WO2018168245A1 - 液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置 - Google Patents

液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置 Download PDF

Info

Publication number
WO2018168245A1
WO2018168245A1 PCT/JP2018/003579 JP2018003579W WO2018168245A1 WO 2018168245 A1 WO2018168245 A1 WO 2018168245A1 JP 2018003579 W JP2018003579 W JP 2018003579W WO 2018168245 A1 WO2018168245 A1 WO 2018168245A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
oxide layer
crystal display
display element
Prior art date
Application number
PCT/JP2018/003579
Other languages
English (en)
French (fr)
Inventor
寛雄 八木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201880017379.3A priority Critical patent/CN110418998B/zh
Publication of WO2018168245A1 publication Critical patent/WO2018168245A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present disclosure relates to, for example, a liquid crystal display element used in a projection-type liquid crystal projector, a method for manufacturing the same, and a projection-type display device including the same.
  • Patent Document 1 discloses a liquid crystal device in which an inorganic alignment film is surface-treated with a silane coupling material.
  • liquid crystal devices liquid crystal display elements
  • improvement in moisture resistance is required from the viewpoint of reliability.
  • a liquid crystal display element is provided between a pair of substrates disposed opposite to each other, a liquid crystal layer disposed between the pair of substrates, and at least one of the liquid crystal layer and the pair of substrates.
  • a method for manufacturing a liquid crystal display element includes: forming an inorganic oxide layer on at least one of a pair of substrates; forming a metal oxide layer on the inorganic oxide layer; After the silane coupling layer is formed on the physical layer, one substrate and the other substrate are arranged to face each other with a gap therebetween, and a liquid crystal layer is formed in the gap.
  • a projection display device includes a light source, a liquid crystal display element according to the embodiment, and a liquid crystal display element including a pixel region that emits light corresponding to an image by modulating light from the light source. And a projection lens that projects an image based on the emitted light.
  • a method for manufacturing a liquid crystal display element according to an embodiment, and a projection display device according to an embodiment at least one of a pair of substrates with a liquid crystal layer disposed therebetween.
  • a silane coupling layer was provided on the metal oxide layer. Accordingly, it is possible to form a strong bond between the inorganic oxide layer and the silane coupling layer, rather than providing the silane coupling layer directly on the surface of the inorganic oxide layer.
  • the method for manufacturing the liquid crystal display element of one embodiment, and the projection display apparatus of one embodiment at least of a pair of substrates having a liquid crystal layer disposed opposite to each other. Since the silane coupling layer is provided on the inorganic oxide layer provided on one substrate via the metal oxide layer, a strong bond is formed between the inorganic oxide layer and the silane coupling layer. The Therefore, it is possible to provide a liquid crystal display element with improved moisture resistance and a projection display device including the same.
  • FIG. 3A It is a cross-sectional schematic diagram showing the process following FIG. 3A. It is a cross-sectional schematic diagram showing the process following FIG. 3B. It is a cross-sectional schematic diagram showing the process following FIG. 3C. It is explanatory drawing of the laminated structure of the orientation film
  • FIG. 1 schematically illustrates a cross-sectional configuration of a liquid crystal display element (liquid crystal display element 1) according to an embodiment of the present disclosure.
  • the liquid crystal display element 1 is used, for example, as a liquid crystal light valve (for example, a light modulation element 141R) of a projection type display device such as a projector (projection type display device 3, see FIG. 6) described later.
  • the liquid crystal display element 1 includes, for example, a pixel circuit substrate 11 and a counter substrate 21 that are disposed to face each other with a liquid crystal layer 30 therebetween, and a liquid crystal layer 30 between each substrate (the pixel circuit substrate 11 and the counter substrate 21).
  • the alignment films 12 and 22 inorganic oxide layers
  • the metal oxide layers 13 and 23, and the silane coupling layers 14 and 24 are stacked in this order.
  • a pixel circuit layer including a transistor is provided on the surface facing the liquid crystal layer 30 of a light-transmitting substrate, and a pixel electrode is provided for each pixel, for example, on the pixel circuit layer. (Both not shown). This pixel electrode is electrically connected to the transistor, and an alignment film 12 is provided on the pixel electrode.
  • a polarizing plate is bonded to the surface of the substrate constituting the pixel circuit substrate 11 opposite to the surface facing the liquid crystal layer 30.
  • a peripheral circuit for driving each pixel is formed around the pixel region (peripheral region (not shown)) of the pixel circuit substrate 11.
  • the counter substrate 21 is provided with, for example, a common counter electrode that is common to all the pixels, although not shown, on the side of the light-transmitting substrate facing the liquid crystal layer 30.
  • An alignment film 22 is provided on the counter electrode.
  • a polarizing plate is bonded to the surface of the substrate constituting the counter substrate 21 opposite to the surface facing the liquid crystal layer 30.
  • Each substrate constituting the pixel circuit substrate 11 and the counter substrate 21 is made of a transparent substrate having optical transparency, such as quartz or glass.
  • the pixel circuit substrate 11 is not necessarily a transparent substrate, and may have a configuration in which a pixel circuit and a reflection plate are provided on a substrate such as silicon.
  • the pixel electrode and the counter electrode are made of a conductive material having optical transparency, for example. Specific examples of such a material include ITO (indium tin oxide).
  • the polarizing plate is made of, for example, polyvinyl alcohol (PVA) in which iodine (I) compound molecules are adsorbed and oriented.
  • the alignment film 12 and the alignment film 22 are made of an inorganic material such as silicon oxide (SiO 2 ), diamond-like carbon, and aluminum oxide film (Al 2 O 3 ).
  • the film thicknesses of the alignment film 12 and the alignment film 22 are preferably, for example, 50 ⁇ m or more and 250 ⁇ m or less.
  • the metal oxide layer 13 and the metal oxide layer 23 are for forming strong bonds (for example, covalent bonds) between the alignment films 12 and 22 and the silane coupling layers 14 and 24, respectively.
  • the metal oxide layer 13 and the metal oxide layer 23 are bonded to hydroxyl groups (—OH groups) on the surfaces of the alignment films 12 and 22 and are more reactive than the hydroxyl groups of the alignment films 12 and 22.
  • a high hydroxyl group is generated on the surface and reacted with a silane coupling agent, and a metal oxide layer is formed between the alignment film 12 and the silane coupling layer 14 and between the alignment film 22 and the silane coupling layer 24, respectively. This is for forming a bond through 13 and 23.
  • the metal oxide layer 13 and the metal oxide layer 23 are made of a light-transmitting material. Specifically, for example, aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ). And metal oxides such as zirconium oxide (ZrO 2 ) and tantalum oxide (Ta 2 O 5 ).
  • the thickness of the metal oxide layer 13 is preferably, for example, 5 nm or less, and more specifically, the thickness is preferably 1 atomic layer or more and 10 atomic layers or less. This is to maintain the surface irregularities of the alignment film 12 and the alignment film 22.
  • the metal oxide layer 13 is preferably formed using, for example, an atomic layer deposition (ALD) method.
  • the alignment film 12 SiO 2 is deposited in a columnar shape on the pixel circuit substrate 11 by performing oblique deposition, and the tilt of the liquid crystal is caused by the surface shape.
  • the ALD method can form the metal oxide layer 13 with an extremely thin film thickness, so that the surface shape of the alignment film 12 can be easily maintained. Therefore, when the orientation control is performed by another method, the metal oxide layer 13 may be thick.
  • the film quality of the metal oxide layer 13 and the metal oxide layer 23 is not particularly limited, and there may be defects such as pinholes.
  • the silane coupling layer 14 and the silane coupling layer 24 are for improving the moisture resistance of the alignment film 12 and the alignment film 22, and are each made of a silane coupling material having an alignment property.
  • Examples of the silane coupling material include a compound represented by the following general formula (1).
  • the silane coupling layer 14 and the silane coupling layer 24 form a covalent bond with the alignment film 12 and the alignment film 22 through the metal oxide layer 13 and the metal oxide layer 23, respectively.
  • the silane coupling layer 14 and the silane coupling layer 24 are formed of, for example, a single molecular layer film.
  • the single molecular layer film does not cover the entire surface of the metal oxide layer 13 and the metal oxide layer 23. Even if it works effectively.
  • the silane coupling layer 14 and the silane coupling layer 24 are formed thick, unevenness is likely to occur. For this reason, it is desirable to form it at the thickness below several molecular layers at most. Specifically, for example, it is preferably 5 nm or less.
  • (X is any of a methoxy group (—OCH 3 ), an ethoxy group (—OC 2 H 5 ), a chlorine atom (Cl), and an amino group (—NH 2 ).
  • B and C are each independently A methoxy group (—OCH 3 ), an ethoxy group (—OC 2 H 5 ), a chlorine atom (Cl) and an amino group (—NH 2 ), or an alkyl group, alkenyl group and alkoxy group having 1 to 3 carbon atoms;
  • A is any one of an alkyl group, an alkenyl group and an alkoxy group having 6 to 20 carbon atoms, or carbon other than carbon atoms at both ends of the carbon chain constituting the alkyl group, alkenyl group and alkoxy group.
  • a group in which an atom is substituted with oxygen, or a group in which at least one of hydrogen atoms constituting an alkyl group, an alkenyl group and an alkoxy group is substituted with a
  • the liquid crystal layer 30 is composed of various liquid crystals such as a VA (Vertical Alignment) type, a TN (Twisted Nematic) type, and an IPS (In-Place-Switching) type, for example, a normally black mode or a normally white (NW). ⁇ Displayed by mode.
  • the liquid crystal layer 30 is sealed with, for example, a thermosetting or UV curable sealing material that is commercially available for liquid crystal displays, which bonds the pixel circuit substrate 11 side and the counter substrate 21 side.
  • the liquid crystal layer 30 is bonded to the pixel circuit substrate 11 side and the counter substrate 21 side by a sealing material, and then liquid crystal is injected and sealed, for example, by a UV curable sealing material.
  • an ODF One Drop Drop Fill
  • FIG. 2 shows the flow of the process of the manufacturing method of the liquid crystal display element 1.
  • 3A to 3D schematically show cross sections of the liquid crystal display element 1 in each step.
  • the alignment film 12 is formed by, for example, oblique deposition on the pixel circuit substrate 11 in which the transistor and the pixel electrode are provided for each pixel (step S101).
  • an SiO 2 film for example, having a thickness of 100 nm, for example, is inclined at an angle in the range of 40 to 70 °, for example, with the horizontal direction being 0 °.
  • a metal oxide layer 13 is formed on the alignment film 12 (step S102). Specifically, for example, a five atomic layer Al 2 O 3 film is formed on the alignment film 12 by using, for example, an ALD method.
  • the metal oxide layer 13 is preferably an ALD method, but may be formed by using, for example, a chemical vapor deposition (CVD) method or sputtering.
  • the metal oxide layer 13 is preferably formed in a thin film in order to maintain the surface shape of the alignment film 12, but is not limited to this as long as a separate orientation control means is prepared.
