time of activation. Subsequently, each of the plurality of sensor devices 3 establishes a parent-child relationship with other surrounding sensor devices 3.
  • a construction method of ZigBee registered trademark
  • the parent-child relationship is a relationship such as which sensor device 3 is located upstream and downstream of the network centered on the master device 6 and which sensor device 3 is a relay, such as information passing through the network. It is.
  • each sensor device 3 measures an RSSI when, for example, a test signal is received from another sensor device 3 or the master device 6 via the sensor device communication unit 38, It is transmitted to other sensor devices 3 and master device 6. Furthermore, each sensor device 3 receives the RSSI between the other sensor devices 3 and the number of hops from each sensor device 3 to the master device 6, and constructs a parent-child relationship and determines a communication path based on these information. .
  • Such parent-child relationship construction and route selection are performed when the sensor device 3 is introduced or at predetermined time intervals (for example, once a day).
  • Step S2 Each of the plurality of sensor devices 3 synchronizes the operation time zones of the wake-up mode and the sleeve mode.
  • the method of synchronization is not particularly limited, but each of the sensor device communication units 38 may use the time information timed by the sensor system control unit 36 and may synchronize based on a predetermined set value.
  • the sensor device communication unit 38 may include a timer unit. Here, if the sleep mode time is set to, for example, 10 times or more of the wake-up mode time, power consumption can be suppressed.
  • Step S3 Each of the plurality of sensor devices 3 determines a schedule for performing communication between the sensor devices 3.
  • a plurality of methods are conceivable for determining the schedule. For example, the mutual adjustment between the sensor devices 3 is performed so as not to overlap with the communication between the other sensor devices 3.
  • each sensor device 3 After the synchronization is established, each sensor device 3 makes a transmission request in the operation time zone of the wake-up mode, as shown in FIG. Note that, when receiving a transmission request, the receiving side may transmit information permitting reception as a response. Subsequently, each sensor device 3 transmits data. For example, the sensor device communication unit 38 synchronizes the transmission timing by matching the transmission timing of the own device with the response of the information that permits the reception transmitted by the partner sensor device 3.
  • the transmission packet of the sensor device 3 includes, for example, the ID (identifier, identification information) of the master device 6 that is the transmission destination, the identifier (identification number) of the transmission source sensor device 3, environmental data (sensor measurement information), primary Voltage value V2 of battery 31 (or voltage information corresponding thereto), voltage value V1 output by DSC unit 5 (or voltage information corresponding thereto), information on power generation capability of DSC unit 5, supply power supply It includes the state of the setting switch 41, the state of the power supply selector switch 34, and the RSSI (the radio wave intensity of the destination sensor device 3).
  • the sensor device 3 includes, in the environment information including at least the environment data measured by the sensor unit 37, the identification number for identifying the device itself, the identification information of the master device 6 that is the transmission destination, and the primary battery 31 of the device itself. Including at least one of the voltage information of the installed DSC unit 5 and the information on the power generation capability of the DSC unit 5 is transmitted to the master device 6 via another sensor device 3 or directly. The environmental information received from another sensor device 3 is further transmitted to the master device 6 via another sensor device 3 or directly.
  • the sensor device 3 executes “sensor sensing”, which is the original role, completely independently of the communication protocol.
  • each of the plurality of sensor devices 3 sends the “voltage value V2 of the primary battery 31 (or voltage information corresponding thereto), DSC unit 5 to the server 7 via the master device 6. Is transmitted, the information regarding the power generation capability of the DSC unit 5, the state of the power supply setting switch 41, and the state of the power supply selector switch 34. Then, by monitoring with the server 7, medium-to-long term overall optimization of the sensor network system 1 can be realized.
  • each of the plurality of sensor devices 3 does not have a display device directly connected to power consumption, an input key, a large-capacity memory for storing long-term environmental data, and the like. Load can be minimized.
  • the DSC unit 5 can be “attached at any time” and “removed at any time” with respect to the installed sensor device 3. For example, if the DSC unit 5 is not attached when the sensor network system 1 is introduced, the DSC unit 5 can be “attached at any time” when power is insufficient. Further, for example, the DSC unit 5 is mounted on the assumption that an arbitrary sensor device 3 is operated as a sensor device 3 that mediates data transmission at the time of introduction. Is possible. In addition, when the power becomes insufficient after removal, a measure for reducing the power consumption by reducing the communication frequency in the sensor device 3 may be used in combination.
  • the number of DSC units 5 used as a whole can be optimized.
  • FIG. 7 is a block diagram illustrating a configuration example of a sensor system 2A having a sensor device 3A having a USB terminal according to a modification of the present embodiment.
  • the sensor device 3 ⁇ / b> A includes a USB terminal 42 and a USB power supply switch 43 in addition to the configuration of the sensor device 3. Further, the sensor device 3A includes a sensor system control unit 36A instead of the sensor system control unit 36.
  • the output terminal c of the power supply changeover switch 34 is connected to the input terminal d of the USB power supply changeover switch 43.
  • the input terminal e is connected to the USB terminal 42, and power is supplied from the output terminal f to the load (that is, the sensor system control unit 36A, the sensor unit 37, the sensor device communication unit 38, etc.).
  • the sensor system control unit 36A detects that a connection cable or the like is connected to the USB terminal 42 and power can be supplied from the USB terminal 42 using a well-known method, the sensor power control switch 43A Switching is performed so that the power supplied from the USB terminal 42 is supplied to the load.
  • the load is always driven using this power.
  • the sensor system control unit 36A when the sensor system control unit 36A detects that power can be supplied from the USB terminal 42 and the DSC unit 5 is mounted, the sensor system control unit 36A supplies the power supplied from the USB to the load. However, the power storage unit 53 may be charged by being supplied to the DSC unit 5. In this case, the sensor system control unit 36A controls the USB power supply selector switch 43 so that the input terminal e is connected to the input terminal d and the output terminal f.
  • the sensor device 3A further includes a switch between the supply power changeover switch 34 and the USB power supply changeover switch 43, and the sensor system control unit 36A controls the switch to change the power supplied from the USB to the DSC. You may switch so that it may supply to the unit 5.
  • the administrator may switch the power supply by switching the power supply setting switch 41. That is, in the power supply setting switch 41, the first state is a state in which the sensor device 3 is always operated with the USB power source, the second state is a state in which the sensor device 3 is always operated with the primary battery 31, and the third state is always in the state. In this state, the sensor device 3 is operated by the primary battery 31 or the DSC unit 5. Also at this time, when it is detected that power can be supplied from the USB terminal 42 and the DSC unit 5 is mounted, the power is supplied from the USB regardless of the state of the power supply setting switch 41.
  • the power storage unit 53 may be charged by supplying power to the DSC unit 5.
  • the embodiment it is possible to operate even with an inexpensive primary battery built in the sensor device main body, and when the necessity of an independent power source using the energy harvest type power source can be confirmed, the energy harvest unit is later It is possible to construct a highly maintainable sensor system that can realize a self-sustained power supply by joining together.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)

Abstract

このセンサ装置は、環境情報を検出するセンサと、検出された環境情報を他のセンサ装置へ送信可能なセンサ装置通信部と、センサとセンサ装置通信部に電力を供給する電池と、自装置に電力を供給する補助電池を着脱可能なセンサ装置側結合部と、を備え、補助電池が装着されていない場合は、電池からの電力供給で動作し、補助電池が装着された場合は、電池または補助電池からの電力供給で動作するように構成されている。

