WO2018168558A1 - 水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法 - Google Patents

水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法 Download PDF

Info

Publication number
WO2018168558A1
WO2018168558A1 PCT/JP2018/008444 JP2018008444W WO2018168558A1 WO 2018168558 A1 WO2018168558 A1 WO 2018168558A1 JP 2018008444 W JP2018008444 W JP 2018008444W WO 2018168558 A1 WO2018168558 A1 WO 2018168558A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
water
agent
water treatment
treated
Prior art date
Application number
PCT/JP2018/008444
Other languages
English (en)
French (fr)
Inventor
宏樹 福田
千晴 所
鳥羽 裕一郎
江口 正浩
Original Assignee
オルガノ株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社, 学校法人早稲田大学 filed Critical オルガノ株式会社
Publication of WO2018168558A1 publication Critical patent/WO2018168558A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/60Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds

Definitions

  • the present invention relates to a method for treating water containing a removal target substance such as boron using a magnesium compound, a magnesium agent for water treatment used for the water treatment, and a method for producing the magnesium agent for water treatment.
  • Wastewater containing high concentrations of substances such as boron, fluorine, selenium, silica, and heavy metals discharged from various industries must be discharged after treating those substances to a level below the wastewater standard.
  • a desulfurization facility for purifying exhaust gas is installed in a power generation facility that burns coal and generates power.
  • sulfur in the exhaust gas or dust that has not been removed by a dust collector with water in which an alkaline agent is dissolved Etc. are removed. Water that has absorbed sulfur, dust, etc. is appropriately discharged from the desulfurization facility as desulfurization effluent, treated to a level below the effluent standard, and discharged to the ocean.
  • This desulfurization effluent usually contains boron, fluorine, selenium, heavy metals (iron, lead, copper, chromium, cadmium, mercury, zinc, arsenic, manganese, nickel, etc.) contained in coal and the like.
  • boron may be contained at a high concentration as boric acid (H 3 BO 3 ) or the like, and may be present at about 200 to 500 mg-B / L.
  • magnesium salts that are inexpensive and hardly harmful even if they remain in water are added, the substances are insolubilized, and the insoluble matter is separated from the water to be treated by solid-liquid separation. Method may be used. It is known that a magnesium salt can insolubilize these substances at once (see Patent Document 1, Patent Document 2, and Non-Patent Document 1).
  • the magnesium salt can remove various substances and ions in the water and is used as a water treatment agent.
  • Magnesium salt dissolves in water and becomes magnesium ion.
  • boron, fluorine, etc. and magnesium are combined to form insoluble matter, or magnesium and hydroxide ion are Boron, fluorine, and the like are adsorbed and insolubilized on the magnesium hydroxide bonded and insolubilized.
  • various substances such as boron and fluorine can be removed from water.
  • Magnesium is a resource produced in large quantities and is inexpensive, so the running cost required for processing is low. Further, when the treated water is neutralized and released into the environment, magnesium that is hardly harmful has an excellent feature that there is almost no problem even if it remains in the treated water.
  • Magnesium salts that can be used industrially as water treatment agents include magnesium chloride hexahydrate (MgCl 2 ⁇ 6H 2 O), basic magnesium carbonate (3MgCO 3 ⁇ Mg (OH) 2 ⁇ H 2 O) , Magnesium hydroxide (Mg (OH) 2 ), magnesium oxide (MgO), and the like. Any of the magnesium salts can insolubilize the substance to be removed in water with an alkaline pH of 10 or more.
  • magnesium salts have excellent characteristics as described above, but also have the following problems.
  • the magnesium content in the magnesium salt is about 12%, which is small compared to other magnesium salts, and requires a large amount of addition.
  • an alkali agent such as caustic soda in order to make the water to be treated alkaline and insolubilize the substance to be removed.
  • Basic magnesium carbonate and magnesium hydroxide have a higher magnesium content than magnesium chloride hexahydrate and contain a base (hydroxyl group) in the molecule, but are hardly soluble in neutral water. It is necessary to add an acid to water to make it acidic, or add an acid to the magnesium salt itself to form an aqueous solution and then add it to the water to be treated.
  • the water to be treated should be acidic in advance, but if it is neutral, it is necessary to add an acid, and after adding a magnesium salt, an alkali agent needs to be added to make the pH of the water to be treated alkaline.
  • magnesium hydroxide Mg (OH) 2
  • Magnesium oxide is obtained by calcining basic magnesium carbonate and magnesium hydroxide at a high temperature of 500 ° C. or higher, and contains a large amount of magnesium. When dissolved in water, it becomes magnesium hydroxide, and water exhibits alkalinity. Moreover, since the insoluble matter produced by alkalinity includes not only magnesium hydroxide but also some crystals of magnesium oxide and magnesium carbonate, water formed with basic magnesium carbonate and magnesium hydroxide as a water treatment agent is used. It is also characterized by better precipitation separation and dewaterability than insoluble slurry mainly composed of magnesium oxide.
  • magnesium oxide is slow to dissolve in water, so it takes a long time for the insolubilization reaction of the substance to be removed, and it takes time for the treatment. There is a problem that a large amount of magnesium oxide must be added to improve the quality of the treated water.
  • An object of the present invention is to insolubilize a removal target substance in a short time from water containing the substance to be removed, solid-liquid separation, obtain a treated water of good water quality, and efficiently reduce the volume of the separated solid matter. It is providing the water treatment method, the magnesium agent for water treatment used for the water treatment, and the manufacturing method of the magnesium agent for water treatment.
  • the present invention is intended to remove at least one of a magnesium agent obtained by firing basic magnesium carbonate at a temperature in the range of 500 to 700 ° C. and a magnesium agent obtained by firing magnesium hydroxide at a temperature in the range of 450 to 650 ° C. It is the water treatment method added to the to-be-processed water containing a substance.
  • the magnesium agent preferably has a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 kg or less.
  • the water to be treated contains at least one of boron, fluorine, selenium, heavy metal or a compound thereof, or silica as the substance to be removed.
  • the method further comprises a step of insolubilizing the substance to be removed after addition of the magnesium agent to the water to be treated, and a step of solid-liquid separating the insolubilized insolubilized material. It is preferable to add the magnesium agent in such an amount that the pH before solid-liquid separation is 10 or more to the water to be treated.
  • the present invention also includes a water treatment comprising at least one calcined product of basic magnesium carbonate and magnesium hydroxide, having a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 mm or less.
  • a water treatment comprising at least one calcined product of basic magnesium carbonate and magnesium hydroxide, having a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 mm or less.
  • Magnesium agent Magnesium agent.
  • the present invention also provides a magnesium agent obtained by calcining basic magnesium carbonate at a temperature in the range of 500 to 700 ° C. or calcining magnesium hydroxide at a temperature in the range of 450 to 650 ° C. It is a manufacturing method of the magnesium agent for a process.
  • the magnesium agent preferably has a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 kg or less.
  • the removal target substance is insolubilized and solid-liquid separated in a short time to obtain treated water of good water quality, and the water treatment capable of efficiently reducing the volume of the separated solid
  • the method, the magnesium agent for water treatment used for the water treatment, and the manufacturing method of the magnesium agent for water treatment can be provided.
  • 2 is an X-ray diffraction spectrum of each magnesium agent in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5.
  • 2 is an X-ray diffraction spectrum of each magnesium agent in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2.
  • 6 is a graph showing the measurement results of the pH of water to be treated in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5 1 to 120 minutes after the addition of each magnesium agent.
  • FIG. 6 is a graph showing the analysis results of the dissolved boron residual rate (%) in treated water 1 to 120 minutes after addition of each magnesium agent in Examples 1-1 to 1-5 and Comparative Examples 1-1 to 1-5. is there.
  • Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2 are graph showing the measurement results of the pH of water to be treated in Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2, 1 to 120 minutes after the addition of each magnesium agent.
  • Examples 2-1 to 2-5 and Comparative Examples 2-1 to 2-2 a graph showing the analysis results of the dissolved boron residual ratio (%) in the treated water 1 to 120 minutes after the addition of each magnesium agent is there.
  • the water treatment method includes a magnesium agent mainly composed of magnesium oxide obtained by firing basic magnesium carbonate at a temperature in the range of 500 to 700 ° C., and magnesium hydroxide at 450 to 650 ° C.
  • a magnesium agent mainly composed of magnesium oxide obtained by firing basic magnesium carbonate at a temperature in the range of 500 to 700 ° C. and magnesium hydroxide at 450 to 650 ° C.
  • at least one of the magnesium agents mainly composed of magnesium oxide obtained by firing at a temperature in the range of 1 is added to the water to be treated containing the substance to be removed.
  • This method makes it possible to insolubilize the removal target substance in a short time from water containing the substance to be removed using an inexpensive magnesium salt, and separate it into solid and liquid to obtain treated water with good water quality. Volume can be reduced.
  • an inexpensive magnesium salt can be used efficiently, the chemical cost required for the treatment can be reduced.
  • the magnesium agent for water treatment according to the embodiment of the present invention contains at least one calcined product of basic magnesium carbonate and magnesium hydroxide, has a BET specific surface area of 85 m 2 / g or more, and a crystallite size. Is 110 mm or less.
