WO2018168272A1 - 非水電解質二次電池用正極及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極及び非水電解質二次電池 Download PDF

Info

Publication number
WO2018168272A1
WO2018168272A1 PCT/JP2018/004362 JP2018004362W WO2018168272A1 WO 2018168272 A1 WO2018168272 A1 WO 2018168272A1 JP 2018004362 W JP2018004362 W JP 2018004362W WO 2018168272 A1 WO2018168272 A1 WO 2018168272A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
region
protective layer
electrolyte secondary
current collector
Prior art date
Application number
PCT/JP2018/004362
Other languages
English (en)
French (fr)
Inventor
一樹 遠藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/493,512 priority Critical patent/US11276860B2/en
Priority to CN201880007795.5A priority patent/CN110214385B/zh
Priority to JP2019505775A priority patent/JP6868811B2/ja
Publication of WO2018168272A1 publication Critical patent/WO2018168272A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/664Ceramic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • a positive electrode for a non-aqueous electrolyte secondary battery (hereinafter simply referred to as “positive electrode”) includes a positive electrode current collector and a positive electrode mixture layer formed on the current collector.
  • the positive electrode has, for example, an exposed portion where the positive electrode mixture layer is not formed and the surface of the current collector is exposed at a portion to be a lead electrically connected to the positive electrode terminal.
  • the positive electrode is designed smaller than the negative electrode. In this case, the exposed portion of the positive electrode current collector faces the negative electrode through the separator.
  • Patent Document 1 discloses a positive electrode having an insulating layer formed by applying and drying a binder solution containing a binder resin and a solvent on an exposed portion of a positive electrode current collector. Has been.
  • the insulating layer disclosed in Patent Document 1 is a thin film layer composed only of a binder resin, the effect of suppressing internal short-circuiting due to foreign matter contamination is small. In particular, when the size of the foreign matter is large, it is considered that the effect of suppressing the internal short circuit by the insulating layer is not sufficient.
  • a positive electrode for a non-aqueous electrolyte secondary battery that is one embodiment of the present disclosure includes a positive electrode current collector mainly composed of aluminum and a lithium-containing transition metal oxide, and is formed on the positive electrode current collector A positive electrode mixture layer; and a protective layer interposed between the positive electrode current collector and the positive electrode mixture layer.
  • the protective layer includes inorganic particles, a conductive material, and a binder, and includes the inorganic particles as a main component.
  • the positive electrode for a non-aqueous electrolyte secondary battery protrudes from an edge of the positive electrode mixture layer and a first region formed on substantially the entire area of the positive electrode mixture layer on the positive electrode current collector.
  • the weight per unit area of the second region is 1.5 times or more the weight per unit area of the first region.
  • a non-aqueous electrolyte secondary battery which is one embodiment of the present disclosure includes the positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte, and the protective layer has a negative electrode interposed via the separator. It is provided in the position facing.
  • the occurrence of a low-resistance internal short circuit between the positive electrode current collector and the negative electrode can be highly suppressed without impairing battery characteristics. Further, when an internal short circuit occurs due to, for example, nail penetration, the amount of generated heat can be suppressed.
  • FIG. 1 It is a perspective view of the nonaqueous electrolyte secondary battery which is an example of embodiment. It is sectional drawing of the positive electrode which is an example of embodiment. It is a figure which shows the laminated structure of the electrode body which is an example of embodiment. It is AA sectional view taken on the line in FIG.
  • a protective layer that includes inorganic particles, a conductive material, and a binder and includes inorganic particles as a main component is formed on the positive electrode current collector. And formed so as to protrude from between the positive electrode mixture layer. Since the protective layer composed mainly of inorganic particles is hard and difficult to break, for example, even when a large foreign matter of 200 ⁇ m or more is mixed, occurrence of a low-resistance internal short circuit between the positive electrode current collector and the negative electrode Can be suppressed to a high degree.
  • the weight per unit area of the second region of the protective layer formed so as to protrude from the edge of the positive electrode mixture layer is a protection formed within a range in which the positive electrode mixture layer is formed.
  • the weight per unit area of the first region of the layer is 1.5 times or more. In this case, the occurrence of a low-resistance internal short circuit can be highly suppressed while ensuring good battery performance.
  • an aluminum collector mainly composed of a lithium-containing transition metal oxide and aluminum (Al) as a positive electrode active material.
  • the first region of the protective layer further has a function of isolating the aluminum current collector from the lithium-containing transition metal oxide and suppressing a redox reaction involving the aluminum current collector to reduce the amount of heat generated when an abnormality occurs. .
  • a protective layer of 1 ⁇ m or more on the current collector In order to suppress the oxidation-reduction reaction, it is preferable to form a protective layer of 1 ⁇ m or more on the current collector. If the thickness of the protective layer is simply increased, the current collection performance will be significantly reduced and the battery performance will be hindered. However, the present inventors ensure the current collection performance by adding a conductive material to the protective layer. However, it has succeeded in maintaining good battery characteristics.
  • FIG. 1 is a perspective view showing a non-aqueous electrolyte secondary battery 10 which is an example of an embodiment.
  • the nonaqueous electrolyte secondary battery 10 includes an electrode body 11 and a nonaqueous electrolyte (not shown).
  • the electrode body 11 includes a positive electrode 20, a negative electrode 30, and a separator 40 interposed between the positive electrode 20 and the negative electrode 30 (see FIG. 3 described later).
  • the electrode body 11 is a stacked electrode body that includes a plurality of positive electrodes 20, negative electrodes 30, and separators 40, and the positive electrodes 20 and the negative electrodes 30 are alternately stacked via the separators 40. Note that the positive electrode of the present disclosure may be applied to a wound electrode body.
  • the nonaqueous electrolyte secondary battery 10 is, for example, a lithium ion battery, and an electrode body 11 and a nonaqueous electrolyte that are power generation elements are accommodated in a battery case 14.
  • the battery case 14 is generally composed of a substantially box-shaped case body 15 and a sealing body 16 that closes an opening of the case body 15.
  • the nonaqueous electrolyte secondary battery 10 is a square battery, for example. It is preferable that the case main body 15 and the sealing body 16 are comprised from the metal material which has aluminum as a main component. A conventionally known structure can be applied to the battery case 14.
  • a positive electrode terminal 12 electrically connected to each positive electrode 20 and a negative electrode terminal 13 electrically connected to each negative electrode 30 are provided on the sealing body 16.
  • a positive electrode lead portion 25 (see FIG. 3 described later) with the surface of the positive electrode current collector 21 exposed is connected to the positive electrode terminal 12 directly or via another conductive member.
  • a negative electrode lead portion 35 (see FIG. 3 described later) with the surface of the negative electrode current collector 31 exposed is connected to the negative electrode terminal 13 directly or via another conductive member.
  • the direction in which the positive electrode terminal 12 and the negative electrode terminal 13 are arranged is a horizontal direction, and the horizontal direction and a direction orthogonal to the stacking direction of the electrodes constituting the electrode body 11 are a vertical direction.
