WO2018168074A1 - High-frequency oscillation measuring system - Google Patents

High-frequency oscillation measuring system Download PDF

Info

Publication number
WO2018168074A1
WO2018168074A1 PCT/JP2017/041274 JP2017041274W WO2018168074A1 WO 2018168074 A1 WO2018168074 A1 WO 2018168074A1 JP 2017041274 W JP2017041274 W JP 2017041274W WO 2018168074 A1 WO2018168074 A1 WO 2018168074A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
line
sensor
power supply
unit
Prior art date
Application number
PCT/JP2017/041274
Other languages
French (fr)
Japanese (ja)
Inventor
光樹 佃
智浩 山田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2018168074A1 publication Critical patent/WO2018168074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present invention relates to a high-frequency vibration measurement system for measuring the vibration of an object.
  • a conventional system for detecting high frequency vibration is disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-91357 (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-91357, a conventional system has a sensor chip (IC chip) and a connector arranged in a sensor case. Between the IC chip and the connector, there are provided a power line constituting a power supply circuit, a ground line on the earth side, and an output line for transmitting an output from the IC chip.
  • the output signal line of the acceleration sensor IC, the power supply line of the acceleration sensor IC, and the ground line are provided. Since the sensor cable includes these wires, the cable diameter and the cable weight of the sensor cable tend to increase. Depending on how the sensor cable is handled, the influence of the sensor cable on the stress in the vibration direction or the contact resonance increases. For this reason, there is a possibility of affecting the characteristics of the vibration sensor in the high frequency band.
  • An object of the present invention is to provide a high-frequency vibration measurement system with improved frequency characteristics in a high frequency band.
  • a high-frequency vibration measurement system includes a sensor unit, a cable connected to the sensor unit, and a measurement unit.
  • the cable includes a power line and a ground line, and does not include a signal line.
  • the sensor unit includes an acceleration sensor IC that outputs an AC signal corresponding to the acceleration generated in the sensor unit, a sensor power source generation unit that is connected to the power supply line and the ground line and supplies a power supply voltage to the acceleration sensor IC, and the acceleration sensor IC.
  • a modulation circuit that modulates the output AC signal to generate a modulation signal, a first capacitor connected between the modulation circuit and the power supply line to superimpose the modulation signal on the power supply line, and a sensor for the modulation signal And a first choke coil connected to the power supply line to block input to the power supply generation unit.
  • the measurement unit includes a DC voltage generation unit that generates a DC voltage between the power supply line and the ground line, a demodulation circuit that demodulates the modulation signal superimposed on the power supply line and generates a demodulation signal, and a demodulation signal.
  • a measuring circuit for measuring acceleration generated in the sensor unit a second capacitor connected between the demodulating circuit and the power line for passing the modulating signal and inputting it to the demodulating circuit, and a direct current of the modulating signal
  • a second choke coil connected to the power supply line to block input to the voltage generator.
  • the modulation circuit includes an oscillator and a switch that is turned on and off by the oscillator to chop an AC signal.
  • the demodulating circuit is an RC circuit.
  • the high-frequency vibration measurement system includes a plurality of sensor units, a plurality of cables connected to the plurality of sensor units, a repeater connected to the plurality of cables, a measurement unit, a measurement unit, and a repeater. And a second cable connected between the two.
  • the second cable includes a second power supply line, a second ground line, and a signal line.
  • the repeater is connected to each of a plurality of cables and amplifies the modulation signal superimposed on the power supply line, and is connected to a plurality of amplification units, a second power supply line, a second ground line, and a signal line, In response to the switching signal transmitted through the signal line, a switch that electrically connects any one of the plurality of amplifying units to the second power supply line and the second ground line is included.
  • the measurement unit outputs a switching signal to the signal line.
  • the weight and diameter of the sensor cable can be reduced, it is possible to provide a high-frequency vibration measuring system with improved frequency characteristics in a high frequency band.
  • FIG. 1 is a block diagram showing the overall configuration of a high-frequency vibration measurement system according to an embodiment of the present invention.
  • a high-frequency vibration measurement system 100 according to an embodiment of the present invention includes a sensor unit 1, a measurement unit 2, and a cable 3.
  • the sensor unit 1 and the measurement unit 2 are connected by a cable 3.
  • the cable 3 includes a power line 4 and a ground line 5 but does not include a signal line.
  • a signal from the sensor unit 1 is superimposed on the power line 4 and sent to the measuring unit 2.
  • the sensor unit 1 includes an acceleration sensor IC 11, a sensor power supply generation unit 12, a modulation circuit 13, a choke coil 14, and a capacitor 15.
  • the acceleration sensor IC 11 operates when power is supplied from the sensor power supply generation unit 12, and detects vibration of a measurement target (not shown in FIG. 1).
  • the sensor power supply generation unit 12 is connected to the power supply line 4 and the ground line 5, receives power from the measurement unit 2, and supplies a power supply voltage to the acceleration sensor IC 11.
  • “power supply” means a DC power supply.
  • the type of voltage output from the acceleration sensor IC11 is an AC voltage.
  • the modulation circuit 13 is a circuit for modulating the signal output from the acceleration sensor IC11.
  • the modulation circuit 13 includes an ON / OFF switch 17 and an oscillator 18.
  • the oscillator 18 generates a carrier wave.
  • the ON / OFF switch 17 turns on / off the output signal of the acceleration sensor IC 11 according to the oscillation frequency of the oscillator 18. As a result, the output signal of the acceleration sensor IC11 is turned on / off at high speed and modulated.
  • the capacitor 15 is connected between the output of the modulation circuit 13 and the power supply line 4.
  • the modulation signal modulated by the modulation circuit 13 passes through the capacitor 15 and is superimposed on the power supply line 4.
  • the choke coil 14 is inserted into the power supply line 4 to prevent the modulation signal from being input to the sensor power supply generation unit 12.
  • the measurement unit 2 includes a DC voltage generation unit 21, a choke coil 22, a capacitor 23, a demodulation circuit 24, an A / D converter 25, and a measurement MCU (Micro Control Unit).
  • the DC voltage generation unit 21 is connected to the power supply line 4 and the ground line 5 and supplies power to the sensor power supply generation unit 12 of the sensor unit 1.
  • the choke coil 22 is inserted into the power supply line 4 and prevents the modulation signal from being input to the DC voltage generation unit 21.
  • the modulation signal passes through the capacitor 23 and is input to the demodulation circuit 24.
  • the demodulation circuit 24 demodulates the modulation signal.
  • the A / D converter 25 A / D converts the demodulated signal to generate digital data.
  • the measurement MCU 26 measures the acceleration of the measurement target (not shown in FIG. 1) based on the digital data from the A / D converter 25. Note that the A / D converter 25 and the measurement MCU 26 may be integrated to form a measurement circuit.
  • FIG. 2 is a schematic diagram of signal waveforms for explaining the modulation and demodulation of the sensor output signal.