  • the surface of the metal oxide layer 13 is subjected to silane coupling treatment (step S103).
  • a silane coupling material having an alkyl chain having 6 or more carbon atoms is deposited on the metal oxide layer 13 as vapor under normal pressure or reduced pressure, for example.
  • the reactive group (for example, X in the general formula (1)) of the silane coupling material is a chlorine atom, an amino group or the like
  • the reaction is terminated as it is.
  • water vapor is introduced to cause hydrolysis and react with a hydroxyl group on the surface of the metal oxide layer 13.
  • the silane coupling layer 14 is formed on the metal oxide layer 13.
  • the pixel circuit substrate 11 and the counter substrate 21 are bonded together with a gap (step S104).
  • the pixel circuit substrate 11 in which the alignment film 12, the metal oxide layer 13, and the silane coupling layer 14 are laminated in this order and the counter substrate 21 formed by using the same method are combined with the silane coupling. It arrange
  • a UV curable sealing material is applied and bonded, and UV is irradiated to cure the sealing material.
  • liquid crystal is injected into the gap between the pixel circuit substrate 11 and the counter substrate 21 to form the liquid crystal layer 30.
  • a sealing material is applied to the injection port and cured by irradiation with UV. Thereby, the liquid crystal display element 1 shown in FIG. 1 is completed.
  • the silane coupling material has low reactivity with the hydroxyl group on the surface of the inorganic alignment film, and it is difficult to form a strong bond with the surface of the inorganic alignment film.
  • the silane coupling material is hydrolyzed and further heated to form the inorganic film.
  • a method of dehydrating and condensing with the above hydroxyl group has been developed.
  • the condensation reaction with the hydroxyl group on the inorganic film needs to be performed under a high temperature condition. When the temperature is increased, the silane coupling material is detached from the inorganic film before the reaction.
  • the metal oxide is formed on, for example, the alignment film 12 provided on the pixel circuit substrate 11 of the pixel circuit substrate 11 and the counter substrate 21 that are disposed to face each other with the liquid crystal layer 30 therebetween.
  • a physical layer 13 is provided, and a silane coupling layer 14 is provided via the metal oxide layer 13.
  • the metal oxide layer 13 is interposed via the metal atoms constituting the metal oxide layer 13.
  • a strong bond (for example, a covalent bond) is formed between the hydroxyl group of the alignment film 12 and the reactive group of the silane coupling material constituting the silane coupling layer 14.
  • the alignment film 12 provided on the pixel circuit substrate 11, for example, of the pair of substrates (the pixel circuit substrate 11 and the counter substrate 21) opposed to each other with the liquid crystal layer 30 interposed therebetween.
  • the metal oxide layer 13 was provided between the silane coupling layer 14 and the silane coupling layer 14.
  • the hydroxyl group on the surface of the alignment film 12 and the reactive group of the silane coupling material constituting the silane coupling layer 14 form a covalent bond through the metal atom of the metal oxide layer 13. Therefore, the moisture resistance of the liquid crystal display element 1 can be improved. As a result, it is possible to suppress the occurrence of leakage current between the pixels of the alignment film 12.
  • the metal oxide layer 13 and the metal oxide layer 23 are provided on the alignment film 12 and the alignment film 22 provided on the pixel circuit substrate 11 side and the counter substrate 21 side, respectively. Although shown, it can improve the moisture resistance of the liquid crystal display element 1 compared with a general liquid crystal display element also by providing only in either one. In that case, the metal oxide layer is preferably provided on the pixel circuit substrate 11 side.
  • the tilt of the alignment film 12 and the alignment film 22 can be easily maintained by forming the metal oxide layer 13 and the metal oxide layer 23 using the ALD method, respectively.
  • FIG. 5 schematically illustrates an example of a cross-sectional configuration of a liquid crystal display element (liquid crystal display element 2) according to a modification of the present disclosure.
  • the liquid crystal display element 2 is used as, for example, a liquid crystal light valve of a projection display device such as a projector described later (projection display device 4, see FIG. 7).
  • the liquid crystal display element 2 includes, for example, a liquid crystal layer 30 between a reflective plate 41 and a counter substrate 21 that are disposed to face each other, and between the reflective plate 41 and the liquid crystal layer 30, the reflective plate 41.
  • a dielectric layer 42, a metal oxide layer 43, and a silane coupling layer 14 are laminated.
  • an alignment film 22, a metal oxide layer 23, and a silane coupling layer 24 are stacked in this order from the counter substrate 21 side between the counter substrate 21 and the liquid crystal layer 30.
  • the reflector 41 is made of a material having light reflectivity such as aluminum (Al).
  • the dielectric layer 42 is made of a dielectric material, and a specific example of the dielectric material is SiO 2 .
  • the metal oxide layer 43 is, for example, for improving the reflectance of the light incident on the liquid crystal display element 2 in the direction of the surface S1 using the difference in refractive index together with the dielectric layer.
  • the metal oxide layer 43 is formed using a material having a higher refractive index than the dielectric layer 42.
  • the film thicknesses of the metal oxide layer 43 and the dielectric layer 42 are set according to the purpose because the optimum values differ depending on the wavelength.
  • the liquid crystal display element 2 of this modification can be manufactured as follows, for example.
  • a dielectric layer 42 is formed on the reflection plate 41 by using, for example, a CVD method to form, for example, a SiO 2 film with a thickness of, for example, 75 nm.
  • a metal oxide layer 43 is formed on the dielectric layer 42 by using, for example, a CVD method to form, for example, an HfO 2 film with a thickness of, for example, 74 nm.
  • the surface of the metal oxide layer 43 is subjected to silane coupling treatment, and the silane coupling layer 14 is formed on the metal oxide layer 43.
  • the silane coupling layer 14 and the silane coupling layer 24 are arranged so as to face each other and bonded together with a gap therebetween, and then a liquid crystal is injected into the gap to form a liquid crystal layer.
  • the liquid crystal display element 2 shown in FIG. 5 is completed.
  • the metal oxide layer 43 in this modification is disposed as an optical film together with the dielectric layer 42.
  • the reflectance of the light incident on the liquid crystal display element 2 in the direction of the surface S1 using the difference in refractive index between the dielectric layer 42 and the metal oxide layer 43. (For example, 4%) can be improved.
  • the reflective liquid crystal display element 2 is formed by a simpler method while maintaining the bonding strength between the inorganic oxide layer (dielectric layer 42) and the silane coupling layer 14. It can be manufactured.
  • the counter substrate 21 side has the same configuration as that of the above embodiment, so that the liquid crystal on the counter substrate 21 side is aligned while maintaining the tilt.
  • FIG. 6 illustrates an example of a configuration of a projection display device (projection display device 3) including the liquid crystal display element 1 described in the embodiment of the present disclosure.
  • the light source 110 light source 110
  • An illumination optical system 120 an illumination optical system 120
  • an image forming unit 140 an image forming unit 140
  • the projection display device 3 generates image light by modulating and synthesizing light (illumination light) output from the light source 110 for each RGB color based on the image signal, and generates the image light on a screen (not shown). An image is projected.
  • the projection display device 3 is a so-called three-plate transmission projector that performs color image display using three transmissive light modulation elements 141R, 141G, and 141B for red, blue, and green colors.
  • the light modulation elements 141R, 141G, and 141B correspond to the liquid crystal display element 1.
  • the light source 110 emits white light including red light (R), blue light (B), and green light (G) required for color image display.
  • a halogen lamp, a metal halide lamp, or a xenon lamp is used. Etc.
  • a solid light source such as a semiconductor laser (LD) or a light emitting diode (LED) may be used.
  • the light source 110 is not limited to one light source (white light source unit) that emits white light as described above.
  • a green light source unit that emits light in the green band and a blue light source that emits light in the blue band. You may make it comprise from three types of light source parts of a red light source part which radiate
  • the illumination optical system 120 includes, for example, an integrator element 121, a polarization conversion element 122, and a condenser lens 123.
  • the integrator element 121 includes a first fly-eye lens 121A having a plurality of microlenses arranged two-dimensionally and a second flyeye having a plurality of microlenses arranged to correspond to each of the microlenses.
  • An eye lens 121B is included.
  • Light (parallel light) incident on the integrator element 121 from the light source 110 is divided into a plurality of light beams by the microlens of the first fly-eye lens 121A, and forms an image on the corresponding microlens in the second fly-eye lens 121B. Is done.
  • Each of the microlenses of the second fly-eye lens 121B functions as a secondary light source, and irradiates the polarization conversion element 122 with a plurality of parallel lights with uniform brightness as incident light.
  • the integrator element 121 has a function of adjusting the incident light irradiated from the light source 110 to the polarization conversion element 122 to a uniform luminance distribution as a whole.
  • the polarization conversion element 122 has a function of aligning the polarization state of incident light incident through the integrator element 121 and the like.
  • the polarization conversion element 122 emits outgoing light including blue light B, green light G, and red light R through, for example, a lens 65 disposed on the outgoing side of the light source 110.
  • the illumination optical system 120 further includes a dichroic mirror 124 and a dichroic mirror 125, a mirror 126, a mirror 127 and a mirror 128, a relay lens 129 and a relay lens 130, a field lens 131R, a field lens 131G and a field lens 131B, and an image forming unit 140.
  • the light modulation elements 141R, 141G and 141B, and the dichroic prism 142 are included.
  • the dichroic mirror 124 and the dichroic mirror 125 have a property of selectively reflecting color light in a predetermined wavelength region and transmitting light in other wavelength regions.
  • the dichroic mirror 124 selectively reflects the red light R.
  • the dichroic mirror 125 selectively reflects the green light G out of the green light G and the blue light B transmitted through the dichroic mirror 124.
  • the remaining blue light B passes through the dichroic mirror 125. Thereby, the light (white light Lw) emitted from the light source 110 is separated into a plurality of different color lights.
  • the separated red light R is reflected by the mirror 126, is collimated by passing through the field lens 131R, and then enters the light modulation element 141R for modulating red light.
  • the green light G is collimated by passing through the field lens 131G, and then enters the light modulation element 141G for green light modulation.
  • the blue light B is reflected by the mirror 127 through the relay lens 129, and further reflected by the mirror 128 through the relay lens 130.
  • the blue light B reflected by the mirror 128 is collimated by passing through the field lens 131B, and then enters the light modulation element 141B for modulating the blue light B.
  • the light modulation elements 141R, 141G, and 141B are electrically connected to a signal source (not shown) (for example, a PC) that supplies an image signal including image information.