Description

センサ装置およびセンサネットワークシステム
 本発明は、センサ装置およびセンサネットワークシステムに関する。
 本願は、2017年3月13日に日本に出願された特願2017-047820号に基づき優先権を主張し、その内容をここに援用する。
 近年、電子回路や無線技術の低消費電力化により、周囲の環境から電気エネルギーを得ることで、配線や電池交換なしで動作するワイヤレスセンサやリモコンスイッチといったエネルギーハーベスティング(環境発電)センサを用いたセンサシステムが注目されている。例えば、乾電池1本で数年間動かすことを想定した広域無線モジュールの開発や、蛍光灯やLED(発光ダイオード)照明といった屋内での使用を想定したエネルギーハーベスティング用の色素増感太陽電池の開発が進められている。
 マルチポップ無線方式のセンサシステムでは、センサ装置で測定した情報をマスター装置に収集する。このようなシステムにおいて、マスター装置から遠いセンサ装置は、マスター装置に近いセンサ装置を介してマスター装置へ情報を送信する。例えば、マスター装置に近い順に3つの第1のセンサ装置、第2のセンサ装置、第3のセンサ装置がある場合、第3のセンサ装置が送信した情報は、第2のセンサ装置と第1のセンサ装置を介してマスター装置へ送信される。このように、マルチポップ無線方式のセンサシステムでは、第1のセンサ装置、および第2のセンサ装置が、自装置の情報を送信するだけではなく他装置からの情報を受信して、受信した情報も送信する、すなわち中継器の役割も備えている。中継器では、他装置からの情報を受信できるように、情報を受信するための待ち受けを行う必要がある。
 特許文献1には、環境データを測定し、送信を行う子局同士が相互に無線メッシュ接続されたデータ収集システムであり、子局が太陽電池のみを備え動作すると共に中継局としても機能するデータシステムが記載されている。
日本国特開2003-044974号公報
 しかしながら、様々な市場での使用が想定されるセンサシステムに求められるユーズは多様であり、幅広い市場で使用するためには、複数の電源供給に対応できるセンサ装置が必要である。これは、容易に電池交換が可能な環境であれば安価な内蔵電池での運用により、エナジーハーベスト電源は不要である。一方で電池交換が困難な環境や、メンテナンスコストを優先する場合などがあり、それらを多面的にカバーできる必要性がある。
 そして、子局が太陽電池のみを備えている特許文献1に記載の技術をマルチポップ無線方式のセンサシステムに適用した場合、中継器に割り当てられた子局は、情報の待ち受けも行うので消費電力が大きくなり、太陽電池によって発電された電力では運用が困難となる場合がある。
 本発明は、上記の事情に鑑みてなされたものであって、マルチポップ無線方式において電力消費に応じて流動的にシステムを運用することができるセンサ装置およびセンサネットワークシステムを提供することを目的とする。
 上記目的を達成するため、本発明の第1の態様に係るセンサ装置は、環境情報を検出するセンサと、検出された前記環境情報を他のセンサ装置へ送信可能なセンサ装置通信部と、前記センサと前記センサ装置通信部に電力を供給する電池と、自装置に電力を供給する補助電池を着脱可能なセンサ装置側結合部と、を備え、前記補助電池が装着されていない場合は、前記電池からの電力供給で動作し、前記補助電池が装着された場合は、前記電池または前記補助電池からの電力供給で動作するように構成されている。
 また、本発明の上記第1の態様に係るセンサ装置が、前記補助電池が装着されたとき、前記補助電池の電圧が所定基準を満たした場合に前記補助電池に切り換え、前記補助電池の電圧が所定基準を満たさない場合に前記電池に切り換えるように構成された制御部を備えてもよい。
 また、本発明の上記第1の態様に係るセンサ装置が、第1の他のセンサ装置から受信した環境情報を、第2の他のセンサ装置へ送信するように構成されてもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、ウェイクアップモードと、前記ウェイクアップモードより消費電力が小さいスリープモードとが定常的に切り換えられ、前記ウェイクアップモードでの動作時に、ウェイクアップモードで動作している他のセンサ装置のセンサ装置通信部と通信を行うように構成されてもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、前記他のセンサ装置との間で通信タイミングの同期を取った後に、前記他のセンサ装置のセンサ装置通信部と通信を行うように構成されてもよい。
 また、本発明の上記第1の態様に係るセンサ装置が、前記電池からの電力供給で動作するか、前記電池または前記補助電池からの電力供給で動作するか、を切り換えるように構成されたスイッチを備えてもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部が、前記他のセンサ装置へさらに、前記電池の電圧に関する情報、または前記補助電池の電圧に関する情報を送信可能であってもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置へ電力を供給する供給電源を設定するスイッチの状態に関する情報を送信可能であってもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置へ電力を供給する供給電源に関する情報を送信可能であってもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置と前記他のセンサ装置との間の電波強度に関する情報を送信可能であってもよい。
 また、本発明の上記第1の態様に係るセンサ装置が、前記環境情報を一時的に記憶する記憶部と、前記他のセンサ装置へ前記環境情報を所定の回数送信できなかった場合、前記記憶部に記憶させた前記環境情報を破棄する制御部と、をさらに備えてもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサ装置通信部は、自装置に対する設定情報を受信可能であり、前記センサ装置が、前記設定情報に基づき自装置を設定するように構成されていてもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記センサは、異なる種類の環境情報を検出する複数のセンサからなり、前記設定情報は、前記複数のセンサのうち用いるセンサを1個以上指示する情報を含んでもよい。
 また、本発明の上記第1の態様に係るセンサ装置において、前記設定情報は、前記環境情報を送信する時間間隔に関する情報を含んでもよい。
 上記目的を達成するため、本発明の第2の態様に係るセンサネットワークシステムは、上記第1の様態のセンサ装置と、前記センサ装置からの前記環境情報を受信し、前記環境情報と前記センサ装置とを管理するマスター装置と、を備え、前記センサ装置は、前記環境情報に、自装置を識別するための識別番号、送信先である前記マスター装置の識別情報、自装置の前記電池の電圧情報または装着されている前記補助電池の電圧情報、および前記補助電池の発電能力に関する情報の、少なくとも1つを含めて、他のセンサ装置を介してまたは直接に前記マスター装置へ送信するように構成され、あるいは他のセンサ装置から受信した前記環境情報を、さらに他のセンサ装置を介してまたは直接に前記マスター装置へ送信するように構成され、前記マスター装置は、前記センサ装置が複数のセンサを備えている場合に、前記複数のセンサの中のいずれのセンサを用いるのかを指示するように構成されている。
 本発明によれば、マルチポップ無線方式において電力消費に応じて流動的にシステムを運用することができる。
本実施形態に係るマルチホップ方式のセンサネットワークシステムの概略構成を示す図である。 本実施形態に係るセンサシステムの構成例を示すブロック図である。 本実施形態に係るマスター装置の構成例を示すブロック図である。 本実施形態に係るセンサ装置の電圧検出・比較部が比較に用いる所定基準の例を示す図である。 本実施形態に係る複数のセンサ装置それぞれの通信部の動作例を示す図である。 本実施形態に係るセンサネットワークシステムにおける構築手順例を示す図である。 本実施形態の変形例に係る、USB端子を備えたセンサ装置を有するセンサシステムの構成例を示すブロック図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。
 図1は、本実施形態に係るマルチホップ方式のセンサネットワークシステム1の概略構成を示す図である。
 図1に示すように、マルチホップ方式のセンサネットワークシステム1は、複数のセンサシステム2-1、2-2、・・・(SS)、マスター装置6(M)、およびサーバー7を含んで構成される。以下、センサシステム2-1、2-2、・・・のうち1つを特定しない場合は、センサシステム2という。
 センサシステム2は、自装置が備えるセンサが計測した環境情報(またはセンサが計測した環境データが含まれる環境情報)を、マスター装置6へ直接送信、または他のセンサシステム2を介してマスター装置6へ送信する。なお、センサシステム2が環境情報を送信するタイミングは、所定の時間間隔であり、例えば5分に1回である。センサシステム2は、この所定の時間間隔の設定情報を、マスター装置6から受信し、受信した設定情報に応じて時間間隔を設定する。
 マスター装置6は、センサネットワークシステム1に接続されている全てのセンサシステム2から情報を受信して、全てのセンサシステム2を管理する。また、マスター装置6は、必要に応じてセンサシステム2へ、設定情報やファームウェアを送信する。マスター装置6は、センサシステム2から受信した環境情報を含む情報を、サーバー7へ送信する。