  • an AC voltage signal is output from the acceleration sensor IC 11 of the sensor unit 1.
  • the frequency of the sensor output signal is, for example, about several Hz to several kHz.
  • the voltage of the sensor output signal is always positive.
  • the sensor output signal is modulated by chopping using the oscillator 18 and the ON / OFF switch 17.
  • the carrier wave output from the oscillator 18 is a rectangular wave signal having a frequency of several MHz to several tens of MHz, for example.
  • the demodulation circuit 24 demodulates the modulated signal. Thereby, the demodulated signal reproduces the waveform of the original sensor output signal.
  • the configuration of the demodulation circuit 24 is not particularly limited.
  • an RC circuit can be applied to the demodulation circuit 24.
  • the RC circuit functions as a low-pass filter. By applying the RC circuit to the demodulation circuit 24, the demodulation circuit 24 can be realized with a simple configuration.
  • a high frequency carrier wave is used.
  • the configurations of the modulation circuit, the superposition circuit, and the demodulation circuit can be simplified.
  • a dedicated modem used for the power line communication system is not necessary. Therefore, the high-frequency vibration measurement system can be realized easily, in a small size, and at a low cost.
  • FIG. 3 is a diagram showing a configuration of a comparative example of the high-frequency vibration measuring system 100 according to the embodiment of the present invention.
  • the high-frequency vibration measurement system 101 includes a cable 3 a that connects the sensor unit 1 and the measurement unit 2.
  • the cable 3 a includes a signal line 6 in addition to the power supply line 4 and the ground line 5.
  • the signal line 6 is a signal line for transmitting an output signal from the acceleration sensor IC 11 of the sensor unit 1 to the A / D converter 25 of the measurement unit 2.
  • the cable 3a includes a power line, a ground line on the earth side, and a signal line for transmitting an output signal from the acceleration sensor IC.
  • FIG. 4 is a schematic cross-sectional view of a cable for comparing the diameter of the cable between the comparative example shown in FIG. 3 and the embodiment of the present invention.
  • the cable 3 a of the comparative example includes a power line 4, a ground line 5, and a signal line 6.
  • the signal line 6 of the cable 3 is omitted from the configuration of the cable 3a. Therefore, according to the embodiment of the present invention, the cable diameter can be reduced and the weight of the cable can be reduced.
  • FIG. 5 is a conceptual diagram for explaining the effect of the embodiment of the present invention.
  • the sensor unit 1 contacts the surface of the measurement target 7 in order to measure the vibration of the measurement target 7.
  • the cable 3 a or the cable 3 is bent above the sensor unit 1 and placed on the surface of the measurement object 7.
  • Measured object 7 vibrates up and down.
  • the cable 3 has a smaller diameter than the cable 3a.
  • the resonance frequency of the measurement object changes by attaching a sensor or the like to the measurement object.
  • a change in the resonance frequency to be measured leads to a measurement error, so a lightweight sensor is preferable.
  • the longer the sensor attached to the measurement target is in the vibration direction the more the weight component in the vibration direction becomes, so the above-described measurement error increases.
  • the embodiment of the present invention since the bending radius of the cable can be reduced by reducing the cable diameter, the weight component in the vibration direction can be reduced. Furthermore, the weight of the cable itself can be suppressed. Therefore, according to the embodiment of the present invention, it is possible to reduce the increase in the measurement error described above.
  • a cable that is lighter and smaller in diameter than the conventional one can be applied.
  • the stress in the vibration direction of the measurement target be reduced, but also the influence on the resonance frequency due to the sensor mounting can be reduced. Therefore, according to the embodiment of the present invention, the frequency characteristics in the high frequency band of the high frequency vibration measurement system can be improved.
  • the cost of the cable can be reduced.
  • cables used in industrial vibration measurement systems are required to be environmentally resistant, so cable materials are often expensive.
  • the diameter of the cable By reducing the diameter of the cable, the effect of reducing the cost is enhanced.
  • FIG. 6 is a block diagram showing another configuration of the high-frequency vibration measuring system according to the embodiment of the present invention.
  • the high-frequency vibration measurement system 102 includes a plurality of sensors 3, a repeater 8, a measurement unit 2, and a plurality of cables 3 for connecting the plurality of sensor units 1 to the repeater 8. And a cable 30 for connecting the measuring unit 2 and the repeater 8. The description of the configuration of each sensor unit 1, the configuration of the cable 3, and the configuration of the measurement unit 2 will not be repeated.
  • the repeater 8 includes a plurality of amplifying units 31 and a switch 32.
  • the cable 30 includes a power supply line 4a, a ground line 5a, and a signal line 6a.
  • the repeater 8 receives the modulation signals from each of the plurality of sensor units 1 at a time.
  • Each amplification unit 31 of the repeater 8 amplifies the modulation signal superimposed on the power supply line 4 of the cable 3 by the corresponding sensor unit 1.
  • the amplifying unit 31 amplifies the voltage level, whereby the signal component is amplified by the amplifying unit 31.
  • the switch 32 receives the switching signal output from the measurement unit 2 via the signal line 6a. In response to the switching signal, the switch 32 connects any one output line (the power supply line 4b and the ground line 5b) of the plurality of amplification units 31 to the power supply line 4a and the ground line 5a of the cable 30. Switch to. Thereby, the measuring unit 2 is electrically connected to the selected amplifying unit 31 via the power supply line 4a and the ground line 5a.
  • the measurement unit 2 receives the amplified modulation signal from the amplification unit 31 and demodulates the modulation signal.
  • the distance between the sensor unit 1 and the measurement unit 2 can be increased by the repeater 8 and is transmitted to the measurement unit 2 by the switch 32 in the repeater 8.
  • Sensor signal can be selected.
  • the cable 3 that connects each of the plurality of sensor units 1 and the repeater 8 includes the power supply line 4 and the ground line 5 but does not include the signal line. Therefore, as shown in FIG. 5, the bending radius of the cable can be reduced for each of the plurality of sensor units 1, so that the weight component in the vibration direction can be reduced. Furthermore, the weight of the cable itself is suppressed. Therefore, the frequency characteristics in the high frequency band can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A high-frequency oscillation measuring system (100) is provided with a sensor unit (1), a cable (3), and a measuring unit (2). The cable (3) includes a power supply line (4) and a ground line (5), and does not include a signal line. The sensor unit (1) includes: an acceleration sensor IC (11); a sensor power supply generation unit (12); a modulation circuit (13), which modulates an alternating current signal outputted from the acceleration sensor IC (11), and generates a modulation signal; a capacitor (15) connected between the modulation circuit (13) and the power supply line (4); and a first choke coil (14) connected to the power supply line (4). The measuring unit (2) includes: a direct current voltage generation unit (21); a demodulation circuit (24), which demodulates the modulation signal, and generates a demodulation signal; a measuring circuit (26) that measures, on the basis of the demodulation signal, acceleration generated in the sensor unit (1); a capacitor (23) connected between the demodulation circuit (24) and the power supply line (4); and a choke coil (22) connected to the power supply line (4).