  • the light modulation elements 141R, 141G, and 141B modulate incident light for each pixel based on the supplied image signals of each color, and generate a red image, a green image, and a blue image, respectively.
  • the modulated light of each color (formed image) enters the dichroic prism 142 and is synthesized.
  • the dichroic prism 142 superimposes and synthesizes light of each color incident from three directions and emits the light toward the projection optical system 150.
  • the projection optical system 150 includes a plurality of lenses 151 and the like, and irradiates a screen (not shown) with light synthesized by the dichroic prism 142. Thereby, a full-color image is displayed.
  • FIG. 7 illustrates an example of a configuration of a projection display device (projection display device 4) including the liquid crystal display element 2 illustrated in the modified example of the present disclosure.
  • the light source 110 and the illumination An optical system 210, an image forming unit 220, and a projection optical system 230 are provided in this order.
  • the projection display device 4 generates image light by modulating and synthesizing light (illumination light) output from the light source 110 for each RGB color based on the image signal, and a screen unit (not shown). An image is projected onto the screen.
  • the projection display device 4 is a so-called three-plate type reflection type projector that performs color image display using three reflection type light modulation elements 222R, 222G, and 222B for red, blue, and green colors.
  • the light modulation elements 222R, 222G, and 222B correspond to the liquid crystal display element 2.
  • the light source 110 emits white light including red light (R), blue light (B), and green light (G), which is necessary for color image display, as in the first application example. It is composed of a halogen lamp, a metal halide lamp, a xenon lamp, or the like. Further, a solid light source such as a semiconductor laser (LD) or a light emitting diode (LED) may be used. Furthermore, the light source 110 is not limited to one light source (white light source unit) that emits white light as described above. For example, a green light source unit that emits light in the green band and a blue light source that emits light in the blue band. You may make it comprise from three types of light source parts of a red light source part which radiate
  • the illumination optical system 210 includes, for example, a fly-eye lens 211 (211A, 211B), a polarization conversion element 212, a lens 213, dichroic mirrors 214A and 214B, reflection mirrors 215A and 215B, and a lens 216A from a position close to the light source 110. 216B, a dichroic mirror 217, and polarizing plates 218A to 218C.
  • the fly-eye lens 211 (211A, 211B) is for homogenizing the illuminance distribution of the white light from the light source 110.
  • the polarization conversion element 212 functions to align the polarization axis of incident light in a predetermined direction. For example, light other than P-polarized light is converted to P-polarized light.
  • the lens 213 collects the light from the polarization conversion element 212 toward the dichroic mirrors 214A and 214B.
  • the dichroic mirrors 214A and 214B selectively reflect light in a predetermined wavelength region and selectively transmit light in other wavelength regions.
  • the dichroic mirror 214A mainly reflects red light in the direction of the reflection mirror 215A.
  • the dichroic mirror 214B mainly reflects blue light in the direction of the reflection mirror 215B. Therefore, green light mainly passes through both the dichroic mirrors 214A and 214B and travels toward the reflective polarizing plate 221C of the image forming unit 220.
  • the reflection mirror 215A reflects the light (mainly red light) from the dichroic mirror 214A toward the lens 216A
  • the reflection mirror 215B reflects the light (mainly blue light) from the dichroic mirror 214B toward the lens 216B.
  • the lens 216 ⁇ / b> A transmits the light (mainly red light) from the reflection mirror 215 ⁇ / b> A and collects it on the dichroic mirror 217.
  • the lens 216 ⁇ / b> B transmits light (mainly blue light) from the reflection mirror 215 ⁇ / b> B and collects it on the dichroic mirror 217.
  • the dichroic mirror 217 selectively reflects green light and selectively transmits light in other wavelength ranges.
  • the red light component of the light from the lens 216A is transmitted.
  • the green light component is included in the light from the lens 216A, the green light component is reflected toward the polarizing plate 218C.
  • the polarizing plates 218A to 218C include a polarizer having a polarization axis in a predetermined direction. For example, when the light is converted to P-polarized light by the polarization conversion element 212, the polarizing plates 218A to 218C transmit P-polarized light and reflect S-polarized light.
  • the image forming unit 220 includes reflection type polarizing plates 221A to 221C, reflection type light modulation elements 222A to 222C, and a dichroic prism 223.
  • Reflective polarizing plates 221A to 221C transmit light having the same polarization axis as that of the polarized light from polarizing plates 218A to 218C (for example, P-polarized light), and transmit light having other polarization axes (S-polarized light). It is a reflection.
  • the reflective polarizing plate 221A transmits the P-polarized red light from the polarizing plate 218A in the direction of the reflective light modulation element 222A.
  • the reflective polarizing plate 221B transmits the P-polarized blue light from the polarizing plate 218B in the direction of the reflective light modulation element 222C.
  • the reflective polarizing plate 221C transmits the P-polarized green light from the polarizing plate 218C in the direction of the reflective light modulation element 222C. Further, the P-polarized green light that has passed through both the dichroic mirrors 214A and 214B and entered the reflective polarizing plate 221C passes through the reflective polarizing plate 221C as it is and enters the dichroic prism 223. Further, the reflective polarizing plate 221 ⁇ / b> A reflects the S-polarized red light from the reflective light modulation element 222 ⁇ / b> A to enter the dichroic prism 223.
  • the reflective polarizing plate 221 ⁇ / b> B reflects the S-polarized blue light from the reflective light modulation element 222 ⁇ / b> C and makes it incident on the dichroic prism 223.
  • the reflective polarizing plate 221 ⁇ / b> C reflects the S-polarized green light from the reflective light modulation element 222 ⁇ / b> C and makes it incident on the dichroic prism 223.
  • the reflective light modulation elements 222A to 222C perform spatial modulation of red light, blue light, or green light, respectively.
  • the dichroic prism 223 combines incident red light, blue light, and green light and emits them toward the projection optical system 230.
  • the projection optical system 230 includes lenses L232 to L236 and a mirror M231.
  • the projection optical system 230 enlarges the emitted light from the image forming unit 220 and projects it onto a screen or the like.
  • Example> liquid crystal display elements of the present disclosure and various samples (for example, Experimental Examples 1 to 5) serving as comparative examples were manufactured, and changes in the contact angle of the substrate surface before and after the heat treatment performed after the silane coupling treatment were evaluated.
  • Example 1 SiO 2 was obliquely deposited on the substrate to form an inorganic oxide layer (corresponding to the alignment films 12, 22 or the dielectric layer 42). Subsequently, in the ALD apparatus, the substrate is heated to 200 ° C., and trimethylaluminum (TMA; precursor 1) and water (H 2 O; precursor 2) are alternately introduced to form a metal oxide on the inorganic oxide layer. A layer of Al 2 O 3 film was formed. One introduction of TMA and H 2 O was taken as one cycle, and this was repeated 5 cycles to obtain a film thickness of 0.6 nm.
  • TMA trimethylaluminum
  • H 2 O precursor 2
  • a vapor of n-decyltrimethoxysilane is introduced as a silane coupling material
  • the substrate is exposed to this vapor for 30 minutes, and a silane coupling material is applied to the surface. Attached.
  • the substrate was exposed to water vapor for 1 hour to promote hydrolysis of the silane coupling material, and then heated and dried at 100 ° C. for 30 minutes to obtain a sample to be experimental example 1.
  • Example 2 Experimental Example 2 was prepared using the same method as Experimental Example 1, except that TMA and H 2 O were introduced for 40 cycles, and an Al 2 O 3 film having a thickness of 5 nm was formed.
  • Experimental Example 3 was produced using the same method as Experimental Example 1 except that TMA and H 2 O were introduced 160 cycles and an Al 2 O 3 film having a thickness of 20 nm was formed.
  • Example 4 tetrakis (ethylmethylamide) hafnium (IV) (TEMAH) was used as the precursor 1, and this TEMAH and H 2 O were introduced for 7 cycles to form a 0.6-nm thick HfO 2 film. Except for the above, the method was used in the same manner as in Experimental Example 1.
  • TEMAH tetrakis (ethylmethylamide) hafnium
  • Experimental Example 5 is a comparative example of Experimental Examples 1 to 4, in which SiO 2 is obliquely deposited on a substrate to form an inorganic oxide layer, and then a metal oxide layer is not provided, and the same method as in Experimental Example 1 The surface of the inorganic oxide layer was prepared using silane coupling treatment.
  • the present disclosure has been described with the embodiment, the modification, and the example.
  • the present disclosure is not limited to the above-described embodiment and the like, and various modifications are possible.
  • the projection display device of the present disclosure is not limited to the configuration described in the above embodiment, and the type that modulates light from a light source via a liquid crystal display unit and displays an image using a projection lens.
  • the present invention can be applied to various display devices.
  • the liquid crystal display element 1 has, for example, a configuration in which the substrate or the pixel electrode constituting the pixel circuit substrate 11 is configured using a light-reflective material, so that the reflective type shown in Application Example 2 is used. It can be used as a liquid crystal light valve of the projection display device 4.
  • the present disclosure may have the following configuration.
  • a liquid crystal display device comprising: a metal oxide layer provided between the inorganic oxide layer and the silane coupling layer.
  • the said metal oxide layer is a liquid crystal display element as described in said [1] or [2] in which the metal oxide molecule for 1 atomic layer or more and 10 atomic layer or less is laminated
  • the light-transmitting material is any one of aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • B and C are each independently A methoxy group (—OCH 3 ), an ethoxy group (—OC 2 H 5 ), a chlorine atom (Cl) and an amino group (—NH 2 ), or an alkyl group, alkenyl group and alkoxy group having 1 to 3 carbon atoms;
  • A is any one of an alkyl group, an alkenyl group and an alkoxy group having 6 to 20 carbon atoms, or carbon other than carbon atoms at both ends of the carbon chain constituting the alkyl group, alkenyl group and alkoxy group.
  • the pair of substrates are a pixel circuit substrate provided with a plurality of pixel electrodes and a counter substrate disposed to face the pixel circuit substrate, The liquid crystal display element according to any one of [1] to [8], wherein the metal oxide layer is provided at least on the pixel circuit substrate side.
  • a light source A liquid crystal display element including a pixel region that modulates light from the light source and emits light corresponding to an image;
  • a projection lens that projects the image based on the light emitted from the liquid crystal display element;
  • the liquid crystal display element is A pair of opposed substrates, and A liquid crystal layer disposed between the pair of substrates;
  • An inorganic oxide layer provided between the liquid crystal layer and at least one of the pair of substrates;
  • a silane coupling layer provided between the liquid crystal layer and the inorganic oxide layer;
  • a projection display device comprising: the inorganic oxide layer and a metal oxide layer provided between the silane coupling layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