  • Through holes are respectively formed on both sides of the sealing body 16 in the lateral direction, and the positive electrode terminal 12 and the negative electrode terminal 13 or conductive members connected to the terminals are inserted into the battery case 14 from the through holes. Is done.
  • the positive electrode terminal 12 and the negative electrode terminal 13 are respectively fixed to the sealing body 16 via an insulating member 17 installed in a through hole, for example.
  • the sealing body 16 is provided with a gas discharge mechanism (not shown).
  • FIG. 2 is a cross-sectional view of the positive electrode 20 which is an example of the embodiment.
  • the positive electrode 20 includes a positive electrode current collector 21 composed mainly of aluminum (Al), a positive electrode mixture layer 22 containing a lithium-containing transition metal oxide and formed on the positive electrode current collector 21, and a positive electrode current collector.
  • a protective layer 23 interposed between the electric body 21 and the positive electrode mixture layer 22 is provided.
  • the positive electrode mixture layer 22 preferably includes a lithium-containing transition metal oxide as a positive electrode active material, and further includes a conductive material and a binder.
  • the positive electrode mixture layer 22 is generally formed on both surfaces of the positive electrode current collector 21.
  • the positive electrode 20 is formed by applying a positive electrode mixture slurry containing a positive electrode active material, a binder and the like onto the positive electrode current collector 21 on which the protective layer 23 is formed, drying the coating film, and rolling the positive electrode mixture slurry. It can be produced by forming the material layer 22 on both sides of the current collector.
  • the positive electrode mixture slurry is not coated on the positive electrode current collector 21 in the region to be the positive electrode lead portion 25, whereby the positive electrode mixture layer 22 is not formed on a part of the positive electrode 20, and the current collector surface A positive electrode lead portion 25 is formed in which is exposed.
  • the positive electrode current collector 21 for example, aluminum or an aluminum alloy is used.
  • the content of aluminum in the positive electrode current collector 21 is 50% or more, preferably 70% or more, more preferably 80% or more, based on the weight of the current collector.
  • the positive electrode current collector 21 is a metal foil made of, for example, aluminum or an aluminum alloy, and has a thickness of about 10 to 100 ⁇ m.
  • Examples of the positive electrode active material include lithium transition metal oxides containing transition metal elements such as cobalt (Co), manganese (Mn), and nickel (Ni).
  • Examples of the lithium transition metal oxide include Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- y M y O z, Li x Mn 2 O 4, Li x Mn 2-y M y O 4, LiMPO 4, Li 2 MPO 4 F (M; Na, Mg, Sc, Y, Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3). These may be used individually by 1 type, and may mix and use multiple types.
  • the conductive material contained in the positive electrode mixture layer 22 is used to increase the electrical conductivity of the mixture layer.
  • the conductive material include carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite. These may be used alone or in combination of two or more.
  • the binder contained in the positive electrode mixture layer 22 is used to maintain a good contact state between the positive electrode active material and the conductive material and to enhance the binding property of the positive electrode active material and the like to the current collector surface.
  • the binder include fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, and polyolefin resins.
  • these resins, carboxymethyl cellulose (CMC) or a salt thereof (CMC-Na, CMC-K, CMC-NH 4 or the like, may be a partially neutralized salt), polyethylene oxide (PEO), etc. May be used in combination. These may be used alone or in combination of two or more.
  • the protective layer 23 includes inorganic particles 24, a conductive material, and a binder, and is configured with the inorganic particles 24 as a main component.
  • the inorganic particles 24 are components having the largest weight among the components constituting the protective layer 23.
  • the conductive material improves the conductivity of the protective layer 23.
  • the binder binds the inorganic particles 24 and the conductive material, and binds the inorganic particles 24 and the like to the current collector surface.
  • the protective layer 23 is formed on the positive electrode current collector 21, and the positive electrode mixture layer 22 is formed on the protective layer 23. Since the positive electrode mixture layer 22 is formed on both surfaces of the positive electrode current collector 21 as described above, the protective layer 23 is preferably formed on both surfaces of the positive electrode current collector 21.
  • the protective layer 23 is formed on the positive electrode current collector 21 so as to protrude from the edge of the positive electrode mixture layer 22 and the first region 23 ⁇ / b> A formed in substantially the entire area where the positive electrode mixture layer 22 is formed. 2 regions 23B.
  • the positive electrode mixture layer 22 is not formed on the second region 23B.
  • the first region 23 ⁇ / b> A is formed so as to overlap in the thickness direction of the positive electrode mixture layer 22 and the positive electrode 20, and is interposed between the positive electrode current collector 21 and the positive electrode mixture layer 22.
  • the first region 23A and the second region 23B are continuously formed without interruption.
  • the second region 23 ⁇ / b> B is formed on the base side of the positive electrode lead portion 25.
  • region 23A isolates the positive electrode collector 21 which has aluminum as a main component, and a lithium transition metal oxide, and suppresses the oxidation-reduction reaction in which the positive electrode collector 21 is concerned. In addition, the amount of heat generated when an internal short circuit occurs due to nail penetration or the like is suppressed, and the safety of battery nail penetration is improved.
  • the second region 23B highly suppresses the occurrence of a low-resistance internal short circuit between the negative electrode 30 and the portion of the positive electrode current collector 21 where the positive electrode mixture layer 22 is not formed. Since the second region 23B is a hard layer mainly composed of the inorganic particles 24, the second region 23B hardly breaks even when a large foreign matter of 200 ⁇ m or more is in strong contact.
  • the weight per unit area of the second region 23B is larger than the weight per unit area of the first region 23A. That is, the surface density of the second region 23B is higher than the surface density of the first region 23A.
  • the weight per unit area of the second region 23B is 1.5 times or more, preferably 1.6 times or more than the weight per unit area of the first region 23A, for example, 1.5 to 5 times, or 1 .5 times to 3 times, or 1.6 times to 2.5 times.
  • the second region 23 ⁇ / b> B is preferably formed within the thickness range of the positive electrode mixture layer 22. In this case, the occurrence of a low-resistance internal short circuit can be highly suppressed while ensuring good battery performance.
  • Weight per unit area of the first region 23A is preferably 0.1 ⁇ 20g / m 2, more preferably 0.5 ⁇ 10g / m 2, particularly preferably 1 ⁇ 5g / m 2.
  • the weight per unit area of the second region 23B is preferably 2 g / m 2 or more, more preferably 2.5 g / m 2 or more, particularly preferably 3 g / m 2 or more, for example, 2 to 50 g / m 2 , Or 2.5 to 30 g / m 2 , or 3 to 20 g / m 2 .
  • the thickness of the protective layer 23 may be different between the first region 23A and the second region 23B.
  • the thickness of the first region 23A is preferably 1 to 20 ⁇ m, more preferably 1 to 10 ⁇ m, and particularly preferably 1 to 5 ⁇ m. Since the protective layer 23 includes a conductive material, even if the protective layer 23 is formed thick, the conductivity of the positive electrode current collector 21 and the positive electrode mixture layer 22 is not impaired, and good battery characteristics can be maintained. However, since the battery capacity may be reduced if the first region 23A is too thick, the thickness of the first region 23A is preferably set within the above range.
  • the thickness of the second region 23B is preferably 1.5 to 30 ⁇ m, more preferably 1.5 to 25 ⁇ m, and particularly preferably 1.5 to 20 ⁇ m.
  • the thickness of the second region 23B is preferably larger than the thickness of the first region 23A.