Description

高周波振動計測システムHigh frequency vibration measurement system
 本発明は、物体の振動を計測するための高周波振動計測システムに関する。 The present invention relates to a high-frequency vibration measurement system for measuring the vibration of an object.
 高周波振動を検出するための従来のシステムは、たとえば、特開2014-91357号公報(特許文献1)に開示されている。特開2014-91357号公報によれば、従来のシステムは、センサケース内に配置されたセンサチップ(ICチップ)およびコネクタを有する。ICチップとコネクタとの間には、電源供給回路を構成する電源線、アース側のグランド線、およびICチップからの出力を伝達するための出力線とが設けられる。 A conventional system for detecting high frequency vibration is disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-91357 (Patent Document 1). According to Japanese Patent Laid-Open No. 2014-91357, a conventional system has a sensor chip (IC chip) and a connector arranged in a sensor case. Between the IC chip and the connector, there are provided a power line constituting a power supply circuit, a ground line on the earth side, and an output line for transmitting an output from the IC chip.
特開2014-91357号公報JP 2014-91357 A
 上記のように、従来の高周波振動計測システムでは、加速度センサICの出力信号線と、加速度センサICの電源線と、グランド線とが設けられている。センサケーブルがこれらの線を含むために、センサケーブルのケーブル径およびケーブル重量が大きくなりやすい。センサケーブルの取り回し方によっては、振動方向への応力あるいは接触共振へのセンサケーブルの影響が大きくなる。このために振動センサの高周波数帯域の特性への影響が生じる可能性がある。 As described above, in the conventional high-frequency vibration measurement system, the output signal line of the acceleration sensor IC, the power supply line of the acceleration sensor IC, and the ground line are provided. Since the sensor cable includes these wires, the cable diameter and the cable weight of the sensor cable tend to increase. Depending on how the sensor cable is handled, the influence of the sensor cable on the stress in the vibration direction or the contact resonance increases. For this reason, there is a possibility of affecting the characteristics of the vibration sensor in the high frequency band.
 本発明の目的は、高周波数帯域での周波数特性を向上した高周波振動計測システムを提供することである。 An object of the present invention is to provide a high-frequency vibration measurement system with improved frequency characteristics in a high frequency band.
 本発明のある局面に係る高周波振動計測システムは、センサ部と、センサ部に接続されるケーブルと、計測部とを備える。ケーブルは、電源線とグランド線とを含み、かつ信号線を含まない。センサ部は、センサ部に生じる加速度に応じた交流信号を出力する加速度センサICと、電源線およびグランド線に接続され、加速度センサICに電源電圧を供給するセンサ電源生成部と、加速度センサICから出力された交流信号を変調して変調信号を生成する変調回路と、変調信号を電源線に重畳するために変調回路と電源線との間に接続された第1のコンデンサと、変調信号のセンサ電源生成部への入力を阻止するために電源線に接続された第1のチョークコイルとを含む。計測部は、電源線およびグランド線の間に直流電圧を生成する直流電圧生成部と、電源線に重畳された変調信号を復調して、復調信号を生成する復調回路と、復調信号に基づいて、センサ部に生じた加速度を計測する計測回路と、変調信号を通過させて復調回路に入力するために、復調回路と電源線との間に接続された第2のコンデンサと、変調信号の直流電圧生成部への入力を阻止するために電源線に接続された第2のチョークコイルとを含む。 A high-frequency vibration measurement system according to an aspect of the present invention includes a sensor unit, a cable connected to the sensor unit, and a measurement unit. The cable includes a power line and a ground line, and does not include a signal line. The sensor unit includes an acceleration sensor IC that outputs an AC signal corresponding to the acceleration generated in the sensor unit, a sensor power source generation unit that is connected to the power supply line and the ground line and supplies a power supply voltage to the acceleration sensor IC, and the acceleration sensor IC. A modulation circuit that modulates the output AC signal to generate a modulation signal, a first capacitor connected between the modulation circuit and the power supply line to superimpose the modulation signal on the power supply line, and a sensor for the modulation signal And a first choke coil connected to the power supply line to block input to the power supply generation unit. The measurement unit includes a DC voltage generation unit that generates a DC voltage between the power supply line and the ground line, a demodulation circuit that demodulates the modulation signal superimposed on the power supply line and generates a demodulation signal, and a demodulation signal. A measuring circuit for measuring acceleration generated in the sensor unit, a second capacitor connected between the demodulating circuit and the power line for passing the modulating signal and inputting it to the demodulating circuit, and a direct current of the modulating signal And a second choke coil connected to the power supply line to block input to the voltage generator.
 好ましくは、変調回路は、発振器と、発振器によってオンオフされて交流信号をチョッピングするスイッチとを含む。復調回路は、RC回路である。 Preferably, the modulation circuit includes an oscillator and a switch that is turned on and off by the oscillator to chop an AC signal. The demodulating circuit is an RC circuit.
 好ましくは、高周波振動計測システムは、複数のセンサ部と、複数のセンサ部にそれぞれ接続される複数のケーブルと、複数のケーブルに接続される中継器と、計測部と、計測部と中継器との間に接続される第2のケーブルとを備える。第2のケーブルは、第2の電源線と第2のグランド線と信号線とを含む。中継器は、複数のケーブルにそれぞれ接続されて、電源線に重畳された前記変調信号を増幅する、複数の増幅部と、第2の電源線、第2のグランド線および信号線に接続され、信号線を介して伝達された切換信号に応答して、複数の増幅部のうちのいずれか1つを第2の電源線および第2のグランド線に電気的に接続するスイッチとを含む。計測部は、切換信号を信号線に出力する。 Preferably, the high-frequency vibration measurement system includes a plurality of sensor units, a plurality of cables connected to the plurality of sensor units, a repeater connected to the plurality of cables, a measurement unit, a measurement unit, and a repeater. And a second cable connected between the two. The second cable includes a second power supply line, a second ground line, and a signal line. The repeater is connected to each of a plurality of cables and amplifies the modulation signal superimposed on the power supply line, and is connected to a plurality of amplification units, a second power supply line, a second ground line, and a signal line, In response to the switching signal transmitted through the signal line, a switch that electrically connects any one of the plurality of amplifying units to the second power supply line and the second ground line is included. The measurement unit outputs a switching signal to the signal line.