  • the method for producing a magnesium agent for water treatment according to an embodiment of the present invention includes calcining basic magnesium carbonate at a temperature in the range of 500 to 700 ° C, or magnesium hydroxide at a temperature in the range of 450 to 650 ° C. In this method, the magnesium agent is obtained by firing.
  • [Magnesium agent] As raw materials for producing a magnesium agent used in the water treatment method according to this embodiment, basic magnesium carbonate (mMgCO 3 .Mg (OH) 2 .nH 2 O) and magnesium hydroxide (Mg (OH) 2 ) are used. At least one of them.
  • the basic magnesium carbonate is such that m is 3 to 5 and n is 3 to 7 with respect to Mg (OH) 2 .
  • the temperature at which the raw material is calcined is in the range of 500 to 700 ° C., preferably in the range of 500 to 650 ° C., more preferably in the range of 550 to 650 ° C. when basic magnesium carbonate is the raw material.
  • magnesium hydroxide is the raw material, it is in the range of 450 to 650 ° C, more preferably in the range of 450 to 550 ° C.
  • This substance is considered to have a large specific surface area (for example, a BET specific surface area of 80 m 2 / g or more) due to elimination of hydrated water, hydroxyl group, carbonic acid and the like by firing.
  • the crystallite size of the obtained magnesium agent containing magnesium oxide as a main component is smaller than that when calcined at a temperature exceeding 700 ° C., and the crystallinity is low. Thus, it is thought that it can melt
  • the calcination temperature is less than 500 ° C., it is considered that the specific surface area is small and the dissolution rate in water does not increase due to the reason that hydration water, hydroxyl group, carbonic acid and the like cannot be sufficiently removed.
  • the firing temperature exceeds 700 ° C., it is considered that the substance containing magnesium oxide as a main component has high crystallinity and is difficult to dissolve in water.
  • the firing time is a time during which the weight loss due to the firing is 50% or more of the weight of the raw material, preferably 50% or more and 65% or less.
  • a time when the weight loss by firing is 25% or more of the weight of the raw material, preferably 25% or more and less than 30%, a BET specific surface area of 85 m 2 / g or more, and a crystallite size of 110 mm or less. It is preferable that it is time to become.
  • the basic magnesium carbonate and magnesium hydroxide used for firing are powdered (for example, 0.5 ⁇ m to 30 ⁇ m in volume average particle size), granular to sufficiently remove hydrated water, hydroxyl group, carbonic acid, etc. It is preferable to use those having a volume average particle diameter of 0.5 ⁇ m to 2 ⁇ m.
  • the BET specific surface area of the magnesium agent thus obtained is, for example, 80 m 2 / g or more, preferably 85 m 2 / g or more, and more preferably 100 m 2 / g or more.
  • the upper limit of the BET specific surface area is not particularly limited, and the larger the better. If the BET specific surface area of the magnesium agent is less than 80 m 2 / g, it may be difficult to dissolve in water.
  • the BET specific surface area of the magnesium agent can be measured by a method based on JIS8830: 2013.
  • the crystallite size obtained by the Halder-Wagner method based on the measurement result of the X-ray diffraction spectrum can be used.
  • the crystallite size is preferably 110 mm or less, and more preferably 100 mm or less.
  • the crystallite size exceeds 110 mm, the crystallinity is high and it may be difficult to dissolve in water. The smaller the crystallite size, the better.
  • the volume average particle diameter of the magnesium agent is preferably 1,000 ⁇ m or less, and more preferably in the range of 0.5 ⁇ m to 30 ⁇ m.
  • the volume average particle diameter of the magnesium agent exceeds 1,000 ⁇ m, the inside of the particles cannot be sufficiently brought into contact with water even in water, and the proportion of the agent that is not used for insolubilizing the substance to be removed increases.
  • this unused part has the effect of increasing the solid-liquid separation speed, but if there is too much unused part, the removal target substance cannot be sufficiently insolubilized and the quality of the treated water deteriorates.
  • the amount of magnesium agent added may be large.
  • the volume average particle size is less than 0.5 ⁇ m, handling may be difficult, for example, it may be easily scattered by wind during use.
  • volume average particle size of the magnesium agent after firing exceeds 1,000 ⁇ m
  • the removal target substance contained in the water to be treated is not particularly limited as long as it forms an insoluble matter with the magnesium agent or is insolubilized by being adsorbed by insolubilized magnesium hydroxide or the like.
  • Boron for example, borate ion
  • fluorine for example, fluoride ion
  • selenium for example, selenate ion (SeO 4 2 ⁇ : hexavalent selenium), selenite ion (SeO 3 2 ⁇ : tetravalent selenium
  • Heavy metals eg, iron, lead, copper, chromium, cadmium, mercury, zinc, arsenic, manganese, nickel, etc.
  • their compounds eg, arsenic acid
  • the treated water is not particularly limited as long as it contains at least one of the substances to be removed.
  • the water to be treated is water containing two or more of the substances to be removed, the water treatment method according to the present embodiment is suitably applied.
  • the treated water is premised on drainage premised to be discharged into public waters after treatment, or the use of purified substances such as reverse osmosis membranes after use to remove soluble substances and reuse them. Water may be used. Examples of the former include desulfurization effluent, plating effluent, and glass manufacturing effluent from a coal-fired power plant.
  • the water treatment method according to the present embodiment is performed before the reverse osmosis membrane treatment step, which causes blockage of the reverse osmosis membrane and the like.
  • the main purpose is to reduce silica and the like.
  • the magnesium agent used with the water treatment method according to the present embodiment can aggregate suspended substances in water, the water to be treated may contain suspended substances other than the substance to be removed.
  • the content of the substance to be removed in the water to be treated is, for example, in the range of 0.01 to 50 mmol / L, and the content of the suspended substance is, for example, in the range of 50 to 1,000 mg / L.
  • the content of boron in the water to be treated is, for example, in the range of 10 mg / L to 550 mg / L, and preferably in the range of 20 mg / L to 500 mg / L.
  • the fluorine content in the water to be treated is, for example, in the range of 15 mg / L to 950 mg / L, and preferably in the range of 20 mg / L to 100 mg / L.
  • the content of selenium in the water to be treated is, for example, in the range of 0.1 mg / L to 10 mg / L, and preferably in the range of 0.2 mg / L to 2 mg / L.
  • the content of heavy metal in the water to be treated is, for example, in the range of 0.1 mg / L to 100 mg / L, and preferably in the range of 0.1 mg / L to 20 mg / L.
  • the content of silica in the water to be treated is, for example, in the range of 10 mg / L to 120 mg / L, and preferably in the range of 40 mg / L to 120 mg / L.
  • the water treatment method according to the present embodiment can be suitably applied particularly to water to be treated containing high-concentration boron of 100 mg / L or more.
  • the water treatment method includes at least one of a magnesium agent obtained by baking basic magnesium carbonate at a temperature in the range of 500 to 700 ° C. and a magnesium agent obtained by baking magnesium hydroxide at a temperature in the range of 450 to 650 ° C.
  • One includes a step of adding to the water to be treated containing the substance to be removed (addition step).
  • the water treatment method according to the present embodiment includes a step of performing an insolubilization reaction of a substance to be removed after addition of a magnesium agent to water to be treated (insolubilization step), and a step of solid-liquid separation of the insolubilized material insolubilized in the insolubilization step (solid solution). A liquid separation step).
  • the magnesium agent may be added to the water to be treated in the form of powder, or the magnesium agent is once purified water (for example, industrial water or the present implementation) with a low content of substances to be removed and suspended substances.
  • Treated water treated by the water treatment method according to the embodiment, and the like, and they may be added to neutral (for example, water adjusted to a pH of about pH 6 to 8), and the water may be added to the treated water.
  • the added magnesium agent is more effective when it is immediately dispersed in the water to be treated, the addition of the magnesium agent to the water to be treated was well agitated by a stirrer or the like. It is good to do in the state.
  • the amount of magnesium agent added in the addition process varies depending on the type and concentration of the substance to be removed in the water to be treated, the required quality of the treated water (target substance removal rate), coexisting substances, etc. It is preferable to add such an amount that the pH of the treated water is 10 or more, preferably 10.5 or more.
  • the magnesium agent is added to the water to be treated by 7.5. ⁇ 10 g / L may be added.
  • the insolubilization process is a process in which after the addition of the magnesium agent, the magnesium and the removal target substance are reacted to insolubilize the removal target substance.
  • the pH of the water to be treated is monitored, and the pH before shifting to the solid-liquid separation step is 10 or more, preferably 10.5 or more.
  • the reaction temperature in the insolubilization step may be, for example, if the water to be treated is not frozen at 0 ° C. or higher, but the higher the temperature, the better the removal performance of the substance to be removed, preferably 15 ° C. or higher, more preferably 20 ° C. It is in the range of ⁇ 40 ° C.
  • the reaction time in the insolubilization step is not particularly limited as long as the substance to be removed is sufficiently insolubilized.
  • the reaction time is in the range of 1 minute to 720 minutes, preferably in the range of 10 to 120 minutes. If the reaction time in the insolubilization step is less than 1 minute, the removal target substance may not be sufficiently insolubilized, and even if it exceeds 720 minutes, a further large reduction effect of the removal target substance may not be obtained. is there.
  • the solid-liquid separation method in the solid-liquid separation step is not particularly limited as long as it is a method capable of separating the insolubilized material and the treated water.