  • the protective layer 23 is formed by applying a slurry for a protective layer prepared by mixing the inorganic particles 24, the conductive material, the binder, and the dispersion medium on both surfaces of the positive electrode current collector 21 and drying the coating film. It can. Specifically, by increasing the amount of slurry applied to the portion corresponding to the second region 23B to be larger than the amount of slurry applied to the portion corresponding to the first region 23A, the surface density of the second region 23B is the first.
  • the protective layer 23 having a higher area density than the region 23A can be formed. For example, the protective layer slurry is applied to the portions corresponding to the first region 23A and the second region 23B in the same amount, and then applied again only to the portion corresponding to the second region 23B.
  • the ratio of the inorganic particles 24 contained in the slurry applied to the portion corresponding to the second region 23B is made higher than the ratio of the inorganic particles 24 contained in the slurry applied to the first region 23A.
  • the protective layer 23 in which the surface density of the second region 23B is higher than the surface density of the first region 23A can be formed.
  • the inorganic particles 24 are embedded in the positive electrode current collector 21 in the first region 23A.
  • the positive electrode mixture layer 22 is compressed in the rolling process of the positive electrode 20
  • the first region 23 ⁇ / b> A is also pressed, and the inorganic particles 24 sink into the positive electrode current collector 21.
  • the binding property between the first region 23 ⁇ / b> A and the positive electrode current collector 21 is improved.
  • the second region 23B is not compressed in the rolling process, and the inorganic particles 24 are not embedded in the positive electrode current collector 21 in the second region 23B.
  • the inorganic particles 24 contained in the protective layer 23 are preferably particles mainly composed of an inorganic compound having a specific resistance of 10 3 ⁇ ⁇ m or more. By using an inorganic compound having a specific resistance of 10 3 ⁇ ⁇ m or more, occurrence of a low-resistance short circuit through which a large current flows is suppressed.
  • the content of the inorganic particles 24 is preferably 70 to 99.8% by weight, particularly preferably 90 to 99% by weight, based on the weight of the protective layer 23.
  • suitable inorganic particles 24 include at least one selected from aluminum oxide, titanium oxide, manganese oxide, and silicon oxide. Among these, it is preferable to use aluminum oxide (Al 2 O 3 ) or titanium oxide (TiO 2 ).
  • the average particle diameter of the inorganic particles 24 is, for example, 1 ⁇ m or less, and preferably 0.3 to 1 ⁇ m.
  • the average particle diameter means a volume average particle diameter measured by a light scattering method.
  • the conductive material contained in the protective layer 23 is the same type as the conductive material applied to the positive electrode mixture layer 22, for example, carbon materials such as carbon black (CB), acetylene black (AB), ketjen black, and graphite. Can be used. These may be used alone or in combination of two or more.
  • the content of the conductive material is preferably 0.1 to 20% by weight, particularly preferably 1 to 10% by weight, based on the weight of the protective layer 23.
  • the content of the conductive material in the protective layer 23 is higher than the content of the conductive material in the positive electrode mixture layer 22, for example.
  • the binder contained in the protective layer 23 is the same as the binder applied to the positive electrode mixture layer 22, for example, a fluorine-based resin such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF), Polyacrylonitrile (PAN), polyimide resin, acrylic resin, polyolefin resin, or the like can be used. These may be used alone or in combination of two or more.
  • a fluorine-based resin such as polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF), Polyacrylonitrile (PAN), polyimide resin, acrylic resin, polyolefin resin, or the like can be used. These may be used alone or in combination of two or more.
  • the content of the binder is preferably from 0.1 to 20% by weight, particularly preferably from 1 to 10% by weight, based on the weight of the protective layer.
  • FIG. 3 and 4 are diagrams showing a laminated structure of the electrode body 11.
  • the negative electrode 30 is indicated by a broken line
  • the separator 40 is indicated by a two-dot chain line.
  • FIG. 4 the illustration of the separator 40 is omitted.
  • the electrode body 11 has a laminated structure in which the positive electrodes 20 and the negative electrodes 30 are alternately laminated with separators 40 interposed therebetween.
  • the positive electrode 20 is formed smaller than the negative electrode 30, and at least the portion where the positive electrode mixture layer 22 is formed is the negative electrode mixture layer of the negative electrode 30. It is arranged opposite to the portion where 32 is formed.
  • the positive electrode 20 has a positive electrode lead portion 25 formed by protruding a part of the positive electrode current collector 21.
  • the positive electrode 20 includes, for example, a main body portion 26 having a substantially rectangular shape in front view, and a positive electrode lead portion 25 having a substantially rectangular shape in plan view that protrudes from one longitudinal end of the main body portion 26.
  • the positive electrode mixture layer 22 is formed over substantially the entire area of both surfaces of the main body portion 26 and slightly formed at the base of the positive electrode lead portion 25. In other words, the positive electrode mixture layer 22 is not formed on most of the positive electrode lead portion 25.
  • the exposed portions of the current collector surfaces of the positive electrode lead portions 25 are overlapped with each other and connected to the positive electrode terminal 12.
  • the negative electrode 30 has a negative electrode lead part 35 formed by protruding a part of the negative electrode current collector 31.
  • the negative electrode 30 includes, for example, a main body portion 36 having a substantially rectangular shape in front view, and a negative electrode lead portion 35 having a substantially rectangular shape in plan view protruding from one longitudinal end of the main body portion 36.
  • the exposed portions of the current collector surfaces of the negative electrode lead portions 35 are overlapped with each other and connected to the negative electrode terminal 13.
  • the positive electrode lead portion 25 is disposed on one end side in the horizontal direction of the electrode body 11, and the negative electrode lead portion 35 is disposed on the other end side in the horizontal direction of the electrode body 11.
  • the positive electrode lead portion 25 extends in the vertical direction beyond the range facing the negative electrode 30.
  • the protective layer 23 is formed over substantially the entire area of both surfaces of the main body portion 26, and is also formed in a portion where the positive electrode mixture layer 22 is not formed in the positive electrode lead portion 25, protruding from the edge of the positive electrode mixture layer 22.
  • the second region 23B that protrudes from the edge of the positive electrode mixture layer 22 of the protective layer 23 may be formed only in a range facing the negative electrode 30, and is preferably opposed to the negative electrode 30 in consideration of the displacement of the positive and negative electrodes. It may be formed beyond the range.
  • the protective layer 23 (second region 23 ⁇ / b> B) is formed in a range of about 1/3 of the longitudinal length of the lead portion from the base of the positive electrode lead portion 25.
  • the current collector surface is exposed in the range of about 2/3 from the tip of the positive electrode lead portion 25.
  • the protective layer 23 should just be formed exceeding the range which opposes the negative electrode 30, and the positional relationship with the separator 40 is not specifically limited.
  • the negative electrode 30 includes the negative electrode current collector 31 made of a metal foil or the like as described above, and the negative electrode mixture layer 32 formed on the current collector.
  • a metal foil that is stable in the potential range of the negative electrode 30, such as copper, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the negative electrode mixture layer 32 preferably contains a binder in addition to the negative electrode active material.
  • the negative electrode mixture layer 32 is generally formed on both surfaces of the negative electrode current collector 31.