 本発明によれば、センサケーブルの重量および直径を低減できるので、高周波数帯域での周波数特性を向上した高周波振動計測システムを提供することができる。 According to the present invention, since the weight and diameter of the sensor cable can be reduced, it is possible to provide a high-frequency vibration measuring system with improved frequency characteristics in a high frequency band.
本発明の実施の形態に係る高周波振動計測システムの全体構成を示したブロック図である。It is the block diagram which showed the whole structure of the high frequency vibration measuring system which concerns on embodiment of this invention. センサ出力信号の変調および復調を説明するための信号波形の模式図である。It is a schematic diagram of a signal waveform for explaining modulation and demodulation of a sensor output signal. 本発明の実施の形態に係る高周波振動計測システムの比較例の構成を示した図である。It is the figure which showed the structure of the comparative example of the high frequency vibration measuring system which concerns on embodiment of this invention. 図3に示された比較例と、本発明の実施の形態との間でケーブルの径を比較するためのケーブルの模式断面図である。It is a schematic cross section of the cable for comparing the diameter of a cable between the comparative example shown by FIG. 3, and embodiment of this invention. 本発明の実施の形態による効果を説明するための概念図である。It is a conceptual diagram for demonstrating the effect by embodiment of this invention. 本発明の実施の形態に係る高周波振動計測システムの別の構成を示したブロック図である。It is the block diagram which showed another structure of the high frequency vibration measuring system which concerns on embodiment of this invention.
 本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中の同一または相当部分については、同一符号を付してその説明は繰り返さない。 Embodiments of the present invention will be described in detail with reference to the drawings. In addition, about the same or equivalent part in a figure, the same code | symbol is attached | subjected and the description is not repeated.
 図1は、本発明の実施の形態に係る高周波振動計測システムの全体構成を示したブロック図である。図1に示すように、本発明の実施の形態に係る高周波振動計測システム100は、センサ部1と、計測部2と、ケーブル3とを備える。センサ部1と、計測部2とはケーブル3により接続される。ケーブル3は、電源線4とグランド線5とを含む一方、信号線を含まない。センサ部1からの信号は電源線4に重畳されて計測部2に送られる。 FIG. 1 is a block diagram showing the overall configuration of a high-frequency vibration measurement system according to an embodiment of the present invention. As shown in FIG. 1, a high-frequency vibration measurement system 100 according to an embodiment of the present invention includes a sensor unit 1, a measurement unit 2, and a cable 3. The sensor unit 1 and the measurement unit 2 are connected by a cable 3. The cable 3 includes a power line 4 and a ground line 5 but does not include a signal line. A signal from the sensor unit 1 is superimposed on the power line 4 and sent to the measuring unit 2.
 センサ部1は、加速度センサIC11と、センサ電源生成部12と、変調回路13と、チョークコイル14と、コンデンサ15とを含む。加速度センサIC11は、センサ電源生成部12から電源が供給されることにより動作して、計測対象(図1に示さず)の振動を検出する。センサ電源生成部12は、電源線4およびグランド線5に接続され、計測部2から電力を受けて、加速度センサIC11に電源電圧を供給する。この実施形態において「電源」とは直流電源を意味する。一方、加速度センサIC11から出力される電圧の種類は交流電圧である。 The sensor unit 1 includes an acceleration sensor IC 11, a sensor power supply generation unit 12, a modulation circuit 13, a choke coil 14, and a capacitor 15. The acceleration sensor IC 11 operates when power is supplied from the sensor power supply generation unit 12, and detects vibration of a measurement target (not shown in FIG. 1). The sensor power supply generation unit 12 is connected to the power supply line 4 and the ground line 5, receives power from the measurement unit 2, and supplies a power supply voltage to the acceleration sensor IC 11. In this embodiment, “power supply” means a DC power supply. On the other hand, the type of voltage output from the acceleration sensor IC11 is an AC voltage.
 変調回路13は、加速度センサIC11から出力された信号を変調するための回路である。変調回路13は、ON/OFFスイッチ17と、発振器18とを含む。発振器18は、搬送波を発生させる。ON/OFFスイッチ17は、発振器18の発振周波数に従い、加速度センサIC11の出力信号をオン/オフする。これにより、加速度センサIC11の出力信号が高速にオン/オフされて変調される。 The modulation circuit 13 is a circuit for modulating the signal output from the acceleration sensor IC11. The modulation circuit 13 includes an ON / OFF switch 17 and an oscillator 18. The oscillator 18 generates a carrier wave. The ON / OFF switch 17 turns on / off the output signal of the acceleration sensor IC 11 according to the oscillation frequency of the oscillator 18. As a result, the output signal of the acceleration sensor IC11 is turned on / off at high speed and modulated.
 コンデンサ15は、変調回路13の出力と、電源線4との間に接続される。変調回路13によって変調された変調信号は、コンデンサ15を通過して電源線4に重畳される。チョークコイル14は電源線4に挿入されて、変調信号がセンサ電源生成部12に入力されることを阻止する。 The capacitor 15 is connected between the output of the modulation circuit 13 and the power supply line 4. The modulation signal modulated by the modulation circuit 13 passes through the capacitor 15 and is superimposed on the power supply line 4. The choke coil 14 is inserted into the power supply line 4 to prevent the modulation signal from being input to the sensor power supply generation unit 12.
 計測部2は、DC電圧生成部21と、チョークコイル22と、コンデンサ23と、復調回路24と、A/Dコンバータ25と、計測用MCU(Micro Control Unit)とを備える。 The measurement unit 2 includes a DC voltage generation unit 21, a choke coil 22, a capacitor 23, a demodulation circuit 24, an A / D converter 25, and a measurement MCU (Micro Control Unit).
 DC電圧生成部21は、電源線4およびグランド線5に接続されて、センサ部1のセンサ電源生成部12に電源を供給する。チョークコイル22は、電源線4に挿入されて、変調信号がDC電圧生成部21に入力されることを阻止する。 The DC voltage generation unit 21 is connected to the power supply line 4 and the ground line 5 and supplies power to the sensor power supply generation unit 12 of the sensor unit 1. The choke coil 22 is inserted into the power supply line 4 and prevents the modulation signal from being input to the DC voltage generation unit 21.
 変調信号はコンデンサ23を通過して復調回路24に入力される。復調回路24は、変調信号を復調する。A/Dコンバータ25は、復調された信号をA/D変換してデジタルデータを生成する。計測用MCU26は、A/Dコンバータ25からのデジタルデータに基づいて計測対象(図1に示さず)の加速度を計測する。なお、A/Dコンバータ25と計測用MCU26とが統合されて計測回路を構成してもよい。 The modulation signal passes through the capacitor 23 and is input to the demodulation circuit 24. The demodulation circuit 24 demodulates the modulation signal. The A / D converter 25 A / D converts the demodulated signal to generate digital data. The measurement MCU 26 measures the acceleration of the measurement target (not shown in FIG. 1) based on the digital data from the A / D converter 25. Note that the A / D converter 25 and the measurement MCU 26 may be integrated to form a measurement circuit.