本開示の一実施形態の液晶表示素子は、対向配置された一対に基板と、一対の基板の間に配置された液晶層と、液晶層と一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、液晶層と無機酸化物層との間に設けられたシランカップリング層と、無機酸化物層とシランカップリング層との間に設けられた金属酸化物層とを備える。

Description

液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置
 本開示は、例えば、投射型の液晶プロジェクタに用いられる液晶表示素子およびその製造方法並びにこれを備えた投射型表示装置に関する。
 投射型の液晶プロジェクタに用いられる液晶デバイスには高い信頼性が求められている。液晶デバイスの信頼性を向上させるためには、無機材料からなる配向膜(無機配向膜)の使用による耐光性の向上が効果的である。しかしながら、無機配向膜を構成する、例えば酸化ケイ素は吸湿性が高く、吸湿した無機配向膜は画素間おけるリーク電流の発生の原因となる。
 これに対して、例えば特許文献1では、無機配向膜をシランカップリング材料で表面処理した液晶装置が開示されている。
特開2010-170036号公報
 ところで、液晶デバイス(液晶表示素子)では、信頼性の観点から耐湿性の向上が求められている。
 耐湿性を向上させることが可能な液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置を提供することが望ましい。
 本開示の一実施形態の液晶表示素子は、対向配置された一対の基板と、一対の基板の間に配置された液晶層と、液晶層と一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、液晶層と無機酸化物層との間に設けられたシランカップリング層と、無機酸化物層とシランカップリング層との間に設けられた金属酸化物層とを備えたものである。
 本開示の一実施形態の液晶表示素子の製造方法は、一対の基板のうちの少なくとも一方の基板に無機酸化物層を形成し、無機酸化物層上に金属酸化物層を形成し、金属酸化物層上にシランカップリング層を形成したのち、一方の基板と他方の基板とを間隙を空けて対向配置し、間隙に液晶層を形成する。
 本開示の一実施形態の投射型表示装置は、光源と、光源からの光を変調して映像に対応する光を出射する画素領域を含む、上記一実施形態の液晶表示素子と、液晶表示素子の出射光に基づいて映像を投射する投射レンズとを有するものである。
 本開示の一実施形態の液晶表示素子および一実施形態の液晶表示素子の製造方法並びに一実施形態の投射型表示装置では、液晶層を間に対向配置された一対の基板のうち、少なくとも一方の基板に設けられた無機酸化物層上に金属酸化物層を設けたのち、この金属酸化物層上にシランカップリング層を設けるようにした。これにより、無機酸化物層の表面に直接シランカップリング層を設けるよりも、無機酸化物層とシランカップリング層との間に強固な結合を形成することが可能となる。
 本開示の一実施形態の液晶表示素子および一実施形態の液晶表示素子の製造方法並びに一実施形態の投射型表示装置によれば、液晶層を間に対向配置された一対の基板のうち、少なくとも一方の基板に設けられた無機酸化物層上に金属酸化物層を介してシランカップリング層を設けるようにしたので、無機酸化物層とシランカップリング層との間に強固な結合が形成される。よって、耐湿性の向上した液晶表示素子およびこれを備えた投射型表示装置を提供することが可能となる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれの効果であってもよい。
本開示の一実施の形態に係る液晶表示素子の構成を表す断面模式図である。 図1に示した液晶表示素子の製造方法の工程順を表す流れ図である。 本開示の液晶表示素子の製造方法を説明するための断面模式図である。 図3Aに続く工程を表す断面模式図である。 図3Bに続く工程を表す断面模式図である。 図3Cに続く工程を表す断面模式図である。 図1に示した配向膜、金属酸化物層およびシランカップリング層の積層構造の説明図である。 本開示の変形例に係る液晶表示素子の構成を表す断面模式図である。 本開示の液晶表示素子を備えた投射型表示装置の全体構成の一例を表す図である。 本開示の液晶表示素子を備えた投射型表示装置の全体構成の他の例を表す図である。
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.実施の形態(配向膜上に金属酸化物層を介してシランカップリング層を設けた液晶表示素子の例)
   1-1.液晶表示素子の構成
   1-2.液晶表示素子の製造方法
   1-3.作用・効果
 2.変形例(反射型液晶表示素子の例)
 3.適用例
 4.実施例
<1.実施の形態>
(1-1.液晶表示素子の構成)
 図1は、本開示の一実施の形態に係る液晶表示素子(液晶表示素子1)の断面構成を模式的に表したものである。液晶表示素子1は、例えば、後述するプロジェクタ等の投射型表示装置(投射型表示装置3、図6参照)の液晶ライトバルブ(例えば、光変調素子141R)として用いられるものである。この液晶表示素子1は、例えば、液晶層30を間に対向配置された画素回路基板11および対向基板21と、液晶層30との間に、各基板(画素回路基板11および対向基板21)側から順に、それぞれ、配向膜12,22(無機酸化物層)、金属酸化物層13,23およびシランカップリング層14,24が積層された構成を有する。
 画素回路基板11は、例えば、光透過性を有する基板の液晶層30との対向面側に、トランジスタを含む画素回路層が設けられ、この画素回路層上に、例えば画素毎に画素電極が設けられている(いずれも図示せず)。この画素電極は、トランジスタと電気的に接続されている、画素電極上には、配向膜12が設けられている。画素回路基板11を構成する基板の液晶層30との対向面とは反対側の面には、図示していないが、例えば偏光板が貼り合わされている。なお、画素回路基板11の画素領域周辺(周辺領域(図示せず))には、各画素を駆動するための周辺回路が形成されている。
 対向基板21は、例えば、光透過性を有する基板の液晶層30との対向面側に、図示していないが、例えば全画素にわたって共通する対向電極が設けられている。対向電極には、配向膜22が設けられている。対向基板21を構成する基板の液晶層30との対向面とは反対側の面には、図示していないが、例えば偏光板が貼り合わされている。
 画素回路基板11および対向基板21を構成する各基板は、例えば、石英、ガラス等の光透過性を有する透明基板により構成されている。なお、画素回路基板11は、必ずしも透明基板である必要はなく、シリコン等の基板上に画素回路および反射板が設けられた構成としてもよい。画素電極および対向電極は、例えば光透過性を有する導電材料によって構成されている。このような材料としては、具体的には、例えばITO(インジウム錫酸化物)等が挙げられる。偏光板は、例えば、ヨウ素(I)化合物分子が吸着配向したポリビニルアルコール(PVA)によって構成されている。
 配向膜12および配向膜22は、例えば、酸化ケイ素(SiO2)、ダイヤモンドライクカーボン、アルミ酸化膜(Al23)等の無機材料によって構成されている。配向膜12および配向膜22の膜厚は、例えば50μm以上250μm以下であることが好ましい。
 金属酸化物層13および金属酸化物層23は、それぞれ、配向膜12,22と、シランカップリング層14,24との間に強固な結合(例えば共有結合)を形成するためのものである。具体的には、金属酸化物層13および金属酸化物層23は、配向膜12,22の表面の水酸基(-OH基)と結合すると共に、この配向膜12,22の水酸基よりも反応性の高い水酸基をその表面に生成し、シランカップリング剤と反応させて、配向膜12とシランカップリング層14との間、配向膜22とシランカップリング層24との間に、それぞれ金属酸化物層13、23を介した結合を形成するためのものである。金属酸化物層13および金属酸化物層23は、光透過性を有する材料を用いてによって構成されており、具体的には、例えば、酸化アルミニウム(Al23)、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)および酸化タンタル(Ta25)等の金属酸化物が挙げられる。金属酸化物層13の膜厚は、例えば5nm以下であることが好ましく、より具体的には、1原子層以上10原子層以下の厚みであることが好ましい。これは配向膜12および配向膜22の表面の凹凸を保持するためである。このような金属酸化物層13は、例えば原子層堆積(Atomic Layer Deposition;ALD)法を用いて成膜することが好ましい。配向膜12は、詳細は後述するが、斜め蒸着することで、画素回路基板11上に、例えばSiO2が柱状に堆積し、その表面形状によって液晶のチルトを発現させる。ALD法は、金属酸化物層13を極薄い膜厚で形成することができるため、配向膜12の表面形状を維持しやすいからである。そのため別の方法で配向制御を行う場合は金属酸化物層13の膜厚は厚くても構わない。なお、金属酸化物層13および金属酸化物層23の膜質は特に問わず、例えばピンホール等の欠陥があってもかまわない。
 シランカップリング層14およびシランカップリング層24は、配向膜12および配向膜22の耐湿性を向上させるためのものであり、それぞれ、配向性を有するシランカップリング材料により構成されている。シランカップリング材料としては、例えば、下記一般式(1)で表される化合物が挙げられる。シランカップリング層14およびシランカップリング層24は、それぞれ、金属酸化物層13および金属酸化物層23を介して配向膜12および配向膜22と共有結合を形成している。シランカップリング層14およびシランカップリング層24は、例えば1分子層の膜によって形成されるが、例えばこの1分子層の膜が金属酸化物層13および金属酸化物層23の全面を覆っていない場合でも有効に機能する。逆にシランカップリング層14およびシランカップリング層24を厚く形成するとムラに成りやすい。このため、多くとも数分子層以下の厚みに形成することが望ましい。具体的には、例えば5nm以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(Xは、メトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)のいずれかである。B,Cは、各々独立してメトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)、あるいは、炭素数1~3までのアルキル基、アルケニル基およびアルコキシ基のいずれかである。Aは、炭素数6以上20以下のアルキル基、アルケニル基およびアルコキシ基のいずれか、または、アルキル基、アルケニル基およびアルコキシ基を構成する炭素鎖の両端の炭素原子以外の炭素原子が酸素に置換された基、あるいは、アルキル基、アルケニル基およびアルコキシ基を構成する水素原子の少なくとも1つ以上がハロゲン原子に置換された基である。)
 液晶層30は、例えばVA(Vertical Alignment)型、TN(Twisted Nematic)型あるいはIPS(In-Place-Switching)型等の各種液晶により構成され、例えばノーマリーブラック・モードあるいはノーマリーホワイト(NW)・モードにより表示される。液晶層30は、画素回路基板11側と対向基板21側とを貼り合わせる、例えば液晶ディスプレイ用に市販されている熱硬化性あるいはUV硬化性のシール材によって封止されている。液晶層30は、シール材によって画素回路基板11側と対向基板21側とを貼り合わせたのち、液晶を注入し、例えばUV硬化性の封止材によって封止される。その他、例えばODF(One Drop Fill)プロセスを用いて作製するようにしてもよい。
(1-2.液晶表示素子の製造方法)
 本実施の形態の液晶表示素子1は、例えば、次のようにして製造することができる。図2は、液晶表示素子1の製造方法の工程の流れを表したものである。図3A~図3Dは、各工程における液晶表示素子1の断面を模式的に表したものである。
 まず、図3Aに示したように、例えば、画素毎にトランジスタおよび画素電極が設けられた画素回路基板11上に、例えば、斜方蒸着によって配向膜12を形成する(ステップS101)。具体的には、水平方向を0°として、例えば40~70°の範囲内の角度で傾く、例えばSiO2膜を、例えば100nmの厚みで成膜する。
 続いて、図3Bに示したように、配向膜12上に金属酸化物層13を形成する(ステップS102)。具体的には、例えば、配向膜12上に、例えば、ALD法を用いて、例えば5原子層のAl23膜を成膜する。なお、金属酸化物層13は、ALD法が好ましいが、例えば、化学気相成長(Chemical Vapor Deposition;CVD)法やスパッタを用いて形成してもよい。金属酸化物層13は、配向膜12の表面形状を維持するために薄膜に形成することが好ましいが、別途配向制御の手段を用意すればこれに限らない。
 次に、図3Cに示したように、金属酸化物層13の表面をシランカップリング処理する(ステップS103)。具体的には、例えば、炭素数6以上のアルキル鎖を有するシランカップリング材料を、例えば、常圧または減圧下で蒸気として金属酸化物層13上に堆積させる。このとき、シランカップリング材料の反応基(例えば、上記一般式(1)におけるX)が塩素原子、アミノ基等の場合には、そのまま反応を終了する。メトキシ基、エトキシ基等の場合には、水蒸気を導入して加水分解を起こさせ、金属酸化物層13表面の水酸基と反応させる。これにより、金属酸化物層13上にシランカップリング層14が形成される。