  • the negative electrode 30 is formed by, for example, applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. on a negative electrode current collector 31, drying the coating film, and rolling the negative electrode mixture layer 32 to form a current collector. It can produce by forming on both surfaces.
  • the negative electrode mixture slurry is not coated on the negative electrode current collector 31 in the region to be the negative electrode lead portion 35, and thus the negative electrode mixture layer 32 is not formed on a part of the negative electrode 30 and the current collector surface.
  • a negative electrode lead portion 35 is formed in which is exposed.
  • the negative electrode active material is not particularly limited as long as it can reversibly store and release lithium ions.
  • carbon materials such as natural graphite and artificial graphite, lithium and alloys such as silicon (Si) and tin (Sn), etc. Or an alloy containing a metal element such as Si or Sn, a composite oxide, or the like can be used.
  • a negative electrode active material may be used independently and may be used in combination of 2 or more types.
  • the binder contained in the negative electrode mixture layer 32 as in the case of the positive electrode, fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like can be used.
  • fluorine resin, PAN, polyimide resin, acrylic resin, polyolefin resin, or the like can be used.
  • the negative electrode mixture slurry is prepared using an aqueous solvent, styrene-butadiene rubber (SBR), CMC or a salt thereof, polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA), or the like may be used.
  • the separator 40 a porous sheet having ion permeability and insulating properties is used. Specific examples of the porous sheet include a microporous thin film, a woven fabric, and a nonwoven fabric.
  • the material of the separator olefinic resins such as polyethylene and polypropylene, cellulose and the like are suitable.
  • the separator may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • the multilayer separator containing a polyethylene layer and a polypropylene layer may be sufficient, and what applied the aramid resin etc. to the surface of the separator may be used.
  • a filler layer containing an inorganic filler may be formed at the interface between the separator 40 and at least one of the positive electrode 20 and the negative electrode 30.
  • the inorganic filler include oxides containing at least one of titanium (Ti), aluminum (Al), silicon (Si), and magnesium (Mg), and phosphoric acid compounds.
  • the filler layer can be formed by, for example, applying a slurry containing the filler to the surface of the positive electrode 20, the negative electrode 30, or the separator 40.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the nonaqueous electrolyte is not limited to a liquid electrolyte (nonaqueous electrolyte solution), and may be a solid electrolyte using a gel polymer or the like.
  • the non-aqueous solvent for example, esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and a mixed solvent of two or more of these can be used.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in these solvents is substituted with a halogen atom such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methyl ethyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate.
  • Chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate
  • cyclic carboxylic acid esters such as ⁇ -butyrolactone and ⁇ -valerolactone, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, Examples thereof include chain carboxylic acid esters such as ⁇ -butyrolactone.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , Dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxy toluene, benzyl ethyl ether, diphenyl ether, diphen
  • a fluorinated cyclic carbonate such as fluoroethylene carbonate (FEC), a fluorinated chain carbonate, a fluorinated chain carboxylate such as methyl fluoropropionate (FMP), or the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylate
  • the electrolyte salt is preferably a lithium salt.
  • the lithium salt LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiAlCl 4, LiSCN, LiCF 3 SO 3, LiCF 3 CO 2, Li (P (C 2 O 4) F 4), LiPF 6-x (C n F 2n + 1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, LiBCl, Li 2 B 4 O 7 , Li (B Borates such as (C 2 O 4 ) F 2 ), LiN (SO 2 CF 3 ) 2 , LiN (C l F 2l + 1 SO 2 ) (C m F 2m + 1 SO 2 ) ⁇ l, m Imide salts such as an integer of 1 or more.
  • lithium salts may be used alone or in combination of two or more.
  • LiPF 6 is preferably used from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • concentration of the lithium salt is preferably 0.8 to 1.8 mol per liter of the nonaqueous solvent.
  • Example 1 [Production of positive electrode] 93.5 parts by weight of aluminum oxide (Al 2 O 3 ), 5 parts by weight of acetylene black (AB) and 1.5 parts by weight of polyvinylidene fluoride (PVdF) are mixed, and N-methyl-2 -An appropriate amount of pyrrolidone (NMP) was added to prepare a slurry for the protective layer. Next, the said slurry was apply
  • Al 2 O 3 aluminum oxide
  • AB acetylene black
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2 -An appropriate amount of pyrrolidone
  • the amount of slurry applied to the portion where the positive electrode mixture layer is not formed in the subsequent process is the portion where the positive electrode mixture layer is formed, ie, the portion corresponding to the first region 23A. More than the amount of slurry applied. Specifically, in the portion corresponding to the second region 23B, the portion corresponding to the first region 23A so that the surface density of the coating film (protective layer) after drying is 10 g / m 2 and the thickness is 6 ⁇ m. Then, the slurry was applied so that the surface density of the coated film after drying was 5 g / m 2 and the thickness was 3 ⁇ m.
  • a lithium-containing transition metal oxide represented by LiNi 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode active material 2 parts by weight of acetylene black (AB), and 1 part by weight of polyvinylidene fluoride (PVdF) And an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to prepare a positive electrode mixture slurry.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode is formed with a main body portion having a substantially rectangular shape in plan view and a positive electrode lead portion protruding from the end of the main body portion in the cutting step.
  • a protective layer and a positive electrode mixture layer are formed over substantially the entire area.
  • a protective layer (second region 23B) is formed in a range of about 1/3 of the longitudinal length of the lead portion from the base.
  • the surface of the positive electrode current collector is exposed in a range of about 2/3 from the tip of the positive electrode lead portion.
  • a positive electrode mixture layer is slightly formed at the base of the positive electrode lead portion and in the vicinity thereof.
  • the shape of the positive electrode is the same as that shown in FIG.
  • Ethylene carbonate (EC), methyl ethyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 3: 3: 4.
  • LiPF 6 was dissolved in the mixed solvent at a concentration of 1.2 mol / L to prepare a nonaqueous electrolyte.
  • Example 2 The protective layer slurry was applied so that the surface density of the first region of the protective layer was 3 g / m 2 and the thickness was 1.8 ⁇ m, and the surface density of the second region was 5 g / m 2 and the thickness was 3 ⁇ m.
  • a battery was fabricated in the same manner as in Example 1 except for the above.
  • Example 3 The protective layer slurry was applied so that the surface density of the first region of the protective layer was 1.6 g / m 2 , the thickness was 1 ⁇ m, the surface density of the second region was 3 g / m 2 , and the thickness was 1.8 ⁇ m.
  • a battery was fabricated in the same manner as in Example 1 except for the above.
  • Example 4 A battery was fabricated in the same manner as in Example 1 except that titanium oxide (TiO 2 ) was used instead of Al 2 O 3 in forming the protective layer.
  • Example 1 A battery was fabricated in the same manner as in Example 1 except that Al 2 O 3 and acetylene black (AB) were not used in forming the protective layer, and the same amount of the protective layer slurry was applied.
  • Al 2 O 3 and acetylene black (AB) were not used in forming the protective layer, and the same amount of the protective layer slurry was applied.
  • Example 3 A battery was fabricated in the same manner as in Example 1 except that the protective layer slurry was applied in the same amount so that the surface density of the protective layer was 1.6 g / m 2 and the thickness was 1 ⁇ m.
  • Electrode body Positive electrode terminal 13 Negative electrode terminal 14 Battery case 15 Case main body 16 Sealing body 17 Insulating member 20 Positive electrode 21 Positive electrode collector 22 Positive electrode composite material layer 23 Protective layer 23A 1st area

