JP3963274B2 - Optical fiber sensor - Google Patents

Optical fiber sensor Download PDF

Info

Publication number
JP3963274B2
JP3963274B2 JP2004166630A JP2004166630A JP3963274B2 JP 3963274 B2 JP3963274 B2 JP 3963274B2 JP 2004166630 A JP2004166630 A JP 2004166630A JP 2004166630 A JP2004166630 A JP 2004166630A JP 3963274 B2 JP3963274 B2 JP 3963274B2
Authority
JP
Japan
Prior art keywords
excitation
optical fiber
optical
light
fiber sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004166630A
Other languages
Japanese (ja)
Other versions
JP2005345324A (en
Inventor
恵 廣田
陵沢 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2004166630A priority Critical patent/JP3963274B2/en
Publication of JP2005345324A publication Critical patent/JP2005345324A/en
Application granted granted Critical
Publication of JP3963274B2 publication Critical patent/JP3963274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバセンサに関するものである。   The present invention relates to an optical fiber sensor.

従来、このような分野の技術としては、下記特許文献1に開示されるものがあった。   Conventionally, as a technique in such a field, there is one disclosed in Patent Document 1 below.

それによれば、レーザー光源から光ファイバ内を伝搬してきたレーザー光が光カプラで分岐し、2つの干渉計のアームを通過した後、光カプラで干渉するマッハ・ツェンダ干渉計を構成する。干渉計のアームには磁気信号検出部が構成されており、干渉計のアームとなる光ファイバに磁歪材を接着し、正弦波状の励起磁界を発生する励起コイルの中に配置した構造とする。さらに、干渉計の出力をO/E変換器で電気信号に変換し、パッシブホモダインなどの位相復調器で干渉光の位相を復調し、交流磁界の周波数でAM復調するように構成する。   According to this, a Mach-Zehnder interferometer is constructed in which laser light propagating from the laser light source in the optical fiber is branched by the optical coupler, passes through the arms of the two interferometers, and then interferes with the optical coupler. The arm of the interferometer has a magnetic signal detector, and a structure in which a magnetostrictive material is bonded to an optical fiber serving as the arm of the interferometer and is arranged in an excitation coil that generates a sinusoidal excitation magnetic field. Further, the output of the interferometer is converted into an electric signal by an O / E converter, the phase of the interference light is demodulated by a phase demodulator such as passive homodyne, and AM demodulation is performed at the frequency of the alternating magnetic field.

ここで、磁気信号検出部に磁界が加わると磁歪材が歪むため干渉計のアームが伸び縮みする。このとき干渉計のアームを伝わった光の位相が変化する。この位相変化が位相復調器の出力に現れる。また、磁気信号検出部に正弦波状の励起磁界を加えた状態で磁気信号が加わるとO/E変換器出力の励起磁界成分が磁気信号でAM変調される。この励起磁界成分から磁気信号を復調して磁気信号検出部に入力した磁気信号を検出する。
特開平10−339770号公報
Here, when a magnetic field is applied to the magnetic signal detector, the magnetostrictive material is distorted, so that the arm of the interferometer expands and contracts. At this time, the phase of the light transmitted through the arm of the interferometer changes. This phase change appears at the output of the phase demodulator. Further, when a magnetic signal is applied in a state where a sinusoidal excitation magnetic field is applied to the magnetic signal detector, the excitation magnetic field component of the output of the O / E converter is AM-modulated with the magnetic signal. The magnetic signal is demodulated from the excitation magnetic field component, and the magnetic signal input to the magnetic signal detector is detected.
JP 10-339770 A

しかしながら、上記した従来技術では、励起パワー(励起磁界を発生させる電力)を電線で伝送するため、光ファイバ以外に電線も必要となり、つまり、太く頑丈なケーブルが必要となり、コストが嵩み、しかも電線が受ける電磁干渉等で雑音が発生する。また、使用環境によっては避雷対策が必要となる等の問題があった。更に、信号検出部に長期間の信頼性が求められる用途の場合、多数の電子部品を用いた電子回路が必要なため寿命が短い等の問題もあった。   However, in the above-described prior art, since the excitation power (electric power that generates the excitation magnetic field) is transmitted by the electric wire, an electric wire is necessary in addition to the optical fiber, that is, a thick and sturdy cable is necessary, and the cost is increased. Noise is generated by electromagnetic interference received by the electric wire. There are also problems such as the need for lightning protection measures depending on the usage environment. Further, in applications where long-term reliability is required for the signal detection unit, there is a problem that the life is short because an electronic circuit using a large number of electronic components is required.

本発明は、上記問題点を除去し、信頼性の高い光ファイバセンサを提供することを目的とする。   An object of the present invention is to eliminate the above-described problems and provide a highly reliable optical fiber sensor.

本発明は、上記目的を達成するために、
〔1〕交流で励起するとともに、物理量を検出する光ファイバセンサにおいて、励起周波数の交流で強度変調した励起光を励起光伝送ファイバで伝送し、前記励起光を光/電気変換素子で電力に変換して磁気信号検出部に送り、この磁気信号検出部は前記光/電気変換素子に接続される励起コイルを備えるとともに、干渉光伝送フアイバの一部となる光ファイバと磁歪材を一体にし、前記干渉光伝送フアイバの一部となる光ファイバがアームとなる光ファイバ干渉計を構成しており、前記磁歪材を前記励起コイルの中に配置した構造とし、前記励起コイルで発生する励起磁界と信号磁界で前記磁歪材を歪ませ、光ファイバ干渉計の出力光の位相を変化させることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In an optical fiber sensor that excites with alternating current and detects a physical quantity, the excitation light intensity-modulated with alternating current at the excitation frequency is transmitted through the excitation light transmission fiber, and the excitation light is converted into electric power by the optical / electrical conversion element. The magnetic signal detection unit includes an excitation coil connected to the optical / electrical conversion element, and an optical fiber that is a part of the interference light transmission fiber and the magnetostrictive material are integrated. An optical fiber interferometer in which an optical fiber that is a part of an interference light transmission fiber forms an arm, has a structure in which the magnetostrictive material is disposed in the excitation coil, and an excitation magnetic field and a signal generated in the excitation coil. It distorts the magnetostrictive material in a magnetic field, characterized by Rukoto changing the output light of the phase of the optical fiber interferometer.