 続いて、図3Dに示したように、画素回路基板11と対向基板21とを、間隙を空けて貼り合わせる(ステップS104)。具体的には、配向膜12、金属酸化物層13およびシランカップリング層14がこの順に積層された画素回路基板11と、同様の方法を用いて形成された対向基板21とを、シランカップリング層14およびシランカップリング層24が対向するように配置する。こののち、画素回路基板11および対向基板21の周囲に注入口を残して、例えばUV硬化性のシール材を塗布して貼り合わせ、UVを照射してシール材を硬化させる。
 続いて、画素回路基板11と対向基板21との間の間隙に液晶を注入して液晶層30を形成する。最後に、注入口に封止材を塗布し、UVを照射して硬化させる。これにより、図1に示した液晶表示素子1が完成する。
(1-3.作用・効果)
 前述したように、高い信頼性が求められるプロジェクタ用の液晶デバイスでは、耐光性の向上が図られている。耐光性の向上は、一般に用いられている、側鎖アルキル基を有するポリイミド等の有機高分子からなる配向膜を、無機材料からなる、いわゆる無機配向膜に変えることで実現することができる。しかしながら、無機配向膜を構成する、例えばSiO2は吸湿性が高く、吸湿した無機配向膜は画素間おけるリーク電流の発生の原因となる。
 そこで、近年、無機配向膜を、液晶配向性を有するシランカップリング材料で表面処理して耐湿性と配向性とを両立させる試みがなされている。しかしながら、シランカップリング材料は、無機配向膜の表面の水酸基との反応性が低く、無機配向膜の表面と強固な結合を形成することが困難であった。
 これに対して、無機膜の表面と強固な結合を形成する方法として、気相においてシランカップリング材料を無機膜に付着させたのち、シランカップリング材料を加水分解させ、さらに加熱して無機膜上の水酸基と脱水縮合させる方法が開発されている。しかしながら、無機膜上の水酸基との縮合反応は高温条件下で行う必要があり、高温にすると、反応前にシランカップリング材料が無機膜上から脱離してしまうという問題があった。
 そこで、本実施の形態の液晶表示素子1では、液晶層30を間に対向配置された画素回路基板11および対向基板21の、例えば画素回路基板11上に設けられた配向膜12上に金属酸化物層13を設け、この金属酸化物層13を介してシランカップリング層14を設けるようにした。配向膜12は、金属酸化物層13を設けることで、配向膜12の表面の水酸基の反応性が向上し、図4に示したように、金属酸化物層13を構成する金属原子を介して、配向膜12の水酸基と、シランカップリング層14を構成するシランカップリング材料の反応基との間で強固な結合(例えば、共有結合)が形成される。
 以上のように、本実施の形態では、液晶層30を間に対向配置された一対の基板(画素回路基板11および対向基板21)の、例えば画素回路基板11上に設けられた配向膜12とシランカップリング層14との間に金属酸化物層13を設けるようにした。これにより、配向膜12の表面の水酸基と、シランカップリング層14を構成するシランカップリング材料の反応基とが、金属酸化物層13の金属原子を介して共有結合を形成するようになる。よって、液晶表示素子1の耐湿性を向上させることが可能となる。これにより、配向膜12の画素間におけるリーク電流の発生を抑制させることが可能となる。
 なお、本実施の形態では、画素回路基板11側および対向基板21側に設けられた配向膜12上および配向膜22上に、それぞれ金属酸化物層13および金属酸化物層23を設けた例を示したが、どちらか一方にのみ設けることでも、一般的な液晶表示素子と比較して、液晶表示素子1の耐湿性を向上させることができる。その場合、金属酸化物層は、画素回路基板11側に設けることが好ましい。
 また、金属酸化物層13および金属酸化物層23は、それぞれALD法を用いて形成することにより、配向膜12および配向膜22のチルトの維持が容易となる。
 次に、本開示の変形例について説明する。なお、上記実施の形態における液晶表示素子1の構成要素と同様の構成要素については同一の符号を付し、適宜説明を省略する。
<2.変形例>
 図5は、本開示の変形例に係る液晶表示素子(液晶表示素子2)の断面構成の一例を模式的に表したものである。液晶表示素子2は、例えば、後述するプロジェクタ等の投射型表示装置(投射型表示装置4、図7参照)の液晶ライトバルブとして用いられるものである。この液晶表示素子2は、例えば、対向配置された反射板41と対向基板21との間に液晶層30を備えたものであり、反射板41と液晶層30との間には、反射板41側から順に、誘電体層42、金属酸化物層43およびシランカップリング層14が積層されている。対向基板21と液晶層30との間には、上記実施の形態と同様に、対向基板21側から順に、配向膜22、金属酸化物層23およびシランカップリング層24が積層されている。
 反射板41は、例えば、アルミニウム(Al)等の光反射性を有する材料によって構成されている。
 誘電体層42は、誘電体材料によって構成されたものであり、具体的な誘電体材料としては、例えばSiO2が挙げられる。
 金属酸化物層43は、例えば、誘電体層42と共に、屈折率の差を利用して液晶表示素子2に入射した光の面S1方向への反射率を向上させるためのものである。金属酸化物層43は、誘電体層42よりも屈折率の大きい材料を用いて形成される。具体的には、上記実施の形態における金属酸化物層13および金属酸化物層23と同様に、例えば酸化アルミニウム(Al23)、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)、酸化タンタル(Ta25)等の金属酸化物が挙げられる。なお、金属酸化物層43および誘電体層42の膜厚は、波長により最適値が異なるため、それぞれ目的に沿って設定される。
 本変形例の液晶表示素子2は、例えば以下のようにして製造することができる。まず、反射板41上に、例えばCVD法を用いて、例えばSiO2膜を、例えば75nmの厚みに成膜して誘電体層42を形成する。続いて、誘電体層42上に、例えばCVD法を用いて、例えばHfO2膜を、例えば74nmの厚みに成膜して金属酸化物層43を形成する。次に、上記実施の形態と同様に、金属酸化物層43の表面をシランカップリング処理し、金属酸化物層43上にシランカップリング層14を形成する。この後、反射板41と、上記実施の形態と同様の方法を用いて形成された、配向膜22、金属酸化物層23およびシランカップリング層24がこの順に積層された対向基板21とを、シランカップリング層14およびシランカップリング層24を対向するように配置し、間隙を空けて貼り合わせたのち、この間隙に液晶を注入して液晶層を形成する。これにより、図5に示した液晶表示素子2が完成する。
 以上のように、本変形例における金属酸化物層43は、誘電体層42と共に光学膜として配設した。これにより、本変形例における液晶表示素子2では、誘電体層42と金属酸化物層43との屈折率の差を利用して、液晶表示素子2に入射した光の面S1方向への反射率を向上(例えば4%)させることが可能となる。また、本変形例では、無機酸化物層(誘電体層42)とシランカップリング層14との間の結合の強さを維持しつつ、より簡易な方法で、反射型の液晶表示素子2を製造することが可能となる。なお、本変形例では、対向基板21側は、上記実施の形態と同様の構成となっているため、対向基板21側の液晶はチルトを維持して配向されている。
<3.適用例>
(適用例1)
 図6は、本開示の実施の形態に示した液晶表示素子1を備えた投射型表示装置(投射型表示装置3)の構成の一例を表したものであり、例えば、例えば、光源110(光源)と、照明光学系120と、画像形成部140と、投影光学系150を順に備えている。この投射型表示装置3は、画像信号に基づき、光源110から出力された光(照明光)をRGBの色毎に変調して合成することにより画像光を生成し、スクリーン(図示せず)に画像を投影するものである。投射型表示装置3は、赤、青および緑の各色用の透過型の光変調素子141R,141G,141Bを3枚用いてカラー画像表示を行う、いわゆる3板方式の透過型プロジェクタであり、この光変調素子141R,141G,141Bが、液晶表示素子1に相当する。
 光源110は、カラー画像表示に必要とされる、赤色光(R)、青色光(B)および緑色光(G)を含んだ白色光を発するものであり、例えばハロゲンランプ、メタルハライドランプまたはキセノンランプ等により構成されている。また、例えば半導体レーザ(LD)または発光ダイオード(LED)等の固体光源を用いてもよい。更に、光源110は、上記のように白色光を出射する1つの光源(白色光源部)に限定されず、例えば、緑色帯域の光を出射する緑色光源部、青色帯域の光を出射する青色光源部及び赤色帯域の光を出射する赤色光源部の3種の光源部から構成するようにしてもよい。
 照明光学系120は、例えば、インテグレータ素子121と、偏光変換素子122と、集光レンズ123とを有する。インテグレータ素子121は、二次元に配列された複数のマイクロレンズを有する第1のフライアイレンズ121Aおよびその各マイクロレンズに1つずつ対応するように配列された複数のマイクロレンズを有する第2のフライアイレンズ121Bを含んでいる。
 光源110からインテグレータ素子121に入射する光(平行光)は、第1のフライアイレンズ121Aのマイクロレンズによって複数の光束に分割され、第2のフライアイレンズ121Bにおける対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ121Bのマイクロレンズのそれぞれが、二次光源として機能し、輝度が揃った複数の平行光を、偏光変換素子122に入射光として照射する。
 インテグレータ素子121は、全体として、光源110から偏光変換素子122に照射される入射光を、均一な輝度分布に整える機能を有する。
 偏光変換素子122は、インテグレータ素子121等を介して入射する入射光の偏光状態を揃える機能を有する。この偏光変換素子122は、例えば、光源110の出射側に配置されたレンズ65等を介して、青色光B、緑色光Gおよび赤色光Rを含む出射光を出射する。
 照明光学系120は、さらに、ダイクロイックミラー124およびダイクロイックミラー125、ミラー126、ミラー127およびミラー128、リレーレンズ129およびリレーレンズ130、フィールドレンズ131R、フィールドレンズ131Gおよびフィールドレンズ131B、画像形成部140としての光変調素子141R、141Gおよび141B、ダイクロイックプリズム142を含んでいる。
 ダイクロイックミラー124およびダイクロイックミラー125は、所定の波長域の色光を選択的に反射し、それ以外の波長域の光を透過させる性質を有する。例えば、ダイクロイックミラー124は、赤色光Rを選択的に反射する。ダイクロイックミラー125は、ダイクロイックミラー124を透過した緑色光Gおよび青色光Bのうち、緑色光Gを選択的に反射する。残る青色光Bは、ダイクロイックミラー125を透過する。これにより、光源110から出射された光(白色光Lw)が、異なる色の複数の色光に分離される。
 分離された赤色光Rは、ミラー126により反射され、フィールドレンズ131Rを通ることによって平行化された後、赤色光の変調用の光変調素子141Rに入射する。緑色光Gは、フィールドレンズ131Gを通ることによって平行化された後、緑色光の変調用の光変調素子141Gに入射する。青色光Bは、リレーレンズ129を通ってミラー127により反射され、さらにリレーレンズ130を通ってミラー128により反射される。ミラー128により反射された青色光Bは、フィールドレンズ131Bを通ることによって平行化された後、青色光Bの変調用の光変調素子141Bに入射する。
 光変調素子141R、141Gおよび141Bは、画像情報を含んだ画像信号を供給する図示しない信号源(例えば、PC等)と電気的に接続されている。光変調素子141R、141Gおよび141Bは、供給される各色の画像信号に基づき、入射光を画素毎に変調し、それぞれ赤色画像、緑色画像および青色画像を生成する。変調された各色の光(形成された画像)は、ダイクロイックプリズム142に入射して合成される。ダイクロイックプリズム142は、3つの方向から入射した各色の光を重ね合わせて合成し、投影光学系150に向けて出射する。
 投影光学系150は、複数のレンズ151等を有し、ダイクロイックプリズム142によって合成された光を図示しないスクリーンに照射する。これにより、フルカラーの画像が表示される。
(適用例2)
 図7は、本開示の変形例に示した液晶表示素子2を備えた投射型表示装置(投射型表示装置4)の構成の一例を表したものであり、例えば、例えば、光源110と、照明光学系210と、画像形成部220と、投影光学系230とを順に備えている。この投射型表示装置4は、画像信号に基づき、光源110から出力された光(照明光)をRGBの色毎に変調して合成することにより画像光を生成し、スクリーン部(図示せず)に画像を投影するものである。投射型表示装置4は、赤、青および緑の各色用の反射型の光変調素子222R,222G,222Bを3枚用いてカラー画像表示を行う、いわゆる3板方式の反射型プロジェクタであり、この光変調素子222R,222G,222Bが、液晶表示素子2に相当する。