Abstract

正極は、アルミニウムを主成分として構成される正極集電体と、リチウム含有遷移金属酸化物を含み、正極集電体上に形成された正極合材層と、正極集電体と正極合材層との間に介在する保護層とを備える。保護層は、無機物粒子、導電材、及び結着材を含み、無機物粒子を主成分として構成される。保護層は、正極集電体上において、正極合材層が形成される範囲の略全域に形成される第1領域と、正極合材層の縁からはみ出して形成される第2領域とを有し、第2領域の単位面積当たりの重量が、第1領域の単位面積当たりの重量の1.5倍以上である。

Description

非水電解質二次電池用正極及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極及び非水電解質二次電池に関する。
 非水電解質二次電池用正極(以下、単に「正極」という)は、正極集電体と、当該集電体上に形成された正極合材層とを備える。正極は、例えば正極端子と電気的に接続されるリードとなる部分に、正極合材層が形成されず集電体表面が露出した露出部を有する。正負極間におけるリチウムイオンの円滑な移動を確保するため、正極は負極よりも小さく設計されるが、この場合、正極集電体の露出部がセパレータを介して負極と対向することになる。そして、正極集電体の露出部と負極の間に異物が入り込み、当該異物がセパレータを突き破ると、当該露出部と負極が接触して大電流が流れる低抵抗な内部短絡が発生し、大きな発熱が起こる場合がある。
 かかる低抵抗な内部短絡を防止すべく、例えば特許文献1では、正極集電体の露出部にバインダ樹脂と溶媒とを含むバインダ溶液を塗布し乾燥して形成された絶縁層を有する正極が開示されている。
特開2013-45659号公報
 しかし、特許文献1に開示された絶縁層は、バインダ樹脂のみから構成される薄膜層であるため、異物混入による内部短絡の抑制効果は小さい。特に、異物の寸法が大きな場合は当該絶縁層による内部短絡の抑制効果は十分ではないと考えられる。
 加えて、非水電解質二次電池では、釘刺し等により正極合材層が形成された範囲と負極間に内部短絡が発生した場合の発熱量を小さくすることが求められているが、特許文献1の技術では当該発熱量を低減することは困難である。
 本開示の一態様である非水電解質二次電池用正極は、アルミニウムを主成分として構成される正極集電体と、リチウム含有遷移金属酸化物を含み、前記正極集電体上に形成された正極合材層と、前記正極集電体と前記正極合材層との間に介在する保護層とを備える。前記保護層は、無機物粒子、導電材、及び結着材を含み、前記無機物粒子を主成分として構成される。前記非水電解質二次電池用正極は、前記正極集電体上において、前記正極合材層が形成される範囲の略全域に形成される第1領域と、前記正極合材層の縁からはみ出して形成される第2領域とを有し、前記第2領域の単位面積当たりの重量が、前記第1領域の単位面積当たりの重量の1.5倍以上である。
 本開示の一態様である非水電解質二次電池は、上記正極と、負極と、正極と負極との間に介在するセパレータと、非水電解質とを備え、保護層は、セパレータを介して負極と対向する位置に設けられている。
 本開示の一態様である非水電解質二次電池用正極によれば、電池特性を損なうことなく、正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制できる。また、例えば釘刺し等により内部短絡が発生した場合に、発熱量を抑えることができる。
実施形態の一例である非水電解質二次電池の斜視図である。 実施形態の一例である正極の断面図である。 実施形態の一例である電極体の積層構造を示す図である。 図3中のAA線断面図である。
 本開示の一態様である正極では、無機物粒子、導電材、及び結着材を含み、無機物粒子を主成分として構成された保護層が、正極集電体上において、正極合材層が形成される範囲の略全域に形成され、且つ正極合材層との間からはみ出して形成されている。無機物粒子を主成分として構成される保護層は、硬くて破断し難いため、例えば200μm以上の大きな異物が混入した場合であっても、正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制できる。
 本開示の一態様である正極において、正極合材層の縁からはみ出して形成される保護層の第2領域の単位面積当たりの重量は、正極合材層が形成される範囲に形成される保護層の第1領域の単位面積当たりの重量の1.5倍以上である。この場合、良好な電池性能を確保しながら、低抵抗な内部短絡の発生を高度に抑制できる。
 ところで、釘刺し等により正極合材層が形成された範囲と負極間に内部短絡が発生した場合において、正極活物質であるリチウム含有遷移金属酸化物とアルミニウム(Al)を主成分とするアルミニウム集電体とが酸化還元反応し、大きな発熱が起こる恐れがある。保護層の第1領域は、アルミニウム集電体とリチウム含有遷移金属酸化物を隔離し、アルミニウム集電体が関与する酸化還元反応を抑制して異常発生時の発熱量を低減させる機能をさらに有する。
 上記酸化還元反応を抑制するためには、1μm以上の保護層を集電体上に形成することが好ましい。保護層の厚みを単純に増加させると、集電性が著しく低下して電池性能に支障をきたすことになるが、本発明者らは保護層に導電材を添加することで集電性を確保し、良好な電池特性を維持することに成功したのである。
 以下、本開示に係る正極及び非水電解質二次電池の実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。本明細書において「略~」とは、略全域を例に説明すると、全域および実質的に全域と認められる場合を含む意図である。
 図1は、実施形態の一例である非水電解質二次電池10を示す斜視図である。非水電解質二次電池10は、電極体11と、非水電解質(図示せず)とを備える。電極体11は、正極20と、負極30と、正極20と負極30との間に介在するセパレータ40とによって構成される(後述の図3参照)。電極体11は、正極20、負極30、及びセパレータ40をそれぞれ複数含み、正極20と負極30がセパレータ40を介して交互に積層された積層型の電極体である。なお、本開示の正極は巻回型の電極体に適用されてもよい。
 非水電解質二次電池10は、例えばリチウムイオン電池であって、発電要素である電極体11及び非水電解質が電池ケース14内に収容されている。電池ケース14は、一般的に略箱形状のケース本体15と、ケース本体15の開口部を塞ぐ封口体16とによって構成される。非水電解質二次電池10は、例えば角形電池である。ケース本体15及び封口体16は、アルミニウムを主成分とする金属材料から構成されることが好ましい。電池ケース14には従来公知の構造を適用できる。
 封口体16上には、各正極20と電気的に接続された正極端子12と、各負極30と電気的に接続された負極端子13とが設けられている。正極端子12には、正極集電体21の表面が露出した正極リード部25(後述の図3参照)が直接、又は他の導電部材を介して接続される。負極端子13には、負極集電体31の表面が露出した負極リード部35(後述の図3参照)が直接、又は他の導電部材を介して接続される。以下では、説明の便宜上、正極端子12と負極端子13が並ぶ方向を横方向とし、横方向及び電極体11を構成する各電極の積層方向に直交する方向を縦方向とする。
 封口体16の横方向両側には、図示しない貫通孔がそれぞれ形成されており、正極端子12及び負極端子13、又は各端子に接続された導電部材は当該各貫通孔から電池ケース14内に挿入される。正極端子12及び負極端子13は、例えば貫通孔に設置される絶縁部材17を介して封口体16にそれぞれ固定される。なお、一般的に封口体16にはガス排出機構(図示せず)が設けられている。
 以下、図2~図4を参照しながら、非水電解質二次電池10の各構成要素、特に電極体11(中でも正極20)について詳説する。
 [正極]
 図2は、実施形態の一例である正極20の断面図である。正極20は、アルミニウム(Al)を主成分として構成される正極集電体21と、リチウム含有遷移金属酸化物を含み、正極集電体21上に形成された正極合材層22と、正極集電体21と正極合材層22との間に介在する保護層23とを備える。正極合材層22は、正極活物質としてリチウム含有遷移金属酸化物を含み、さらに導電材及び結着材を含むことが好適である。正極合材層22は、一般的に正極集電体21の両面に形成される。
 正極20は、例えば保護層23が形成された正極集電体21上に正極活物質、結着材等を含む正極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合材層22を集電体の両面に形成することにより作製できる。なお、正極合材スラリーは正極集電体21上において正極リード部25となる領域には塗工されず、これにより正極20の一部には正極合材層22が形成されず集電体表面が露出した正極リード部25が形成される。
 正極集電体21には、例えばアルミニウム又はアルミニウム合金が用いられる。正極集電体21におけるアルミニウムの含有量は、集電体の重量に対して50%以上であり、好ましくは70%以上、より好ましくは80%以上である。正極集電体21は、例えばアルミニウム又はアルミニウム合金からなる金属の箔であって、10~100μm程度の厚みを有する。
 正極活物質としては、コバルト(Co)、マンガン(Mn)、ニッケル(Ni)等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLixCoO2、LixNiO2、LixMnO2、LixCoyNi1-y2、LixCoy1-yz、LixNi1-yyz、LixMn24、LixMn2-yy4、LiMPO4、Li2MPO4F(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。
 正極合材層22に含まれる導電材は、合材層の電気伝導性を高めるために用いられる。導電材の例としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合材層22に含まれる結着材は、正極活物質及び導電材間の良好な接触状態を維持し、且つ集電体表面に対する正極活物質等の結着性を高めるために用いられる。結着材の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。また、これらの樹脂と、カルボキシメチルセルロース(CMC)又はその塩(CMC-Na、CMC-K、CMC-NH4等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)等が併用されてもよい。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 保護層23は、無機物粒子24、導電材、及び結着材を含み、無機物粒子24を主成分として構成される。無機物粒子24は、保護層23を構成する成分のうち最も重量が多い成分である。導電材は、保護層23の導電性を向上させる。結着材は、無機物粒子24と導電材を結着させ、集電体表面に無機物粒子24等を結着させる。保護層23は、正極集電体21上に形成され、保護層23上に正極合材層22が形成される。正極合材層22は、上述のように正極集電体21の両面に形成されるため、保護層23は、正極集電体21の両面に形成されることが好適である。