  • a solid-liquid separation method precipitation separation is the simplest operation and is preferable.
  • fine bubbles may be supplied to cause floating separation, or membrane filtration using a microfiltration membrane or the like may be performed.
  • you may perform vacuum suction filtration and pressure filtration operation with a filter cloth.
  • the slurry containing the separated solid content may be further filtered by vacuum suction or pressure filtration using a filter cloth or the like to perform solid-liquid separation.
  • a flocculant such as a polymer flocculant is added to the water to be treated, A step of agglomerating and growing into a granular material having a large diameter and strong strength (aggregation step) may be provided.
  • Examples of the flocculant used in the aggregation step include inorganic flocculants and polymer flocculants, and examples of the polymer flocculant include cationic polyacrylamide.
  • the addition amount of a flocculant such as a polymer flocculant is, for example, in the range of 1 to 10 mg / L, and the reaction time is, for example, in the range of 3 to 15 minutes.
  • the treated water obtained by the water treatment method according to the present embodiment may be discharged into a public water area such as the ocean or may be reused.
  • the content of the substance to be removed in the treated water obtained by the water treatment method according to the present embodiment is, for example, 30 mmol / L or less, and the content of the suspended substance is, for example, 20 mg / L or less.
  • the boron content in the treated water is, for example, 250 mg / L or less, preferably 200 mg / L or less.
  • the fluorine content in the treated water is, for example, 15 mg / L or less, preferably 8 mg / L or less.
  • the content of selenium in the treated water is, for example, 0.1 mg / L or less, preferably 0.05 mg / L or less.
  • the content of heavy metals in the treated water is, for example, 2 mg / L or less, preferably 1 mg / L or less.
  • the content of silica in the treated water is, for example, 20 mg / L or less, preferably 10 mg / L or less.
  • an X-ray diffraction (XRD) spectrum was measured with an X-ray diffraction device (RINT Ultimate III, manufactured by Rigaku Corporation).
  • XRD X-ray diffraction
  • magnesium oxide manufactured by Wako Pure Chemical Industries, Wako first grade, heavy
  • the X-ray diffraction spectrum of was measured as a comparative reference.
  • the crystallite size was calculated by the Halder-Wagner method using the spectrum of silicon (powder, 4N, manufactured by Kanto Chemical Co., Inc., high purity) as an external standard. did.
  • the crystallite size is calculated from the slope (K ⁇ / L).
  • is the peak integration width
  • is the Bragg angle
  • K is the Scherrer constant
  • L the crystallite size
  • is the X-ray wavelength
  • e lattice strain.
  • Weight of magnesium agent before and after firing and weight reduction ratio (weight before firing ⁇ weight after firing) ⁇ weight before firing ⁇ 100), BET specific surface area (m 2 / g), crystallite size ( ⁇ ) are shown in Tables 1 and 2, and X-ray diffraction spectra are shown in FIGS.
  • the BET specific surface area was as small as 36.0 m 2 / g or less at the firing temperature of 450 ° C. or less in Comparative Examples 1-1 to 1-2, whereas the firing temperature
  • the BET specific surface area was large, being 85.4 to 148 m 2 / g.
  • the BET specific surface area tended to decrease, and in Comparative Examples 1-3 to 1-5 having a firing temperature of 800 ° C. or higher, the BET specific surface area was 119 m 2 / g or less.
  • the crystallite size calculated by the Halder-Wagner method based on the XRD spectrum tends to increase as the firing temperature increases, and the firing temperature is 450 ° C. or less (Comparative Example). In 1-1 to 1-2), it is 36.1 mm or less, whereas in the baking temperature of 500 to 700 ° C. (Examples 1-1 to 1-5), it is 54.0 to 97.4 mm, and the baking temperature is 800 It was 201 ° C. or more at a temperature of 0 ° C. or more (Comparative Examples 1-3 to 1-5).
  • the weight loss rate is 12.6% at the firing temperature of 400 ° C. in Comparative Example 2-1, which is smaller than the weight loss rate of other firing temperatures, and the firing temperature is 450 ° C.
  • the weight loss rate is rapidly increased to 27.0%. Therefore, undehydrated magnesium hydroxide remains in the magnesium agent at 400 ° C. in Comparative Example 2-1. it is conceivable that. Since the increase in the weight loss rate with the increase in the firing temperature is small at the firing temperature of 450 ° C. or higher after Example 2-1, it is estimated that the dehydration was sufficiently performed at the firing temperature of 450 ° C. or higher.
  • the BET specific surface area was as small as 81.9 m 2 / g or less at the firing temperature of 400 ° C. in Comparative Example 2-1, whereas the firing temperature was 450 ° C. to 650 ° C.
  • the BET specific surface area was large and was 111 to 229 m 2 / g.
  • the firing temperature exceeded 550 ° C.
  • the BET specific surface area tended to decrease, and the BET specific surface area of Comparative Example 2-2 at a firing temperature of 700 ° C. or higher was 76.4 m 2 / g.
  • the crystal size of the magnesium agent the crystal size calculated by the Halder-Wagner method based on the XRD spectrum tends to increase as the firing temperature increases, and the firing temperature is 400 ° C. (Comparative Example 2- In 1), it is 54.8 ° C. or less, whereas in the firing temperature 450 to 650 ° C. (Examples 2-1 to 2-5), it is 64.1 to 107 ° C., and the firing temperature 700 ° C. (Comparative Example 2-2). Then it was 158cm.
  • Water treatment method Here, water treatment was performed with a magnesium agent obtained by firing basic magnesium carbonate or magnesium hydroxide at each temperature for boron-containing water.
  • Boron-containing water was prepared by adding boric acid to distilled water so that the boron concentration was about 500 mg / L, and further adding potassium hydroxide so that the pH was 7.0. Each 300 mL of boron-containing water was prepared in 10 beakers, which were treated water (water temperature about 20 ° C.).
  • concentration of the residual boron in to-be-processed water was analyzed with the ICP emission method using the ICP emission analyzer (the product made by Seiko Instruments, SPS7800 type) based on the method prescribed
  • the pH after addition of the magnesium agent calcined at each temperature was 10.6 or more after 10 minutes of reaction in each of Examples 1-1 to 1-5, and thereafter 10.6 to 10.5. It moved in the range of 8.
  • the reaction temperature was 10.5 or more and changed from 10.5 to 10.7 after 10 minutes.
  • Comparative Examples 1-3 to 1-5 having a high calcination temperature It was 10.2 to 10.4 after 30 minutes and 10.3 to 10.4 after 120 minutes.
  • the dissolved boron residual ratio in the water to be treated is 64 to 72% in 30 minutes and 50 to 50 in 60 minutes in Examples 1-1 to 1-5 having a firing temperature of 500 to 700 ° C. 62% and 28-50% in 120 minutes.
  • the reaction was 88 to 100% in 30 minutes, 77 to 100% in 60 minutes, and 59 to 97% in 120 minutes. From 120 minutes, the dissolved boron residual rate at the same reaction time is significantly lower in Examples 1-1 to 1-5 than in the comparative example. Therefore, the insolubilization rate of boron is that the firing temperature is 500 to 700 ° C. It can be said that Examples 1-1 to 1-5 to which the magnesium agent was added are clearly higher.
  • the residual ratio of dissolved boron after the reaction for a long time of 720 minutes was 21 to 35% in Examples 1-1 to 1-5.
  • the comparative examples were 19 to 40% except for Comparative Example 1-5 having a calcination temperature of 1000 ° C., and there was no significant difference from the Examples (the dissolved boron residual ratio of Comparative Example 1-5 was 60%).
  • a high boron removal rate and a high solid-liquid separation rate are obtained by adding the magnesium agent obtained by baking at 500 to 700 ° C. using basic magnesium carbonate as a raw material. It was shown to be 1 to 1-5. It was also shown that a magnesium agent having a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 ⁇ or less is preferable.
  • FIG. 5 shows the measurement results of the pH of water to be treated up to 120 minutes after the addition of each magnesium agent calcined from magnesium hydroxide, and the dissolved boron in the water to be treated is analyzed. The results of calculating the ratio of boron to the water to be treated are shown in FIG. Table 4 shows the time required for filtration with filter paper after 120 minutes of reaction.
  • the pH after addition of the magnesium agent calcined at each temperature was 10.3 or more after 10 minutes of reaction in each of Examples 2-1 to 2-5, and thereafter 10.3 to 10.5. It changed in the range of 7.
  • the reaction rate was 10.2 to 10.3 in 10 minutes, and was maintained at 10.3 to 10.4. It changed.
  • the dissolved boron residual rate in the water to be treated was 67 to 80% in 30 minutes and 48 to 60 in 60 minutes in Examples 2-1 to 2-5 having a firing temperature of 450 to 600 ° C. 66%, 27-48% in 120 minutes.
  • the reaction was 87% for 30 minutes, 75 to 77% for 60 minutes, and 59 to 64% for 120 minutes. Since the residual boron was significantly lower in Examples 2-1 to 2-5 when viewed up to 120 minutes, the insolubilization rate of boron was that of Example 2-1 in which a magnesium agent with a firing temperature of 450 to 650 ° C. was added. It can be said that 2-5 is clearly higher.
  • Comparative Example 2-2 was 17%, which was the same as the Example, but Comparative Example 2-1 was 56%, which was significantly different from the Example.
  • the filtration time (time required for filtration) when the water to be treated after the reaction for 720 minutes was sucked with filter paper was as shown in Table 4, Examples 2-1 to 2-5 and Comparative Examples 2-1 to In both cases, the time was 28 to 50 seconds, but the filtration time was significantly shorter than that of Examples 1-1 to 1-5. That is, it was confirmed that a high solid-liquid separation rate can be obtained by using a magnesium agent having a firing temperature of 450 to 650 ° C.
  • Example 2-1 the high boron removal rate and the high solid-liquid separation rate are the same as in Example 2-1 in which a magnesium agent obtained by baking magnesium hydroxide as a raw material at 450 to 650 ° C. was added. It was shown to be 2-5. It was also shown that a magnesium agent having a BET specific surface area of 85 m 2 / g or more and a crystallite size of 110 ⁇ or less is preferable.
  • the example shows that the removal target substance can be insolubilized and solid-liquid separated in a short time from the water containing the removal target substance to obtain treated water of good water quality, and the volume of the separated solid can be efficiently reduced. It was.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