 光源110は、上記適用例1と同様に、カラー画像表示に必要とされる、赤色光(R)、青色光(B)および緑色光(G)を含んだ白色光を発するものであり、例えばハロゲンランプ、メタルハライドランプまたはキセノンランプ等により構成されている。また、例えば半導体レーザ(LD)または発光ダイオード(LED)等の固体光源を用いてもよい。更に、光源110は、上記のように白色光を出射する1つの光源(白色光源部)に限定されず、例えば、緑色帯域の光を出射する緑色光源部、青色帯域の光を出射する青色光源部及び赤色帯域の光を出射する赤色光源部の3種の光源部から構成するようにしてもよい。
 照明光学系210は、例えば光源110に近い位置からフライアイレンズ211(211A,211B)と、偏光変換素子212と、レンズ213と、ダイクロイックミラー214A,214Bと、反射ミラー215A,215Bと、レンズ216A,216Bと、ダイクロイックミラー217と、偏光板218A~218Cとを有している。
 フライアイレンズ211(211A,211B)は、光源110からの白色光の照度分布の均質化を図るものである。偏光変換素子212は、入射光の偏光軸を所定方向に揃えるように機能するものである。例えば、P偏光以外の光をP偏光に変換する。レンズ213は、偏光変換素子212からの光をダイクロイックミラー214A,214Bへ向けて集光する。ダイクロイックミラー214A,214Bは、所定の波長域の光を選択的に反射し、それ以外の波長域の光を選択的に透過させるものである。例えば、ダイクロイックミラー214Aは、主に赤色光を反射ミラー215Aの方向へ反射させる。また、ダイクロイックミラー214Bは、主に青色光を反射ミラー215Bの方向へ反射させる。したがって、主に緑色光がダイクロイックミラー214A,214Bの双方を透過し、画像形成部220の反射型偏光板221Cへ向かうこととなる。反射ミラー215Aは、ダイクロイックミラー214Aからの光(主に赤色光)をレンズ216Aに向けて反射し、反射ミラー215Bは、ダイクロイックミラー214Bからの光(主に青色光)をレンズ216Bに向けて反射する。レンズ216Aは、反射ミラー215Aからの光(主に赤色光)を透過し、ダイクロイックミラー217へ集光させる。レンズ216Bは、反射ミラー215Bからの光(主に青色光)を透過し、ダイクロイックミラー217へ集光させる。ダイクロイックミラー217は、緑色光を選択的に反射すると共にそれ以外の波長域の光を選択的に透過するものである。ここでは、レンズ216Aからの光のうち赤色光成分を透過する。レンズ216Aからの光に緑色光成分が含まれる場合、その緑色光成分を偏光板218Cへ向けて反射する。偏光板218A~218Cは、所定方向の偏光軸を有する偏光子を含んでいる。例えば、偏光変換素子212においてP偏光に変換されている場合、偏光板218A~218CはP偏光の光を透過し、S偏光の光を反射する。
 画像形成部220は、反射型偏光板221A~221Cと、反射型の光変調素子222A~222Cと、ダイクロイックプリズム223とを有する。
 反射型偏光板221A~221Cは、それぞれ、偏光板218A~218Cからの偏光光の偏光軸と同じ偏光軸の光(例えばP偏光)を透過し、それ以外の偏光軸の光(S偏光)を反射するものである。具体的には、反射型偏光板221Aは、偏光板218AからのP偏光の赤色光を反射型の光変調素子222Aの方向へ透過させる。反射型偏光板221Bは、偏光板218BからのP偏光の青色光を反射型の光変調素子222Cの方向へ透過させる。反射型偏光板221Cは、偏光板218CからのP偏光の緑色光を反射型の光変調素子222Cの方向へ透過させる。また、ダイクロイックミラー214A,214Bの双方を透過して反射型偏光板221Cに入射したP偏光の緑色光は、そのまま反射型偏光板221Cを透過してダイクロイックプリズム223に入射する。更に、反射型偏光板221Aは、反射型の光変調素子222AからのS偏光の赤色光を反射してダイクロイックプリズム223に入射させる。反射型偏光板221Bは、反射型の光変調素子222CからのS偏光の青色光を反射してダイクロイックプリズム223に入射させる。反射型偏光板221Cは、反射型の光変調素子222CからのS偏光の緑色光を反射してダイクロイックプリズム223に入射させる。
 反射型の光変調素子222A~222Cは、それぞれ、赤色光、青色光または緑色光の空間変調を行うものである。
 ダイクロイックプリズム223は、入射される赤色光、青色光および緑色光を合成し、投影光学系230へ向けて射出するものである。
 投影光学系230は、レンズL232~L236と、ミラーM231とを有する。投影光学系230は、画像形成部220からの出射光を拡大してスクリーン等へ投射する。
<4.実施例>
 以下、本開示の液晶表示素子およびその比較例となる各種サンプル(例えば、実験例1~5)を作製し、シランカップリング処理後に行う加熱処理前後の基板表面の接触角の変化を評価した。
(実験例1)
 まず、基板上にSiO2を斜方蒸着して無機酸化物層(配向膜12,22または誘電体層42に相当)を形成した。続いて、ALD装置において基板を200℃に加熱し、トリメチルアルミニウム(TMA;プリカーサ1)と水(H2O;プリカーサ2)とを交互に導入することで、無機酸化物層上に金属酸化物層となるAl23膜を成膜した。このTMAおよびH2Oの1回の導入を1サイクルとし、これを5サイクル繰り返すことで、0.6nmの膜厚を得た。次に、基板を80℃に加熱したのち、常圧下において、シランカップリング材料として、n-デシルトリメトキシシランの蒸気を導入し、この蒸気に基板を30分間晒し、表面にシランカップリング材料を付着させた。続いて、基板を水蒸気に1時間晒してシランカップリング材料の加水分解を促進させたのち、100℃で30分加熱して乾燥させ、実験例1となるサンプルを得た。
(実験例2)
 実験例2は、TMAおよびH2Oの導入を40サイクル行い、膜厚5nmのAl23膜を成膜した以外は、実験例1と同様に方法を用いて作製した。
(実験例3)
 実験例3は、TMAおよびH2Oの導入を160サイクル行い、膜厚20nmのAl23膜を成膜した以外は、実験例1と同様に方法を用いて作製した。
(実験例4)
 実験例4は、プリカーサ1としてテトラキス(エチルメチルアミド)ハフニウム(IV)(TEMAH)を用い、このTEMAHおよびH2Oの導入を7サイクル行い、膜厚0.6nmのHfO2膜を成膜した以外は、実験例1と同様に方法を用いて作製した。
(実験例5)
 実験例5は、実験例1~4の比較例として、基板上にSiO2を斜方蒸着して無機酸化物層を形成したのち、金属酸化物層を設けずに、実験例1同様の方法を用いて無機酸化物層の表面をシランカップリング処理して作製した。
 上記実験例1~5について、基板表面における純水の接触角を測定したのち、200℃において6時間加熱した後、再度基板表面における純水の接触角を測定した。表1は、実験例1~5の作製条件および加熱処理前後の基板表面における純水の接触角の測定結果をまとめたものである。
Figure JPOXMLDOC01-appb-T000003
 無機酸化物層上に金属酸化物層(Al23膜またはHfO2膜)を設けた実験例1~4では、加熱処理前の純水の接触角は77°(実験例1),72°(実験例2),82°(実験例3),81°(実験例4)であったのに対し、金属酸化物層を設けなかった実験例5では、その接触角は45°と小さかった。また、加熱処理後の接触角は、それぞれ72°(実験例1),74°(実験例2),77°(実験例3),75°(実験例4),4°(実験例4)であった。実験例1~4では、金属酸化物層の厚みにかかわらず、加熱処理前後における接触角の変化は小さかったのに対して、実験例4では大きな変化が確認された。これは、実験例1~4では、無機酸化物層とシランカップリング層との間に金属酸化物層を設けることで、無機酸化物層とシランカップリング層との間の結合が強固になり、より安定な表面が得られたためと考えられる。
 また、実験例1~4それぞれと同様の処理を行った基板を作製し、対応する各実験例1~5の基板と貼り合わせ、その基板間に液晶を注入して画質を確認した。その結果、実験例1,2,4では、液晶分子はいずれも良好な垂直配向となっていた。TMAおよびH2Oの導入を160サイクル行った実験例3では、液晶分子はチルトのない垂直配向となっていた。このことから、金属酸化物層を厚膜(ここでは20nm以上)に形成する場合には、液晶分子の配向制御は、SiO2の斜方蒸着とは別の手段で行うことが求められることが分かった。
 以上、実施の形態、変形例および実施例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されず、種々の変形が可能である。例えば、本開示の投射型表示装置は、上記実施の形態において説明した構成のものに限定されず、光源からの光を、液晶表示ユニットを介して変調し、投射レンズを用いて映像表示するタイプの様々な表示装置に適用可能である。
 また、本開示の液晶表示素子1は、例えば画素回路基板11を構成する基板または画素電極を、光反射性を有する材料を用いた構成とすることにより、上記適用例2に示した反射型の投射型表示装置4の液晶ライトバルブとして用いることができる。
 なお、本開示内容は以下のような構成であってもよい。
[1]
 対向配置された一対に基板と、
 前記一対の基板の間に配置された液晶層と、
 前記液晶層と前記一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、
 前記液晶層と前記無機酸化物層との間に設けられたシランカップリング層と、
 前記無機酸化物層と前記シランカップリング層との間に設けられた金属酸化物層と
 を備えた液晶表示素子。
[2]
 前記シランカップリング層は、前記無機酸化物層と、前記金属酸化物層を介して共有結合を形成している、前記[1]に記載の液晶表示素子。
[3]
 前記金属酸化物層は、1原子層以上10原子層以下分の金属酸化物分子が積層されている、前記[1]または[2]に記載の液晶表示素子。
[4]
 前記金属酸化物層の膜厚は5nm以下である、前記[1]乃至[3]のうちのいずれかに記載の液晶表示素子。
[5]
 前記金属酸化物層は、光透過性を有する材料を用いて形成されている、前記[1]乃至[4]のうちのいずれかに記載の液晶表示素子。
[6]
 前記光透過性を有する材料は、酸化アルミニウム(Al23)、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)および酸化タンタル(Ta25)のうちのいずれかである、前記[5]に記載の液晶表示素子。
[7]
 前記シランカップリング層は、下記一般式(1)で表されるシランカップリング材料を用いて形成されている、前記[1]乃至[6]のうちのいずれかに記載の液晶表示素子。
Figure JPOXMLDOC01-appb-C000004
(Xは、メトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)のいずれかである。B,Cは、各々独立してメトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)、あるいは、炭素数1~3までのアルキル基、アルケニル基およびアルコキシ基のいずれかである。Aは、炭素数6以上20以下のアルキル基、アルケニル基およびアルコキシ基のいずれか、または、アルキル基、アルケニル基およびアルコキシ基を構成する炭素鎖の両端の炭素原子以外の炭素原子が酸素に置換された基、あるいは、アルキル基、アルケニル基およびアルコキシ基を構成する水素原子の少なくとも1つ以上がハロゲン原子に置換された基である。)
[8]
 前記無機酸化物層は、配向膜である、前記[1]乃至[7]のうちのいずれかに記載の液晶表示素子。
[9]
 前記一対の基板は、複数の画素電極が設けられた画素回路基板および前記画素回路基板に対向配置される対向基板であり、
 前記金属酸化物層は、少なくとも前記画素回路基板側に設けられている、前記[1]乃至[8]のうちのいずれかに記載の液晶表示素子。
[10]
 一対の基板のうちの少なくとも一方の基板に無機酸化物層を形成し、
 前記無機酸化物層上に金属酸化物層を形成し、
 前記金属酸化物層上にシランカップリング層を形成したのち、
 前記一方の基板と他方の基板とを間隙を空けて対向配置し、
 前記間隙に液晶層を形成する
 液晶表示素子の製造方法。
[11]
 前記金属酸化物層は、原子層堆積(Atomic Layer Deposition)法を用いて形成する、前記[10]に記載の液晶表示素子の製造方法。
[12]
 光源と、
 前記光源からの光を変調して映像に対応する光を出射する画素領域を含む液晶表示素子と、
 前記液晶表示素子の出射光に基づいて前記映像を投射する投射レンズとを備え、
 前記液晶表示素子は、
 対向配置された一対に基板と、
 前記一対の基板の間に配置された液晶層と、
 前記液晶層と前記一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、
 前記液晶層と前記無機酸化物層との間に設けられたシランカップリング層と、
 前記無機酸化物層と前記シランカップリング層との間に設けられた金属酸化物層と
 を有する投射型表示装置。
 本出願は、日本国特許庁において2017年3月17日に出願された日本特許出願番号2017-052515号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (12)