 保護層23は、正極集電体21上において、正極合材層22が形成される範囲の略全域に形成される第1領域23Aと、正極合材層22の縁からはみ出して形成される第2領域23Bとを有する。第2領域23B上には正極合材層22は形成されていない。第1領域23Aは、正極合材層22と正極20の厚み方向に重なって形成され、正極集電体21と正極合材層22との間に介在している。第1領域23Aと第2領域23Bは途切れることなく連続して形成される。本実施形態では、第2領域23Bが正極リード部25の付け根側に形成されている。
 第1領域23Aは、アルミニウムを主成分とする正極集電体21とリチウム遷移金属酸化物を隔離し、正極集電体21が関与する酸化還元反応を抑制する。そして、釘刺し等により内部短絡が発生した場合の発熱量を抑え、電池の釘刺し安全性を向上させる。他方、第2領域23Bは、正極集電体21の正極合材層22が形成されない部分と負極30との低抵抗な内部短絡の発生を高度に抑制する。第2領域23Bは、無機物粒子24を主成分とする硬質層であるため、200μm以上の大きな異物が強く当接しても破断し難い。
 保護層23は、第2領域23Bの単位面積当たりの重量が、第1領域23Aの単位面積当たりの重量よりも多くなっている。すなわち、第2領域23Bの面密度は、第1領域23Aの面密度よりも高い。第2領域23Bの単位面積当たりの重量は、第1領域23Aの単位面積当たりの重量の1.5倍以上、好ましくは1.6倍以上であり、例えば1.5倍~5倍、又は1.5倍~3倍、又は1.6倍~2.5倍である。なお、第2領域23Bは、正極合材層22の厚みの範囲内で形成されることが好適である。この場合、良好な電池性能を確保しながら、低抵抗な内部短絡の発生を高度に抑制できる。
 第1領域23Aの単位面積当たりの重量は、0.1~20g/m2が好ましく、0.5~10g/m2がより好ましく、1~5g/m2が特に好ましい。第2領域23Bの単位面積当たりの重量は、好ましくは2g/m2以上、より好ましくは2.5g/m2以上、特に好ましくは3g/m2以上であり、例えば2~50g/m2、又は2.5~30g/m2、又は3~20g/m2である。
 保護層23の厚みは、第1領域23Aと第2領域23Bとで異なっていてもよい。第1領域23Aの厚みは、1~20μmが好ましく、1~10μmがより好ましく、1~5μmが特に好ましい。保護層23には導電材が含まれるため、保護層23を厚く形成しても正極集電体21と正極合材層22の導電性を損なわず、良好な電池特性を維持できる。但し、第1領域23Aを厚くし過ぎると電池容量の低下を招く場合があるため、第1領域23Aの厚みは上記範囲内に設定されることが好ましい。
 他方、第2領域23Bは、正極合材層22の厚みの範囲内で形成される限り、その厚みは電池容量に殆ど影響しないため、20μmを超える厚みで形成されてもよい。第2領域23Bの厚みは、1.5~30μmが好ましく、1.5~25μmがより好ましく、1.5~20μmが特に好ましい。第2領域23Bの厚みは、第1領域23Aの厚みよりも大きいことが好ましい。
 保護層23は、無機物粒子24、導電材、結着材、及び分散媒を混合して調製された保護層用スラリーを正極集電体21の両面に塗布して塗膜を乾燥させることにより形成できる。具体的には、第2領域23Bに対応する部分に対するスラリーの塗布量を、第1領域23Aに対応する部分に対するスラリーの塗布量よりも多くすることで、第2領域23Bの面密度が第1領域23Aの面密度よりも高くなった保護層23を形成できる。保護層用スラリーは、例えば第1領域23A及び第2領域23Bに対応する部分に同じ量で塗布された後、第2領域23Bに対応する部分のみに再度塗布される。
 また、具体的には、第2領域23Bに対応する部分に塗布するスラリーに含まれる無機物粒子24の比率を、第1領域23Aに塗布するスラリーに含まれる無機物粒子24の比率よりも高くすることで、第2領域23Bの面密度が第1領域23Aの面密度よりも高くなった保護層23を形成できる。
 図2に示す例では、第1領域23Aにおいて、無機物粒子24が正極集電体21にめり込んでいる。例えば、正極20の圧延工程で正極合材層22が圧縮されることにより、第1領域23Aも押圧されて無機物粒子24が正極集電体21にめり込む。無機物粒子24が正極集電体21にめり込むことで、第1領域23Aと正極集電体21との結着性が向上する。一方、第2領域23Bは圧延工程で圧縮されず、第2領域23Bでは無機物粒子24が正極集電体21にめり込んでいない。
 保護層23に含まれる無機物粒子24は、比抵抗が103Ω・m以上である無機化合物を主成分とする粒子であることが好ましい。比抵抗が103Ω・m以上である無機化合物を用いることで大電流が流れる低抵抗な短絡の発生が抑制される。無機物粒子24の含有量は、保護層23の重量に対して70~99.8重量%が好ましく、90~99重量%が特に好ましい。
 好適な無機物粒子24の具体例としては、酸化アルミニウム、酸化チタン、酸化マンガン、及び酸化ケイ素から選択される少なくとも1種が挙げられる。中でも、酸化アルミニウム(Al23)又は酸化チタン(TiO2)を用いることが好ましい。無機物粒子24の平均粒径は、例えば1μm以下であり、好ましくは0.3~1μmである。ここで、平均粒径とは光散乱法により測定される体積平均粒径を意味する。
 保護層23に含まれる導電材には、正極合材層22に適用される導電材と同種のもの、例えばカーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などを用いることができる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。導電材の含有量は、保護層23の重量に対して0.1~20重量%が好ましく、1~10重量%が特に好ましい。保護層23における導電材の含有率は、例えば正極合材層22における導電材の含有率よりも高い。
 保護層23に含まれる結着材には、正極合材層22に適用される結着材と同種のもの、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などを用いることができる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。結着材の含有量は、保護層23の重量に対して0.1~20重量%が好ましく、1~10重量%が特に好ましい。
 図3及び図4は、電極体11の積層構造を示す図である。図3では、負極30を破線で、セパレータ40を二点鎖線で示す。図4では、セパレータ40の図示を省略する。電極体11は、正極20と負極30がセパレータ40を介して交互に積層された積層構造を有する。上述のように、正負極間におけるリチウムイオンの円滑な移動を確保するため、正極20は負極30よりも小さく形成され、少なくとも正極合材層22が形成された部分は負極30の負極合材層32が形成された部分に対向配置される。
 正極20は、正極集電体21の一部が突出して形成された正極リード部25を有する。正極20は、例えば正面視略矩形形状の本体部26と、本体部26の縦方向一端から突出した平面視略矩形形状の正極リード部25とを有する。正極合材層22は、本体部26の両面の略全域に形成され、正極リード部25の付け根にも僅かに形成されている。換言すると、正極合材層22は正極リード部25の大部分に形成されていない。各正極リード部25の集電体表面が露出した部分は互いに重ね合わされ、正極端子12に接続される。
 負極30は、負極集電体31の一部が突出して形成された負極リード部35を有する。負極30は、例えば正面視略矩形形状の本体部36と、本体部36の縦方向一端から突出した平面視略矩形形状の負極リード部35とを有する。各負極リード部35の集電体表面が露出した部分は互いに重ね合わされ、負極端子13に接続される。本実施形態では、正極リード部25が電極体11の横方向一端側に、負極リード部35が電極体11の横方向他端側にそれぞれ配置されている。正極リード部25は、負極30と対向する範囲を超えて縦方向に延びている。
 保護層23は、本体部26の両面の略全域に形成され、正極リード部25において正極合材層22の縁からはみ出し、正極合材層22が形成されない部分にも形成される。保護層23の正極合材層22の縁からはみ出した第2領域23Bは、負極30と対向する範囲だけに形成されてもよく、正負極の位置ずれを考慮し、好ましくは負極30と対向する範囲を超えて形成されてもよい。
 図3に示す例では、正極リード部25の付け根から当該リード部の縦方向長さの1/3程度の範囲に保護層23(第2領域23B)が形成されている。そして、正極リード部25の先端から2/3程度の範囲で集電体表面が露出している。保護層23は、負極30と対向する範囲を超えて形成されていればよく、セパレータ40との位置関係は特に限定されない。極板上で電流の集中する正極リード部25と負極30とが対向する範囲に厚みのある保護層23を形成することで、異物混入時の安全性を高めることができる。
 [負極]
 負極30は、上述のように金属箔等からなる負極集電体31と、当該集電体上に形成された負極合材層32とを備える。負極集電体31には、銅などの負極30の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層32は、負極活物質の他に、結着材を含むことが好適である。負極合材層32は、一般的に負極集電体31の両面に形成される。