除去対象物質を含む水から、除去対象物質を短時間で不溶化、固液分離し、良好な水質の処理水を得て、分離した固形物を効率的に減容化できる水処理方法を提供する。塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成したマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成したマグネシウム剤のうち少なくとも1つを、除去対象物質を含む被処理水に添加する、水処理方法である。

Description

水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法
 本発明は、マグネシウム化合物を用いる、ホウ素等の除去対象物質を含有する水の処理方法、その水処理に用いる水処理用マグネシウム剤、およびその水処理用マグネシウム剤の製造方法に関する。
 各種産業で排出されるホウ素、フッ素、セレン、シリカ、重金属等の物質を高い濃度で含む排水は、それらの物質を排水基準以下まで処理して放流する必要がある。例えば、石炭を燃焼して発電等を行う発電設備では排ガスを浄化するための脱硫設備が設置され、例えば、アルカリ剤を溶解させた水により、排ガス中の硫黄分や集塵機で除去されなかった煤塵等を除去している。硫黄分や煤塵等を吸収した水は適宜、脱硫設備から脱硫排水として排出され、排水基準以下にまで処理されて海洋等に放流される。
 この脱硫排水には、通常、石炭等に含まれるホウ素、フッ素、セレン、重金属(鉄、鉛、銅、クロム、カドミウム、水銀、亜鉛、ヒ素、マンガン、ニッケル等)等が含有される。中でもホウ素は、ホウ酸(HBO)等として高い濃度で含有されることがあり、200~500mg-B/L程度存在することもある。
 これらの物質を対象とした水処理では、安価かつ水中に残留しても有害性のほとんどないマグネシウム塩を添加し、それらの物質を不溶化して、不溶化物を固液分離で被処理水から分離する方法が用いられることがある。マグネシウム塩はこれらの物質を一括で不溶化することができることが知られている(特許文献1、特許文献2、非特許文献1参照)。
 一方、シリカが含まれるシリカ含有水を回収再利用しようとする場合、配管や後段の逆浸透膜(RO)装置等におけるスケール発生が問題となるため、シリカ含有水の回収率の向上や安定運転が困難になる場合がある。そこで、シリカ含有水中のシリカの量を低減することが求められる。このシリカ含有水中のシリカの量を低減する方法として、マグネシウム塩を使用する方法が検討されている(非特許文献2参照)。
 このようにマグネシウム塩は、水中の様々な物質、イオンを除去することができ、水処理剤として使用される。マグネシウム塩は、水中で溶解するとマグネシウムイオンとなるが、水を概ねpH10以上のアルカリ性に調整すると、ホウ素、フッ素等とマグネシウムが結合して不溶物を形成したり、あるいはマグネシウムと水酸化物イオンが結合して不溶化した水酸化マグネシウムに、ホウ素、フッ素等が吸着して不溶化する。これら不溶物を固液分離することで、水からホウ素、フッ素等の様々な物質を除去することができる。
 マグネシウムは多量に産出される資源であり安価であるため、処理に要するランニングコストも低い。また、処理水を中性にして環境中に放流する際、有害性のほとんどないマグネシウムは、処理水に残留してもほとんど問題はないという優れた特徴を有する。
 マグネシウム塩で工業的に水処理剤として利用可能なものとしては、塩化マグネシウム六水和物(MgCl・6HO)、塩基性炭酸マグネシウム(3MgCO・Mg(OH)・HO)、水酸化マグネシウム(Mg(OH))、酸化マグネシウム(MgO)等がある。いずれのマグネシウム塩も、水中ではpH10以上のアルカリ性において除去対象物質を不溶化することができる。
 これらのマグネシウム塩は、上記のような優れた特徴を有する反面、以下のような問題点もあった。まず、塩化マグネシウム・六水和物については、マグネシウム塩中のマグネシウム分が約12%と他のマグネシウム塩に比べて少なく、添加量が多く必要である。さらに、水酸基を含まないため、被処理水をアルカリ性にして除去対象物質を不溶化するためには、別途、苛性ソーダ等のアルカリ剤を添加する必要がある。
 塩基性炭酸マグネシウム、水酸化マグネシウムは、マグネシウム分は塩化マグネシウム・六水和物より多く、分子内に塩基(水酸基)を含むものの、中性の水にはほとんど溶解しないことから、一度、被処理水に酸を添加して酸性としてから添加するか、またはマグネシウム塩そのものに酸を添加して水溶液としてから被処理水に添加する必要がある。被処理水があらかじめ酸性であればよいが、中性の場合は、酸を添加し、さらにマグネシウム塩添加後、被処理水のpHをアルカリ性にするためにアルカリ剤を添加する必要がある。また、酸添加後、マグネシウムのほとんどはマグネシウムイオンとなり、アルカリ剤でpH9.5以上となった際、除去対象物質と結合する以外の大部分のマグネシウムイオンは膨潤な水酸化マグネシウム(Mg(OH))スラリとなり、沈殿分離性、脱水性が悪いという課題がある。
 酸化マグネシウムは、塩基性炭酸マグネシウム、水酸化マグネシウムを500℃以上の高温で焼成したものであり、マグネシウム分が多く、水に溶解すると水酸化マグネシウムとなり、水はアルカリ性を呈する。また、アルカリ性となって生成する不溶物は、水酸化マグネシウムだけでなく、一部に酸化マグネシウムや炭酸マグネシウムの結晶を含むため、塩基性炭酸マグネシウム、水酸化マグネシウムを水処理剤として形成させた水酸化マグネシウムを主とする不溶物スラリよりも沈殿分離性、脱水性が良いという特徴もある。
 しかしながら、焼成条件によっては、酸化マグネシウムは水への溶解が遅いため、除去対象物質の不溶化反応に多くの時間がかかり、処理に時間を要すること、短時間で処理を行おうとすると、除去対象物質を十分不溶化できず処理水質が悪い、処理水質を良好にするには多量の酸化マグネシウムを添加する必要があるという課題があった。
特許第3355281号公報 特許第4558633号公報
井澤 彩、前田 素生、所 千晴、笹木 圭子,「水酸化マグネシウム共沈法における廃水中のホウ素除去機構の考察」,Journal of MMIJ, Vol.130, pp.155-161(2014) Isabel Latour, Ruben Miranda, Angeles Blanco, 「Silica removal with sparingly soluble magnesium compounds. Part I」, Separation and Purification Technology, 138(2014), pp.210-218
 本発明の目的は、除去対象物質を含む水から、除去対象物質を短時間で不溶化、固液分離し、良好な水質の処理水を得て、分離した固形物を効率的に減容化できる水処理方法、その水処理に用いる水処理用マグネシウム剤、およびその水処理用マグネシウム剤の製造方法を提供することにある。
 本発明は、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成したマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成したマグネシウム剤のうち少なくとも1つを、除去対象物質を含む被処理水に添加する、水処理方法である。
 前記水処理方法において、前記マグネシウム剤は、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であることが好ましい。
 前記水処理方法において、前記被処理水は、前記除去対象物質としてホウ素、フッ素、セレン、重金属もしくはそれらの化合物、またはシリカのうちの少なくとも1つを含むことが好ましい。
 前記水処理方法において、前記被処理水への前記マグネシウム剤の添加後に除去対象物質の不溶化反応を行う工程と、不溶化された不溶化物を固液分離する工程と、をさらに含み、前記不溶化物を固液分離する前のpHが10以上となるような量の前記マグネシウム剤を前記被処理水に添加することが好ましい。
 また、本発明は、塩基性炭酸マグネシウムおよび水酸化マグネシウムのうち少なくとも1つの焼成物を含んでおり、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下である、水処理用マグネシウム剤である。
 また、本発明は、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成することによって、または水酸化マグネシウムを450~650℃の範囲の温度で焼成することによって、マグネシウム剤を得る、水処理用マグネシウム剤の製造方法である。
 前記水処理用マグネシウム剤の製造方法において、前記マグネシウム剤は、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であることが好ましい。
 本発明により、除去対象物質を含む水から、除去対象物質を短時間で不溶化、固液分離し、良好な水質の処理水を得て、分離した固形物を効率的に減容化できる水処理方法、その水処理に用いる水処理用マグネシウム剤、およびその水処理用マグネシウム剤の製造方法を提供することができる。