  1.  対向配置された一対に基板と、
     前記一対の基板の間に配置された液晶層と、
     前記液晶層と前記一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、
     前記液晶層と前記無機酸化物層との間に設けられたシランカップリング層と、
     前記無機酸化物層と前記シランカップリング層との間に設けられた金属酸化物層と
     を備えた液晶表示素子。
  2.  前記シランカップリング層は、前記無機酸化物層と、前記金属酸化物層を介して共有結合を形成している、請求項1に記載の液晶表示素子。
  3.  前記金属酸化物層は、1原子層以上10原子層以下分の金属酸化物分子が積層されている、請求項1に記載の液晶表示素子。
  4.  前記金属酸化物層の膜厚は5nm以下である、請求項1に記載の液晶表示素子。
  5.  前記金属酸化物層は、光透過性を有する材料を用いて形成されている、請求項1に記載の液晶表示素子。
  6.  前記光透過性を有する材料は、酸化アルミニウム(Al23)、酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)および酸化タンタル(Ta25)のうちのいずれかである、請求項5に記載の液晶表示素子。
  7.  前記シランカップリング層は、下記一般式(1)で表されるシランカップリング材料を用いて形成されている、請求項1に記載の液晶表示素子。
    Figure JPOXMLDOC01-appb-C000001
    (Xは、メトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)のいずれかである。B,Cは、各々独立してメトキシ基(-OCH3)、エトキシ基(-OC25)、塩素原子(Cl)およびアミノ基(-NH2)、あるいは、炭素数1~3までのアルキル基、アルケニル基およびアルコキシ基のいずれかである。Aは、炭素数6以上20以下のアルキル基、アルケニル基およびアルコキシ基のいずれか、または、アルキル基、アルケニル基およびアルコキシ基を構成する炭素鎖の両端の炭素原子以外の炭素原子が酸素に置換された基、あるいは、アルキル基、アルケニル基およびアルコキシ基を構成する水素原子の少なくとも1つ以上がハロゲン原子に置換された基である。)
  8.  前記無機酸化物層は、配向膜である、請求項1に記載の液晶表示素子。
  9.  前記一対の基板は、複数の画素電極が設けられた画素回路基板および前記画素回路基板に対向配置される対向基板であり、
     前記金属酸化物層は、少なくとも前記画素回路基板側に設けられている、請求項1に記載の液晶表示素子。
  10.  一対の基板のうちの少なくとも一方の基板に無機酸化物層を形成し、
     前記無機酸化物層上に金属酸化物層を形成し、
     前記金属酸化物層上にシランカップリング層を形成したのち、
     前記一方の基板と他方の基板とを間隙を空けて対向配置し、
     前記間隙に液晶層を形成する
     液晶表示素子の製造方法。
  11.  前記金属酸化物層は、原子層堆積(Atomic Layer Deposition)法を用いて形成する、請求項10に記載の液晶表示素子の製造方法。
  12.  光源と、
     前記光源からの光を変調して映像に対応する光を出射する画素領域を含む液晶表示素子と、
     前記液晶表示素子の出射光に基づいて前記映像を投射する投射レンズとを備え、
     前記液晶表示素子は、
     対向配置された一対に基板と、
     前記一対の基板の間に配置された液晶層と、
     前記液晶層と前記一対の基板のうちの少なくとも一方との間に設けられた無機酸化物層と、
     前記液晶層と前記無機酸化物層との間に設けられたシランカップリング層と、
     前記無機酸化物層と前記シランカップリング層との間に設けられた金属酸化物層と
     を有する投射型表示装置。
PCT/JP2018/003579 2017-03-17 2018-02-02 液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置 WO2018168245A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880017379.3A CN110418998B (zh) 2017-03-17 2018-02-02 液晶显示设备、制造液晶显示设备的方法、及投影显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017052515 2017-03-17
JP2017-052515 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018168245A1 true WO2018168245A1 (ja) 2018-09-20