 負極30は、例えば負極集電体31上に負極活物質、結着材等を含む負極合材スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合材層32を集電体の両面に形成することにより作製できる。なお、負極合材スラリーは負極集電体31上において負極リード部35となる領域には塗工されず、これにより負極30の一部には負極合材層32が形成されず集電体表面が露出した負極リード部35が形成される。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のリチウムと合金化する金属、又はSi、Sn等の金属元素を含む合金、複合酸化物などを用いることができる。負極活物質は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 負極合材層32に含まれる結着材としては、正極の場合と同様にフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂等を用いることができる。水系溶媒を用いて負極合材スラリーを調製する場合は、スチレン-ブタジエンゴム(SBR)、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等を用いてもよい。
 [セパレータ]
 セパレータ40には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロースなどが好適である。セパレータは、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータの表面にアラミド系樹脂等が塗布されたものを用いてもよい。
 セパレータ40と正極20及び負極30の少なくとも一方との界面には、無機物のフィラーを含むフィラー層が形成されていてもよい。無機物のフィラーとしては、例えばチタン(Ti)、アルミニウム(Al)、ケイ素(Si)、マグネシウム(Mg)の少なくとも1種を含有する酸化物、リン酸化合物などが挙げられる。フィラー層は、例えば当該フィラーを含有するスラリーを正極20、負極30、又はセパレータ40の表面に塗布して形成することができる。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水電解質は、液体電解質(非水電解液)に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル、γ-ブチロラクトン等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステル等を用いることが好ましい。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiAlCl4、LiSCN、LiCF3SO3、LiCF3CO2、Li(P(C24)F4)、LiPF6-x(Cn2n+1x(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、LiBCl、Li247、Li(B(C24)F2)等のホウ酸塩類、LiN(SO2CF32、LiN(Cl2l+1SO2)(Cm2m+1SO2){l,mは1以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPF6を用いることが好ましい。リチウム塩の濃度は、非水溶媒1L当り0.8~1.8molとすることが好ましい。
 以下、実施例により本開示をさらに詳説するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 酸化アルミニウム(Al23)を93.5重量部と、アセチレンブラック(AB)を5重量部と、ポリフッ化ビニリデン(PVdF)を1.5重量部とを混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて保護層用スラリーを調製した。次に、当該スラリーを厚み15μmのアルミニウム箔からなる長尺状の正極集電体の両面に塗布し、塗膜を乾燥させることにより保護層を形成した。
 このとき、後工程で正極合材層が形成されない部分、即ち第2領域23Bに対応する部分に対するスラリーの塗布量を、正極合材層が形成される部分、即ち第1領域23Aに対応する部分に対するスラリーの塗布量よりも多くした。具体的には、第2領域23Bに対応する部分で、乾燥後の塗膜(保護層)の面密度が10g/m2、厚みが6μmとなるように、また第1領域23Aに対応する部分で、乾燥後の塗膜の面密度が5g/m2、厚みが3μmとなるように、スラリーを塗布した。
 正極活物質としてLiNi0.5Co0.2Mn0.32で表されるリチウム含有遷移金属酸化物を97重量部と、アセチレンブラック(AB)を2重量部と、ポリフッ化ビニリデン(PVdF)を1重量部とを混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。次に、当該正極合材スラリーを保護層(第1領域23A)が形成された正極集電体の両面に塗布し、塗膜を乾燥させた。ローラーを用いて塗膜を圧延した後、所定の電極サイズに切断し、正極集電体の両面に保護層及び正極合材層が順に形成された正極を作製した。
 正極には、上記切断工程において、平面視略矩形形状の本体部、及び本体部の端から突出した正極リード部が形成される。本体部には、保護層及び正極合材層が略全域に形成されている。正極リード部には、その付け根からリード部の縦方向長さの1/3程度の範囲に保護層(第2領域23B)が形成されている。そして、正極リード部の先端から2/3程度の範囲で正極集電体の表面が露出している。なお、正極リード部の付け根及びその近傍には、僅かに正極合材層が形成されている。正極の形状は、図3で図示するものと同様である。
 [負極の作製]
 黒鉛粉末を98.7重量部と、カルボキシメチルセルロース(CMC)を0.7重量部と、スチレン-ブタジエンゴム(SBR)を0.6重量部とを混合し、さらに水を適量加えて、負極合材スラリーを調製した。次に、当該負極合材スラリーを銅箔からなる長尺状の負極集電体の両面に塗布し、塗膜を乾燥させた。ローラーを用いて塗膜を圧延した後、所定の電極サイズに切断し、負極集電体の両面に負極合材層が形成された負極を作製した。負極には、正極の場合と同様に、本体部及び負極リード部が形成される。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(EMC)と、ジメチルカーボネート(DMC)を、3:3:4の体積比で混合した。当該混合溶媒に、LiPF6を1.2mol/Lの濃度で溶解させて非水電解質を調製した。
 [電池の作製]
 上記正極と上記負極をポリエチレン製のセパレータを介して交互に積層することにより、積層型の電極体を作製した。正極と負極の積層枚数は、それぞれ16枚とした。各正極の正極リード部は電極体の横方向一端側に、各負極の負極リード部は電極体の横方向他端側にそれぞれ配置した。このとき、正極リード部において正極合材層の縁からはみ出して形成された保護層の第2領域が、負極と対向する範囲を超えるように正極及び負極を積層した。当該電極体を略箱形状のケース本体に収容した後、上記非水電解液を注入した。そして、各リード部を封口体に設けられた正極端子及び負極端子にそれぞれ接続し、封口体によりケース本体の開口部を塞ぎ、積層型の電極体を備えた角形電池を作製した。
 <実施例2>
 保護層の第1領域の面密度が3g/m2、厚みが1.8μmとなり、第2領域の面密度が5g/m2、厚みが3μmとなるように、保護層用スラリーを塗布したこと以外は、実施例1と同様にして電池を作製した。
 <実施例3>
 保護層の第1領域の面密度が1.6g/m2、厚みが1μm、第2領域の面密度が3g/m2、厚みが1.8μmとなるように、保護層用スラリーを塗布したこと以外は、実施例1と同様にして電池を作製した。
 <実施例4>
 保護層の形成において、Al23の代わりに酸化チタン(TiO2)を用いたこと以外は、実施例1と同様にして電池を作製した。
 <比較例1>
 保護層の形成において、Al23及びアセチレンブラック(AB)を用いず、且つ保護層用スラリーを同じ量で塗布したこと以外は、実施例1と同様にして電池を作製した。
 <比較例2>
 保護層の形成において、Al23を用いず、アセチレンブラック(AB)の代わりに黒鉛粉末を用い、且つ保護層用スラリーを同じ量で塗布したこと以外は、実施例1と同様にして電池を作製した。
 <比較例3>
 保護層の面密度が1.6g/m2、厚みが1μmとなるように、保護層用スラリーを同じ量で塗布したこと以外は、実施例1と同様にして電池を作製した。
 <比較例4>
 保護層の第2領域を形成しなかったこと(第2領域に対応する部分に保護層用スラリーを塗布しなかったこと)以外は、比較例3と同様にして電池を作製した。
 [異物短絡試験]
 上記各電池について、下記の手順で試験を行った。
(1)25℃の環境下で、0.3C(600mA)の定電流で電池電圧が4.2Vになるまで充電を行い、その後定電圧で電流値が0.05C(90mA)になるまで充電を引き続き行った。
(2)(1)で充電した電池のケースを解体して電極体を取り出した後、ニッケル小片(高さ0.2mm×幅0.1mmで各辺1mmのL字形)を、正極リード部の保護層が形成された部分(第2領域23B)のうち負極と対向する部位に挿入し、当該挿入部に圧力を印加した。
(3)圧力印加の結果、発火の有無を確認した。
 [釘刺し試験]
 上記各電池について、下記の手順で試験を行った。
(1)25℃の環境下で、0.3C(600mA)の定電流で電池電圧が4.2Vになるまで充電を行い、その後定電圧で電流値が0.05C(90mA)になるまで充電を引き続き行った。
(2)25℃の環境下で、(1)で充電した電池の側面中央部に3mmφの太さの丸釘の先端を接触させ、10mm/secの速度で電池の厚み方向に丸釘を突き刺し、丸釘が完全に電池を貫通した時点で丸釘の突き刺しを停止させた。
(3)丸釘を突き刺した電池側面中央部から10mm離れた位置の電池温度を測定して、最高到達温度を求めた。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例の電池はいずれも、異物短絡試験で発火が確認されず、また比較例の電池と比べて釘刺し試験における最高到達温度が大幅に低かった。なお、比較例の電池の異物短絡試験では発火が確認された。実施例の電池によれば、異物混入による正極集電体と負極との低抵抗な内部短絡の発生を高度に抑制でき、且つ釘刺しにより内部短絡が発生した場合に発熱量を十分に抑えることが可能である。
 10 非水電解質二次電池
 11 電極体
 12 正極端子
 13 負極端子
 14 電池ケース
 15 ケース本体
 16 封口体
 17 絶縁部材
 20 正極
 21 正極集電体
 22 正極合材層
 23 保護層
 23A 第1領域
 23B 第2領域
 24 無機物粒子
 25 正極リード部
 30 負極
 31 負極集電体
 32 負極合材層
 35 負極リード部
 40 セパレータ