実施例1-1~1-5および比較例1-1~1-5における、各マグネシウム剤のX線回析スペクトルである。 実施例2-1~2-5および比較例2-1~2-2における、各マグネシウム剤のX線回析スペクトルである。 実施例1-1~1-5および比較例1-1~1-5における、各マグネシウム剤添加後1~120分後の被処理水のpHの測定結果を示すグラフである。 実施例1-1~1-5および比較例1-1~1-5における、各マグネシウム剤添加後1~120分後の被処理水中の溶存ホウ素残留率(%)の分析結果を示すグラフである。 実施例2-1~2-5および比較例2-1~2-2における、各マグネシウム剤添加後1~120分後の被処理水のpHの測定結果を示すグラフである。 実施例2-1~2-5および比較例2-1~2-2における、各マグネシウム剤添加後1~120分後の被処理水中の溶存ホウ素残留率(%)の分析結果を示すグラフである。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 本発明の実施形態に係る水処理方法は、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成して得た酸化マグネシウムを主成分とするマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成して得た酸化マグネシウムを主成分とするマグネシウム剤のうち少なくとも1つを、除去対象物質を含む被処理水に添加する方法である。この方法により、安価なマグネシウム塩を用いて、除去対象物質を含む水から、除去対象物質を短時間で不溶化、固液分離し、良好な水質の処理水を得て、分離した固形物を効率的に減容化することができる。また、安価なマグネシウム塩を効率的に使用することができるため、処理に要する薬品コストを低減することができる。本発明の実施形態に係る水処理用マグネシウム剤は、塩基性炭酸マグネシウムおよび水酸化マグネシウムのうち少なくとも1つの焼成物を含んでおり、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下である。本発明の実施形態に係る水処理用マグネシウム剤の製造方法は、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成することによって、または水酸化マグネシウムを450~650℃の範囲の温度で焼成することによって、マグネシウム剤を得る方法である。
[マグネシウム剤]
 本実施形態に係る水処理方法で用いられるマグネシウム剤を製造する原料としては、塩基性炭酸マグネシウム(mMgCO・Mg(OH)・nHO)および水酸化マグネシウム(Mg(OH))のうち少なくとも1つである。なお、塩基性炭酸マグネシウムは、Mg(OH)に対し、mが3~5、nが3~7となるものである。
 原料を焼成する際の温度としては、塩基性炭酸マグネシウムが原料の場合、500~700℃の範囲であり、500~650℃の範囲が好ましく、550~650℃の範囲がより好ましい。水酸化マグネシウムが原料の場合、450~650℃の範囲であり、450~550℃の範囲がより好ましい。この範囲の温度で原料を焼成することにより、脱水反応により原料中の水和水や水酸基等が脱離し、塩基性炭酸マグネシウムが原料の場合は、脱炭酸反応により炭酸も脱離し、酸化マグネシウムを主要成分とする物質が生成する。焼成による水和水、水酸基、炭酸等の脱離により、この物質は比表面積が大きなもの(例えば、BET比表面積が80m/g以上)となると考えられる。一方で、得られた酸化マグネシウムを主要成分とするマグネシウム剤の結晶子サイズは、700℃を超える温度で焼成した場合よりも小さく、結晶度は低い。このように、比表面積が大きい、結晶度が低い等の理由で、水中において従来の酸化マグネシウムよりも速く溶解できると考えられる。焼成温度が500℃未満では、水和水、水酸基、炭酸等を十分脱離させることができない等の原因で、比表面積が小さく、水中での溶解速度が高くならないと考えられる。一方、焼成温度が700℃を超える温度では、酸化マグネシウムを主要成分とする物質の結晶度が高く、水中で溶解しにくくなると考えられる。
 焼成時間は、塩基性炭酸マグネシウムが原料の場合、焼成による重量減少が原料の重量の50%以上となる時間、好ましくは50%以上65%以下となる時間であり、水酸化マグネシウムが原料の場合、焼成による重量減少が原料の重量の25%以上となる時間、好ましくは25%以上30%未満となる時間であり、かつ、BET比表面積が85m/g以上、結晶子サイズが110Å以下となる時間であることが好ましい。
 焼成に用いる原料の塩基性炭酸マグネシウム、水酸化マグネシウムは、水和水、水酸基、炭酸等を十分脱離させるために、粉末状(例えば、体積平均粒径で0.5μm~30μm)、顆粒状(例えば、体積平均粒径で0.5μm~2μm)のものを用いることが好ましい。
 このようにして得られたマグネシウム剤のBET比表面積は、例えば、80m/g以上であり、85m/g以上であることが好ましく、100m/g以上であることがより好ましい。BET比表面積の上限は、特に制限はなく、大きければ大きいほどよい。マグネシウム剤のBET比表面積が80m/g未満であると、水中で溶解しにくくなる場合がある。マグネシウム剤のBET比表面積は、JIS8830:2013に基づく方法で測定することができる。
 マグネシウム剤の結晶度を表す指標として、X線回折スペクトルの測定結果をもとにHalder-Wagner法で求めた結晶子サイズを用いることができる。水に対する溶解性の点から、この結晶子サイズが110Å以下であることが好ましく、100Å以下であることがより好ましい。結晶子サイズが110Åを超えると、結晶度が高く、水中で溶解しにくくなる場合がある。この結晶子サイズは小さければ小さいほどよい。
 マグネシウム剤の粒径としては、体積平均粒径が1,000μm以下であることが好ましく、0.5μm~30μmの範囲であることがより好ましい。マグネシウム剤の体積平均粒径が1,000μmを超えると、水中においても粒子内部が十分に水と接触できず、除去対象物質の不溶化に使われない剤の割合が多くなる。除去対象物質の不溶化後の固液分離において、この未使用分は固液分離速度を高める効果はあるが、未使用分が多すぎると、除去対象物質を十分に不溶化できず、処理水質が悪化したり、除去対象物質を十分に不溶化するためにマグネシウム剤の添加量が多量になることがある。体積平均粒径が0.5μm未満であると、使用時に風で飛散しやすいなど取り扱いが難しくなる場合がある。
 焼成後のマグネシウム剤の体積平均粒径が1,000μmを超える場合は、焼成後の体積平均粒径がこの範囲になるような粒径の原料を使用するか、焼成後に破砕または篩にかける等の方法により、粒径を調整するのがよい。
[水処理方法]
 本実施形態に係る水処理方法で用いられるマグネシウム剤は、水中に添加されると、一部は溶解してマグネシウムイオンと水酸化物イオンとなり、被処理水のpHが高くなる。このとき、マグネシウムイオンと不溶物を形成して共沈する物質であれば、上記マグネシウム剤による除去対象物質となる。また、被処理水のpHが高くなり、マグネシウムイオンと水酸化物イオンとが水酸化マグネシウムの不溶物を形成するが、この不溶物に吸着する物質も除去対象物質となる。すなわち、被処理水に含まれる除去対象物質としては、上記マグネシウム剤と不溶物を形成したり、不溶化した水酸化マグネシウム等に吸着して不溶化されるものであればよく、特に制限はないが、ホウ素(例えば、ホウ酸イオン)、フッ素(例えば、フッ化物イオン)、セレン(例えば、セレン酸イオン(SeO 2-:6価セレン)、亜セレン酸イオン(SeO 2-:4価セレン))、重金属(例えば、鉄、鉛、銅、クロム、カドミウム、水銀、亜鉛、ヒ素、マンガン、ニッケル等)もしくはそれらの化合物(例えば、ヒ酸)、またはシリカのうちの少なくとも1つであることが好ましい。
 被処理水は、上記の除去対象物質のうちの少なくとも1つを含む水であればよく、特に制限はない。被処理水が上記の除去対象物質のうちの2つ以上を含む水である場合に、本実施形態に係る水処理方法が好適に適用される。被処理水としては、処理後に公共用水域等へ放流することを前提とした排水、または、利用後に逆浸透膜等の精製手段を用いて溶解性物質を除去して再利用することを前提とした水でもよい。前者の例としては、石炭火力発電所の脱硫排水やめっき排水、ガラス製造排水等が挙げられる。後者の場合、各種産業の工場での水回収システム内の水が対象となり、逆浸透膜処理工程の前段で本実施形態に係る水処理方法が実施され、逆浸透膜等の閉塞の原因となるシリカ等を低減することが主な目的となる。なお、本実施形態に係る水処理方法で用いられるマグネシウム剤は、水中の懸濁物質を凝集することができるため、被処理水には、除去対象物質以外の懸濁物質を含んでもよい。
 被処理水中の除去対象物質の含有量は、例えば、0.01~50mmol/Lの範囲であり、懸濁物質の含有量は、例えば、50~1,000mg/Lの範囲である。
 また、被処理水中のホウ素の含有量は、例えば、10mg/L~550mg/Lの範囲であり、好ましくは20mg/L~500mg/Lの範囲である。被処理水中のフッ素の含有量は、例えば、15mg/L~950mg/Lの範囲であり、好ましくは20mg/L~100mg/Lの範囲である。被処理水中のセレンの含有量は、例えば、0.1mg/L~10mg/Lの範囲であり、好ましくは0.2mg/L~2mg/Lの範囲である。被処理水中の重金属の含有量は、例えば、0.1mg/L~100mg/Lの範囲であり、好ましくは0.1mg/L~20mg/Lの範囲である。被処理水中のシリカの含有量は、例えば、10mg/L~120mg/Lの範囲であり、好ましくは40mg/L~120mg/Lの範囲である。本実施形態に係る水処理方法は、特に、100mg/L以上の高濃度のホウ素を含む被処理水に好適に適用することができる。