〕上記〔1〕記載の光ファイバセンサにおいて、前記光/電気変換素子の出力にトランスを接続することを特徴とする。 [ 2 ] The optical fiber sensor according to [1], wherein a transformer is connected to an output of the optical / electrical conversion element.

〕上記〔〕記載の光ファイバセンサにおいて、合成された励起信号を光伝送し、トランスの複数の2次コイルと該2次コイルに接続する回路で周波数分離して磁気信号検出部の複数の磁歪材を異なる周波数で励起することを特徴とする。 [ 3 ] In the optical fiber sensor according to [ 2 ], the synthesized excitation signal is optically transmitted, and the frequency is separated by a plurality of secondary coils of the transformer and a circuit connected to the secondary coil, and the magnetic signal detection unit A plurality of magnetostrictive materials are excited at different frequencies.

〕上記〔1〕記載の光ファイバセンサにおいて、複数の磁気信号検出部を用いる場合に、励起光を分岐して複数の光/電流変換部に入力することを特徴とする。 [ 4 ] The optical fiber sensor according to [1], wherein when a plurality of magnetic signal detectors are used, the excitation light is branched and input to the plurality of light / current converters.

本発明によれば、信頼性の高い光ファイバセンサを提供することができる。   According to the present invention, a highly reliable optical fiber sensor can be provided.

より具体的には、以下のような効果を奏することができる。   More specifically, the following effects can be achieved.

(1)第1実施例では励起パワーを光ファイバで伝送するため、伝送ケーブルの電線が不要となる。従って、ケーブルの軽量化、低コスト化、電磁干渉の影響を受けない、避雷対策が不要となる。また、光/電流変換部と磁気信号検出部に必要な電子部品は光/電気変換素子1個であり高い信頼性が得られる。   (1) In the first embodiment, since the pumping power is transmitted by the optical fiber, the transmission cable is not required. Accordingly, lightening, cable cost, and lightning protection measures that are not affected by electromagnetic interference become unnecessary. Further, the electronic component required for the light / current conversion unit and the magnetic signal detection unit is one light / electric conversion element, and high reliability is obtained.

(2)第2実施例では第1実施例と同じ効果がある。更に、第1実施例には抵抗にも交流成分が流れて効率が低下する欠点があるが、本実施例では100%に近い効率が得られる。   (2) The second embodiment has the same effect as the first embodiment. Further, the first embodiment has a drawback that the AC component also flows in the resistance and the efficiency is lowered, but in this embodiment, an efficiency close to 100% is obtained.

(3)第3実施例では第2実施例の効果に加え、光/電気変換素子から出力される励起磁界の周波数帯以外の雑音を抑制する効果を有する。従って、より小さい信号磁界を検出する用途に適している。   (3) The third embodiment has an effect of suppressing noise other than the frequency band of the excitation magnetic field output from the optical / electrical conversion element in addition to the effect of the second embodiment. Therefore, it is suitable for an application for detecting a smaller signal magnetic field.

(4)第4実施例では第1実施例の効果に加え、励起コイルで発生する雑音磁界をキャンセルする効果がある。より小さい信号磁界を検出する用途に適している。   (4) In the fourth embodiment, in addition to the effect of the first embodiment, there is an effect of canceling the noise magnetic field generated in the excitation coil. Suitable for applications that detect smaller signal fields.

(5)第5実施例では第3実施例の効果に加え、励起パワーを周波数多重伝送するため、1本の励起光伝送ファイバと1個の光/電気変換素子で複数の信号磁界を検出することができる。   (5) In the fifth embodiment, in addition to the effects of the third embodiment, a plurality of signal magnetic fields are detected by one pump light transmission fiber and one optical / electrical conversion element in order to perform frequency multiplexing transmission of pump power. be able to.

(6)第6実施例では第1〜第5実施例の効果に加え、複数の磁気信号検出部からの伝送で励起光伝送ファイバ、干渉光伝送ファイバ共に共有することができるので、ケーブルを軽量化することができる。   (6) In the sixth embodiment, in addition to the effects of the first to fifth embodiments, both the pumping light transmission fiber and the interference light transmission fiber can be shared by transmission from a plurality of magnetic signal detectors. Can be

本発明の光ファイバセンサは、交流で励起するとともに、他の物理量を検出する光ファイバセンサにおいて、励起周波数の交流で強度変調した励起光を励起光伝送ファイバで伝送し、前記励起光を光/電気変換素子で電力に変換して磁気信号検出部に送り、この磁気信号検出部は前記光/電気変換素子に接続される励起コイルを備えるとともに、干渉光伝送フアイバの一部となる光ファイバと磁歪材を一体にし、前記干渉光伝送フアイバの一部となる光ファイバがアームとなる光ファイバ干渉計を構成しており、前記磁歪材を前記励起コイルの中に配置した構造とし、前記励起コイルで発生する励起磁界と信号磁界で前記磁歪材を歪ませ、光ファイバ干渉計の出力光の位相を変化させる。 The optical fiber sensor of the present invention is an optical fiber sensor that excites with alternating current and detects other physical quantities, transmits the excitation light intensity-modulated with alternating current of the excitation frequency through the excitation light transmission fiber, and transmits the excitation light to the light / The electric signal is converted into electric power by an electric conversion element and sent to a magnetic signal detection unit. The magnetic signal detection unit includes an excitation coil connected to the optical / electrical conversion element, and an optical fiber that is a part of an interference light transmission fiber. An optical fiber interferometer in which a magnetostrictive material is integrated and an optical fiber that is a part of the interference light transmission fiber forms an arm, and the magnetostrictive material is arranged in the excitation coil , and the excitation coil The magnetostrictive material is distorted by the excitation magnetic field and the signal magnetic field generated in step 1, and the phase of the output light of the optical fiber interferometer is changed.

以下、本発明の実施の形態について図を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の第1実施例を示す光ファイバセンサの構成図である。   FIG. 1 is a block diagram of an optical fiber sensor showing a first embodiment of the present invention.