Claims (9)

  1.  アルミニウムを主成分として構成される正極集電体と、
     リチウム含有遷移金属酸化物を含み、前記正極集電体上に形成された正極合材層と、
     前記正極集電体と前記正極合材層との間に介在する保護層と、
     を備え、
     前記保護層は、
     無機物粒子、導電材、及び結着材を含み、前記無機物粒子を主成分として構成され、
     前記正極集電体上において、前記正極合材層が形成される範囲の略全域に形成される第1領域と、前記正極合材層の縁からはみ出して形成される第2領域とを有し、
     前記第2領域の単位面積当たりの重量が、前記第1領域の単位面積当たりの重量の1.5倍以上である、非水電解質二次電池用正極。
  2.  前記第2領域の単位面積当たりの重量は2g/m2以上である、請求項1に記載の非水電解質二次電池用正極。
  3.  前記無機物粒子は、比抵抗が103Ω・m以上の無機化合物を主成分とする、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  前記第1領域の厚みは1~20μmであり、前記第2領域の厚みは1.5~30μmである、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極。
  5.  前記無機物粒子は、酸化アルミニウム、酸化チタン、酸化マンガン、及び酸化ケイ素から選択される少なくとも1種である、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極。
  6.  請求項1~5のいずれか1項に記載の正極と、
     負極と、
     前記正極と前記負極との間に介在するセパレータと、
     非水電解質と、
     を備え、
     前記保護層は、前記セパレータを介して前記負極と対向する位置に設けられている、非水電解質二次電池。
  7.  前記正極、前記負極、及び前記セパレータをそれぞれ複数含み、前記正極と前記負極が前記セパレータを介して交互に積層された積層型の電極体を備える、請求項6に記載の非水電解質二次電池。
  8.  前記正極は、前記正極合材層が形成されない正極リード部を有し、
     前記保護層の前記第2領域は、前記正極リード部の一部に形成されている、請求項7に記載の非水電解質二次電池。
  9.  前記保護層の前記第2領域は、前記負極と対向する範囲を超えて形成されている、請求項8に記載の非水電解質二次電池。
PCT/JP2018/004362 2017-03-16 2018-02-08 非水電解質二次電池用正極及び非水電解質二次電池 WO2018168272A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/493,512 US11276860B2 (en) 2017-03-16 2018-02-08 Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN201880007795.5A CN110214385B (zh) 2017-03-16 2018-02-08 非水电解质二次电池用正极和非水电解质二次电池
JP2019505775A JP6868811B2 (ja) 2017-03-16 2018-02-08 非水電解質二次電池用正極及び非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050980 2017-03-16
JP2017050980 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018168272A1 true WO2018168272A1 (ja) 2018-09-20

Family

ID=63523789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004362 WO2018168272A1 (ja) 2017-03-16 2018-02-08 非水電解質二次電池用正極及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US11276860B2 (ja)
JP (1) JP6868811B2 (ja)
CN (1) CN110214385B (ja)
WO (1) WO2018168272A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748535A (zh) * 2019-03-29 2021-12-03 远景Aesc日本有限公司 锂离子二次电池用的正极电极、锂离子二次电池用的正极电极片材和其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871572B (zh) * 2021-09-29 2023-04-25 珠海冠宇电池股份有限公司 一种正极片及锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012074359A (ja) * 2010-09-03 2012-04-12 Gs Yuasa Corp 電池
JP2012234822A (ja) * 2005-08-30 2012-11-29 Sanyo Electric Co Ltd 非水系二次電池
JP2013045659A (ja) * 2011-08-24 2013-03-04 Toyota Motor Corp 非水電解質二次電池
JP2016127000A (ja) * 2014-12-26 2016-07-11 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260838B2 (ja) 2005-08-30 2013-08-14 三洋電機株式会社 非水系二次電池
CN102959768B (zh) * 2010-07-06 2015-04-01 株式会社杰士汤浅国际 蓄电元件用电极体及蓄电元件
CN103733418B (zh) * 2011-09-14 2017-06-27 松下知识产权经营株式会社 非水电解质二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234822A (ja) * 2005-08-30 2012-11-29 Sanyo Electric Co Ltd 非水系二次電池
JP2012074359A (ja) * 2010-09-03 2012-04-12 Gs Yuasa Corp 電池
JP2013045659A (ja) * 2011-08-24 2013-03-04 Toyota Motor Corp 非水電解質二次電池
JP2016127000A (ja) * 2014-12-26 2016-07-11 パナソニック株式会社 非水電解質二次電池用正極及び非水電解質二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113748535A (zh) * 2019-03-29 2021-12-03 远景Aesc日本有限公司 锂离子二次电池用的正极电极、锂离子二次电池用的正极电极片材和其制造方法

Also Published As

Publication number Publication date
CN110214385B (zh) 2023-04-25
US20210135229A1 (en) 2021-05-06
JPWO2018168272A1 (ja) 2020-01-16
CN110214385A (zh) 2019-09-06
US11276860B2 (en) 2022-03-15
JP6868811B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6840507B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP6602130B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
KR101968980B1 (ko) 절연층을 포함하는 이차전지용 케이스 및 이를 포함하는 리튬 이차전지
JP2016164868A (ja) 非水電解質二次電池
US11201334B2 (en) Nonaqueous electrolyte secondary battery positive electrode and nonaqueous electrolyte secondary battery
JP2014199714A (ja) 非水電解質二次電池用負極およびその非水電解質二次電池
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
KR102005779B1 (ko) 음극 활물질 입자의 형상이 상이한 활물질층들을 포함하는 이차전지용 음극의 제조 방법
KR101650053B1 (ko) 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
JP6868811B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
KR20130116806A (ko) 이차전지용 음극
KR20170019054A (ko) 양면에 활물질의 로딩량이 상이한 전극판을 포함하는 전극조립체
JPWO2018198738A1 (ja) 二次電池用正極、及び二次電池
KR20170031452A (ko) 음극 활물질 입자의 경도가 상이한 활물질층들을 포함하는 이차전지용 음극의 제조 방법
JP7108843B2 (ja) 二次電池用正極、及び二次電池
KR20170049136A (ko) 충방전 시 발생하는 가스를 수용할 수 있는 잉여부를 포함하는 전지셀
KR20130116810A (ko) 이차전지용 양극
KR20130117712A (ko) 성능이 우수한 리튬 이차전지
US11749806B2 (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR101637890B1 (ko) 2개 이상의 음극 탭들을 포함하는 이차전지
KR102003704B1 (ko) 특정 방향에서 진공을 인가하여 전극 슬러리를 건조하는 과정을 포함하는 이차전지용 전극을 제조하는 방법
KR101738546B1 (ko) 도전재를 적게 포함하는 단위셀로 구성된 전극조립체 및 이를 포함하는 리튬 이차전지
KR101497348B1 (ko) 리튬 이차전지용 일체형 전극조립체의 제조방법 및 이를 사용하여 제조되는 일체형 전극조립체
WO2019151517A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18768553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505775

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18768553

Country of ref document: EP

Kind code of ref document: A1