 本実施形態に係る水処理方法は、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成したマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成したマグネシウム剤のうち少なくとも1つを、除去対象物質を含む被処理水に添加する工程(添加工程)を含む。本実施形態に係る水処理方法は、被処理水へのマグネシウム剤の添加後に除去対象物質の不溶化反応を行う工程(不溶化工程)、不溶化工程で不溶化された不溶化物を固液分離する工程(固液分離工程)を含んでもよい。
 添加工程において、マグネシウム剤を粉体のまま被処理水に添加してもよいし、マグネシウム剤を一度、除去対象物質や懸濁物質の含有量が少ない清澄な水(例えば、工業用水や本実施形態に係る水処理方法で処理した処理水等が挙げられ、それらを中性付近(例えばpH6~8)のpHに調整した水)に添加し、その水を被処理水に添加してもよいが、操作が簡易である等の点から、マグネシウム剤を粉体のまま被処理水に添加することが好ましい。
 添加されたマグネシウム剤は直ちに被処理水内によく分散させた方が効果をより発揮しやすいことから、被処理水へのマグネシウム剤の添加は、撹拌装置等によって被処理水が良く撹拌された状態で行うのがよい。
 添加工程におけるマグネシウム剤の添加量は、被処理水中の除去対象物質の種類、濃度、および要求される処理水質(対象物質除去率)、共存物質等により異なるが、固液分離工程の前における被処理水のpHが10以上、好ましくは10.5以上になるような量を添加するのがよい。
 例えば、被処理水に除去対象物質としてホウ素化合物(ホウ酸)が500mg-B/L含有され、海域排水基準230mg-B/L以下まで低減する場合、上記マグネシウム剤を被処理水に7.5~10g/L添加すればよい。
 不溶化工程は、マグネシウム剤の添加後、マグネシウムと除去対象物質とを反応させて、除去対象物質を不溶化させる工程である。本工程では、被処理水のpHを監視し、固液分離工程に移行する前のpHが10以上、好ましくは10.5以上となるようにするのがよい。
 不溶化工程における反応温度は、例えば、被処理水が0℃以上で凍結しなければよいが、温度が高いほど除去対象物質の除去性能は良く、好ましくは15℃以上であり、より好ましくは20℃~40℃の範囲である。
 不溶化工程における反応時間は、除去対象物質の不溶化が十分に行われればよく、特に制限はないが、例えば、1分~720分の範囲、好ましくは、10~120分の範囲である。不溶化工程における反応時間が1分未満であると、除去対象物質の不溶化が十分に行われない場合があり、720分を超えても、除去対象物質のそれ以上大きな低減効果が得られない場合がある。
 固液分離工程における固液分離方法としては、不溶化物と処理水とを分離できる方法であればよく、特に制限はない。固液分離方法としては、沈殿分離が最も簡易な操作であり好ましいが、微細気泡を供給して浮上分離させてもよいし、精密ろ過膜等による膜ろ過で行ってもよい。また、ろ布による真空吸引ろ過や加圧ろ過操作を行ってもよい。分離した固形分を含有したスラリをさらに、ろ布等を用いて真空吸引や加圧ろ過でろ過し、固液分離を行ってもよい。
 なお、不溶化工程の後、固液分離工程の前で、固液分離工程における不溶化物の固液分離速度を高めるため、高分子凝集剤等の凝集剤を被処理水に添加し、不溶化物を凝集して、径が大きく強度の強い粒状物に成長させる工程(凝集工程)を設けてもよい。
 凝集工程で用いられる凝集剤としては、無機凝集剤、高分子凝集剤等が挙げられ、高分子凝集剤としては、例えば、カチオン性のポリアクリルアミド等が挙げられる。高分子凝集剤等の凝集剤の添加量は、例えば、1~10mg/Lの範囲、反応時間は、例えば3~15分の範囲である。
 本実施形態に係る水処理方法で得られた処理水は、海洋等の公共用水域等へ放流されてもよいし、再利用されてもよい。
 本実施形態に係る水処理方法で得られた処理水中の除去対象物質の含有量は、例えば、30mmol/L以下であり、懸濁物質の含有量は、例えば、20mg/L以下である。
 また、処理水中のホウ素の含有量は、例えば、250mg/L以下であり、好ましくは200mg/L以下である。処理水中のフッ素の含有量は、例えば、15mg/L以下であり、好ましくは8mg/L以下である。処理水中のセレンの含有量は、例えば、0.1mg/L以下であり、好ましくは0.05mg/L以下である。処理水中の重金属の含有量は、例えば、2mg/L以下であり、好ましくは1mg/L以下である。処理水中のシリカの含有量は、例えば、20mg/L以下であり、好ましくは10mg/L以下である。本実施形態に係る水処理方法により、特に、500mg/L以上の高濃度のホウ素を含む被処理水から、ホウ素の含有量が250mg/L以下の処理水を得ることができる。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
<実施例1-1~1-5,2-1~2-5、比較例1-1~1-5,2-1~2-2>
[マグネシウム剤の調製]
 塩基性炭酸マグネシウム(和光純薬工業社製、重質)5gを10測りとり、それぞれ、400℃(比較例1-1)、450℃(比較例1-2)、500℃(実施例1-1)、550℃(実施例1-2)、600℃(実施例1-3)、650℃(実施例1-4)、700℃(実施例1-5)、800℃(比較例1-3)、900℃(比較例1-4)、1000℃(比較例1-5)で、各温度に達してから1時間、電気炉内で焼成した。また、水酸化マグネシウム(和光純薬工業社製)5gを7つ測りとり、それぞれ、400℃(比較例2-1)、450℃(実施例2-1)、500℃(実施例2-2)、550℃(実施例2-3)、600℃(実施例2-4)、650℃(実施例2-5)、700℃(比較例2-2)で、各温度に達してから1時間、電気炉内で焼成した。
 焼成後、放冷し、得られたそれぞれのマグネシウム剤のBET比表面積を、JIS8830:2013に基づく方法により島津製作所社製の比表面積測定装置(ASAP2010)で測定した。
 さらに、各温度で焼成したマグネシウム剤の結晶状態を確認するため、X線回析装置(株式会社リガク製、RINT Ultima III)で、X線回析(XRD)スペクトルを測定した。なお、X線回析スペクトルの測定においては、酸化マグネシウムのピーク出現位置(横軸2θ(θ:ブラック角))の確認のため、酸化マグネシウム(和光純薬工業社製、和光一級、重質)のX線回析スペクトルを比較参照として測定した。このスペクトルの2θ=42.9°および62.2°のピークから、けい素(粉末、4N、関東化学社製、高純度)のスペクトルを外部標準として、Halder-Wagner法により結晶子サイズを計算した。なお、Halder-Wagner法は、ピークの積分幅を元に、(β/tanθ)=(Kλ/L)×[β/(tanθ×sinθ)]+16×eで表されるグラフをプロットし、傾き(Kλ/L)から結晶子サイズを計算する方法である。ここで、βはピークの積分幅、θはブラッグ角、KはScherrer定数、Lは結晶子サイズ、λはX線の波長、eは格子歪である。
 焼成前後のマグネシウム剤の重量とその減量率(減量率(%)=(焼成前重量-焼成後重量)÷焼成前重量×100)、BET比表面積(m/g)、結晶子サイズ(Å)を表1,2に示し、X線回析スペクトルを図1,2に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、塩基性炭酸マグネシウムを原料とした場合、比較例1-1の焼成温度400℃では減量率が26.8%と他の焼成温度の減量率よりも小さく、焼成温度450℃(比較例1-2)では減量率は51.2%と急激に大きくなっていることから、比較例1-1の400℃では炭酸等がマグネシウム剤の中に残留していると考えられる。実施例1-1以降の焼成温度500℃以上では焼成温度上昇に伴う減量率の増加は小さいことから、焼成温度500℃以上では水分、炭酸等が十分に気化したことが推定される。
 図1に示すように、焼成温度500℃以上のXRDスペクトルには、比較参照として測定した既知の酸化マグネシウムのスペクトルと同じく、2θ=42°,62°にピークが現れた。このことから焼成温度500℃以上(実施例1-1~1-5および比較例1-3~1-5)では、いずれも酸化マグネシウムが主成分であることが確認された。
 表1に示すように、マグネシウム剤の比表面積について、比較例1-1~1-2の焼成温度450℃以下では、BET比表面積が36.0m/g以下と小さいのに対し、焼成温度が500℃~700℃の実施例1-1~1-5ではBET比表面積は大きく、85.4~148m/gであった。なお、焼成温度が700℃を超えるとBET比表面積は小さくなる傾向にあり、焼成温度800℃以上の比較例1-3~1-5のBET比表面積は119m/g以下であった。