 サーバー7は、マスター装置6から受信したセンサシステム2からの情報を保管し、保管したデータの解析等を行う。
 図2は、本実施形態に係るセンサシステム2の構成例を示すブロック図である。
 図2に示すように、センサシステム2は、センサ装置3と、DSCユニット5を備えている。
 センサ装置3は、一次電池31(電池)、一次電池電圧検出部32、蓄電部電圧検出部33、供給電源切換スイッチ34、供給電源制御部35(制御部)、センサシステム制御部36、センサ部37、センサ装置通信部38、記憶部39、センサ装置側結合部40、および供給電源設定スイッチ41を備える。供給電源制御部35は、電圧検出・比較部351と、供給電源切換部352を備える。センサ部37は、人感センサ371、温度センサ372、湿度センサ373、気圧センサ374、および照度センサ375等を備える。センサ部37が備えるセンサの種類は適宜変更することが可能である。
 DSCユニット5は、太陽電池51、DC/DCコンバータ52、蓄電部53、およびDSCユニット側結合部54を備える補助電池である。
 センサ装置3は、各センサが計測した計測値を他のセンサ装置3またはマスター装置6に送信する。また、センサ装置3は、他のセンサ装置3(第1の他のセンサ装置)から情報(環境情報)を受信し、受信した情報をさらに他のセンサ装置3(第2の他のセンサ装置)またはマスター装置6に転送する。なお、情報の送信先は、図1に示したように、他のセンサ装置3を経由する場合もしない場合もマスター装置6である。すなわち、センサ装置3は、他のセンサ装置3を介してまたは直接にマスター装置6へ環境情報を送信するように構成され、あるいは他のセンサ装置3から受信した環境情報を、さらに他のセンサ装置3を介してまたは直接にマスター装置6へ送信するように構成されている。
 センサ装置3は、DSCユニット5が着脱可能である。
 一次電池31は、例えば通常時の電圧値が3.0Vの電池である。一次電池31は、正極が一次電池電圧検出部32を介して供給電源切換スイッチ34の入力端子bに接続され、負極が接地されている。
 一次電池電圧検出部32は、一次電池31の電圧値V2を検出し、検出した電圧値V2を供給電源制御部35へ出力する。
 蓄電部電圧検出部33は、DSCユニット5がセンサ装置3に接続されているとき、DSCユニット5が出力する電圧値V1とDSCユニット5の発電能力に関する情報を検出し、検出した電圧値V1とDSCユニット5の発電能力に関する情報を供給電源制御部35へ出力する。DSCユニット5の発電能力に関する情報とは、例えば、太陽電池51の型番、発電方式またはパネルの大きさ等が挙げられる。
 供給電源切換スイッチ34は、その入力端子aが蓄電部電圧検出部33とセンサ装置側結合部40を介してDSCユニット5に接続され、入力端子bが一次電池電圧検出部32を介して一次電池31の正極に接続され、出力端子cがセンサシステム制御部36、センサ部37およびセンサ装置通信部38に接続されている。また、出力端子cから出力される電圧をVoutとする。
 その上で、供給電源切換スイッチ34は、供給電源制御部35の制御に応じて、DSCユニット5から供給された電力、または一次電池31の電力をセンサシステム制御部36、センサ部37、およびセンサ装置通信部38へ供給するように切り換える。
 供給電源設定スイッチ41は、DSCユニット5が接続されているか否かによって、センサ装置3の管理者によって切り換えられる、例えばスライドスイッチまたはDIP(Dual In-line Package)スイッチである。例えば、供給電源設定スイッチ41の第1状態がDSCユニット5の接続無し状態であり、第2状態がDSCユニット5の接続有り状態である。
 供給電源制御部35は、一次電池電圧検出部32と蓄電部電圧検出部33が検出した各電圧値と、自部が記憶する所定基準とを比較して、比較した結果に応じて供給電源切換スイッチ34を切り換えるように制御する。なお、所定基準については、後述する。また、供給電源制御部35は、検出した各電圧値、DSCユニット5の発電能力に関する情報、および供給電源切換スイッチ34の切り換え状態をセンサシステム制御部36へ出力する。
 さらに、供給電源制御部35は、供給電源設定スイッチ41の状態を検出し、第1状態であれば、比較した結果に関わらず、供給電源切換スイッチ34を一次電池31に接続するように制御する。また、供給電源制御部35は、供給電源設定スイッチ41の状態を検出し、第2状態であれば、一次電池電圧検出部32と蓄電部電圧検出部33が検出した各電圧値と、自部が記憶する所定基準とを比較して、比較した結果に応じて供給電源切換スイッチ34を切り換えるように制御する。すなわち、供給電源設定スイッチ41は、一次電池31からの電力供給でセンサ装置3が動作するか、一次電池31またはDSCユニット5からの電力供給でセンサ装置3が動作するか、を切り換えるように構成されている。
 電圧検出・比較部351は、一次電池電圧検出部32と蓄電部電圧検出部33が検出した各電圧値と、自部が記憶する所定基準とを比較する。電圧検出・比較部351は、比較した結果に応じて供給電源切換スイッチ34の切換信号を生成し、生成した切換信号を供給電源切換部352へ出力する。さらに、電圧検出・比較部351は、供給電源設定スイッチ41の状態を検出し、第1状態であれば、比較した結果に関わらず、供給電源切換スイッチ34を一次電池31に接続する切換信号を生成し、生成した切換信号を供給電源切換部352へ出力する。
 供給電源切換部352は、電圧検出・比較部351が出力した切換信号に応じて供給電源切換スイッチ34を切り換える。
 センサシステム制御部36は、センサ部37が出力した検出結果情報や計測値(すなわち環境データ)に自装置(当該センサシステム制御部36が設けられているセンサ装置3)を識別するための識別子(識別番号)を付加して環境情報を生成し、生成した環境情報を記憶部39に記憶させる。センサシステム制御部36は、記憶部39に記憶させた環境情報をセンサ装置通信部38へ出力する。なお、センサシステム制御部36は、環境情報が3回続けて送信できなかった場合、記憶部39に記憶させた環境情報を破棄する。センサシステム制御部36は、センサ装置通信部38を介して環境情報を他のセンサ装置3やマスター装置6に所定の回数送信できなかった場合、記憶部39に記憶させた環境情報を破棄してもよい。このように、センサシステム制御部36が記憶部39に記憶させる環境情報は、最新の環境データおよび一定の識別情報等である。なお、センサシステム制御部36は、一定の識別情報等を記憶部39から破棄せず、最新の環境データのみを記憶部39に記憶させてもよい。
 センサシステム制御部36は、センサ装置通信部38を介して他のセンサ装置3から受信した環境情報をさらに他のセンサ装置3やマスター装置6に転送するために、受信した環境情報を再びセンサ装置通信部38へ出力する。なお、センサシステム制御部36は、センサ装置通信部38を介して他のセンサ装置3から受信した環境情報を記憶部39に一次的に記憶させ、記憶させた環境情報を転送するために再びセンサ装置通信部38へ出力してもよい。センサシステム制御部36は、マスター装置6から受信したコンフィグレーションに基づいて、使用するセンサと各センサがセンシングを行う時間間隔を設定する。これにより、複数のセンサ装置3それぞれに最適なセンシングを最小限の電力で実現できる。さらに、各センサが省電力動作状態に移行できる場合には、センサシステム制御部36は、使用しないセンサに対して、省電力動作状態になるように制御してもよい。また、センサシステム制御部36は、一次電池31の電圧値V2(または、それに対応するような電圧情報)、DSCユニット5が出力する電圧値V1(または、それに対応するような電圧情報)、DSCユニット5の発電能力に関する情報、供給電源設定スイッチ41の状態、および供給電源切換スイッチ34の状態を示す情報を生成し、生成した情報をセンサ装置通信部38を介してマスター装置6へ送信してもよい。また、センサシステム制御部36は、計時部を備え、計時を行う。センサ装置3のセンサ装置通信部38は、他のセンサ装置3やマスター装置6へさらに、自装置へ電力を供給する供給電源(一次電池31の電圧値V2(もしくは、それに対応するような電圧情報)、DSCユニット5が出力する電圧値V1(もしくは、それに対応するような電圧情報)、またはDSCユニット5の発電能力)に関する情報や、当該供給電源を設定する供給電源設定スイッチ41または供給電源切換スイッチ34の状態に関する情報を送信可能であってもよい。
 なお、供給電源制御部35およびセンサシステム制御部36は、上記の制御を実施できるようなCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む公知の計算機でもよい。供給電源制御部35およびセンサシステム制御部36による制御の詳細は、管理者が任意に変更または更新可能なソフトウェアにより定義されてもよい。
 センサ部37は、検出した結果を示す検出結果情報または計測した計測値(すなわち環境データ)をセンサシステム制御部36へ出力する。
 人感センサ371は、例えば赤外線、超音波、可視光を用いて人間の所在を検知するためのセンサである。人感センサ371は、検出した結果を示す検出結果情報をセンサシステム制御部36へ出力する。
 温度センサ372は、温度を計測し、計測した計測値をセンサシステム制御部36へ出力する。
 湿度センサ373は、湿度を計測し、計測した計測値をセンサシステム制御部36へ出力する。
 気圧センサ374は、気圧を計測し、計測した計測値をセンサシステム制御部36へ出力する。
 照度センサ375は、照度を計測し、計測した計測値をセンサシステム制御部36へ出力する。
 センサ装置通信部38は、センサシステム制御部36が出力した情報を他のセンサ装置3やマスター装置6に送信する。また、センサ装置通信部38は、他のセンサ装置3やマスター装置6から受信した情報をセンサシステム制御部36へ出力する。受信する情報には、例えば環境情報、センサ装置3を識別するための識別子等が含まれる。また、センサ装置通信部38は、他のセンサ装置3との通信によってRSSI(電波強度)を計測し、さらに、他のセンサ装置3との間のRSSIおよび各センサ装置3からマスター装置6までのホップ数を取得することで、通信における親子関係と通信の経路を決定する。すなわち、センサ装置通信部38は、他のセンサ装置3やマスター装置6へさらに、自装置と他のセンサ装置3との間の電波強度に関する情報を送信可能である。
 また、センサ装置3のセンサ装置通信部38は、自装置に対する設定情報をマスター装置6から(または他のセンサ装置3を介したマスター装置6から)受信可能であり、センサ装置3は、前記設定情報に基づき自装置を設定するように構成されている。センサ装置3に含まれるセンサが、異なる種類の環境情報を検出する複数のセンサからなる場合には、前記設定情報は、複数のセンサのうち用いるセンサを1個以上指示する情報を含んでいる。すなわち、前記複数のセンサのうちどのセンサを使用するかを設定できる。また、前記設定情報が、環境情報を送信する時間間隔に関する情報を含んでいてもよい。
 記憶部39は、環境情報を一時的に記憶する。記憶部39は、計測した環境情報を全て記憶しないため、容量は小さくてよい。記憶部39は、RAMやフラッシュメモリ等から構成されてもよい。
 センサ装置側結合部40は、例えばコネクターである。センサ装置側結合部40には、DSCユニット5のDSCユニット側結合部54が接続される。すなわち、センサ装置側結合部40には、センサ装置3に電力を供給するDSCユニット5を着脱可能である。なお、センサ装置側結合部40は、DSCユニット側結合部54と電気的な結合を実現するために用いられるが、DSCユニット5と構造的な結合を実現する役割を兼ねていてもよい。すなわち、センサ装置側結合部40が、DSCユニット5をセンサ装置3に固定するために用いられてもよい。
 DSC(Dye Sensitized Solar Cell;色素増感太陽電池)ユニット5は、センサ装置3との接続時に、太陽電池51で発電した電力をセンサ装置3へ供給する外付け電源のユニットである。
 太陽電池51は、一般の太陽電池では十分な発電効率の得られない蛍光灯下などの光照度強度が低い(例えば10[lux])環境から、野外の太陽光下の光照度強度が高い(例えば10万[lux])環境まで、効率良く発電可能な例えば色素増感太陽電池である。
 DC/DCコンバータ52は、太陽電池51によって発電された電力の電圧値を変換して、電圧値を変換した電力を蓄電部53に充電するように制御する。また、DC/DCコンバータ52は、DSCユニット5とセンサ装置3との接続時に、蓄電部53に蓄電された電力と太陽電池51によって発電された電力をセンサ装置3へ供給する。
 蓄電部53は、例えば容量が40F(ファラド)のリチウムイオンキャパシタである。なお、蓄電部53には様々な蓄電装置(例えば二次電池)が適宜使用可能である。
 蓄電部53には、DC/DCコンバータ52の制御によって、太陽電池51によって発電された電力が蓄電される。蓄電部53は、正極がDC/DCコンバータ52とDSCユニット側結合部54に接続され、負極が接地されている。
 DSCユニット側結合部54は、例えばコネクターである。DSCユニット側結合部54には、センサ装置3のセンサ装置側結合部40が接続される。なお、DSCユニット側結合部54は、センサ装置側結合部40と電気的な結合を実現するために用いられるが、センサ装置3と構造的な結合を実現する役割を兼ねていてもよい。
 センサ装置3は、自装置が備える一次電池31の電力を用いて電池交換無しで、使用環境に応じて、例えば1年から2年程度の運用が可能である。また、センサ装置3にDSCユニット5を結合した場合、自装置が備える一次電池31とDSCユニット5から供給される電力を用いて電池交換無しで、使用環境に応じて、例えば4年、5年から使用される環境によっては10年程度の運用が可能である。
 次に、マスター装置6について説明する。
 図3は、本実施形態に係るマスター装置6の構成例を示すブロック図である。
 図3に示すように、マスター装置6は、マスター装置通信部61、データ送受信部62、送信データ蓄積部63、マスター制御部64、センサデータ換算・演算部65、センサ装置管理部66、センサステーション管理部67、クラウド接続管理部68、および特定小電力無線送受信部69を備えている。
 マスター装置通信部61は、データ送受信部62が出力した情報を通信相手の装置に応じた送受信部を用いて情報の送信を行う。また、マスター装置通信部61は、通信相手の装置に応じた送受信部を用いて情報を受信し、受信した情報をデータ送受信部62へ出力する。マスター装置通信部61は、有線通信を用いて通信を行うLAN(Local Area Network;ローカル・エリア・ネットワーク)送受信部611、Wi-Fi等の無線通信規格で通信を行う近距離無線送受信部612、電話通信網を用いて通信を行う3G/LTE送受信部613、Modbus Protocolによるシリアル通信を行うModbus送受信部614等を備えている。
 データ送受信部62は、マスター制御部64が出力した送信データをマスター装置通信部61へ出力する。また、データ送受信部62は、マスター装置通信部61が出力した情報を受け取り、受け取った情報をマスター制御部64へ出力する。なお、データ送受信部62は、送受信相手の装置に応じて、送信信号に対して変調を行い、受信信号に復調を行う。データ送受信部62は、送信できなかった情報を送信データ蓄積部63へ一次的に蓄積させ、送信可能となった場合に、再送を行う。
 送信データ蓄積部63は、送信できなかった情報などを一時保管する。
 マスター制御部64は、マスター装置6の各機能部を制御する。
 センサデータ換算・演算部65は、センサ装置3から受信した情報の解析や換算等の演算を行う。
 センサ装置管理部66は、センサネットワークシステム1に含まれる各センサ装置3の管理や、各センサ装置3への各種設定、各センサ装置3への個別制御等を行う。センサ装置管理部66は、受信した情報に含まれる各センサ装置3の電圧値V1および電圧値V2(または、それぞれに対応するような電圧情報)と供給電源切換スイッチ34の状態を参照することにより、例えば一次電池31の電圧値が所定の値以下で運用に支障が生じる場合、電池交換が必要であることをメンテナンス情報として報知してもよい。
 また、センサ装置管理部66は、受信した情報に含まれるDSCユニット5の発電能力に関する情報も参照して、複数のセンサ装置3それぞれに最適なDSCユニットの装着を提案してもよい。
 センサステーション管理部67は、マスター装置6の設定の内部保存、外部出力、外部からの読み込みの管理機能を提供する。
 クラウド接続管理部68は、クラウドへのセンサ装置3の登録、設定保管、クラウドからの指示受信などを行う。
 なお、送信データ蓄積部63はRAMやフラッシュメモリ等から構成されてもよく、マスター制御部64、センサデータ換算・演算部65、センサ装置管理部66、センサステーション管理部67、およびクラウド接続管理部68は、上記の制御、演算、および管理を実施できるようなCPU、RAM、ROM等を含む公知の計算機でもよい。
 特定小電力無線送受信部69は、特定小電力無線によって、センサシステム2との間で情報の送受信を行う。特定小電力無線送受信部69は、マスター制御部64が出力した情報をセンサシステム2に送信する。特定小電力無線送受信部69は、受信した情報をマスター制御部64へ出力する。
 なお、上述したマスター装置6の構成例は一例で有り、上述した全ての機能部のうち一部を備えていてもよく、他の機能部を備えていなくてもよい。
 また、マスター装置6は、センサ装置3の設定を変更することができる。
 例えば、センサ装置3それぞれが、5個のセンサを備えている場合、5個あるセンサのいずれを動作させるか、5個あるセンサの各センサがセンシングを行う時間間隔、定常的な通信の時間間隔等のコンフィグレーションをセンサ装置3毎に自由に設定することもできる。すなわち、マスター装置6は、センサ装置3が複数のセンサを備えている場合に、これら複数のセンサの中のいずれのセンサを用いるのかをセンサ装置3に指示可能である。以下に、その手順を説明する。
 まず、センサネットワークシステム1の管理者は、ノートパソコン等をマスター装置6に接続し、センサネットワークシステム1に含まれる全てのセンサ装置3をマスター装置6に登録すると共に、センサ装置3それぞれのコンフィグレーションも設定する(管理者による手動設定)。
 センサ装置3それぞれは、初期設定の後に、マスター装置6へ自装置のコンフィグレーションを要求する。なお、センサ装置3の要求信号には、自装置の識別子が含まれている。
 なお、マスター装置6は、例えば災害などの緊急時に、センサの環境情報をマスター装置6へ送信する時間間隔を初期設定より短く、例えば1分おきに送信する指示をセンサ装置3それぞれに送信してもよい。
 マスター装置6は、各センサ装置3からコンフィグレーションの要求を受信したとき、要求に対する応答として、設定されたコンフィグレーションを要求したセンサ装置3へ送信する。
 センサ装置3は、要求に対する応答として送られてきた自装置へのコンフィグレーションに基づき自装置の設定を行う。
 このように、センサ装置3は、自装置のコンフィグレーションを含む各種設定を行うための管理者用の入力キ一等を持たない。
 次に、センサ装置3の電圧検出・比較部351が比較に用いるしきい値の例を説明する。なお、電圧検出・比較部351は、これらのしきい値を記憶している。
 図4は、本実施形態に係るセンサ装置3の電圧検出・比較部351が比較に用いる所定基準の例を示す図である。
 図4に示すように、電圧検出・比較部351は、DSCユニット5の電圧値V1が3V以上かつ一次電池31の電圧値V2が2.5V以上の場合、電圧値がV1のDSCユニット5の電力をVoutとして出力するように供給電源切換スイッチ34を制御する。
 電圧検出・比較部351は、DSCユニット5の電圧値V1が3V以上かつ一次電池31の電圧値V2が2.5V未満の場合、電圧値がV1のDSCユニット5の電力をVoutとして出力するように供給電源切換スイッチ34を制御する。
 電圧検出・比較部351は、DSCユニット5の電圧値V1が3V未満かつ一次電池31の電圧値V2が2.5V以上の場合、電圧値がV2の一次電池の電力をVoutとして出力するように供給電源切換スイッチ34を制御する。
 電圧検出・比較部351は、DSCユニット5の電圧値V1が3V未満かつ一次電池31の電圧値V2が2.5V未満の場合、電圧値がV1のDSCユニット5の電力をVoutとして出力するように供給電源切換スイッチ34を制御する。
 すなわち、図4に示した例では、しきい値が2.5Vと3Vである。なお、図4に示すたしきい値は一例であり、これに限られない。しきい値は、一次電池31の電圧やDSCユニット5から供給される電圧値に応じた値であればよい。
 また、供給電源制御部35は、DSCユニット5がセンサ装置3に装着されたとき、DSCユニット5の電圧(電圧値V1)が所定基準を満たした場合にDSCユニット5に切り換え、DSCユニット5の電圧が所定基準を満たさない場合に一次電池31に切り換えるように構成されてもよい。例えば、供給電源制御部35は、DSCユニット5がセンサ装置3に装着されたとき、DSCユニット5の電圧(電圧値V1)が所定の閾値以上である場合にDSCユニット5に切り換え、DSCユニット5の電圧が前記閾値未満である場合に一次電池31に切り換えるように構成されてもよい。
 なお、上述した例では、電圧検出・比較部351が供給電源設定スイッチ41の状態を検出してDSCユニット5が接続されているか否かを判別する例を説明したが、これに限られない。センサ装置3にDSCユニット5が結合されていない場合は、電圧値V1が0Vである。このような場合、電圧検出・比較部351は、DSCユニット5が結合されていないと判別して、供給電源切換スイッチ34を一次電池31へ接続して、電圧値がV2の電力を出力するように切り換えてもよい。
 以上のように、本実施形態のセンサ装置3は、センサ装置3に、DSCユニット5を接続してDSCユニット5からも電力の供給を受けられるセンサ装置側結合部40を備えている。また、センサ装置3は、DSCユニット5から供給される電圧値V1と、一次電池31の電圧値V2と、しきい値とを比較して負荷に供給する電力を切り換え可能である。
 これにより、本実施形態によれば、外付け電源であるDSCユニット5を結合した場合、一次電池31の電圧値と、ユニット内の蓄電部53の電圧値それぞれを検出し、定められたしきい値で電源供給を切り換えることで最適化された電源供給となり、より安定した長期間のシステム運用が可能になる。センサ装置3は、DSCユニット5が接続されていない場合、内蔵している一次電池31の電力を、センサシステム制御部36、センサ部37およびセンサ装置通信部38の負荷に供給する。そして、センサ装置3は、DSCユニット5が結合された場合、DSCユニット5から電力が負荷に給電され、蓄電部53の放電が進むと供給電源切換スイッチ34によって一次電池31に切り換えて負荷へ給電する。センサ装置3は、太陽電池51により蓄電部53の充電が進むと、供給電源切換スイッチ34によってDSCユニット5に切り換えて蓄電部53から負荷への給電を再開する。
 すなわち、本実施形態のセンサ装置3は、DSCユニット5が装着されていない場合は、一次電池31からの電力供給で動作し、DSCユニット5が装着されている場合は、一次電池31またはDSCユニット5からの電力供給で動作するように構成されている。
 また、本実施形態によれば、システム運用開始時に一次電池31を有するセンサ装置3のみを導入済みであっても、センサ装置3に用意されたセンサ装置側結合部40を活用することで、運用後にDSCユニット5の接続およびDSCユニット5からのセンサ装置3への電源供給が可能になる。
 これにより、本実施形態によれば、センサ装置3を長期間動作させることができる。
 次に、センサ装置3のセンサ装置通信部38の動作について説明する。
 図5は、本実施形態に係る複数のセンサ装置3それぞれのセンサ装置通信部38の動作例を示す図である。図5は、3つのセンサ装置3-1、センサ装置3-2、およびセンサ装置3-3を用いた例を示している。この場合、図5に示すように、センサ装置3-1は、センサ装置3-3を介してマスター装置6(図5では図示せず)へ情報を送信する。また、センサ装置3-2も、センサ装置3-3を介してマスター装置6へ情報を送信する。
 図5において、横軸は時刻、縦軸は電圧でありL(ロー)レベルがセンサ装置のスリープ状態、H(ハイ)レベルがセンサ装置のウェイクアップ状態を表している。なお、図5に示す処理は、後述するセンサ装置3間の同期処理を行った後に行われる。このため、センサ装置3-1、センサ装置3-2、およびセンサ装置3-3それぞれのセンサ装置通信部38がスリープ状態から起きる(ウェイクアップ)するタイミングが一致している。
 すなわち、センサ装置通信部38は、ウェイクアップモードと、ウェイクアップモードより消費電力が小さいスリープモードとが定常的に切り換えられ、ウェイクアップモードでの動作時に、ウェイクアップモードで動作している他のセンサ装置3のセンサ装置通信部38と通信を行うように構成されている。また、センサ装置通信部38は、他のセンサ装置3との間で通信タイミングの同期を取った後に、当該他のセンサ装置3のセンサ装置通信部38と通信を行うように構成されている。
 時刻t1より前の時刻のとき、センサ装置3-1、センサ装置3-2、およびセンサ装置3-3それぞれのセンサ装置通信部38は、スリープ状態(省電力状態)である。センサ装置3-1、センサ装置3-2、およびセンサ装置3-3それぞれのセンサ装置通信部38は、所定の時間間隔(例えば1~2秒毎)で、スリープ状態からウェイクアップ状態になる。そして、センサ装置3-1、センサ装置3-2、およびセンサ装置3-3それぞれのセンサ装置通信部38は、ウェイクアップ状態の後、再びスリープ状態に移行する。
 時刻t1~t2のときと時刻t9~t10のとき、センサ装置3-2のセンサ装置通信部38は、送信要求をセンサ装置3-3へ送信する。
 時刻t1~t2のときと時刻t9~t10のとき、センサ装置3-3のセンサ装置通信部38は、センサ装置3-2が送信した送信要求を受信する。
 時刻t3~t4のときと時刻t11~t12のとき、センサ装置3-2のセンサ装置通信部38は、データ(計測情報、環境情報)をセンサ装置3-3へ送信する。
 時刻t3~t4のときと時刻t11~t12のとき、センサ装置3-3のセンサ装置通信部38は、センサ装置3-2が送信したデータ(計測情報、環境情報)を受信する。
 時刻t5~t6のときと時刻t13~t14のとき、センサ装置3-1のセンサ装置通信部38は、送信要求をセンサ装置3-3へ送信する。
 時刻t5~t6のときと時刻t13~t14のとき、センサ装置3-3のセンサ装置通信部38は、センサ装置3-1が送信した送信要求を受信する。
 時刻t7~t8のときと時刻t15~t16のとき、センサ装置3-1のセンサ装置通信部38は、データ(計測情報、環境情報)をセンサ装置3-3へ送信する。
 時刻t7~t8のときと時刻t15~t16のとき、センサ装置3-3のセンサ装置通信部38は、センサ装置3-1が送信したデータ(計測情報、環境情報)を受信する。
 なお、センサ装置3-2のセンサ装置通信部38が、送信要求をセンサ装置3-3へ送信する通信間隔(時刻t1と時刻t9との間隔)は、例えば5分であり、センサ装置3-1(時刻t5と時刻t13との間隔)も同様である。
 また、センサ装置3-2における時刻t4と時刻t9との間隔のような送信を行わない間も、センサ装置通信部38は、所定の時間間隔(例えば1~2秒毎)でスリープ状態からウェイクアップ状態になる。
 このように、本実施形態のセンサ装置3それぞれが備えるセンサ装置通信部38は、ウェイクアッフモードとスリーブモードを切り換え可能である。そして、センサ装置通信部38は、ウェイクアッフモードで動作する時間帯の同期を取ることにより電力消費が大きい相互通信の時間帯を限定する。
 以上のように、本実施形態のセンサ装置3のセンサ装置通信部38は、複数のセンサ装置3を同期させた後、間欠動作を行い、殆どの時間スリープ状態であり、例えば1~2秒毎にウェイクアップ状態となって必要であればデータの送受信を行う。これにより、センサ装置3の消費電力を低減することができ長期間動作させることができる。
 ここで、このようなセンサネットワークシステム1における構築方法を説明する。
 図6は、本実施形態に係るセンサネットワークシステム1における構築手順例を示す図である。
 (ステップS1)複数のセンサ装置3それぞれは、起動時に自装置の識別子をマスター装置6から取得する。続けて、複数のセンサ装置3それぞれは、周囲の他のセンサ装置3との問で親子関係を確立する。この様なネットワークを構築するための方法は問わないが、例えばZigBee(登録商標)の構築手法が挙げられる。なお、親子関係とは、どのセンサ装置3の方がマスター装置6を中心としたネットワークの上流、下流に位置し、どのセンサ装置3が中継器となるか等のネットワークにおける情報の経由等の関係である。
 このような親子関係を構築する手順の一例として、各センサ装置3は、センサ装置通信部38を介して他のセンサ装置3やマスター装置6から例えばテスト信号を受信したときのRSSIを計測し、それを他のセンサ装置3やマスター装置6へ送信する。さらに、各センサ装置3は、他のセンサ装置3間のRSSI及び各センサ装置3からマスター装置6までのホップ数を受信し、これらの情報に基づいて親子関係の構築と通信経路の決定を行う。なお、このような親子関係の構築と経路の選定は、センサ装置3の導入時や所定の時間間隔(例えば1日に1回)等において行われる。
 (ステップS2)複数のセンサ装置3それぞれは、ウェイクアッフモードおよびスリーブモードの動作時間帯の同期を取る。同期の取り方は特に限定されないが、センサ装置通信部38それぞれが、センサシステム制御部36が計時した時刻情報を利用すると共に所定の設定値に基づき同期を取ってもよい。なお、センサ装置通信部38が計時部を備えていてもよい。ここで、スリープモードの時間は、ウェイクアッフモードの時間の例えば10倍以上とすれば電力消費を抑えることができる。
 (ステップS3)複数のセンサ装置3それぞれは、センサ装置3間で通信を行うスケジュールを決定する。スケジュールの決定は複数の方法が考えられるが、例えばセンサ装置3間で相互に調整することにより、他のセンサ装置3間の通信と重複しないようにする。
 (ステップS4)同期が取られた後、センサ装置3それぞれは、図5に示したように、ウェイクアッフモードの動作時間帯に送信要求を行う。なお、受信側は、送信要求を受信したとき、受信を許可する情報を応答として送信してもよい。続けて、センサ装置3それぞれは、データの送信を行う。センサ装置通信部38は、例えば、相手先のセンサ装置3が送信した受信を許可する情報の応答に、自装置の送信タイミングを合わせることで、送信タイミングの同期を行う。
 なお、センサ装置3の送信パケットは、例えば送信先であるマスター装置6のID(識別子、識別情報)、送信元のセンサ装置3の識別子(識別番号)、環境データ(センサの計測情報)、一次電池31の電圧値V2(または、それに対応するような電圧情報)、DSCユニット5が出力する電圧値V1(または、それに対応するような電圧情報)、DSCユニット5の発電能力に関する情報、供給電源設定スイッチ41の状態、供給電源切換スイッチ34の状態、およびRSSI(その時点での送信先のセンサ装置3の電波強度)等を含む。
 すなわち、センサ装置3は、センサ部37が計測した環境データが少なくとも含まれる環境情報に、自装置を識別するための識別番号、送信先であるマスター装置6の識別情報、自装置の一次電池31の電圧情報または装着されているDSCユニット5の電圧情報、およびDSCユニット5の発電能力に関する情報の、少なくとも1つを含めて、他のセンサ装置3を介してまたは直接にマスター装置6へ送信するように構成され、あるいは他のセンサ装置3から受信した前記環境情報を、さらに他のセンサ装置3を介してまたは直接にマスター装置6へ送信するように構成されている。
 なお、センサ装置3は、本来の役割である「センサによるセンシング」を、通信プロトコルからは完全に独立して実行する。
 以上のように、本実施形態では、複数のセンサ装置3それぞれは、マスター装置6を介してサーバー7へ「一次電池31の電圧値V2(または、それに対応するような電圧情報)、DSCユニット5が出力する電圧値V1(または、それに対応するような電圧情報)、DSCユニット5の発電能力に関する情報、供給電源設定スイッチ41の状態、および供給電源切換スイッチ34の状態」を送信する。そして、サーバー7で、監視することにより、センサネットワークシステム1の中長期的な全体最適化を実現することができる。
 また、本実施形態によれば、複数のセンサ装置3それぞれは、電力消費に直結する表示デバイス、入力キ一、過去の環境データを長期的に記憶するための容量の大きなメモリ等を持たず電力的な負荷を最小限にできる。
 また、本実施形態によれば、設置されたセンサ装置3に対してDSCユニット5を「いつでも装着」及び「いつでも抜去」できることを最大限に利用することができる。
 例えば、センサネットワークシステム1の導入時にDSCユニット5を装着していない場合は、電力不足になったときにDSCユニット5を「いつでも装着」することが可能である。
 また、例えば、任意のセンサ装置3について、導入時はデータ送信を仲介するセンサ装置3として動作させる前提でDSCユニット5を装着したが、実際にはその必要があまり無いようならば「いつでも抜去」することが可能である。
 また、抜去すると電力不足になる場合は、センサ装置3における通信頻度を下げて電力消費を少なくする措置を併用してもよい。
 このように、本実施形態によれば、結果的に、全体として使用するDSCユニット5の数を最適化できる。
 以上のように、本実施形態によれば、センサネットワークシステム1の運用開始後にもセンサ装置3を固定したままでシステムに修正を加え、後から最適化を推進することが可能である。
 なお、図2を用いて説明したセンサ装置3の構成は一例であり、これに限られない。センサ装置3は、例えばUSB(Universal Serial Bus)端子等の電力供給が可能な端子を備えていてもよい。
 図7は、本実施形態の変形例に係る、USB端子を備えたセンサ装置3Aを有するセンサシステム2Aの構成例を示すブロック図である。
 図7に示すように、センサ装置3Aは、センサ装置3の構成に加えて、USB端子42、USB電源切換スイッチ43を備えている。また、センサ装置3Aは、前記センサシステム制御部36に代えて、センサシステム制御部36Aを備える。
 供給電源切換スイッチ34の出力端子cは、USB電源切換スイッチ43の入力端子dに接続されている。
 USB電源切換スイッチ43は、入力端子eがUSB端子42に接続され、出力端子fから負荷(すなわち、センサシステム制御部36A、センサ部37、およびセンサ装置通信部38等)に電力が供給される。
 センサシステム制御部36Aは、USB端子42に接続ケーブル等が接続され、USB端子42から電力が供給可能な状態であることを周知の手法を用いて検出した場合に、USB電源切換スイッチ43を、USB端子42から供給された電力が負荷に供給されるように切り換える。
 すなわち、センサ装置3Aでは、USB端子42に接続ケーブルが接続され、電力が供給可能な場合、常にこの電力を用いて負荷を駆動する。
 また、センサシステム制御部36Aは、USB端子42から電力が供給可能な状態であることを検出した場合、かつDSCユニット5が装着されている場合に、USBから供給された電力を負荷に供給しつつ、DSCユニット5に供給することで蓄電部53の充電を行ってもよい。この場合、センサシステム制御部36Aは、USB電源切換スイッチ43を、入力端子eが入力端子dと出力端子fに接続されるように制御する。または、センサ装置3Aは、供給電源切換スイッチ34とUSB電源切換スイッチ43との間に、さらにスイッチを設け、このスイッチをセンサシステム制御部36Aが制御することによって、USBから供給された電力をDSCユニット5に供給するように切り換えてもよい。
 また、本変形例において、管理者が供給電源設定スイッチ41を切り換えることにより、供給電源を切り換えてもよい。すなわち、供給電源設定スイッチ41は第1状態が常にUSB電源でセンサ装置3を動作させる状態であり、第2状態が常に一次電池31でセンサ装置3を動作させる状態であり、第3状態が常に一次電池31またはDSCユニット5でセンサ装置3を動作させる状態である。
 このときも、USB端子42から電力が供給可能な状態であることを検出し、かつDSCユニット5が装着されている場合には、供給電源設定スイッチ41の状態に関わらず、USBから供給された電力をDSCユニット5に供給することで蓄電部53の充電を行ってもよい。
 以上のように、実施形態によれば、センサ装置本体に内蔵する安価な一次電池でも稼動することができ、エナジーハーベスト型電源による自立電源の必要性が確認できた際に、後からエナジーハーベストユニットを接合して自立電源を実現できるメンテナンス性の高いセンサシステムを構築することができる。
1 センサネットワークシステム
2 センサシステム
3,3A センサ装置
5 DSCユニット(補助電池)
31 一次電池(電池)
32 一次電池電圧検出部
33 蓄電部電圧検出部
34 供給電源切換スイッチ
35 供給電源制御部(制御部)
36,36A センサシステム制御部
37 センサ部
38 センサ装置通信部
39 記憶部
40 センサ装置側結合部
41 供給電源設定スイッチ
42 USB端子
43 USB電源切換スイッチ
51 太陽電池
52 DC/DCコンバータ
53 蓄電部
54 DSCユニット側結合部
351 電圧検出・比較部
352 供給電源切換部
371 人感センサ
372 温度センサ
373 湿度センサ
374 気圧センサ
375 照度センサ

Claims (15)

  1.  環境情報を検出するセンサと、
     検出された前記環境情報を他のセンサ装置へ送信可能なセンサ装置通信部と、
     前記センサと前記センサ装置通信部に電力を供給する電池と、
     自装置に電力を供給する補助電池を着脱可能なセンサ装置側結合部と、
     を備え、
     前記補助電池が装着されていない場合は、前記電池からの電力供給で動作し、前記補助電池が装着された場合は、前記電池または前記補助電池からの電力供給で動作するように構成されているセンサ装置。
  2.  前記補助電池が装着されたとき、前記補助電池の電圧が所定基準を満たした場合に前記補助電池に切り換え、前記補助電池の電圧が所定基準を満たさない場合に前記電池に切り換えるように構成された制御部を備える、請求項1に記載のセンサ装置。
  3.  第1の他のセンサ装置から受信した環境情報を、第2の他のセンサ装置へ送信するように構成されている、請求項1または請求項2に記載のセンサ装置。
  4.  前記センサ装置通信部は、ウェイクアップモードと、前記ウェイクアップモードより消費電力が小さいスリープモードとが定常的に切り換えられ、前記ウェイクアップモードでの動作時に、ウェイクアップモードで動作している他のセンサ装置のセンサ装置通信部と通信を行うように構成されている、請求項1から請求項3のいずれか1項に記載のセンサ装置。
  5.  前記センサ装置通信部は、前記他のセンサ装置との間で通信タイミングの同期を取った後に、前記他のセンサ装置のセンサ装置通信部と通信を行うように構成されている、請求項4に記載のセンサ装置。
  6.  前記電池からの電力供給で動作するか、前記電池または前記補助電池からの電力供給で動作するか、を切り換えるように構成されたスイッチを備える、請求項1から請求項5のいずれか1項に記載のセンサ装置。
  7.  前記センサ装置通信部が、前記他のセンサ装置へさらに、前記電池の電圧に関する情報、または前記補助電池の電圧に関する情報を送信可能である、請求項1に記載のセンサ装置。
  8.  前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置へ電力を供給する供給電源を設定するスイッチの状態に関する情報を送信可能である、請求項1に記載のセンサ装置。
  9.  前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置へ電力を供給する供給電源に関する情報を送信可能である、請求項1に記載のセンサ装置。
  10.  前記センサ装置通信部は、前記他のセンサ装置へさらに、前記センサ装置と前記他のセンサ装置との間の電波強度に関する情報を送信可能である、請求項1に記載のセンサ装置。
  11.  前記環境情報を一時的に記憶する記憶部と、
     前記他のセンサ装置へ前記環境情報を所定の回数送信できなかった場合、前記記憶部に記憶させた前記環境情報を破棄する制御部と、をさらに備える、請求項7から請求項10のいずれか1項に記載のセンサ装置。
  12.  前記センサ装置通信部は、自装置に対する設定情報を受信可能であり、
     前記設定情報に基づき自装置を設定するように構成されている請求項1に記載のセンサ装置。
  13.  前記センサは、異なる種類の環境情報を検出する複数のセンサからなり、
     前記設定情報は、前記複数のセンサのうち用いるセンサを1個以上指示する情報を含む、請求項12に記載のセンサ装置。
  14.  前記設定情報は、前記環境情報を送信する時間間隔に関する情報を含む、請求項12に記載のセンサ装置。
  15.  請求項1から請求項14のいずれか1項に記載のセンサ装置と、
     前記センサ装置からの前記環境情報を受信し、前記環境情報と前記センサ装置とを管理するマスター装置と、
     を備え、
     前記センサ装置は、
     前記環境情報に、自装置を識別するための識別番号、送信先である前記マスター装置の識別情報、自装置の前記電池の電圧情報または装着されている前記補助電池の電圧情報、および前記補助電池の発電能力に関する情報の、少なくとも1つを含めて、他のセンサ装置を介してまたは直接に前記マスター装置へ送信するように構成され、
     あるいは他のセンサ装置から受信した前記環境情報を、さらに他のセンサ装置を介してまたは直接に前記マスター装置へ送信するように構成され、
     前記マスター装置は、前記センサ装置が複数のセンサを備えている場合に、前記複数のセンサの中のいずれのセンサを用いるのかを指示するように構成されている、センサネットワークシステム。
PCT/JP2018/009716 2017-03-13 2018-03-13 センサ装置およびセンサネットワークシステム WO2018168848A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/493,384 US20200077333A1 (en) 2017-03-13 2018-03-13 Sensor device and sensor network system
EP18767658.0A EP3598408A1 (en) 2017-03-13 2018-03-13 Sensor device and sensor network system
CN201880017689.5A CN110419066A (zh) 2017-03-13 2018-03-13 传感器装置和传感器网络系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017047820A JP6257820B1 (ja) 2017-03-13 2017-03-13 センサ装置およびセンサネットワークシステム
JP2017-047820 2017-03-13