この図に示すように、励起信号発生器1からの励起磁界周波数の正弦波で強度が変化する励起用光源2の出力が、励起光伝送ファイバ3を介して光/電流変換部7の光/電気変換素子4に入力するように構成する。光/電気変換素子4には光起電力型素子または太陽電池と称される素子で励起用光源2の波長で高い感度を持つものを用いる。励起光伝送ファイバ3が長い場合、光ファイバの伝送損失が小さい赤外(1.3、1.55帯)の光源と、InGaAs、InGaAsP、Geなどの赤外用フォトダイオードを用いる構成が適している。   As shown in this figure, the output of the excitation light source 2 whose intensity changes with a sine wave of the excitation magnetic field frequency from the excitation signal generator 1 is transmitted through the excitation light transmission fiber 3 to the light / current converter 7. It is configured to input to the electrical conversion element 4. As the photoelectric conversion element 4, an element called a photovoltaic element or a solar cell having high sensitivity at the wavelength of the excitation light source 2 is used. When the pumping light transmission fiber 3 is long, a configuration using an infrared (1.3, 1.55 band) light source with a small optical fiber transmission loss and an infrared photodiode such as InGaAs, InGaAsP, or Ge is suitable. .

光/電流変換部7は並列抵抗5と直列コンデンサ6を組み合わせてバイアス電流(直流成分)を逃がし、交流電流だけが磁気信号検出部10の励起コイル9Aに流れるように構成する。ここで、励起コイル9Aと直列コンデンサ6のインピーダンスが励起磁界周波数で最小となるように設定して励起コイル9Aに流れる正弦波状の交流電流が最大になるようにすることが望ましい。   The light / current conversion unit 7 is configured such that the parallel resistor 5 and the series capacitor 6 are combined to release the bias current (DC component), and only the AC current flows through the excitation coil 9A of the magnetic signal detection unit 10. Here, it is desirable to set the impedance of the excitation coil 9A and the series capacitor 6 to be minimum at the excitation magnetic field frequency so that the sinusoidal alternating current flowing through the excitation coil 9A is maximized.

光/電気変換素子4には最適負荷と呼ばれる出力電力が最大になる固有の負荷がある。光/電気変換素子4の負荷となる励起コイル9A、直列コンデンサ6、並列抵抗5の合成のインピーダンスが最適負荷とほぼ一致するように各回路定数を設定することが望ましい。   The photoelectric conversion element 4 has an inherent load called an optimum load that maximizes output power. It is desirable to set the circuit constants so that the combined impedance of the excitation coil 9A, the series capacitor 6 and the parallel resistor 5 serving as the load of the photoelectric conversion element 4 substantially matches the optimum load.

磁気信号検出部10は光ファイバ13Aと磁歪材8Aを接着等の手段で一体にし、その光ファイバ13Aがアームとなる光ファイバ干渉計を構成し、磁歪材8Aを励起コイル9Aの中に配置した構造とする。干渉計用光源14の出力が光カプラ15を通過し、干渉光伝送ファイバ16と磁気信号検出部10の干渉計を往復するように干渉計用光源14、光カプラ15、干渉光伝送ファイバ16、磁気信号検出部10の干渉計を構成し、光カプラ15に戻った光を電気信号に変換するO/E変換器17、干渉波形の位相を検出する光位相復調器18、磁気信号を復調するAM復調器19を順に接続した構成である。なお、11A,11Bはミラー、12は光カプラ、13Bはもう一方の光ファイバである。   The magnetic signal detection unit 10 integrates the optical fiber 13A and the magnetostrictive material 8A by means such as adhesion, constitutes an optical fiber interferometer in which the optical fiber 13A serves as an arm, and the magnetostrictive material 8A is disposed in the excitation coil 9A. Structure. The output of the interferometer light source 14 passes through the optical coupler 15 and reciprocates between the interference light transmission fiber 16 and the interferometer of the magnetic signal detector 10, so that the interferometer light source 14, the optical coupler 15, the interference light transmission fiber 16, An O / E converter 17 that constitutes an interferometer of the magnetic signal detector 10 and converts the light returned to the optical coupler 15 into an electric signal, an optical phase demodulator 18 that detects the phase of the interference waveform, and demodulates the magnetic signal. The AM demodulator 19 is connected in order. 11A and 11B are mirrors, 12 is an optical coupler, and 13B is the other optical fiber.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

励起磁界周波数の正弦波で強度が変化する励起用光源2の出力が、励起光伝送ファイバ3を介して光/電流変換部7の光/電気変換素子4に入力することにより、励起磁界周波数の交流電流とバイアス電流が出力される。直列コンデンサ6でバイアス電流が遮断されるために励起コイル9Aには励起磁界周波数の交流電流だけが流れる。励起コイル9Aと並列に接続された並列抵抗5にはバイアス電流に対する負荷が大きいときに光/電気変換素子4の出力電流が飽和する現象を防ぐ働きがある。   The output of the excitation light source 2 whose intensity is changed by a sine wave of the excitation magnetic field frequency is input to the optical / electrical conversion element 4 of the light / current conversion unit 7 via the excitation light transmission fiber 3. An alternating current and a bias current are output. Since the bias current is cut off by the series capacitor 6, only an alternating current having an excitation magnetic field frequency flows through the excitation coil 9A. The parallel resistor 5 connected in parallel with the excitation coil 9A has a function of preventing a phenomenon in which the output current of the photoelectric conversion element 4 is saturated when a load with respect to the bias current is large.

励起コイル9Aで発生する励起磁界と信号磁界で磁歪材8Aが歪み、干渉計のアームとなる光ファイバ13Aが伸び縮みするため干渉計出力光の位相が変化する。干渉計出力光は干渉光伝送ファイバ16を伝播し、O/E変換器17で電気信号に変換され、光位相復調器18で位相復調され、励起磁界周波数でAM復調器19によりAM復調されることにより磁気信号が検出される。   The magnetostrictive material 8A is distorted by the excitation magnetic field and the signal magnetic field generated by the excitation coil 9A, and the optical fiber 13A serving as the arm of the interferometer expands and contracts, so that the phase of the interferometer output light changes. The interferometer output light propagates through the interference light transmission fiber 16, is converted into an electrical signal by the O / E converter 17, is phase demodulated by the optical phase demodulator 18, and is AM demodulated by the AM demodulator 19 at the excitation magnetic field frequency. Thus, a magnetic signal is detected.

図2は本発明の第2実施例を示す光ファイバセンサの構成図である。なお、第1実施例と同じ構成部分については同じ符号を付してそれらの説明は省略する。   FIG. 2 is a block diagram of an optical fiber sensor showing a second embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example, and those description is abbreviate | omitted.