 一方、マグネシウム剤の結晶の大きさについて、XRDスペクトルをもとにHalder-Wagner法で計算した結晶子サイズを見ると、焼成温度が高くなるほど大きくなる傾向にあり、焼成温度450℃以下(比較例1-1~1-2)では36.1Å以下であるのに対し、焼成温度500~700℃(実施例1-1~1-5)では54.0~97.4Åであり、焼成温度800℃以上(比較例1-3~1-5)では201Å以上であった。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、水酸化マグネシウムを原料とした場合、比較例2-1の焼成温度400℃では減量率が12.6%と他の焼成温度の減量率よりも小さく、焼成温度450℃(実施例2-1)では減量率は27.0%と急激に大きくなっていることから、比較例2-1の400℃では未脱水の水酸化マグネシウムがマグネシウム剤の中に残留していると考えられる。実施例2-1以降の焼成温度450℃以上では焼成温度上昇に伴う減量率の増加は小さいことから、焼成温度450℃以上では十分脱水したことが推定される。
 図2に示すように、焼成温度450℃以上のXRDスペクトルには、比較参照として測定した既知の酸化マグネシウムのスペクトルと同じく、2θ=42°,62°にピークが現れた。このことから焼成温度450℃以上(実施例2-1~2-5および比較例2-2)では、いずれも酸化マグネシウムが主成分であることが確認された。
 表2に示すように、マグネシウム剤の比表面積について、比較例2-1の焼成温度400℃ではBET比表面積が81.9m/g以下と小さいのに対し、焼成温度が450℃~650℃の実施例2-1~2-5ではBET比表面積は大きく、111~229m/gであった。なお、焼成温度が550℃を超えるとBET比表面積は小さくなる傾向にあり、焼成温度700℃以上の比較例2-2のBET比表面積は76.4m/gであった。
 一方、マグネシウム剤の結晶の大きさについて、XRDスペクトルをもとにHalder-Wagner法で計算した結晶サイズを見ると、焼成温度が高くなるほど大きくなる傾向にあり、焼成温度400℃(比較例2-1)では54.8Å以下であるのに対し、焼成温度450~650℃(実施例2-1~2-5)では64.1~107Åであり、焼成温度700℃(比較例2-2)では158Åであった。
[水処理方法]
 ここでは、ホウ素含有水を対象に、塩基性炭酸マグネシウムまたは水酸化マグネシウムを各温度で焼成したマグネシウム剤で水処理を行った。
(操作手順)
 ホウ素含有水は、蒸留水に、ホウ酸を、ホウ素濃度が約500mg/Lとなるよう添加し、さらにpHが7.0になるよう水酸化カリウムを添加して調製した。ホウ素含有水各300mLを10個のビーカに用意し、これらを被処理水(水温約20℃)とした。
 各被処理水を撹拌しながら、それぞれに、実施例1-1~1-5,2-1~2-5および比較例1-1~1-5,2-1~2-2の製造方法で作製したマグネシウム剤の粉末をそれぞれ7.46g添加し、添加から720分間撹拌を継続しながら反応させた。この間、被処理水のpHをpHセンサで測定し続けるとともに、添加から1分後~720分後(撹拌停止直前)に適宜、被処理水を0.5mL採水した。この採取した水は直ちに口径0.1μmのフィルタでろ過して不溶物を除去し、各反応時間における水中の残留ホウ素の濃度の分析試料とした。
 さらに、720分の撹拌停止後、被処理水300mLを直ちに、口径0.45μmのろ紙で吸引ろ過した。このろ過に要する時間(秒)を計測した。
 なお、被処理水中の残留ホウ素の濃度は、JIS 0102に規定される方法に基づき、ICP発光分析装置(Seiko Instruments製、SPS7800型)を用いてICP発光法で分析した。
(結果)
[塩基性炭酸マグネシウムを原料に焼成したマグネシウム剤を用いた場合]
 塩基性炭酸マグネシウムを原料に焼成した各マグネシウム剤を添加して反応後120分後までの被処理水のpHの測定結果を図3に、被処理水中の溶存ホウ素を分析し、溶存ホウ素の残留率(被処理水中のホウ素に対する割合)を算出した結果を図4に示す。また、720分の反応後のろ紙によるろ過に要した時間を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 各温度で焼成したマグネシウム剤を添加後のpHは、図3に示すように、各実施例1-1~1-5では、反応10分で10.6以上となり、以後10.6~10.8の範囲で推移した。焼成温度の低い比較例1-1~1-2では反応10分以後は10.5以上となり10.5~10.7で推移したが、焼成温度の高い比較例1-3~1-5では30分後で10.2~10.4、120分後も10.3~10.4であった。
 このとき被処理水中の溶存ホウ素残留率は、図4に示すように、焼成温度500~700℃の実施例1-1~1-5では、30分で64~72%、60分で50~62%、120分で28~50%であった。これに対し、比較例1-1~1-5では、反応30分で88~100%、60分で77~100%、120分で59~97%であった。120分まででみると、同一反応時間での溶存ホウ素残留率は実施例1-1~1-5のほうが比較例より顕著に低いことから、ホウ素の不溶化速度は、焼成温度500~700℃のマグネシウム剤を添加した実施例1-1~1-5のほうが明らかに高いと言える。
 なお、720分という長時間反応させた後の溶存ホウ素の残留率は、実施例1-1~1-5で21~35%であった。比較例も焼成温度1000℃の比較例1-5以外は19~40%であり、実施例とは大きな差は見られなかった(比較例1-5の溶存ホウ素残留率は60%)。
 しかしながら、720分の反応後の被処理水をろ紙で吸引したときのろ過時間(ろ過に要した時間)は、表3に示すように、焼成温度400~450℃の比較例1-1~1-2では120~180秒要したのに対し、実施例1-1~1-5および比較例1-3~1-5は32~50秒であった。すなわち、焼成温度500~700℃のマグネシウム剤を使用することで、不溶物の固液分離速度は顕著に高くなることが確認された。
 これらの結果から、高いホウ素除去速度を有し、かつ高い固液分離速度も有するのは、塩基性炭酸マグネシウムを原料とし500~700℃で焼成して得たマグネシウム剤を添加した実施例1-1~1-5であることが示された。また、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であるマグネシウム剤が好ましいことも示された。
[水酸化マグネシウムを原料に焼成したマグネシウム剤を用いた場合]
 水酸化マグネシウムを原料に焼成した各マグネシウム剤を添加して反応120分後までの被処理水のpHの測定結果を図5に、被処理水中の溶存ホウ素を分析し、溶存ホウ素の残留率(被処理水中のホウ素に対する割合)を算出した結果を図6に示す。また、120分の反応後のろ紙によるろ過に要した時間を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 各温度で焼成したマグネシウム剤を添加後のpHは、図5に示すように、各実施例2-1~2-5では、反応10分で10.3以上となり、以後10.3~10.7の範囲で推移した。焼成温度の低い比較例2-1や焼成温度の高い比較例2-2では反応10分で10.2~10.3となり10.3~10.4で推移し、実施例よりやや低いpHで推移した。
 このとき被処理水中の溶存ホウ素残留率は、図6に示すように、焼成温度450~600℃の実施例2-1~2-5で、30分で67~80%、60分で48~66%、120分で27~48%であった。これに対し、比較例2-1および2-2では、反応30分で87%、60分で75~77%、120分で59~64%であった。120分まででみると、残留ホウ素は実施例2-1~2-5のほうが顕著に低いことから、ホウ素の不溶化速度は、焼成温度450~650℃のマグネシウム剤を添加した実施例2-1~2-5のほうが明らかに高いと言える。
 なお、720分という長時間反応させた後の溶存ホウ素の残留率は、実施例2-1~2-5で16~24%であった。比較例2-2は17%で実施例と同等となったが、比較例2-1は56%で実施例と大きな差があった。
 720分の反応後の被処理水をろ紙で吸引したときのろ過時間(ろ過に要した時間)は、表4に示すように、実施例2-1~2-5および比較例2-1~2-2とも28~50秒であったが、実施例1-1~1-5のろ過時間と比較すると大幅に短いろ過時間であった。すなわち、焼成温度450~650℃のマグネシウム剤を使用することで、高い固液分離速度が得られることが確認された。
 これらの結果から、高いホウ素除去速度を有し、かつ高い固液分離速度も有するのは、水酸化マグネシウムを原料とし450~650℃で焼成して得たマグネシウム剤を添加した実施例2-1~2-5であることが示された。また、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であるマグネシウム剤が好ましいことも示された。
 このように、塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成したマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成したマグネシウム剤のうち少なくとも1つを用いた実施例では、除去対象物質を含む水から、除去対象物質を短時間で不溶化、固液分離し、良好な水質の処理水を得て、分離した固形物を効率的に減容化できることが示された。