 図2は、センサ出力信号の変調および復調を説明するための信号波形の模式図である。図1および図2を参照して、センサ部1の加速度センサIC11から交流電圧の信号が出力される。この実施の形態において、センサ出力信号の周波数は、たとえば数Hz~数kHz程度である。センサ出力信号の電圧は常に正である。 FIG. 2 is a schematic diagram of signal waveforms for explaining the modulation and demodulation of the sensor output signal. With reference to FIGS. 1 and 2, an AC voltage signal is output from the acceleration sensor IC 11 of the sensor unit 1. In this embodiment, the frequency of the sensor output signal is, for example, about several Hz to several kHz. The voltage of the sensor output signal is always positive.
 センサ出力信号は、発振器18およびON/OFFスイッチ17を用いたチョッピングによって変調される。発振器18から出力される搬送波は、たとえば周波数が数MHz~数十MHzの矩形波信号である。 The sensor output signal is modulated by chopping using the oscillator 18 and the ON / OFF switch 17. The carrier wave output from the oscillator 18 is a rectangular wave signal having a frequency of several MHz to several tens of MHz, for example.
 復調回路24は、変調後信号を復調する。これにより復調後信号は元のセンサ出力信号の波形を再現する。復調回路24の構成は特に限定されない。たとえば復調回路24にRC回路を適用できる。RC回路はローパスフィルタとして機能する。RC回路を復調回路24に適用することにより、簡易な構成で復調回路24を実現することができる。 The demodulation circuit 24 demodulates the modulated signal. Thereby, the demodulated signal reproduces the waveform of the original sensor output signal. The configuration of the demodulation circuit 24 is not particularly limited. For example, an RC circuit can be applied to the demodulation circuit 24. The RC circuit functions as a low-pass filter. By applying the RC circuit to the demodulation circuit 24, the demodulation circuit 24 can be realized with a simple configuration.
 本発明の実施の形態では、高周波数の搬送波が使用される。これにより変調回路、重畳回路および復調回路の構成を簡易にすることができる。さらに、電力線通信システムに用いられる専用モデムが不要である。したがって、高周波振動計測システムを容易、小型、かつ低コストに実現することができる。 In the embodiment of the present invention, a high frequency carrier wave is used. As a result, the configurations of the modulation circuit, the superposition circuit, and the demodulation circuit can be simplified. Furthermore, a dedicated modem used for the power line communication system is not necessary. Therefore, the high-frequency vibration measurement system can be realized easily, in a small size, and at a low cost.
 図3は、本発明の実施の形態に係る高周波振動計測システム100の比較例の構成を示した図である。図3に示すように、高周波振動計測システム101は、センサ部1と計測部2とを接続するケーブル3aを有する。ケーブル3aは、電源線4およびグランド線5に加えて信号線6を含む。信号線6は、センサ部1の加速度センサIC11からの出力信号を計測部2のA/Dコンバータ25に伝達するための信号線である。図3に示された構成では、電源線、アース側のグランド線、および加速度センサICからの出力信号を伝達するための信号線がケーブル3aに含まれる。 FIG. 3 is a diagram showing a configuration of a comparative example of the high-frequency vibration measuring system 100 according to the embodiment of the present invention. As shown in FIG. 3, the high-frequency vibration measurement system 101 includes a cable 3 a that connects the sensor unit 1 and the measurement unit 2. The cable 3 a includes a signal line 6 in addition to the power supply line 4 and the ground line 5. The signal line 6 is a signal line for transmitting an output signal from the acceleration sensor IC 11 of the sensor unit 1 to the A / D converter 25 of the measurement unit 2. In the configuration shown in FIG. 3, the cable 3a includes a power line, a ground line on the earth side, and a signal line for transmitting an output signal from the acceleration sensor IC.
 図4は、図3に示された比較例と、本発明の実施の形態との間でケーブルの径を比較するためのケーブルの模式断面図である。図4に示されるように、比較例のケーブル3aは、電源線4、グランド線5および信号線6を含む。一方、本発明の実施の形態では、ケーブル3は、ケーブル3aの構成から信号線6が省略されている。したがって、本発明の実施の形態によればケーブル径を小さくすることができるとともにケーブルの重量を削減できる。 FIG. 4 is a schematic cross-sectional view of a cable for comparing the diameter of the cable between the comparative example shown in FIG. 3 and the embodiment of the present invention. As shown in FIG. 4, the cable 3 a of the comparative example includes a power line 4, a ground line 5, and a signal line 6. On the other hand, in the embodiment of the present invention, the signal line 6 of the cable 3 is omitted from the configuration of the cable 3a. Therefore, according to the embodiment of the present invention, the cable diameter can be reduced and the weight of the cable can be reduced.
 図5は、本発明の実施の形態による効果を説明するための概念図である。図5を参照して、センサ部1は、計測対象7の振動を計測するために、計測対象7の表面に接触する。ケーブル3aまたはケーブル3は、センサ部1の上方で曲げられるともに、計測対象7の表面上に置かれる。 FIG. 5 is a conceptual diagram for explaining the effect of the embodiment of the present invention. With reference to FIG. 5, the sensor unit 1 contacts the surface of the measurement target 7 in order to measure the vibration of the measurement target 7. The cable 3 a or the cable 3 is bent above the sensor unit 1 and placed on the surface of the measurement object 7.
 計測対象7は上下方向に振動する。図4に示したように、ケーブル3は、ケーブル3aよりも直径が小さい。一般的には、計測対象にセンサなどを取り付けることによって、計測対象の共振周波数が変化する。特に、高周波数帯域において、計測対象の共振周波数の変化は計測誤差につながるため軽量なセンサが好ましい。計測対象に取り付けられるセンサなどは、振動方向に長ければ長いほど振動方向への重量成分になるため、上述した計測誤差が増大する。本発明の実施の形態によれば、ケーブル径が小さいことによって、ケーブルの曲げ半径を小さくすることができるので、振動方向への重量成分を軽減できる。さらにケーブルの重量自体も抑えることができる。したがって本発明の実施の形態によれば、上述した計測誤差が増加することを軽減できる。 Measured object 7 vibrates up and down. As shown in FIG. 4, the cable 3 has a smaller diameter than the cable 3a. Generally, the resonance frequency of the measurement object changes by attaching a sensor or the like to the measurement object. In particular, in the high frequency band, a change in the resonance frequency to be measured leads to a measurement error, so a lightweight sensor is preferable. The longer the sensor attached to the measurement target is in the vibration direction, the more the weight component in the vibration direction becomes, so the above-described measurement error increases. According to the embodiment of the present invention, since the bending radius of the cable can be reduced by reducing the cable diameter, the weight component in the vibration direction can be reduced. Furthermore, the weight of the cable itself can be suppressed. Therefore, according to the embodiment of the present invention, it is possible to reduce the increase in the measurement error described above.
 このように本発明の実施の形態によれば、従来よりも軽く、かつ、直径の小さいケーブルを適用できる。これにより、計測対象の振動方向の応力の低減を図ることができるだけでなく、センサ取付けによる共振周波数への影響の低減を図ることもできる。したがって本発明の実施の形態によれば、高周波振動計測システムの高周波数帯での周波数特性を向上させることができる。 Thus, according to the embodiment of the present invention, a cable that is lighter and smaller in diameter than the conventional one can be applied. Thereby, not only can the stress in the vibration direction of the measurement target be reduced, but also the influence on the resonance frequency due to the sensor mounting can be reduced. Therefore, according to the embodiment of the present invention, the frequency characteristics in the high frequency band of the high frequency vibration measurement system can be improved.
 さらに本発明の実施の形態によれば、ケーブルのコストを低減できる。特に、産業用途の振動計測システムに用いられるケーブルには耐環境性が要求されるため、ケーブル材料が高価であることが多い。ケーブルの径を低減することによって、コストを削減する効果が高められる。 Furthermore, according to the embodiment of the present invention, the cost of the cable can be reduced. In particular, cables used in industrial vibration measurement systems are required to be environmentally resistant, so cable materials are often expensive. By reducing the diameter of the cable, the effect of reducing the cost is enhanced.
 図6は、本発明の実施の形態に係る高周波振動計測システムの別の構成を示したブロック図である。図6に示すように、高周波振動計測システム102は、複数のセンサ部1と、中継器8と、計測部2と、複数のセンサ部1を中継器8にそれぞれ接続するための複数のケーブル3と、計測部2と中継器8とを接続するためのケーブル30とを備える。各々のセンサ部1の構成、ケーブル3の構成および計測部2の構成については、説明を繰り返さない。 FIG. 6 is a block diagram showing another configuration of the high-frequency vibration measuring system according to the embodiment of the present invention. As shown in FIG. 6, the high-frequency vibration measurement system 102 includes a plurality of sensors 3, a repeater 8, a measurement unit 2, and a plurality of cables 3 for connecting the plurality of sensor units 1 to the repeater 8. And a cable 30 for connecting the measuring unit 2 and the repeater 8. The description of the configuration of each sensor unit 1, the configuration of the cable 3, and the configuration of the measurement unit 2 will not be repeated.
 中継器8は、複数の増幅部31と、スイッチ32とを含む。ケーブル30は、電源線4a、グランド線5aおよび信号線6aを含む。 The repeater 8 includes a plurality of amplifying units 31 and a switch 32. The cable 30 includes a power supply line 4a, a ground line 5a, and a signal line 6a.
 中継器8は、複数のセンサ部1の各々からの変調信号を一括して受ける。中継器8の各々の増幅部31は、対応するセンサ部1によってケーブル3の電源線4に重畳された変調信号を増幅する。増幅部31は電圧レベルを増幅するものであり、これにより、信号成分が増幅部31によって増幅される。スイッチ32は、計測部2から出力された切換信号を信号線6aを介して受信する。スイッチ32は、切換信号に応答して、複数の増幅部31のうちのいずれか1つの出力線(電源線4bおよびグランド線5b)を、ケーブル30の電源線4aおよびグランド線5aに接続するように切換わる。これにより計測部2は、電源線4aおよびグランド線5aを介して、その選択された増幅部31に電気的に接続される。計測部2は、その増幅部31から、増幅された変調信号を受信して、変調信号を復調する。 The repeater 8 receives the modulation signals from each of the plurality of sensor units 1 at a time. Each amplification unit 31 of the repeater 8 amplifies the modulation signal superimposed on the power supply line 4 of the cable 3 by the corresponding sensor unit 1. The amplifying unit 31 amplifies the voltage level, whereby the signal component is amplified by the amplifying unit 31. The switch 32 receives the switching signal output from the measurement unit 2 via the signal line 6a. In response to the switching signal, the switch 32 connects any one output line (the power supply line 4b and the ground line 5b) of the plurality of amplification units 31 to the power supply line 4a and the ground line 5a of the cable 30. Switch to. Thereby, the measuring unit 2 is electrically connected to the selected amplifying unit 31 via the power supply line 4a and the ground line 5a. The measurement unit 2 receives the amplified modulation signal from the amplification unit 31 and demodulates the modulation signal.
 図6に示した構成によれば、中継器8によってセンサ部1と計測部2との間の距離を長くすることができるとともに、中継器8の中のスイッチ32によって、計測部2へ伝送されるセンサ信号を選択することができる。さらに、複数のセンサ部1の各々と中継器8とを接続するケーブル3は、電源線4およびグランド線5を含むものの信号線を含んでいない。したがって複数のセンサ部1の各々について、図5に示されるように、ケーブルの曲げ半径を小さくすることができるので、振動方向への重量成分を軽減できる。さらに、ケーブルの重量自体が抑えられている。したがって、高周波数帯域での周波数特性を向上することができる。 According to the configuration shown in FIG. 6, the distance between the sensor unit 1 and the measurement unit 2 can be increased by the repeater 8 and is transmitted to the measurement unit 2 by the switch 32 in the repeater 8. Sensor signal can be selected. Further, the cable 3 that connects each of the plurality of sensor units 1 and the repeater 8 includes the power supply line 4 and the ground line 5 but does not include the signal line. Therefore, as shown in FIG. 5, the bending radius of the cable can be reduced for each of the plurality of sensor units 1, so that the weight component in the vibration direction can be reduced. Furthermore, the weight of the cable itself is suppressed. Therefore, the frequency characteristics in the high frequency band can be improved.
 今回開示された実施の形態はすべての点で例示であって制限的なものでないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 センサ部、2 計測部、3,3a,30 ケーブル、4,4a,4b 電源線、5,5a,5b グランド線、6,6a 信号線、7 計測対象、8 中継器、11 加速度センサIC、12 センサ電源生成部、13 変調回路、14,22 チョークコイル、15,23 コンデンサ、17 ON/OFFスイッチ、18 発振器、21 DC電圧生成部、24 復調回路、25 A/Dコンバータ、26 計測用MCU、31 増幅部、32 スイッチ、100,101,102 高周波振動計測システム。 1 sensor part, 2 measurement part, 3, 3a, 30 cable, 4, 4a, 4b power line, 5, 5a, 5b ground line, 6, 6a signal line, 7 measurement object, 8 relay, 11 acceleration sensor IC, 12 sensor power generation unit, 13 modulation circuit, 14, 22 choke coil, 15, 23 capacitor, 17 ON / OFF switch, 18 oscillator, 21 DC voltage generation unit, 24 demodulation circuit, 25 A / D converter, 26 MCU for measurement , 31 amplification unit, 32 switch, 100, 101, 102 high frequency vibration measurement system.

Claims (3)

  1.  センサ部と、
     前記センサ部に接続されるケーブルと、
     計測部とを備え、
     前記ケーブルは、電源線とグランド線とを含み、かつ信号線を含まず、
     前記センサ部は、
     前記センサ部に生じる加速度に応じた交流信号を出力する加速度センサICと、
     前記電源線および前記グランド線に接続され、前記加速度センサICに電源電圧を供給するセンサ電源生成部と、
     前記加速度センサICから出力された前記交流信号を変調して変調信号を生成する変調回路と、
     前記変調信号を前記電源線に重畳するために前記変調回路と前記電源線との間に接続された第1のコンデンサと、
     前記変調信号の前記センサ電源生成部への入力を阻止するために前記電源線に接続された第1のチョークコイルとを含み、
     前記計測部は、
     前記電源線および前記グランド線の間に直流電圧を生成する直流電圧生成部と、
     前記電源線に重畳された前記変調信号を復調して、復調信号を生成する復調回路と、
     前記復調信号に基づいて、前記センサ部に生じた前記加速度を計測する計測回路と、
     前記変調信号を通過させて前記復調回路に入力するために、前記復調回路と前記電源線との間に接続された第2のコンデンサと、
     前記変調信号の前記直流電圧生成部への入力を阻止するために前記電源線に接続された第2のチョークコイルとを含む、高周波振動計測システム。
    A sensor unit;
    A cable connected to the sensor unit;
    With a measuring unit,
    The cable includes a power line and a ground line, and does not include a signal line.
    The sensor unit is
    An acceleration sensor IC that outputs an AC signal corresponding to the acceleration generated in the sensor unit;
    A sensor power supply generating unit connected to the power supply line and the ground line and supplying a power supply voltage to the acceleration sensor IC;
    A modulation circuit that modulates the AC signal output from the acceleration sensor IC to generate a modulation signal;
    A first capacitor connected between the modulation circuit and the power line to superimpose the modulation signal on the power line;
    A first choke coil connected to the power supply line to prevent the modulation signal from being input to the sensor power supply generation unit,
    The measuring unit is
    A DC voltage generator that generates a DC voltage between the power line and the ground line;
    A demodulation circuit that demodulates the modulation signal superimposed on the power line and generates a demodulation signal;
    A measurement circuit for measuring the acceleration generated in the sensor unit based on the demodulated signal;
    A second capacitor connected between the demodulator circuit and the power line to pass the modulated signal and input it to the demodulator circuit;
    A high-frequency vibration measurement system including a second choke coil connected to the power supply line in order to prevent the modulation signal from being input to the DC voltage generator.
  2.  前記変調回路は、
     発振器と、
     前記発振器によってオンオフされて前記交流信号をチョッピングするスイッチとを含み、
     前記復調回路は、RC回路である、請求項1に記載の高周波振動計測システム。
    The modulation circuit includes:
    An oscillator,
    A switch that is turned on and off by the oscillator to chop the AC signal,
    The high-frequency vibration measurement system according to claim 1, wherein the demodulation circuit is an RC circuit.
  3.  前記高周波振動計測システムは、
     複数の前記センサ部と、
     前記複数の前記センサ部にそれぞれ接続される複数の前記ケーブルと、
     前記複数の前記ケーブルに接続される中継器と、
     前記計測部と、
     前記計測部と前記中継器との間に接続される第2のケーブルとを備え、
     前記第2のケーブルは、第2の電源線と第2のグランド線と信号線とを含み、
     前記中継器は、
     前記複数の前記ケーブルにそれぞれ接続されて、前記電源線に重畳された前記変調信号を増幅する、複数の増幅部と、
     前記第2の電源線、前記第2のグランド線および前記信号線に接続され、前記信号線を介して伝達された切換信号に応答して、前記複数の増幅部のうちのいずれか1つを前記第2の電源線および前記第2のグランド線に電気的に接続するスイッチとを含み、
     前記計測部は、前記切換信号を前記信号線に出力する、請求項1または請求項2に記載の高周波振動計測システム。
    The high-frequency vibration measurement system includes:
    A plurality of the sensor units;
    A plurality of cables respectively connected to the plurality of sensor units;
    A repeater connected to the plurality of cables;
    The measurement unit;
    A second cable connected between the measuring unit and the repeater;
    The second cable includes a second power line, a second ground line, and a signal line,
    The repeater is
    A plurality of amplifying units connected to the plurality of cables, respectively, for amplifying the modulation signal superimposed on the power line;
    In response to a switching signal that is connected to the second power supply line, the second ground line, and the signal line and is transmitted through the signal line, any one of the plurality of amplifying units is connected. A switch electrically connected to the second power supply line and the second ground line,
    The high-frequency vibration measurement system according to claim 1, wherein the measurement unit outputs the switching signal to the signal line.
PCT/JP2017/041274 2017-03-14 2017-11-16 High-frequency oscillation measuring system WO2018168074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048063A JP2018151270A (en) 2017-03-14 2017-03-14 High-frequency vibration measuring system
JP2017-048063 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168074A1 true WO2018168074A1 (en) 2018-09-20

Family

ID=63521914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041274 WO2018168074A1 (en) 2017-03-14 2017-11-16 High-frequency oscillation measuring system

Country Status (3)

Country Link
JP (1) JP2018151270A (en)
TW (1) TWI661960B (en)
WO (1) WO2018168074A1 (en)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017515A (en) * 1973-06-14 1975-02-24
JPS5139151A (en) * 1974-09-30 1976-04-01 Tokyo Electric Power Co JIDOKENSHINHOSHIKINO CHUKEISOCHI
JPS54115232A (en) * 1978-02-28 1979-09-07 Ricoh Co Ltd Light recording device
JPS5674275A (en) * 1979-11-21 1981-06-19 Ricoh Co Ltd Scanning method in laser printer
JPS61281606A (en) * 1986-06-06 1986-12-12 Nec Corp Double balanced modulator
JPH02266742A (en) * 1989-04-07 1990-10-31 Matsushita Electric Works Ltd Two-wire type television interphone system for multiple dwelling house
JPH08149899A (en) * 1994-11-14 1996-06-07 Toshiba Corp Controller for rotating electric machine
JPH08304147A (en) * 1995-05-12 1996-11-22 Nippon Denpa Kk Liquid-level measuring apparatus
JP2002053200A (en) * 2000-08-08 2002-02-19 Nidai Seiko:Kk Kerosine residual quantity alarm
JP2003065835A (en) * 2001-08-21 2003-03-05 Nsk Ltd Bearing unit with sensor
JP2003172619A (en) * 2001-12-10 2003-06-20 Alps Electric Co Ltd Controlling apparatus for antenna for mobile body
JP2004049249A (en) * 2002-07-16 2004-02-19 Fuji Photo Optical Co Ltd Electronic endoscope system
JP2006064640A (en) * 2004-08-30 2006-03-09 Yazaki Corp Level sensor system
JP2007076621A (en) * 2005-09-16 2007-03-29 Auto Network Gijutsu Kenkyusho:Kk Tire air pressure monitoring system
JP2010045794A (en) * 2009-08-28 2010-02-25 Toshiba Corp Electronic apparatus
JP2011058972A (en) * 2009-09-10 2011-03-24 Olympus Corp Encoder head and encoder system
JP2011205168A (en) * 2010-03-24 2011-10-13 Koga Electronics Co Ltd Local telephone network
WO2012086555A1 (en) * 2010-12-24 2012-06-28 株式会社リブ技術研究所 Trapping determination device for opening/closing section, vehicle with same, and trapping determination method for opening/closing section
JP2014072675A (en) * 2012-09-28 2014-04-21 Foster Electric Co Ltd Sound input device
JP2014091357A (en) * 2012-10-31 2014-05-19 Hitachi Automotive Systems Ltd Railway vehicle controlling device
JP2014116769A (en) * 2012-12-10 2014-06-26 Fujitsu Ltd Information transmitter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108933A (en) * 2004-10-01 2006-04-20 Sumitomo Electric Ind Ltd Power supply line communication system and communication device
JP2011242874A (en) * 2010-05-14 2011-12-01 Sharp Corp Power supply system and illumination system
JP5604538B2 (en) * 2013-01-28 2014-10-08 株式会社リブ技術研究所 Receiver circuit for power line carrier communication

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5017515A (en) * 1973-06-14 1975-02-24
JPS5139151A (en) * 1974-09-30 1976-04-01 Tokyo Electric Power Co JIDOKENSHINHOSHIKINO CHUKEISOCHI
JPS54115232A (en) * 1978-02-28 1979-09-07 Ricoh Co Ltd Light recording device
JPS5674275A (en) * 1979-11-21 1981-06-19 Ricoh Co Ltd Scanning method in laser printer
JPS61281606A (en) * 1986-06-06 1986-12-12 Nec Corp Double balanced modulator
JPH02266742A (en) * 1989-04-07 1990-10-31 Matsushita Electric Works Ltd Two-wire type television interphone system for multiple dwelling house
JPH08149899A (en) * 1994-11-14 1996-06-07 Toshiba Corp Controller for rotating electric machine
JPH08304147A (en) * 1995-05-12 1996-11-22 Nippon Denpa Kk Liquid-level measuring apparatus
JP2002053200A (en) * 2000-08-08 2002-02-19 Nidai Seiko:Kk Kerosine residual quantity alarm
JP2003065835A (en) * 2001-08-21 2003-03-05 Nsk Ltd Bearing unit with sensor
JP2003172619A (en) * 2001-12-10 2003-06-20 Alps Electric Co Ltd Controlling apparatus for antenna for mobile body
JP2004049249A (en) * 2002-07-16 2004-02-19 Fuji Photo Optical Co Ltd Electronic endoscope system
JP2006064640A (en) * 2004-08-30 2006-03-09 Yazaki Corp Level sensor system
JP2007076621A (en) * 2005-09-16 2007-03-29 Auto Network Gijutsu Kenkyusho:Kk Tire air pressure monitoring system
JP2010045794A (en) * 2009-08-28 2010-02-25 Toshiba Corp Electronic apparatus
JP2011058972A (en) * 2009-09-10 2011-03-24 Olympus Corp Encoder head and encoder system
JP2011205168A (en) * 2010-03-24 2011-10-13 Koga Electronics Co Ltd Local telephone network
WO2012086555A1 (en) * 2010-12-24 2012-06-28 株式会社リブ技術研究所 Trapping determination device for opening/closing section, vehicle with same, and trapping determination method for opening/closing section
JP2014072675A (en) * 2012-09-28 2014-04-21 Foster Electric Co Ltd Sound input device
JP2014091357A (en) * 2012-10-31 2014-05-19 Hitachi Automotive Systems Ltd Railway vehicle controlling device
JP2014116769A (en) * 2012-12-10 2014-06-26 Fujitsu Ltd Information transmitter

Also Published As

Publication number Publication date
TWI661960B (en) 2019-06-11
JP2018151270A (en) 2018-09-27
TW201832964A (en) 2018-09-16

Similar Documents

Publication Publication Date Title
JP2007502043A (en) Unidirectional power transfer and bidirectional data transfer through a single inductive coupling
JP2012080521A (en) Transmission apparatus and wireless power transmission system
JP6427881B2 (en) Built-in charge amplifier combustion pressure sensor
EP2960084A1 (en) Wheel monitoring system
US20140060185A1 (en) Device for Measuring a Yaw Rate
WO2018168074A1 (en) High-frequency oscillation measuring system
JP2009072022A (en) Device for measuring current
JP2008289153A (en) Converter
JP5306133B2 (en) Railroad crossing warning sound generator
US10598969B2 (en) Coupling sensor information to an optical cable using ultrasonic vibrations
JP4814014B2 (en) Electric field detecting device, receiving device and filter amplifier
US9939315B2 (en) Two-wire electronics interface sensor with integrated mechanical transducing and temperature monitoring capability
JP4799321B2 (en) ATS car upper
JP2018156595A (en) Wireless communication apparatus, sensing apparatus, and signal processing system
JP2010252020A (en) Optical reception circuit, and optical coupling type insulation circuit
JP3963274B2 (en) Optical fiber sensor
JP2013003063A (en) Sensor for power apparatus and power apparatus having the same
JP4583153B2 (en) Rotation angle detection system
JP5075931B2 (en) Electric field communication system
JP4233697B2 (en) Data carrier interrogator
JP2020014136A (en) Power line communication apparatus
JP4283003B2 (en) Power line communication signal transmission circuit and modulation signal output circuit
JP2010266408A (en) Carrier wave type strain measuring device
JP5108793B2 (en) Electric field communication system
JP2009038569A (en) Microphone system

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17900404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17900404

Country of ref document: EP

Kind code of ref document: A1