この実施例では、第1実施例の並列抵抗5を並列コイル20に換えた構成である。ここで、励起周波数の交流電流のほとんどが励起コイル9A側に、バイアスで電流は並列コイル20だけに流れるよう並列コイル20のインダクタンスを設定する。   In this embodiment, the parallel resistor 5 of the first embodiment is replaced with a parallel coil 20. Here, the inductance of the parallel coil 20 is set so that most of the alternating current of the excitation frequency flows to the excitation coil 9 </ b> A side, and the current flows only through the parallel coil 20 by bias.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

光/電流変換部7以外は第1実施例と同様に動作する。光/電流変換部7の光/電気変換素子4から出力される励起磁界周波数の交流電流が並列コイル20に流れ、励起磁界が発生する。並列コイル20にはバイアス電流を逃がし、光/電気変換素子4の出力電流の飽和を防ぐ働きがある。   The operation other than the light / current converter 7 is the same as in the first embodiment. An alternating current having an excitation magnetic field frequency output from the optical / electrical conversion element 4 of the optical / current conversion unit 7 flows through the parallel coil 20 to generate an excitation magnetic field. The parallel coil 20 functions to release a bias current and prevent saturation of the output current of the photoelectric conversion element 4.

図3は本発明の第3実施例を示す光ファイバセンサの構成図である。なお、第1実施例と同じ構成部分については同じ符号を付してそれらの説明は省略する。   FIG. 3 is a block diagram of an optical fiber sensor showing a third embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example, and those description is abbreviate | omitted.

この実施例では、光/電流変換部7以外は第1実施例と同様に構成する。   In this embodiment, the configuration other than the light / current converter 7 is the same as that of the first embodiment.

光/電流変換部7の光/電気変換素子4の出力をトランス21の1次側に接続する。トランス21の2次側には直列コンデンサ6と励起コイル9Aを接続する。ここで、直列コンデンサ6のキャパシタンスと励起コイル9Aのインダクタンスで決まる共振周波数が励起磁界周波数とほぼ一致し、トランス21の1次側から見た励起磁界周波数でのトランス21、直列コンデンサ6、励起コイル9Aのインピーダンスが光/電気変換素子4の最適負荷とほぼ一致するように、トランス21の巻線比、直列コンデンサ6のキャパシタンス、励起コイル9Aのインダクタンスを設定することが望ましい。   The output of the optical / electrical conversion element 4 of the optical / current conversion unit 7 is connected to the primary side of the transformer 21. A series capacitor 6 and an excitation coil 9 </ b> A are connected to the secondary side of the transformer 21. Here, the resonance frequency determined by the capacitance of the series capacitor 6 and the inductance of the excitation coil 9A substantially matches the excitation magnetic field frequency, and the transformer 21, the series capacitor 6 and the excitation coil at the excitation magnetic field frequency viewed from the primary side of the transformer 21. It is desirable to set the winding ratio of the transformer 21, the capacitance of the series capacitor 6, and the inductance of the excitation coil 9 </ b> A so that the impedance of 9 </ b> A substantially matches the optimum load of the optical / electrical conversion element 4.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

光/電流変換部7以外は第1実施例と同様に動作する。光/電流変換部7の光/電気変換素子4から出力される励起磁界周波数の交流電流とバイアス電流がトランス21の1次側に流れる。トランス21には直流電流を遮断する特性があるため、トランス21の2次側には励起磁界周波数の交流電流だけが流れ励起コイル9Aから励起磁界が発生する。2次側から見たトランス21と光/電気変換素子4の合成のインピーダンスが低いため、トランス21の2次側巻線、直列コンデンサ6、励起コイル9Aが形成する回路は帯域通過フィルタの特性を持っている。従って光/電気変換素子4に含まれる励起磁界の周波数帯以外の雑音が抑制される。   The operation other than the light / current converter 7 is the same as in the first embodiment. An alternating current having an excitation magnetic field frequency and a bias current output from the optical / electrical conversion element 4 of the optical / current conversion unit 7 flow to the primary side of the transformer 21. Since the transformer 21 has a characteristic of interrupting a direct current, only an alternating current having an excitation magnetic field frequency flows on the secondary side of the transformer 21, and an excitation magnetic field is generated from the excitation coil 9A. Since the combined impedance of the transformer 21 and the optical / electrical conversion element 4 seen from the secondary side is low, the circuit formed by the secondary side winding, the series capacitor 6 and the excitation coil 9A of the transformer 21 has the characteristics of a band pass filter. have. Therefore, noise other than the frequency band of the excitation magnetic field included in the photoelectric conversion element 4 is suppressed.

図4は本発明の第4実施例を示す光ファイバセンサの構成図である。なお、第1実施例と同じ構成部分については同じ符号を付してそれらの説明は省略する。   FIG. 4 is a block diagram of an optical fiber sensor showing a fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example, and those description is abbreviate | omitted.

磁気信号検出部10の干渉計のアームとなる2本の光ファイバ13A,13Bそれぞれに磁歪材8A,8Bを接着し、2つの磁歪材8A,8Bを個々に励起コイル9A,9Bに入れ平行に配置する。2つの励起コイル9A,9Bから逆向きの磁界が発生するように、光/電流変換部7の出力を励起コイル9A,9Bに接続する。磁気信号検出部10以外は第1実施例と同様に構成する。   Magnetostrictive materials 8A and 8B are bonded to the two optical fibers 13A and 13B which are arms of the interferometer of the magnetic signal detector 10, respectively, and the two magnetostrictive materials 8A and 8B are individually placed in the excitation coils 9A and 9B in parallel. Deploy. The output of the light / current converter 7 is connected to the excitation coils 9A and 9B so that opposite magnetic fields are generated from the two excitation coils 9A and 9B. The configuration other than the magnetic signal detector 10 is the same as that of the first embodiment.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

励起用光源2、励起光伝送ファイバ3と光/電流変換部7が第1実施例と同様に動作して励起コイル9A,9Bから励起磁界が発生する。本実施例では干渉計のアームとなる2本の光ファイバ13A,13Bに接着した2つの磁歪材8A,8Bに逆向きの励起磁界が加わり、プッシュ−プル(push−pull)動作することにより、後述の原理で、光/電流変換器7の出力の雑音成分などを含まない干渉計出力光が得られる。干渉計出力光は干渉光伝送ファイバ16を伝播し、O/E変換器17で電気信号に変換され、光位相復調器18で位相復調され、励起磁界周波数で、AM復調器19によりAM復調されることにより磁気信号が検出される。   The excitation light source 2, the excitation light transmission fiber 3, and the light / current converter 7 operate in the same manner as in the first embodiment to generate excitation magnetic fields from the excitation coils 9A and 9B. In this embodiment, two magnetostrictive members 8A and 8B bonded to the two optical fibers 13A and 13B serving as the arms of the interferometer are subjected to a push-pull operation by applying opposite excitation magnetic fields. Interferometer output light that does not include noise components of the output of the light / current converter 7 can be obtained by the principle described later. The interferometer output light propagates through the interference light transmission fiber 16, is converted into an electrical signal by the O / E converter 17, is phase demodulated by the optical phase demodulator 18, and is AM demodulated by the AM demodulator 19 at the excitation magnetic field frequency. Thus, a magnetic signal is detected.