Claims (7)

  1.  塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成したマグネシウム剤、および水酸化マグネシウムを450~650℃の範囲の温度で焼成したマグネシウム剤のうち少なくとも1つを、除去対象物質を含む被処理水に添加することを特徴とする水処理方法。
  2.  請求項1に記載の水処理方法であって、
     前記マグネシウム剤は、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であることを特徴とする水処理方法。
  3.  請求項1または2に記載の水処理方法であって、
     前記被処理水は、前記除去対象物質としてホウ素、フッ素、セレン、重金属もしくはそれらの化合物、またはシリカのうちの少なくとも1つを含むことを特徴とする水処理方法。
  4.  請求項1~3のいずれか1項に記載の水処理方法であって、
     前記被処理水への前記マグネシウム剤の添加後に除去対象物質の不溶化反応を行う工程と、
     不溶化された不溶化物を固液分離する工程と、
     をさらに含み、
     前記不溶化物を固液分離する前のpHが10以上となるような量の前記マグネシウム剤を前記被処理水に添加することを特徴とする水処理方法。
  5.  塩基性炭酸マグネシウムおよび水酸化マグネシウムのうち少なくとも1つの焼成物を含んでおり、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であることを特徴とする水処理用マグネシウム剤。
  6.  塩基性炭酸マグネシウムを500~700℃の範囲の温度で焼成することによって、または水酸化マグネシウムを450~650℃の範囲の温度で焼成することによって、マグネシウム剤を得ることを特徴とする水処理用マグネシウム剤の製造方法。
  7.  請求項6に記載の水処理用マグネシウム剤の製造方法であって、
     前記マグネシウム剤は、BET比表面積が85m/g以上であり、かつ結晶子サイズが110Å以下であることを特徴とする水処理用マグネシウム剤の製造方法。
PCT/JP2018/008444 2017-03-14 2018-03-06 水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法 WO2018168558A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-049102 2017-03-14
JP2017049102A JP2018149520A (ja) 2017-03-14 2017-03-14 水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法

Publications (1)

Publication Number Publication Date
WO2018168558A1 true WO2018168558A1 (ja) 2018-09-20

Family

ID=63522379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008444 WO2018168558A1 (ja) 2017-03-14 2018-03-06 水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法

Country Status (3)

Country Link
JP (1) JP2018149520A (ja)
TW (1) TW201838929A (ja)
WO (1) WO2018168558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180492A (zh) * 2019-04-17 2019-08-30 中节能(合肥)可再生能源有限公司 一种用于去除镁离子的活性滤料及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189744B2 (ja) * 2018-11-22 2022-12-14 オルガノ株式会社 水処理方法および水処理装置
JP2021016817A (ja) * 2019-07-18 2021-02-15 オルガノ株式会社 水処理剤、水処理剤原料、水処理剤の製造方法および水処理方法
JP7371865B2 (ja) * 2020-01-23 2023-10-31 オルガノ株式会社 水処理方法および水処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330489A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Magnesia adsorbent
JPS57197082A (en) * 1981-05-29 1982-12-03 Agency Of Ind Science & Technol Method for removal of fluorine ion
JPS6245394A (ja) * 1985-08-23 1987-02-27 Agency Of Ind Science & Technol 砒素及び珪素の同時除去法
JP2005001949A (ja) * 2003-06-12 2005-01-06 Ube Material Industries Ltd 酸化マグネシウム粉末及びその製造方法
JP2005028272A (ja) * 2003-07-11 2005-02-03 Kunimine Industries Co Ltd リン成分吸着剤及びそれを用いた排水の処理方法
JP2005342578A (ja) * 2004-06-01 2005-12-15 Konoshima Chemical Co Ltd フッ素吸着剤、および製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330489A (en) * 1976-09-01 1978-03-22 Agency Of Ind Science & Technol Magnesia adsorbent
JPS57197082A (en) * 1981-05-29 1982-12-03 Agency Of Ind Science & Technol Method for removal of fluorine ion
JPS6245394A (ja) * 1985-08-23 1987-02-27 Agency Of Ind Science & Technol 砒素及び珪素の同時除去法
JP2005001949A (ja) * 2003-06-12 2005-01-06 Ube Material Industries Ltd 酸化マグネシウム粉末及びその製造方法
JP2005028272A (ja) * 2003-07-11 2005-02-03 Kunimine Industries Co Ltd リン成分吸着剤及びそれを用いた排水の処理方法
JP2005342578A (ja) * 2004-06-01 2005-12-15 Konoshima Chemical Co Ltd フッ素吸着剤、および製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180492A (zh) * 2019-04-17 2019-08-30 中节能(合肥)可再生能源有限公司 一种用于去除镁离子的活性滤料及其制备方法和应用
CN110180492B (zh) * 2019-04-17 2022-09-23 中节能(合肥)可再生能源有限公司 一种用于去除镁离子的活性滤料及其制备方法和应用

Also Published As

Publication number Publication date
JP2018149520A (ja) 2018-09-27
TW201838929A (zh) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2018168558A1 (ja) 水処理方法、水処理用マグネシウム剤、および水処理用マグネシウム剤の製造方法
US11577215B2 (en) Method for producing absorbent
JP2007283168A (ja) 吸着剤及びその製造方法
JP5831914B2 (ja) 水処理方法
KR20100015911A (ko) 수처리제 및 수처리 방법
JP2011101830A (ja) 水処理剤及び水処理方法
JP4809080B2 (ja) フッ素イオンを含有する排水の処理方法および排水処理剤
JP4845188B2 (ja) 排水処理剤および排水中のフッ素イオンを低減させる方法
JP5915834B2 (ja) 浄化処理材の製造方法
KR101317796B1 (ko) 수질 정화 재료, 수질 정화 방법, 인산 비료 원료 조성물 및 인산 비료 원료 조성물의 제조 방법
JP5137232B2 (ja) 多孔質鉄酸化物の製造方法並びに被処理水の処理方法
JP2019155216A (ja) 水処理方法及び水処理装置
TW201500297A (zh) 含有硼氟化物之水的處理方法及處理裝置
Krasavtseva et al. Removal of fluoride ions from the mine water
JP2001340872A (ja) 硼素及び/又は弗素含有排水の処理方法
CN115716697A (zh) 一种低氯化工外排水回用循环水的制备方法
JP7371865B2 (ja) 水処理方法および水処理装置
JP7496577B2 (ja) 水処理方法および水処理装置
JP2015196146A (ja) リン含有水のリン回収材、そのリン回収材を用いたリン回収方法
JP2007021485A (ja) 結晶性珪酸ナトリウムを用いた排水を浄化する方法又は排水浄化剤
JP2022029566A (ja) 水処理方法および水処理装置
JP2015108606A (ja) 放射性Cs汚染水の処理方法
JP2014184370A (ja) フッ素含有排水の処理方法
JP7426520B1 (ja) ヨウ化物イオンに非選択的な無機系凝集剤で処理したリサイクル水溶液
JP4761612B2 (ja) ホウ素含有排水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768631

Country of ref document: EP

Kind code of ref document: A1