Publications (1)

Publication Number Publication Date
WO2018168848A1 true WO2018168848A1 (ja) 2018-09-20

Family

ID=60940225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009716 WO2018168848A1 (ja) 2017-03-13 2018-03-13 センサ装置およびセンサネットワークシステム

Country Status (5)

Country Link
US (1) US20200077333A1 (ja)
EP (1) EP3598408A1 (ja)
JP (1) JP6257820B1 (ja)
CN (1) CN110419066A (ja)
WO (1) WO2018168848A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213034A1 (ja) * 2019-04-15 2020-10-22 三菱電機株式会社 センサ装置
JP2021032714A (ja) * 2019-08-26 2021-03-01 株式会社日立ビルシステム 機械設備の検査装置
CN113840955A (zh) * 2019-05-22 2021-12-24 三星电子株式会社 传感器设备和从传感器设备获得信息的电子设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751754B (zh) * 2019-10-29 2022-05-13 华为技术有限公司 双归接入时选择切换为工作状态的端口的方法和设备
KR102240631B1 (ko) * 2019-10-31 2021-04-15 세메스 주식회사 무선 센서의 저전력 동작 제어 방법 및 이를 위한 무선 센서 장치와 호스트 장치
TWI787031B (zh) * 2021-12-30 2022-12-11 中興保全科技股份有限公司 學習型無線感知裝置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003044974A (ja) 2001-07-31 2003-02-14 Shiga Pref Gov データ収集方法並びにその方法の実施に使用するデータ収集システム、太陽電池アレイ及び蓄電装置
JP2006217704A (ja) * 2005-02-02 2006-08-17 Mitsubishi Electric Corp 情報収集システム
JP2007519317A (ja) * 2003-12-09 2007-07-12 アウェアーポイント コーポレーション プラグインネットワーク装置
JP2011151700A (ja) * 2010-01-25 2011-08-04 Nippon Dempa Kogyo Co Ltd 無線センサーネットワークシステム
JP2011223227A (ja) * 2010-04-08 2011-11-04 Univ Of Electro-Communications 無線通信装置、及び無線通信システム並びに送信タイミング制御方法
WO2013061370A1 (ja) * 2011-10-26 2013-05-02 川崎重工業株式会社 電動車両及び該電動車両の駆動方法
JP2017047820A (ja) 2015-09-03 2017-03-09 トヨタ自動車株式会社 ハイブリッド自動車

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0984273A (ja) * 1995-09-13 1997-03-28 Nec Shizuoka Ltd バッテリ切替回路
US6021332A (en) * 1997-04-01 2000-02-01 Motorola, Inc. Multi-mode radiotelephone having a multiple battery arrangement
JP2001283369A (ja) * 2000-03-29 2001-10-12 Osaka Gas Co Ltd 自動検針用通信装置及びそれに使用される給電アダプタ
JP4441257B2 (ja) * 2003-12-26 2010-03-31 東芝プラントシステム株式会社 センサ情報伝送icタグ装置
JP2009111455A (ja) * 2007-10-26 2009-05-21 Hitachi Electronics Service Co Ltd センサネットシステム及びサーバ計算機
JP5228880B2 (ja) * 2008-12-17 2013-07-03 オムロンヘルスケア株式会社 電子血圧計
JP5513906B2 (ja) * 2010-01-21 2014-06-04 パナソニック株式会社 負荷制御システム
KR101843983B1 (ko) * 2011-06-14 2018-03-30 삼성전자주식회사 휴대 단말기에서 배터리를 교체하는 장치 및 방법
JP5868084B2 (ja) * 2011-09-12 2016-02-24 日東電工株式会社 赤外線反射フィルム
CN102404817B (zh) * 2011-10-25 2015-04-01 中国科学院计算技术研究所 多汇聚节点无线传感器网络组网方法及其系统
CN203386317U (zh) * 2013-08-28 2014-01-08 宁波高新区中顺通信科技有限公司 网络监控系统
CN105407463B (zh) * 2015-12-09 2019-03-01 北京必创科技股份有限公司 一种无线传感器网络系统
CN205912086U (zh) * 2016-08-11 2017-01-25 易联云控(北京)科技有限公司 环境治理数据采集装置
CN106454917A (zh) * 2016-12-06 2017-02-22 无锡悟莘科技有限公司 一种无线传感网络监测系统、支点及网关

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003044974A (ja) 2001-07-31 2003-02-14 Shiga Pref Gov データ収集方法並びにその方法の実施に使用するデータ収集システム、太陽電池アレイ及び蓄電装置
JP2007519317A (ja) * 2003-12-09 2007-07-12 アウェアーポイント コーポレーション プラグインネットワーク装置
JP2006217704A (ja) * 2005-02-02 2006-08-17 Mitsubishi Electric Corp 情報収集システム
JP2011151700A (ja) * 2010-01-25 2011-08-04 Nippon Dempa Kogyo Co Ltd 無線センサーネットワークシステム
JP2011223227A (ja) * 2010-04-08 2011-11-04 Univ Of Electro-Communications 無線通信装置、及び無線通信システム並びに送信タイミング制御方法
WO2013061370A1 (ja) * 2011-10-26 2013-05-02 川崎重工業株式会社 電動車両及び該電動車両の駆動方法
JP2017047820A (ja) 2015-09-03 2017-03-09 トヨタ自動車株式会社 ハイブリッド自動車

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213034A1 (ja) * 2019-04-15 2020-10-22 三菱電機株式会社 センサ装置
JPWO2020213034A1 (ja) * 2019-04-15 2021-10-21 三菱電機株式会社 センサ装置
GB2596441A (en) * 2019-04-15 2021-12-29 Mitsubishi Electric Corp Sensor device
CN113840955A (zh) * 2019-05-22 2021-12-24 三星电子株式会社 传感器设备和从传感器设备获得信息的电子设备
US11632604B2 (en) 2019-05-22 2023-04-18 Samsung Electronics Co., Ltd. Sensor device and electronic device obtaining information from the sensor device
CN113840955B (zh) * 2019-05-22 2023-12-08 三星电子株式会社 传感器设备和从传感器设备获得信息的电子设备
JP2021032714A (ja) * 2019-08-26 2021-03-01 株式会社日立ビルシステム 機械設備の検査装置
JP7105745B2 (ja) 2019-08-26 2022-07-25 株式会社日立ビルシステム 機械設備の検査装置

Also Published As

Publication number Publication date
EP3598408A1 (en) 2020-01-22
JP2018151880A (ja) 2018-09-27
US20200077333A1 (en) 2020-03-05
CN110419066A (zh) 2019-11-05
JP6257820B1 (ja) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6257820B1 (ja) センサ装置およびセンサネットワークシステム
Nair et al. Optimizing power consumption in iot based wireless sensor networks using Bluetooth Low Energy
CN102695249B (zh) IPv6无线传感器网络节能方法
Magno et al. WULoRa: An energy efficient IoT end-node for energy harvesting and heterogeneous communication
CA2973755C (en) Low power battery mode for wireless-enabled device prior to commissioning
US8044539B2 (en) Intelligent solar energy collection system
JP5816545B2 (ja) 無線センサシステム
KR102251628B1 (ko) 다양한 센서와 선택적으로 연결될 수 있는 초저전력 무선 센서 네트워크
CN101275957A (zh) 无线温湿度智能传感器
CN104333915A (zh) 一种基于Arduino的无线传感器网络节点
JP2022508471A (ja) 低電力のリピータ動作モードで動作可能な信号リピータデバイス
JP2010206724A (ja) 省電力型無線通信装置及び無線通信装置
JP6303062B1 (ja) センサ装置
WO2014182034A1 (ko) 무선 네트워크에서의 에너지 고효율을 위한 시간 동기화 방법 및 이를 적용한 네트워크
CN103376781A (zh) 基于无线智能网络的生产资源拉动系统
Li et al. Networked illumination control with distributed light-harvesting wireless sensors
KR102251629B1 (ko) 다양한 센서와 선택적으로 연결될 수 있는 초저전력 무선 센서 모듈
CN111405723B (zh) 同步照明系统、授时装置、照明装置和同步照明控制方法
JP6303061B1 (ja) センサ装置
CN105070023B (zh) 一种集多类型传感器的无线传感网络装置及运行方法
CN201336068Y (zh) 多负载遥控系统
CN210120688U (zh) 一种人工智能照明系统
WO2019153159A1 (zh) 一种无线充电装置及一种分体式高清网络摄像机
CN101431813A (zh) 无线通信系统及其装置
CN219041992U (zh) 一种低功耗节点设备及低功耗工业级物联网平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018767658

Country of ref document: EP

Effective date: 20191014