従来技術または本発明で磁歪材に加わる磁界H及び干渉光の位相φは次式で表される。   The magnetic field H applied to the magnetostrictive material in the prior art or the present invention and the phase φ of the interference light are expressed by the following equations.

H=HS +Hd +HN …(1)
φ=k・H2 =k・(2・HS ・Hd +2・Hd ・HN +2HN ・HS +HS 2+Hd 2+HN 2 )≒k・(2・HS ・Hd +2・Hd ・HN +HS 2+Hd 2 )〈Hd ≫HN
…(2)
ここで、HS 、Hd 、HN は信号磁界、励起磁界、及び励起コイルに流れる雑音成分による雑音磁界、kは感度を表す定数である。光位相復調器18の出力で干渉光の位相φは復調され、AM復調器19において、上記(2)式第1項の信号磁界成分HS が検出されるが、同時に第2項の雑音磁界成分HN も現れるため信号磁界の最小検出限界を制限する。第4実施例では2つの磁歪材に加わる磁界HA 、HB 及び干渉光の位相φが
A =HS +Hd +HN …(3A)
B =HS −Hd −HN …(3B)
φ=k(HA 2−HB 2)≒4HS ・Hd 〈Hd ≫HN 〉 …(4)
と表され、(2)式の第2項に相当する雑音成分は現れない。
H = H S + H d + H N (1)
φ = k · H 2 = k · (2 · H S · H d + 2 · H d · H N + 2H N · H S + H S 2 + H d 2 + H N 2 ) ≒ k · (2 · H S · H d +2 · H d · H N + H S 2 + H d 2) <H d »H N>
... (2)
Here, H S , H d , and H N are signal magnetic fields, excitation magnetic fields, and noise magnetic fields due to noise components flowing in the excitation coils, and k is a constant representing sensitivity. The phase φ of the interference light is demodulated at the output of the optical phase demodulator 18, and the AM demodulator 19 detects the signal magnetic field component H S of the first term of the above equation (2), but at the same time the noise magnetic field of the second term. Since the component H N also appears, the minimum detection limit of the signal magnetic field is limited. In the fourth embodiment, the magnetic fields H A and H B applied to the two magnetostrictive materials and the phase φ of the interference light are H A = H S + H d + H N (3A)
H B = H S -H d -H N (3B)
φ = k (H A 2 −H B 2 ) ≈4H S · H d <H d >> H N > (4)
And a noise component corresponding to the second term of the equation (2) does not appear.

図5は本発明の第5実施例を示す光ファイバセンサの構成図である。なお、第1実施例と同じ構成部分については同じ符号を付してそれらの説明は省略する。   FIG. 5 is a block diagram of an optical fiber sensor showing a fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example, and those description is abbreviate | omitted.

この実施例では、3周波の励起磁界周波数fx 、fy 、fz の正弦波を加算した波形で強度が変化する励起用光源2の出力が励起光伝送ファイバ3を介して光/電流変換部7の光/電気変換素子4に入力するように構成する。光/電気変換素子4の出力をトランス31の1次側に接続する。トランス31の2次側には3つの巻線32,33,34を取り付け、それぞれに励起コイル40,39,38とコンデンサ35,36,37を接続する。ここで、励起コイル38,39,40のインダクタンスとコンデンサ35,36,37のキャパシタンスで決まる共振周波数が3周波の励起磁界周波数fx 、fy 、fz に対応するようにそれぞれの回路定数を設定する。 In this example, 3-frequency excitation field frequency f x, f y, f z output of the excitation light source 2 intensity waveform obtained by adding the sine wave changes via a pump light transmission fiber 3 light / current conversion of the It is configured to input to the optical / electrical conversion element 4 of the unit 7. The output of the photoelectric conversion element 4 is connected to the primary side of the transformer 31. Three windings 32, 33, and 34 are attached to the secondary side of the transformer 31, and excitation coils 40, 39, and 38 and capacitors 35, 36, and 37 are connected to the respective windings. Here, the excitation magnetic field frequency f x of the resonant frequency is 3 frequency determined by the capacitance of the inductance and the capacitor 35, 36, 37 of the excitation coil 38, 39, 40, f y, the respective circuit constants so as to correspond to f z Set.

磁気信号検出部10は3つの励起コイル38,39,40の中にそれぞれ磁歪材41,42,43を入れ、直交する3方向に向けて配置する。光ファイバ13Aと3つの磁歪材41,42,43を接着等の手段で一体にし、その光ファイバ13Aがアームとなる光ファイバ干渉計を構成する。干渉計用光源14、光カプラ15、干渉計、O/E変換器17、光位相復調器18を第1実施例と同様に構成する。   In the magnetic signal detection unit 10, magnetostrictive materials 41, 42, and 43 are placed in three excitation coils 38, 39, and 40, respectively, and arranged in three orthogonal directions. The optical fiber 13A and the three magnetostrictive members 41, 42, and 43 are integrated by means such as adhesion, and the optical fiber 13A forms an optical fiber interferometer. The interferometer light source 14, the optical coupler 15, the interferometer, the O / E converter 17, and the optical phase demodulator 18 are configured in the same manner as in the first embodiment.

光位相復調器18の出力に3つのAM復調器19A,19B,19Cを接続し励起磁界周波数fx ,fy ,fz に含まれる直交する3方向の磁気信号を個々に検出するように構成する。 Configured to detect the three AM demodulators 19A to the output of the optical phase demodulator 18, 19B, 19C and connected excitation field frequency f x, f y, the 3-direction magnetic signals orthogonal included in f z individually To do.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

3周波の励起磁界周波数fx ,fy ,fz の正弦波を加算した波形で強度が変化する励起用光源2の出力が励起光伝送ファイバ3を介して光/電流変換部7の光/電気変換素子4に入力することにより3周波の励起磁界周波数fx ,fy ,fz の正弦波を加算した波形の交流電流とバイアス電流が出力され、トランス31の1次側巻線に注入される。トランス31の2次側に接続された3組の励起コイル38,39,40とコンデンサ35,36,37にはそれぞれの共振周波数に対応した1周波の交流電流だけが流れる。従って、3つの励起コイル38,39,40で発生する励起磁界はそれぞれ周波数が異なる正弦波となる。励起コイル38,39,40で発生する励起磁界と、この励起磁界と同一方向の信号磁界で磁歪材41,42,43が歪み、干渉計のアームとなる光ファイバ13Aが伸び縮みするため干渉計出力光の位相が変化する。ここで、干渉計出力光の位相は、直交する3方向の信号磁界がそれぞれに対応する励起磁界周波数fx ,fy ,fz で周波数多重されたAM変調波を有する。干渉計出力光は干渉光伝送ファイバ16を伝播し、O/E変換器17で電気信号に変換され、光位相復調器18で位相復調され、3周波の励起磁界周波数fx ,fy ,fz で、AM復調器19により個々にAM復調されることにより直交する3方向の磁気信号が検出される。 3 frequency excitation field frequency f x, f y, f z sine wave for excitation light / current converting section 7 outputs through the excitation optical transmission fiber 3 of the light source 2 which adds the intensity waveform changes light / excitation field frequency f x of the 3-frequency by inputting the electromechanical transducer 4, f y, alternating current and the bias current waveform obtained by adding a sine wave of f z is outputted, injected into the primary side winding of the transformer 31 Is done. Only one frequency alternating current corresponding to each resonance frequency flows through the three sets of excitation coils 38, 39, 40 and capacitors 35, 36, 37 connected to the secondary side of the transformer 31. Therefore, the excitation magnetic fields generated by the three excitation coils 38, 39, and 40 are sine waves having different frequencies. Since the magnetostrictive members 41, 42, 43 are distorted by the excitation magnetic field generated by the excitation coils 38, 39, 40 and the signal magnetic field in the same direction as the excitation magnetic field, the optical fiber 13A that becomes the arm of the interferometer expands and contracts. The phase of the output light changes. Here, the interferometer output light of the phase, the excitation magnetic field frequency f x to 3 direction of the signal magnetic field perpendicular to correspond to the respective, f y, has an AM modulated wave frequency multiplexed by f z. Interferometer output light propagates interference light transmission fiber 16 is converted into an electric signal by the O / E converter 17, is phase-demodulated by the optical phase demodulator 18, 3-frequency excitation field frequency f x, f y, f At z , magnetic signals in three orthogonal directions are detected by performing AM demodulation individually by the AM demodulator 19.

図6は本発明の第6実施例を示す光ファイバセンサの構成図である。なお、第1実施例と同じ構成部分については同じ符号を付してそれらの説明は省略する。   FIG. 6 is a block diagram of an optical fiber sensor showing a sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the same component as 1st Example, and those description is abbreviate | omitted.

この実施例では、励起信号発生器1、励起用光源2と励起光伝送ファイバ3を第1〜第5実施例の何れかと同様に構成する。励起光伝送ファイバ3の出力を光カプラ51,52,…で分割し、複数の光/電流変換部61,62,…に接続する。光/電流変換部61,62,…の出力を複数の磁気信号検出部71−1,71−2,…,72−1,…に接続する。ここで、1つの光/電流変換部に接続する磁気信号検出部はその間をつなぐ電線で電磁干渉等の影響を受けない範囲とする。光/電流変換部61,62,…と磁気信号検出部71−1,71−2,…,72−1,…の内部構成は第1〜第5実施例の何れかと同様に構成する。   In this embodiment, the excitation signal generator 1, the excitation light source 2, and the excitation light transmission fiber 3 are configured in the same manner as in any of the first to fifth embodiments. Are divided by optical couplers 51, 52,... And connected to a plurality of light / current converters 61, 62,. The outputs of the light / current converters 61, 62,... Are connected to a plurality of magnetic signal detectors 71-1, 71-2,. Here, the magnetic signal detection unit connected to one light / current conversion unit is a range that is not affected by electromagnetic interference or the like with an electric wire connecting the magnetic signal detection unit. .. And the magnetic signal detectors 71-1, 71-2,..., 72-1,... Are configured in the same manner as any of the first to fifth embodiments.

パルス光を繰り返し発生する干渉計用光源14の出力が干渉光伝送ファイバ16を介し、光カプラ81−1,81−2,…,82−1,…で分岐して複数の磁気信号検出部71−1,71−2,…,72−1,…に到達し、パルス列となってO/E変換器17に返送されるように構成する。ここで、返送されるパルスが重ならないように各磁気信号検出部71−1,71−2,…,72−1,…の間のファイバ長とパルス光のパルス幅を設定する。O/E変換器17に各磁気信号検出部71−1,71−2,…,72−1,…から返送されたパルス列を分離するデマルチプレキサ(DMUX)83、干渉波形の位相を検出する光位相復調器84−1,84−2,…、磁気信号を復調するAM復調器85−1,85−2,…を順に接続した構成である。   The output of the interferometer light source 14 that repeatedly generates pulsed light is branched by optical couplers 81-1, 81-2,..., 82-1,. , 71-2,..., 72-1,..., And is sent back to the O / E converter 17 as a pulse train. Here, the fiber length and the pulse width of the pulsed light are set between the magnetic signal detectors 71-1, 71-2,..., 72-1,. A demultiplexer (DMUX) 83 that separates the pulse trains returned from the magnetic signal detectors 71-1, 71-2, ..., 72-1, ... to the O / E converter 17 and detects the phase of the interference waveform. The optical phase demodulators 84-1, 84-2,... And the AM demodulators 85-1, 85-2,.

以下、この光ファイバセンサの動作について説明する。   The operation of this optical fiber sensor will be described below.

励起用光源2の出力が光カプラ51,52,…で分岐され、複数の光/電流変換部61,62,…で交流電流に変換され、複数の磁気信号検出部71−1,71−2,…,72−1,…の励起コイルで励起磁界に変換される。干渉計用光源14から出力される光パルスが干渉光伝送ファイバ16を伝わり、光カプラ81−1,81−2,…,82−1,…で分岐して各磁気信号検出部71−1,71−2,…,72−1,…に送られる。第1〜第5実施例と同様に磁気信号検出部の干渉計を通過する光が磁気信号で位相変調される。各磁気信号検出部から返送される光パルスがパルス列となり、時分割多重で伝送され、O/E変換器17で電気信号に変換される。O/E変換器17の出力がDMUX83でチャンネル分離され、各チャンネルごとに光位相復調器84−1,84−2,…とAM復調器85−1,85−2,…で磁気信号が復調される。   The output of the excitation light source 2 is branched by optical couplers 51, 52,..., Converted into alternating current by a plurality of light / current converters 61, 62,..., And a plurality of magnetic signal detectors 71-1, 71-2. ,..., 72-1,... Are converted into excitation magnetic fields. The optical pulse output from the interferometer light source 14 is transmitted through the interference light transmission fiber 16 and branched by the optical couplers 81-1, 81-2,..., 82-1,. .., 72-1,. Similar to the first to fifth embodiments, the light passing through the interferometer of the magnetic signal detector is phase-modulated with the magnetic signal. The optical pulse returned from each magnetic signal detector becomes a pulse train, is transmitted by time division multiplexing, and is converted into an electric signal by the O / E converter 17. The output of the O / E converter 17 is channel-separated by the DMUX 83, and the magnetic signals are demodulated by the optical phase demodulators 84-1, 84-2,... And the AM demodulators 85-1, 85-2,. Is done.

更に、本発明は以下のような利用形態を有する。   Furthermore, this invention has the following utilization forms.

第4実施例では第1実施例と同じ光/電流変換部を用いる例を示したが、第2または第3実施例と同じように光/電流変換部を用いてもよい。   In the fourth embodiment, an example in which the same light / current converter as in the first embodiment is used has been described. However, a light / current converter may be used as in the second or third embodiment.

第5実施例では第1〜3の磁気信号検出部と実施例と同様に1方向の信号磁界を1つの磁歪材と励起コイルで検出する例を示したが、第4実施例と同様に2つの磁歪材を平行に配置して逆向きの励起磁界を加える構造にしてもよい。   In the fifth embodiment, the signal magnetic field in one direction is detected by one magnetostrictive material and the excitation coil as in the first to third magnetic signal detectors and the embodiment. Two magnetostrictive members may be arranged in parallel to apply a reverse excitation magnetic field.

第5実施例では直交する3方向の信号磁界を検出する例で示したが、磁歪材、トランスの2次巻線から励起コイルまでとAM復調器の数を変えて2方向または4方向以上を任意の角度で検出することもできる。   In the fifth embodiment, an example in which signal magnetic fields in three orthogonal directions are detected is shown. However, the number of AM demodulators is changed from the magnetostrictive material and the secondary winding of the transformer to the excitation coil, so that two directions or four directions or more can be obtained. It can also be detected at an arbitrary angle.

全ての実施例で磁気信号を検出する例を示したが、磁歪材を電歪材に換え、励起コイルを電極に換えることにより電界を検出することもできる。   In all the embodiments, an example in which a magnetic signal is detected has been shown. However, an electric field can also be detected by replacing the magnetostrictive material with an electrostrictive material and replacing the excitation coil with an electrode.

第6実施例では複数の光/電流変換器それぞれに複数の励起コイルを接続する例を示したが、1個の光/電流変換器に全ての励起コイルを接続する、または複数の光/電流変換器に各1個の励起コイルを接続する構成としてもよい。   In the sixth embodiment, an example is shown in which a plurality of excitation coils are connected to each of a plurality of light / current converters. However, all the excitation coils are connected to one light / current converter, or a plurality of light / currents are connected. It is good also as a structure which connects each one excitation coil to a converter.

全ての実施例で励起光伝送ファイバと干渉光伝送ファイバを各1本用いる例を示したが2本以上用いても良い。また、波長多重伝送を用い1本の伝送ファイバに励起光と干渉光の両方を伝送することもできる。   In all the embodiments, an example in which one excitation light transmission fiber and one interference light transmission fiber are used has been described, but two or more may be used. It is also possible to transmit both excitation light and interference light to one transmission fiber using wavelength division multiplexing.

全ての実施例でマイケルソン干渉計を用いる例を示したが、マッハ・ツェンダ干渉計など他の干渉計を用いることもできる。   Although all examples have shown examples using Michelson interferometers, other interferometers such as a Mach-Zehnder interferometer may be used.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明は、信頼性の高い光ファイバセンサに適している。   The present invention is suitable for a highly reliable optical fiber sensor.

本発明の第1実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 1st Example of this invention. 本発明の第2実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 2nd Example of this invention. 本発明の第3実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 3rd Example of this invention. 本発明の第4実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 4th Example of this invention. 本発明の第5実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 5th Example of this invention. 本発明の第6実施例を示す光ファイバセンサの構成図である。It is a block diagram of the optical fiber sensor which shows 6th Example of this invention.

符号の説明Explanation of symbols

1 励起信号発生器
2 励起用光源
3 励起光伝送ファイバ
4 光/電気変換素子
5 抵抗
6,35,36,37 コンデンサ
7,61,62,… 光/電流変換部
8A,8B,41,42,43 磁歪材
9A,9B,38,39,40 励起コイル
10,71−1,71−2,…,72−1,… 磁気信号検出部
11A,11B ミラー
12,15,51,52,…,81−1,81−2,…,82−1,… 光カプラ
13A,13B 光ファイバ
14 干渉計用光源
16 干渉光伝送ファイバ
17 O/E変換器
18,84−1,84−2,… 光位相復調器
19,19A,19B,19C,85−1,85−2,… AM復調器
20 並列コイル
21,31 トランス
32,33,34 巻線
83 デマルチプレキサ(DMUX)
DESCRIPTION OF SYMBOLS 1 Excitation signal generator 2 Excitation light source 3 Excitation light transmission fiber 4 Optical / electrical conversion element 5 Resistance 6,35,36,37 Capacitor 7,61,62, ... Optical / current conversion part 8A, 8B, 41, 42, 43 Magnetostrictive material 9A, 9B, 38, 39, 40 Excitation coil 10, 71-1, 71-2, ..., 72-1, ... Magnetic signal detector 11A, 11B Mirror 12, 15, 51, 52, ..., 81 -1, 81-2, ..., 82-1, ... Optical couplers 13A, 13B Optical fiber 14 Interferometer light source 16 Interference light transmission fiber 17 O / E converter 18, 84-1, 84-2, ... Optical phase Demodulator 19, 19A, 19B, 19C, 85-1, 85-2, ... AM demodulator 20 Parallel coil 21, 31 Transformer 32, 33, 34 Winding 83 Demultiplexer (DMUX)

Claims (4)

交流で励起するとともに、物理量を検出する光ファイバセンサにおいて、
励起周波数の交流で強度変調した励起光を励起光伝送ファイバで伝送し、前記励起光を光/電気変換素子で電力に変換して磁気信号検出部に送り、該磁気信号検出部は前記光/電気変換素子に接続される励起コイルを備えるとともに、干渉光伝送フアイバの一部となる光ファイバと磁歪材を一体にし、前記干渉光伝送フアイバの一部となる光ファイバがアームとなる光ファイバ干渉計を構成しており、前記磁歪材を前記励起コイルの中に配置した構造とし、前記励起コイルで発生する励起磁界と信号磁界で前記磁歪材を歪ませ、光ファイバ干渉計の出力光の位相を変化させることを特徴とする光ファイバセンサ。
In an optical fiber sensor that excites with an alternating current and detects a physical quantity,
The excitation light intensity modulated by the AC excitation frequency is transmitted by the excitation light transmission fiber, feed the magnetic signal detection unit converts the excitation light power in the optical / electrical conversion element, the magnetic signal detection unit the optical / An optical fiber interference having an excitation coil connected to an electrical conversion element, an optical fiber that is part of an interference light transmission fiber, and a magnetostrictive material, and an optical fiber that is part of the interference light transmission fiber serving as an arm The magnetostrictive material is arranged in the excitation coil, the magnetostrictive material is distorted by an excitation magnetic field and a signal magnetic field generated by the excitation coil, and the phase of the output light of the optical fiber interferometer optical fiber sensor according to claim Rukoto changing the.
請求項1記載の光ファイバセンサにおいて、前記光/電気変換素子の出力にトランスを接続することを特徴とする光ファイバセンサ。   2. The optical fiber sensor according to claim 1, wherein a transformer is connected to an output of the optical / electrical conversion element. 請求項記載の光ファイバセンサにおいて、合成された励起信号を光伝送し、トランスの複数の2次コイルと該2次コイルに接続する回路で周波数分離して磁気信号検出部の複数の磁歪材を異なる周波数で励起することを特徴とする光ファイバセンサ。 3. The optical fiber sensor according to claim 2, wherein the synthesized excitation signal is optically transmitted and frequency-separated by a plurality of secondary coils of the transformer and a circuit connected to the secondary coil, and the plurality of magnetostrictive members of the magnetic signal detection unit. An optical fiber sensor that excites at different frequencies. 請求項1記載の光ファイバセンサにおいて、複数の磁気信号検出部を用いる場合に、励起光を分岐して複数の光/電流変換部に入力することを特徴とする光ファイバセンサ。   2. The optical fiber sensor according to claim 1, wherein when a plurality of magnetic signal detectors are used, the excitation light is branched and input to the plurality of light / current converters.
JP2004166630A 2004-06-04 2004-06-04 Optical fiber sensor Active JP3963274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166630A JP3963274B2 (en) 2004-06-04 2004-06-04 Optical fiber sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166630A JP3963274B2 (en) 2004-06-04 2004-06-04 Optical fiber sensor

Publications (2)

Publication Number Publication Date
JP2005345324A JP2005345324A (en) 2005-12-15
JP3963274B2 true JP3963274B2 (en) 2007-08-22

Family

ID=35497844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166630A Active JP3963274B2 (en) 2004-06-04 2004-06-04 Optical fiber sensor

Country Status (1)

Country Link
JP (1) JP3963274B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282922A (en) * 2007-05-09 2008-11-20 Hochiki Corp Photoelectric conversion device
US20090058422A1 (en) * 2007-09-04 2009-03-05 Stig Rune Tenghamn Fiber optic system for electromagnetic surveying
JP4993782B2 (en) * 2009-09-25 2012-08-08 防衛省技術研究本部長 Optical fiber magnetic sensor
JP5190847B2 (en) * 2009-09-25 2013-04-24 防衛省技術研究本部長 Optical fiber magnetic sensor

Also Published As

Publication number Publication date
JP2005345324A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
JP4993252B2 (en) Magneto-optic sensor
JP5190847B2 (en) Optical fiber magnetic sensor
US7786719B2 (en) Optical sensor, optical current sensor and optical voltage sensor
JP4669469B2 (en) Reflective optical fiber current sensor
CN101231367A (en) High resolution wavelength demodulation system and demodulation method thereof
JP4631907B2 (en) Intensity modulation photosensor and photocurrent / voltage sensor
US20140334824A1 (en) Fiber optic receiver, transmitter, and transceiver systems and methods of operating the same
Marin et al. Integrated dynamic wavelength division multiplexed FBG sensor interrogator on a silicon photonic chip
JP3963274B2 (en) Optical fiber sensor
CN103698571B (en) There is current transformer arrangement and the bus current detection method of self energizing low-power consumption
JP4002934B2 (en) Scattered light measurement device
TWI234668B (en) Fiber Bragg grating sensing system of light intensity and wave-divided multiplex
EP0691758B1 (en) Synchronous detection of optical signals
Marin et al. Fiber Bragg grating sensor interrogators on chip: Challenges and opportunities
Fusiek et al. Temperature-independent high-speed distributed voltage measurement using intensiometric FBG interrogation
Fusiek et al. Feasibility study of the application of optical voltage and current sensors and an arrayed waveguide grating for aero-electrical systems
CN107884477A (en) A kind of acoustic emission detection system and detection method based on fiber-optic grating sensor
CN109708995B (en) Liquid density sensor system based on microwave photon technology
CN107765090B (en) Phase sequence calibration method for 3x3 coupler
JP2012002800A (en) System for reducing gyroscope error under limited power supply quality in optical fiber gyroscope
Fusiek et al. Concept level evaluation of the optical voltage and current sensors and an arrayed waveguide grating for aero-electrical systems' applications
Marin et al. Silicon photonic chip for dynamic wavelength division multiplexed FBG sensors interrogation
JP2001056348A (en) Optical fiber current sensor and electric line monitoring system to use the same
CN103322926A (en) Method for eliminating periodic non-linear error or interference in signal transmission process
JP5910482B2 (en) Optical fiber vibration sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Ref document number: 3963274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250