Family

ID=63522919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003579 WO2018168245A1 (ja) 2017-03-17 2018-02-02 液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置

Country Status (2)

Country Link
CN (1) CN110418998B (ja)
WO (1) WO2018168245A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127757A (ja) * 2005-11-02 2007-05-24 Seiko Epson Corp 液晶装置、液晶装置の製造方法、及び電子機器
JP2007256924A (ja) * 2006-02-21 2007-10-04 Seiko Epson Corp 液晶装置、液晶装置の製造方法、及び電子機器
JP2016200748A (ja) * 2015-04-13 2016-12-01 セイコーエプソン株式会社 液晶装置及びその製造方法、並びに電子機器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0208293B1 (en) * 1985-07-10 1990-02-21 Hitachi, Ltd. A ferroelectric liquid crystal element and a method for manufacturing the same
JPH0223317A (ja) * 1988-07-12 1990-01-25 Fuji Photo Film Co Ltd 液晶表示素子
JP2006198503A (ja) * 2005-01-19 2006-08-03 Hiroshima Univ 無機触媒成分および有機化合物を担持する触媒組成物ならびにその利用
JP4640462B2 (ja) * 2008-07-10 2011-03-02 セイコーエプソン株式会社 液晶装置の製造方法
JP2012088470A (ja) * 2010-10-19 2012-05-10 Seiko Epson Corp 液晶表示素子の製造方法及び液晶表示素子
JP2012220596A (ja) * 2011-04-06 2012-11-12 Seiko Epson Corp 液晶装置、液晶装置の製造方法及び電子機器
JP2013031794A (ja) * 2011-08-01 2013-02-14 Fujifilm Corp 機能性フィルムの製造方法および機能性フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127757A (ja) * 2005-11-02 2007-05-24 Seiko Epson Corp 液晶装置、液晶装置の製造方法、及び電子機器
JP2007256924A (ja) * 2006-02-21 2007-10-04 Seiko Epson Corp 液晶装置、液晶装置の製造方法、及び電子機器
JP2016200748A (ja) * 2015-04-13 2016-12-01 セイコーエプソン株式会社 液晶装置及びその製造方法、並びに電子機器

Also Published As

Publication number Publication date
CN110418998A (zh) 2019-11-05
CN110418998B (zh) 2022-06-28

Similar Documents

Publication Publication Date Title
US7575325B2 (en) Image displaying apparatus and color separating-combining optical system
JP5849489B2 (ja) 電気光学装置、投射型表示装置、電子機器、および電気光学装置の製造方法
KR20090032990A (ko) 투사형 액정 표시 장치 및 보상판
JP5737037B2 (ja) 電気光学装置および投射型表示装置
US20210063788A1 (en) Liquid crystal display device and electronic apparatus
US10877197B2 (en) Optical compensation device, liquid crystal display unit, and projection display apparatus
US20180231882A1 (en) Illuminating unit and projection display apparatus
US9921435B2 (en) Electro-optical device and electronic apparatus
US8866977B2 (en) Projector
JP7068660B2 (ja) 光学補償素子、液晶ライトバルブ組立体及び液晶プロジェクタ装置
US9229273B2 (en) Reflection type liquid crystal device having a tilt mechanism and LCD projector
WO2018168245A1 (ja) 液晶表示素子および液晶表示素子の製造方法並びに投射型表示装置
JP5205747B2 (ja) 液晶表示装置および投射型表示装置
WO2019181308A1 (ja) シランカップリング材料および基板ならびにデバイス
JP6277728B2 (ja) 投射型表示装置および照明装置
US20170097531A1 (en) Liquid crystal device and electronic apparatus
JP2013097025A (ja) 液晶装置および電子機器
WO2021169593A1 (zh) 投影仪
KR200371900Y1 (ko) 프로젝터용 개선된 편광 장치
JP2008107508A (ja) 投射型液晶表示装置
JP2013025070A (ja) 電気光学装置、電気光学装置の製造方法、および投射型表示装置
JP2012194321A (ja) 液晶装置の製造方法
JP2008122646A (ja) 液晶表示装置
KR20040016019A (ko) 프로젝션 시스템
JP2013025074A (ja) 電気光学装置および投射型表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18767483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP