WO2018168061A1 - 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム - Google Patents

光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム Download PDF

Info

Publication number
WO2018168061A1
WO2018168061A1 PCT/JP2017/040304 JP2017040304W WO2018168061A1 WO 2018168061 A1 WO2018168061 A1 WO 2018168061A1 JP 2017040304 W JP2017040304 W JP 2017040304W WO 2018168061 A1 WO2018168061 A1 WO 2018168061A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer function
optical
receiver
transmitter
transmission characteristic
Prior art date
Application number
PCT/JP2017/040304
Other languages
English (en)
French (fr)
Inventor
明洋 山岸
哲也 丸山
政則 中村
明日香 松下
祥吾 山中
Original Assignee
Nttエレクトロニクス株式会社
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nttエレクトロニクス株式会社, 日本電信電話株式会社 filed Critical Nttエレクトロニクス株式会社
Priority to US16/470,800 priority Critical patent/US10637569B2/en
Priority to CA3047882A priority patent/CA3047882C/en
Priority to CN201780087386.6A priority patent/CN110337788B/zh
Priority to EP17901280.2A priority patent/EP3553973B1/en
Publication of WO2018168061A1 publication Critical patent/WO2018168061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • H04B10/43Transceivers using a single component as both light source and receiver, e.g. using a photoemitter as a photoreceiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • the present invention relates to an optical transmission characteristic estimation method, an optical transmission characteristic compensation method, an optical transmission characteristic estimation system, and an optical transmission characteristic compensation system that estimate or compensate for transmission characteristics of an optical transceiver in optical communication.
  • optical transceivers In order to cope with the increase in communication traffic, it is required to increase the speed and capacity of optical transceivers. 2. Description of the Related Art In recent years, optical transceivers that have been introduced use digital coherent technology that combines digital signal processing (DSP) and coherent detection.
  • DSP digital signal processing
  • the Baud rate and the modulation scheme are, for example, 32 Gbaud PDM-QPSK (Polarization Multiplex-4 Phase Shift Keying).
  • the optical transmitter generates a PDM-QPSK optical signal by modulating orthogonal linearly polarized light (X polarization and Y polarization) with a baseband signal of QPSK, respectively.
  • the optical receiver converts the optical signal into a baseband signal by coherent detection of the received optical signal and local light, and regenerates transmission data by demodulating QPSK by digital signal processing (DSP).
  • DSP digital signal processing
  • the Baud rate and the modulation scheme are, for example, 64 Gbaud PDM-16QAM (Polarization Multiplex-16Quadrature amplitude modulation) or 43 Gbaud PDM-64QAM.
  • 64 Gbaud PDM-16QAM Polyization Multiplex-16Quadrature amplitude modulation
  • 43 Gbaud PDM-64QAM 43 Gbaud PDM-64QAM.
  • optical transmitters and receivers are required to have good transmission characteristics in a wide band.
  • the transmission characteristic of the transmission signal in the optical transceiver is expressed by a transfer function.
  • the optical transceiver has a plurality of lanes (X-polarized in-phase component XI, X-polarized quadrature component XQ, Y-polarized in-phase component YI, Since the difference in the transfer function between the lanes causes deterioration in the overall transmission characteristics of the system, it is also required to sufficiently suppress the difference in the transfer function between the lanes.
  • each of the optical transmitter and the optical receiver has a frequency characteristic of a transfer function in a range that needs to be compensated according to the Baud rate.
  • a compensation value for compensating the above transfer function in a conventional optical transceiver for example, a transfer function specification value indicated by an optical circuit or an analog electric circuit vendor or a transfer function evaluation result of a representative individual measured in advance.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical transmission characteristic estimation method, an optical transmission characteristic compensation method, an optical transmission capable of estimating or compensating for the transmission characteristic of an optical transceiver.
  • a characteristic estimation system and an optical transmission characteristic compensation system are obtained.
  • An optical transmission characteristic estimation method is a method by which an optical transmission characteristic estimation system estimates an optical transmission characteristic of an optical transceiver, and transmits a first known signal from a transmission unit of the optical transceiver to a reception unit.
  • the transfer function or inverse transfer function of the optical transmitter of the transmitter is estimated from the first digital data acquired by the receiver and the temporary transfer function or inverse transfer function of the optical receiver of the receiver.
  • a first step of performing, a second digital data acquired by the receiver when a second known signal is transmitted from the transmitter to the receiver, and an estimated transfer function or inverse transfer function of the optical transmitter And a second step of estimating a transfer function or an inverse transfer function of the optical receiver.
  • the transfer function of the optical transceiver can be estimated according to the present invention.
  • optical transmission characteristic estimation method An optical transmission characteristic estimation method, an optical transmission characteristic compensation method, an optical transmission characteristic estimation system, and an optical transmission characteristic compensation system according to an embodiment of the present invention will be described with reference to the drawings.
  • the same or corresponding components are denoted by the same reference numerals, and repeated description may be omitted.
  • transfer function used below is not limited to a predetermined function that represents transmission characteristics of devices, components, propagation paths, etc., but is a function, formula, circuit, or Any track or the like may be used. Further, the transfer function is not limited to a linear function, and may be a function representing a non-linear characteristic. Further, “transmission” and “transmission” are basically regarded as consent within the scope of the present invention.
  • FIG. 1 is a diagram showing an optical transceiver including an optical transmission characteristic estimation system and an optical transmission characteristic compensation system according to an embodiment of the present invention.
  • the transmission unit 1 transmits an optical signal to the reception unit 3 via the transmission path 2.
  • the transmission line 2 is composed of, for example, an optical fiber and an optical amplifier.
  • the transmission unit 1 includes a transmission signal processing unit 4, a known signal insertion unit 5, a transmitter compensation unit 6, and an optical transmitter 7.
  • a part or all of the transmission signal processing unit 4, the known signal insertion unit 5, and the transmitter compensation unit 6 can be configured by hardware such as ASIC (Application Specific Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array). Also, some or all of these can be configured by software that functions by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit.
  • ASIC Application Specific Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the known signal insertion unit 5 modulates signals to be modulated in the XI lane (first lane), XQ lane (second lane), YI lane (third lane), and YQ lane (fourth lane) generated by the transmission signal processing unit 4.
  • a sequence of known signals is inserted into each sequence.
  • the sequence of known signals is shared between the transmission unit 1 and the reception unit 3.
  • the known signal can be composed of predetermined bits or symbols, but is composed of a signal sequence of about 2000 symbols, for example.
  • the length of the known signal sequence is required to be at least longer than the calculated FIR filter length.
  • the transmission signal processing unit 4 generates frame data based on the transmission data series.
  • the frame data is a signal sequence (modulation target signal sequence) for performing modulation processing in the optical transmitter 7.
  • the transmission signal processing unit 4 transmits the frame data in which the known signal sequence is inserted to the transmitter compensation unit 6.
  • the transmitter compensator 6 acquires the estimation result of the transfer function of the optical transmitter 7 from the transmitter transfer function estimator 8 of the receiver 3 described later.
  • the transmitter compensator 6 compensates for the transfer function of the XI lane, XQ lane, YI lane, and YQ lane of the optical transmitter 7 and the difference between the lanes based on the estimation result.
  • the transmitter compensator 6 can be constituted by a digital filter such as an FIR (Finite Impulse Response) filter, but may be constituted by an analog filter or the like. Further, the transmitter compensation unit 6 may include a functional unit having a function of guaranteeing the delay time difference between the four lanes individually.
  • the optical transmitter 7 modulates the orthogonal linearly polarized light with the compensated frame data, thereby generating an optical signal of the modulation target signal series.
  • the optical transmitter 7 includes a driver amplifier 7a, a laser module 7b (signal LD), a 90 ° combiner 7c, and a polarization combiner 7d.
  • the driver amplifier 7a amplifies the compensated electrical signal of the frame data so as to have an appropriate amplitude, and transmits the amplified signal to the 90 ° synthesizer 7c.
  • the 90 ° synthesizer 7c is a Mach-Zehnder type vector modulator, which separates linearly polarized CW (Continuous ⁇ Wave) light transmitted from the laser module 7b into orthogonal linearly polarized light.
  • an optical signal of a signal sequence to be modulated is generated.
  • the optical signal based on the horizontal polarization and the optical signal based on the vertical polarization are combined by the polarization beam combiner 7 d and supplied to the receiver 3 via the transmission path 2.
  • the receiver 3 includes an optical receiver 9, a data buffer 10, a receiver compensator 11, a received signal processor 12, first and second receiver transfer function estimators 13 and 14, and a transmitter transfer function estimator 8. Is provided.
  • the first and second receiver transfer function estimators 13 and 14 and the transmitter transfer function estimator 8 constitute an optical transmission characteristic estimation system that estimates the optical transmission characteristic of the optical transceiver.
  • the optical transmission characteristic estimation system, the transmitter compensation unit 6 and the receiver compensation unit 11 constitute an optical transmission characteristic compensation system that compensates for the optical transmission characteristic of the optical transceiver.
  • the transmitter compensator 6 and the receiver compensator 11 are represented by separate blocks. However, the transmitter compensator 6 may be a part of the transmission signal processor 4, and the receiver compensation The unit 11 may be a part of the received signal processing unit 12.
  • the optical receiver 9 includes a polarization separator 9a, a laser module 9b (local LD), a polarization diversity 90 ° hybrid 9c, a photodiode (PD: Photo Diode) (not shown), a TIA 9d (Transimpedance Amplifier), and An A / D converter 9e is provided.
  • a polarization separator 9a a laser module 9b (local LD), a polarization diversity 90 ° hybrid 9c, a photodiode (PD: Photo Diode) (not shown), a TIA 9d (Transimpedance Amplifier), and An A / D converter 9e is provided.
  • the laser module 9b sends linearly polarized CW light to the polarization diversity 90 ° hybrid 9c.
  • the polarization diversity 90 ° hybrid 9c causes the received optical signal and CW light to interfere with each other.
  • a photodiode converts it photoelectrically.
  • the TIA 9d converts the current signal into a voltage signal.
  • the A / D converter 9e performs A / D conversion on the voltage signal.
  • the received optical signal is converted into a baseband digital signal.
  • a / D converter 9e of optical receiver 9, data buffer 10, receiver compensation unit 11, received signal processing unit 12, first and second receiver transfer function estimation units 13 and 14, and transmitter transfer function estimation Part or all of the unit 8 can be configured by hardware such as ASIC or FPGA, for example. Some or all of these can also be configured by software that functions when a processor such as a CPU executes a program stored in a storage unit.
  • the first and second receiver transfer function estimation units 13 and 14 and the transmitter transfer function estimation unit 8 can be configured by an external device independent of the optical transceiver, such as a PC or a device equivalent thereto. .
  • the received signal processing unit 12 can also have the same functions as the first and second receiver transfer function estimation units 13 and 14 and the transmitter transfer function estimation unit 8 and can be shared with them. is there.
  • the data buffer 10 can be generally constituted by a memory circuit (RAM), and temporarily stores data obtained by A / D converting the signal received by the optical receiver 9.
  • the data stored in the data buffer 10 is sequentially sent to the receiver compensation unit 11 and the reception signal processing unit 12 in the subsequent stage. It is also possible for the first and second receiver transfer function estimation units 13 and 14 and the transmitter transfer function estimation unit 8 to acquire these data.
  • the first and second receiver transfer function estimators 13 and 14 and the transmitter transfer function estimator 8 directly acquire the A / D converted data in real time without using the data buffer 10. Also good.
  • all examples described using the digital data in the data buffer 10 also include a method of directly acquiring received data in real time.
  • the receiver compensation unit 11 acquires the estimation result of the transfer function of the optical receiver 9 from the second receiver transfer function estimation unit 14, and based on the estimation result, the XI lane, XQ lane, and YI of the optical receiver 9 The transfer function of the lane and the YQ lane and the difference between the lanes are compensated.
  • the receiver compensation unit 11 can be configured by a digital filter such as an FIR filter. Further, the receiver compensation unit 11 may have a functional unit having a function of guaranteeing a delay time difference between four lanes individually.
  • the digital signal is input from the receiver compensation unit 11 to the reception signal processing unit 12.
  • waveform distortion occurs in the optical signal due to chromatic dispersion, polarization mode dispersion, polarization fluctuation, or nonlinear optical effect.
  • the reception signal processing unit 12 compensates for waveform distortion generated in the transmission path 2.
  • the reception signal processing unit 12 compensates for a difference between the light frequency of the laser module 7 b of the optical transmitter 7 and the local light emission frequency of the laser module 9 b of the optical receiver 9. Further, the reception signal processing unit 12 compensates for phase noise according to the line width of the light of the laser module 7 b of the optical transmitter 7 and the line width of the local light of the laser module 9 b of the optical receiver 9.
  • the first receiver transfer function estimator 13 receives an optical receiver from digital data acquired by the receiver 3 when an ASE (Amplified Spontaneous Emission) signal corresponding to white noise is input to the input terminal of the optical receiver 9.
  • ASE Anamplified Spontaneous Emission
  • the ASE signal can be generated from an optical amplifier.
  • an optical amplifier is used in a state where nothing is input. This optical amplifier may be prepared separately, but the optical amplifier of the transmission line 2 can also be used. Since the spectrum (frequency characteristics) of the ASE signal is uniform, the frequency characteristics can be acquired by passing the spectrum. Therefore, the frequency characteristic can be estimated by the first receiver transfer function estimating unit 13 acquiring the data stored in the data buffer 10 with the ASE signal input. These can be estimated for each lane.
  • a configuration example of the first receiver transfer function estimation unit 13 will be described later.
  • the estimation of frequency characteristics is obtained as a transfer function by Fourier transforming digital data. Furthermore, as a method for obtaining an inverse transfer function, there is a method for obtaining a solution of an adaptive filter in addition to calculating an inverse number. As a method for obtaining a solution of an adaptive filter, there are generally a method for obtaining a Wiener solution, and a method for obtaining by an LMS (least mean square) algorithm or an RLS (recursive least square) algorithm.
  • LMS least mean square
  • RLS recursive least square
  • the transmitter transfer function estimation unit 8 receives the first digital data acquired by the reception unit 3 when the first known signal is transmitted from the transmission unit 1 to the reception unit 3, and the temporary receiver 9 of the optical receiver 9 of the reception unit 3.
  • the transfer function or inverse transfer function of the optical transmitter 7 is estimated from the transfer function or inverse transfer function.
  • the transfer function of the optical transmitter 7 is estimated using an adaptive filter.
  • the adaptive filter is, for example, a filter based on the LMS algorithm or a filter based on the RMS algorithm.
  • the second receiver transfer function estimating unit 14 transmits the second digital data acquired by the receiving unit 3 when the second known signal is transmitted from the transmitting unit 1 to the receiving unit 3 and the estimated transmission of the optical transmitter 7.
  • the true transfer function or inverse transfer function of the optical receiver 9 is estimated from the function or inverse transfer function.
  • the inverse transfer function of the optical receiver 9 is estimated using an adaptive filter.
  • the adaptive filter is, for example, a filter based on the LMS algorithm or a filter based on the RLS algorithm. In this case, it can be estimated for each lane.
  • FIG. 2 is a flowchart showing an optical transmission characteristic estimation method according to the embodiment of the present invention.
  • the temporary transfer function or inverse transfer function of the optical receiver 9 is estimated by the first receiver transfer function estimation unit 13 (step S1).
  • the transmitter transfer function estimation unit 8 estimates the transfer function or inverse transfer function of the optical transmitter 7 (step S2).
  • the second receiver transfer function estimation unit 14 estimates the true transfer function or inverse transfer function of the optical receiver 9 (step S3).
  • FIG. 3 is a flowchart for estimating a provisional transfer function of the optical receiver according to the embodiment of the present invention.
  • an ASE signal is inserted into the input of the optical receiver 9 (step S101). Since it is known that the spectrum of the ASE signal is uniform, the frequency characteristic can be acquired by passing the spectrum.
  • the data buffer 10 acquires received data (step S102).
  • the first receiver transfer function estimation unit 13 acquires digital data from the data buffer 10 and performs FFT processing to acquire a temporary transfer function (step S103).
  • a temporary inverse transfer function is calculated from the acquired temporary transfer function (step S104).
  • the calculated provisional inverse transfer function is set in the receiver compensation unit 11 (step S105).
  • FIG. 4 is a diagram showing a first receiver transfer function estimation unit according to Embodiment 1 of the present invention.
  • the first receiver transfer function estimator 13 performs FFT (Fast Fourier Transform) processing on the X-polarized received signal and Y-polarized received signal, respectively, and performs 1 / transfer function processing on their outputs.
  • the X-polarized received signal is XI + jXQ and the Y-polarized received signal is YI + jYQ, but it is assumed that there is no delay difference between XI and XQ and between YI and YQ.
  • XI, XQ, YI, and YQ can be individually subjected to Fourier transform and 1 / transfer function processing. Note that it is not necessary to limit to the FFT processing as long as Fourier transformation can be performed, and other methods may be used.
  • the following “FFT” notation means the function of Fourier transform.
  • X R (n) is digital data acquired by the data buffer 10
  • X R (k) is data subjected to FFT processing.
  • FFT means high-speed processing of DFT (Discrete Furrier Transfer). In general FFT processing for continuous signals is performed for each finite number of data N, but it goes without saying that data is overlapped with adjacent processing (overlap Add, overlap Save, etc.). There is a way). The same applies to the subsequent FFT processing.
  • the absolute value of X R (k) indicates amplitude information, which is obtained as a temporary transfer function.
  • a temporary inverse transfer function can be obtained by calculating the reciprocal thereof.
  • This inverse transfer function can be set in the receiver compensator 11.
  • the inverse transfer function is also used when estimating the transfer function of the optical transmitter 7. In this case, it is not always necessary to set the inverse transfer function of the temporary transfer function in the receiver compensation unit 11.
  • FIG. 5 is a diagram showing a receiver compensation unit according to Embodiment 1 of the present invention.
  • the receiver compensation unit 11 performs IQ vector processing (time domain processing). That is, X polarization and Y polarization are respectively displayed as XI + jXQ and YI + jYQ as complex vector signals, and the transmission characteristics are compensated by the FIR filter.
  • the inverse transfer function calculated in step S104 is converted into a time response signal by IFFT processing (not shown) and set as a filter coefficient of the FIR filter.
  • FIG. 6 is a diagram showing a receiver compensation unit according to Embodiment 2 of the present invention.
  • the receiver compensation unit 11 performs IQ vector processing (frequency domain processing). That is, X polarization and Y polarization are respectively displayed as XI + jXQ and YI + jYQ as complex vector signals, converted into the frequency domain by FFT processing once, and multiplied by the inverse transfer function calculated in step S104. To compensate. Thereafter, the signal is returned to the time domain signal by IFFT processing.
  • IQ vector processing frequency domain processing
  • FIG. 7 is a diagram showing a receiver compensation unit according to Embodiment 3 of the present invention.
  • the receiver compensation unit 11 performs IQ individual processing (time domain processing). That is, the transmission characteristics of X-polarized XI and XQ and Y-polarized YI and YQ are compensated by the FIR filter.
  • the filter coefficient of each FIR filter is obtained by performing the processing of the first receiver transfer function estimating unit 13 in FIG. 4 individually on XI, XQ, YI, and YQ in steps S103 to S105, and further It can be obtained by IFFT processing not shown.
  • FIG. 8 is a diagram illustrating a receiver compensation unit according to Embodiment 4 of the present invention.
  • the receiver compensation unit 11 performs IQ individual processing (frequency domain processing). That is, X-polarized XI and XQ and Y-polarized YI and YQ are each subjected to frequency conversion by FFT processing, and multiplied by the inverse transfer function calculated in step S104 to compensate for transmission characteristics.
  • each inverse transfer function is obtained by performing the processing of the first receiver transfer function estimating unit 13 in FIG. 4 individually for XI, XQ, YI, and YQ in the previous steps S103 to S105. Can do. Thereafter, the signal is returned to the time domain signal by IFFT processing.
  • the receiver compensation unit 11 can have various configurations as described above, and is not limited to the configuration described above, and may have any configuration as long as the transfer function can be compensated. Compensation in the frequency domain by the receiver compensation unit 11 is expressed by the following equation. However, it goes without saying that each IFFT can be compensated by using an FIR filter in the time domain.
  • XI out , XQ out , YI out , and YQ out are data after compensation of XI in , XQ in , YI in , and YQ in , respectively.
  • H1 to H16 denote inverse transfer functions in that case.
  • IQ vector processing it is also possible to combine IQ vector processing and IQ individual processing.
  • a complex filter once as an IQ vector, it is divided into a real part and an imaginary part, and each is filtered with a real filter.
  • ⁇ X * complex filter ⁇ XI * real filter
  • XQ * real filter filter coefficients can be set individually
  • Y * complex filter ⁇ YI * real filter
  • YQ * real filter filter coefficients can be set individually
  • X and Y are complex vector displays
  • XI, XQ, YI, and YQ are respectively real numbers
  • “*” indicates processing
  • ⁇ ” indicates the flow of processing.
  • ⁇ X and Y * complex filters (processed with the same coefficient in time series) ⁇ XI * real filter, XQ * real filter, YI * real filter, YQ * real filter (filter coefficients can be set individually) -XI, XQ, YI, YQ * real filter (processed with the same coefficient in time series) ⁇ XI * real filter, XQ * real filter, YI * real filter, YQ * real filter (filter coefficients can be set individually)
  • complex filtering of complex signals such as X or Y can be made smaller in a single circuit in the frequency domain (FFT ⁇ transfer function multiplication ⁇ IFFT) than in individual processing. Further, real number filtering is more efficient in terms of circuit scale if it is processed by processing in the time domain (FIR filter (convolution operation)). As described above, the frequency characteristic and the delay difference can be compensated.
  • FIG. 9 is a diagram illustrating a first receiver transfer function estimation unit according to Embodiment 2 of the present invention.
  • the processing up to the FFT processing of the digital data in the data buffer 10 to obtain the transfer function of the amplitude information is the same as that of the first embodiment shown in FIG. 4, but the method of obtaining the inverse transfer function is different in this embodiment.
  • the inverse transfer function is obtained by a technique called adaptive equalization using a general adaptive filter.
  • the arbitrary waveform signal is multiplied by the transfer function and compensated again by the inverse transfer function, and the result is the same as the original arbitrary waveform signal (actually, the square error is minimized).
  • the filter coefficient of the FIR filter constituting the adaptive filter can be obtained as the time response of the inverse transfer function.
  • This method for obtaining the inverse transfer function is generally known as the following Wiener solution or LMS (Least Mean Square) algorithm.
  • d (n) is the known signal
  • y (n) is the output of the adaptive filter
  • e (n) is the difference between d (n) and y (n)
  • h (n) is the time response of the adaptive filter. .
  • the inverse transfer function is calculated by the inverse of the transfer function
  • the inverse diverges infinitely and has unstable inverse characteristics.
  • such an instability can be prevented and the inverse transfer function can be obtained stably.
  • divergence may occur or the solution may become unstable when the input signal is very small or very small outside the band. In that case, it can be avoided by adding minute noise to the input signal. Note that noise may be added to the signal for calculation, or may actually be added to the signal on the transmission path. The same applies to subsequent appropriate filters.
  • FIG. 10 is a diagram showing a first receiver transfer function estimation unit according to Embodiment 3 of the present invention.
  • FIR filter processing is performed using a time response converted from the transfer function.
  • the operation principle applying the transfer function is equivalent.
  • the other circuits and the solution of the inverse transfer function are the same as those in the second embodiment. Also in this case, the inverse transfer function can be obtained more stably than the method of the first embodiment for obtaining the inverse transfer function.
  • FIG. 11 is a diagram illustrating a frequency response (amplitude information) of a provisional transfer function of the optical receiver according to the embodiment of the present invention.
  • FIG. 12 is a diagram showing the frequency response (amplitude information) of the provisional inverse transfer function of the optical receiver according to the embodiment of the present invention. These are required for each lane.
  • FIG. 13 is a diagram showing a transmitter transfer function estimation unit according to the embodiment of the present invention.
  • the transmitter transfer function estimation unit 8 includes a known signal synchronization unit 8a, various transmission characteristic compensation units 8b, a receiver compensation unit 8c, and an adaptive filter having an FIR filter 8d and a square error minimization unit 8e.
  • the various transmission characteristic compensators 8b include various compensation circuits for compensating distortion during transmission such as chromatic dispersion compensation, frequency offset compensation, polarization dispersion / polarization rotation compensation, clock phase compensation, and phase noise compensation.
  • the known signal synchronization unit 8a has a function of extracting a known signal from digital data, and estimates compensation data to be set for various transmission characteristic compensations in the subsequent stage from the state of the extracted known signal using various estimation blocks. That is, the estimation of the transfer function or inverse transfer function of the optical transmitter 7 includes processing for estimating the transmission characteristics of the transmission path 2. Note that the receiver compensator 8c can be arranged before the various transmission characteristic compensators 8b.
  • the chromatic dispersion compensator in front of the known signal synchronizer 8a.
  • the order of the compensation units of the various transmission characteristic compensation units can be changed.
  • the meaning of (1TAP 2 ⁇ 2 MIMO (MultiMIInput Multi Output)) for polarization dispersion / polarization rotation compensation is that the number of taps of the filter is set to 1, and the bandwidth characteristics of the optical transceiver are not compensated by this block. It shows that only polarization rotation is performed (in a general multi-tap 2 ⁇ 2 MIMO filter, the band is also compensated).
  • the transmitter transfer function estimation unit 8 processes each of the X polarization and the Y polarization as complex vector signals in the same manner as the first receiver transfer function estimation unit 13 of FIG. It is also possible to process the lanes of XQ, YI, and YQ independently. In this case, the delay difference between lanes can be extracted and compensated. Processing the X polarization as a complex vector signal assumes that the delay difference (Skew) between XI and XQ is zero. If the delay difference cannot be ignored, it is necessary to extract and compensate the transfer function for each lane. The same applies to the Y polarization.
  • FIG. 14 is a flowchart for obtaining a transfer function or an inverse transfer function of the optical transmitter according to the embodiment of the present invention.
  • a known signal is input to the input of the transmission signal processing unit 4, and an optical modulation signal is transmitted from the optical transmitter 7 (step S201).
  • the transmitter compensator 6 bypasses.
  • the transmitter compensator 6 can have the same configuration as the receiver compensator 11 shown in FIGS.
  • received data is acquired by the data buffer 10 on the receiving side (step S202).
  • the transmitter transfer function estimation unit 8 acquires digital data from the data buffer 10 (step S203).
  • the known signal synchronization unit 8a extracts a known signal from the acquired digital data. Various transmission characteristics compensation and optical receiver compensation are performed on the extracted known signal.
  • the optical receiver compensation is performed using the provisional inverse transfer function of the optical receiver 9 estimated in step S1.
  • FIG. 13 shows a configuration in which the receiver compensation unit 11 compensates with a provisional inverse transfer function after the data buffer 10, but this compensation is not particularly necessary for the processing of the transmitter transfer function estimation unit 8 described above. .
  • the FIR filter 8d in which the inverse characteristic is set is applied to the signal as an adaptive filter, and the inverse characteristic is corrected again so that the square of the difference between the output and the known signal is minimized.
  • the filter coefficient of the FIR filter 8d constituting the adaptive filter can be obtained as a time response of the inverse transfer function.
  • This method of obtaining the inverse transfer function is generally known as the Wiener solution or LMS algorithm shown below.
  • s (n) is a known signal
  • y (n) is the output of the adaptive filter
  • e (n) is the difference between s (n) and y (n)
  • h (n) is the time response of the adaptive filter. is there.
  • Step S203 and Step S204 can be processed as a unit.
  • the transfer function of the optical transmitter 7 is obtained, the inverse transfer function is calculated (step S204).
  • the estimated inverse transfer function of the optical transmitter 7 is set in the transmitter compensator 6 (step S205).
  • the setting method is the same as the method shown in step S105.
  • FIG. 15 is a diagram illustrating the time response of the inverse transfer function of the optical transmitter obtained by the transmitter transfer function estimation unit.
  • FIG. 16 is a diagram illustrating the frequency response (amplitude characteristics and phase characteristics) of the inverse transfer function of the optical transmitter obtained by the transmitter transfer function estimation unit.
  • FIG. 17 is a diagram showing a second receiver transfer function estimation unit according to Embodiment 1 of the present invention.
  • the second receiver transfer function estimation unit 14 simulates distortion during transmission such as the known signal synchronization unit 14a, chromatic dispersion compensation, frequency offset compensation, polarization dispersion / polarization rotation addition, clock phase addition, phase noise addition, and the like.
  • the known signal synchronization unit 14a has a function of extracting a known signal from digital data, and estimates additional data to be set in a circuit that simulates the distortion of the subsequent stage from the state of the extracted known signal using various estimation blocks.
  • the estimation of the transfer function or inverse transfer function of the optical receiver 9 includes a process of estimating the transmission characteristics of the transmission path 2.
  • the order of the circuit 14b that simulates distortion during transmission such as chromatic dispersion compensation, frequency offset compensation, polarization dispersion / polarization rotation addition, clock phase addition, and phase noise addition, can be switched.
  • the second receiver transfer function estimation unit 14 processes each of the X polarization and the Y polarization as complex vector signals, as in the case of the first receiver transfer function estimation unit 13 of FIG. , XI, XQ, YI and YQ can be processed independently. In this case, the delay difference between lanes can be extracted and compensated. Processing the X polarization as a complex vector signal assumes that the delay difference between XI and XQ is zero. When the delay difference cannot be ignored, it is necessary to extract and compensate the transfer function for each lane. The same applies to the Y polarization.
  • FIG. 18 is a flowchart for estimating the true transfer function or inverse transfer function of the optical receiver according to the embodiment of the present invention.
  • a known signal is input to the input of the transmission signal processing unit 4, and an optical modulation signal is transmitted from the optical transmitter 7 of the transmission unit 1 to the reception unit 3 (S301).
  • the inverse transfer function of the optical transmitter 7 estimated in step S2 of FIG. 2 is set in the transmitter compensator 6 to compensate the transmission characteristics of the optical transmitter 7.
  • the transmitter compensator 6 can have the same configuration as the receiver compensator 11 shown in FIG.
  • received data is acquired by the data buffer 10 on the receiving side (step S302).
  • the second receiver transfer function estimation unit 14 acquires digital data from the data buffer 10 (step S303).
  • the known signal synchronization unit 14a extracts a known signal from the acquired digital data.
  • the extracted known signal is supplied to the FIR filter 14c as an adaptive filter.
  • chromatic dispersion, frequency offset, polarization dispersion / polarization rotation, clock phase, and phase noise estimated as transmission path distortion are added to the known signal and compared with the output of the adaptive filter.
  • the added amounts of chromatic dispersion, frequency offset, polarization dispersion / polarization rotation, clock phase, and phase noise are estimated by various estimation blocks from the state of the known signal.
  • the transfer function of the optical transmitter 7 is compensated by the transmitter compensator 6.
  • the transfer function of the optical receiver 9 is compensated by the adaptive filter, the output of the adaptive filter is affected only by the transmission path distortion.
  • This signal is compared with a known signal to which transmission path distortion is added, and the difference (square error) is minimized, so that the filter coefficient of the FIR filter 14c, which is an adaptive filter, is converted to the inverse transfer function of the optical receiver 9.
  • the time response can be obtained.
  • This method of obtaining the inverse transfer function is generally known as the Wiener solution or LMS algorithm shown below. Where d (n) is the known signal, y (n) is the output of the adaptive filter, e (n) is the difference between d (n) and y (n), and h (n) is the time response of the adaptive filter. .
  • Step S303 and Step S304 can be processed as a unit.
  • the true transfer function of the optical receiver 9 is obtained, the true inverse transfer function is calculated from the transfer function (step S304).
  • the estimated true inverse transfer function of the optical receiver 9 is set in the receiver compensation unit 11 (step S305).
  • the setting method is the same as the method shown in step S105.
  • FIG. 19 is a diagram illustrating a time response of the inverse transfer function of the optical receiver obtained by the second receiver transfer function estimation unit.
  • FIG. 20 is a diagram illustrating the frequency response (amplitude characteristics, phase characteristics) of the inverse transfer function of the optical receiver obtained by the second receiver transfer function estimation unit.
  • FIG. 21 is a diagram showing a second receiver transfer function estimation unit according to Embodiment 2 of the present invention.
  • the transmitter compensator 6 bypasses in step S301 shown in FIG. 18, and in addition to adding transmission path distortion to the known signal in step S303, Add a transfer function.
  • Other processes are the same as those in the first embodiment.
  • setting on the transmission side is not necessary, so that the transfer function or inverse transfer function of the optical transmitter 7 and the transfer function or inverse transfer function of the optical receiver 9 can be estimated only by calculation on the reception side. it can.
  • these estimation calculations can be configured as a single device. In particular, it can be easily configured by a PC having an interface for taking in the digital data of the data buffer 10.
  • FIG. 22 shows a frequency spectrum after compensation by the optical transmission characteristic compensation method according to the embodiment of the present invention.
  • both shoulders of the spectrum are dropped due to the band characteristics of the optical transmitter 7.
  • both shoulders of the frequency characteristics of the optical receiver 9 are increased as a result.
  • compensation is performed individually on the optical transmitter 7 side and the optical receiver 9 side, an ideal rectangular spectrum can be confirmed.
  • noise band flat
  • the optical amplifier becomes dominant, so that the influence of noise enhancement can be avoided when the optical spectrum has an ideal shape (rectangular in this case).
  • it is important to suppress the noise enhancement effect by compensating the transfer function of the optical transmitter 7 on the optical transmitter 7 side and compensating the transfer function of the optical receiver 9 on the optical receiver 9 side. is there. This can be realized by the embodiment of the present invention.
  • FIG. 23 is a diagram showing a Q value improvement effect after compensation by the optical transmission characteristic compensation method according to the embodiment of the present invention.
  • the Q value is an index indicating an error rate. A lower Q is obtained as the error rate is lower.
  • OSNR is the optical signal to noise ratio. Similar to the spectrum shown in FIG. 22, in this case as well, when the compensation is performed separately on the optical transmitter 7 side and the optical receiver 9 side, the improvement amount of the Q value is larger for a wide OSNR.
  • the transfer function or inverse transfer function of the optical transmitter 7 and the transfer function or inverse transfer function of the optical receiver 9 can be estimated, respectively. That is, the transmission characteristics of the optical transmitter 7 and the optical receiver 9 can be estimated.
  • the transfer function in the optical transmitter 7 and the transfer function in the optical receiver 9 can be individually compensated. Therefore, since the transmission characteristics of the optical transmitter 7 and the optical receiver 9 can be compensated, optimum transmission characteristics can be obtained as shown in FIGS.
  • the optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system, and optical transmission characteristic compensation system according to the present embodiment can be easily configured with a PC or the like, and can also be used as a calibration system in optical communication. Useful.
  • the transmission unit 1 and the reception unit 3 are connected to obtain a temporary transfer function or an inverse transfer function of the optical receiver 9 in the reception unit 3, and the transmission unit is used by using the temporary transfer function or the inverse transfer function.
  • the transfer function or inverse transfer function of the optical transmitter 7 within 1 was obtained, and finally the true transfer function or true inverse transfer function of the optical receiver 9 was obtained.
  • the receiving unit 3 when a known signal is transmitted from the transmitting unit 1 to the receiving unit 3.
  • the other transfer function or inverse transfer function of the optical transmitter 7 and the optical receiver 9 can be estimated from the digital data at and the transfer function or inverse transfer function obtained or calibrated in advance. In this case, it is possible to obtain the transfer functions or inverse transfer functions of a plurality of devices by sequentially exchanging only the device side having an unknown transfer function.
  • the true transfer function or inverse transfer function of the optical receiver 9 estimated in step S3 shown in the flowchart of FIG. 2 is used as the temporary transfer function or inverse transfer function of the optical receiver 9 in step S2.
  • S3 may be repeated twice or more. Thereby, the transfer function or inverse transfer function of the optical transceiver can be estimated with higher accuracy. This is also included in the scope of the technical idea of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)

Abstract

光送受信機の送信部(1)から受信部(3)に第1の既知信号を伝送した時に受信部(3)が取得した第1のデータと、受信部(3)の光受信機(9)の仮の伝達関数又は逆伝達関数とから、送信部(1)の光送信機(7)の伝達関数又は逆伝達関数を推定する。送信部(1)から受信部(3)に第2の既知信号を伝送した時に受信部(3)が取得した第2のデータと、推定した光送信機(7)の伝達関数又は逆伝達関数とから、光受信機(9)の伝達関数又は逆伝達関数を推定する。

Description

光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
 本発明は、光通信における光送受信機の伝送特性を推定又は補償する光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システムに関する。
 通信トラヒックの増大に対応するために、光送受信機の高速・大容量化が求められている。近年、導入が進む光送受信機は、デジタル信号処理(DSP)とコヒーレント検波を組み合わせたデジタルコヒーレント技術を用いている。
 1チャネルあたり100Gb/sの光送受信機では、Baud rateと変調方式は例えば32Gbaud PDM-QPSK(偏波多重-4位相偏移変調)である。光送信機は直交した直線偏光(X偏波とY偏波)を、それぞれQPSKのベースバンド信号で変調することでPDM-QPSK光信号を生成する。光受信機は受信した光信号と局発光をコヒーレント検波することで光信号をベースバンド信号に変換し、デジタル信号処理(DSP)によってQPSKを復調し送信データを再生する。
 1チャンネルあたりの伝送容量を増やすために、400Gb/sの光送受信機では、Baud rateと変調方式は例えば64Gbaud PDM-16QAM(偏波多重-16Quadrature amplitude modulation)、又は43Gbaud PDM-64QAMである。このように、今後の光送受信機では、1チャネルあたりの伝送容量を拡大させるためにBaud rateの増加と変調方式の多値化が進む。
 Baud rateの増加と多値化に伴い、光送受信機には広帯域に良好な伝送特性が求められる。この光送受信機内の伝送信号の伝送特性は伝達関数で表現され、一般に光送受信機は複数のレーン(X偏波の同相成分XI、X偏波の直交成分XQ、Y偏波の同相成分YI、Y偏波の直交成分YQ)を有し、レーン間の伝達関数の差はシステムの総合伝送特性劣化を引き起こすため、レーン間の伝達関数の差を十分抑えることも求められる。光送受信機の伝達関数の周波数特性が不十分な場合又はレーン間に差がある場合は、例えばDSPによって伝送特性又はそのレーン間差を補償する必要がある。これに対して、光伝送路の波長分散又は受信側のレーン間の差を受信側で補償する方法(例えば、非特許文献1,2参照)、及び、送信側のレーン間の差を送信側で補償する方法(例えば、特許文献1及び非特許文献3参照)が提案されている。
日本特許第6077696号公報
R. R. Muller, J. Renaudier, "Blind Receiver Skew Compensation and Estimation for Long-Haul Non-Dispersion Managed Systems Using Adaptive Equalizer", JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 33, NO. 7, pp.1315-1318, APRIL 1, 2015. J. C. M. Diniz, E. P da Silva, M. Piels, and D. Zibar, "Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers", Advanced Photonics Congress 2016. Ginni Khanna, Bernhard Spinnler, Stefano Calabro, Erik De Man, and Norbert Hanik, "A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 28, NO. 7, pp.752-755, APRIL 1, 2016.
 光送受信機の伝達関数をDSPで補償する場合、光送受信機を構成する光回路又はアナログ電気回路などの伝達関数を予め把握し、それらをもとに必要に応じて補償値を設定する必要がある。光送信機と光受信機はそれぞれBaud rateに応じて補償が必要な範囲の伝達関数の周波数特性がある。従来の光送受信機において上記の伝達関数を補償するための補償値を設定する場合、例えば、光回路又はアナログ電気回路ベンダが示す伝達関数の仕様値又は予め測定した代表個体の伝達関数の評価結果などに基づいて光送信機補償部と受信機補償部に対して補償値を設定することで、十分な総合伝送特性を得ることができた。
 しかし、400Gb/sなどの高速伝送システムではBaud rateの上昇と多値化に伴い、光回路又はアナログ電気回路の伝達関数の個体バラつきが原因で、ベンダの示す仕様値又は代表個体の評価結果に基づいた補償値設定では十分な総合伝送特性が得られないという問題があった。
 本発明は、上述のような課題を解決するためになされたもので、その目的は光送受信機の伝送特性を推定又は補償することができる光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システムを得るものである。
 本発明に係る光伝送特性推定方法は、光伝送特性推定システムが光送受信機の光伝送特性を推定する方法であって、前記光送受信機の送信部から受信部に第1の既知信号を伝送した時に前記受信部が取得した第1のデジタルデータと、前記受信部の光受信機の仮の伝達関数又は逆伝達関数とから、前記送信部の光送信機の伝達関数又は逆伝達関数を推定する第1のステップと、前記送信部から前記受信部に第2の既知信号を伝送した時に前記受信部が取得した第2のデジタルデータと、推定した前記光送信機の伝達関数又は逆伝達関数とから、前記光受信機の伝達関数又は逆伝達関数を推定する第2のステップとを備えることを特徴とする。
 本発明により光送受信機の伝達関数を推定することができる。
本発明の実施の形態に係る光伝送特性推定システム及び光伝送特性補償システムを備える光送受信機を示す図である。 本発明の実施の形態に係る光伝送特性推定方法を示すフローチャートである。 本発明の実施の形態に係る光受信機の仮の伝達関数を推定するフローチャートである。 本発明の実施の形態1に係る第1の受信機伝達関数推定部を示す図である。 本発明の実施の形態1に係る受信機補償部を示す図である。 本発明の実施の形態2に係る受信機補償部を示す図である。 本発明の実施の形態3に係る受信機補償部を示す図である。 本発明の実施の形態4に係る受信機補償部を示す図である。 本発明の実施の形態2に係る第1の受信機伝達関数推定部を示す図である。 本発明の実施の形態3に係る第1の受信機伝達関数推定部を示す図である。 本発明の実施の形態に係る光受信機の仮の伝達関数の周波数応答(振幅情報)を示す図である。 本発明の実施の形態に係る光受信機の仮の逆伝達関数の周波数応答(振幅情報)を示す図である。 本発明の実施の形態に係る送信機伝達関数推定部を示す図である。 本発明の実施の形態に係る光送信機の伝達関数又は逆伝達関数を取得するフローチャートである。 送信機伝達関数推定部で求めた光送信機の逆伝達関数の時間応答を示す図である。 送信機伝達関数推定部で求めた光送信機の逆伝達関数の周波数応答(振幅特性及び位相特性)を示す図である。 本発明の実施の形態1に係る第2の受信機伝達関数推定部を示す図である。 本発明の実施の形態に係る光受信機の真の伝達関数又は逆伝達関数を推定するフローチャートである。 第2の受信機伝達関数推定部で求めた光受信機の逆伝達関数の時間応答を示す図である。 第2の受信機伝達関数推定部で求めた光受信機の逆伝達関数の周波数応答(振幅特性、位相特性)を示す図である。 本発明の実施の形態2に係る第2の受信機伝達関数推定部を示す図である。 本発明の実施の形態に係る光伝送特性補償方法による補償後の周波数スペクトラムである。 本発明の実施の形態に係る光伝送特性補償方法による補償後のQ値改善効果を示す図である。
 本発明の実施の形態に係る光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システムについて図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。なお、以下で使用する「伝達関数」という用語は、装置、部品、伝搬路等の伝送特性を表す所定の関数に限定されず、ある2地点間の伝送特性を表す関数、数式、回路、或いは線路等であればどのようなものでもよい。また、伝達関数は線形に限らず、非線形な特性を表す関数等でもよい。更に、「伝送」と「伝達」については、本発明の範囲内では基本的に同意として捉える。
 図1は、本発明の実施の形態に係る光伝送特性推定システム及び光伝送特性補償システムを備える光送受信機を示す図である。送信部1は伝送路2を介して光信号を受信部3に送信する。伝送路2は例えば光ファイバと光増幅器からなる。
 送信部1は、送信信号処理部4、既知信号挿入部5、送信機補償部6、及び光送信機7を備える。送信信号処理部4と既知信号挿入部5と送信機補償部6の一部又は全部は、例えばASIC(Application Specific Integrated Circuit)又はFPGA(Field-Programmable Gate Array)等のハードウェアで構成できる。また、これらの一部又は全部は、CPU(Central Processing Unit)等のプロセッサが記憶部に記憶されたプログラムを実行することにより機能するソフトウェでも構成できる。
 既知信号挿入部5は、送信信号処理部4が生成したXIレーン(第1レーン)、XQレーン(第2レーン)、YIレーン(第3レーン)、YQレーン(第4レーン)の変調対象信号系列に、それぞれ既知信号の系列を挿入する。既知信号の系列は送信部1と受信部3との間で共有されている。既知信号は、所定のビット又はシンボルで構成できるが、例えば2000シンボル程度の信号系列で構成される。既知信号の系列の長さは、最低限、算出するFIRフィルタ長より長いことが求められる。
 送信信号処理部4は、送信データ系列に基づいてフレームデータを生成する。フレームデータは、光送信機7において変調処理を施すための信号系列(変調対象信号系列)である。送信信号処理部4は、既知信号系列が挿入されたフレームデータを送信機補償部6に送信する。
 送信機補償部6は、光送信機7の伝達関数の推定結果を後述する受信部3の送信機伝達関数推定部8から取得する。送信機補償部6は、その推定結果に基づいて光送信機7のXIレーン、XQレーン、YIレーン、及びYQレーンの伝達関数と、そのレーン間差を補償する。送信機補償部6は、例えばFIR(Finite Impulse Response)フィルタ等のデジタルフィルタにより構成できるが、アナログフィルタ等により構成してもよい。また、送信機補償部6は、個別に4レーン間の遅延時間差を保証する機能を持つ機能部を備えてもよい。
 光送信機7は、補償されたフレームデータで直交した直線偏光を変調することで、変調対象信号系列の光信号を生成する。光送信機7はドライバアンプ7a、レーザモジュール7b(信号LD)、90°合成器7c、及び偏波合成器7dを備える。ドライバアンプ7aは、補償されたフレームデータの電気信号を適切な振幅になるように増幅して90°合成器7cに送信する。90°合成器7cは、マッハツェンダ型ベクトル変調器であり、レーザモジュール7bから送信された直線偏光のCW(Continuous Wave)光を直交した直線偏光に分離し、それぞれの直線偏光に対してフレームデータで変調することで、変調対象信号系列の光信号を生成する。水平偏波による光信号と垂直偏波による光信号が、偏波合成器7dで合成され、伝送路2を介して受信部3に供給される。
 受信部3は、光受信機9、データバッファ10、受信機補償部11、受信信号処理部12、第1及び第2の受信機伝達関数推定部13,14、及び送信機伝達関数推定部8を備える。第1及び第2の受信機伝達関数推定部13,14及び送信機伝達関数推定部8が、光送受信機の光伝送特性を推定する光伝送特性推定システムを構成する。この光伝送特性推定システムと送信機補償部6及び受信機補償部11が、光送受信機の光伝送特性を補償する光伝送特性補償システムを構成する。なお、図1では送信機補償部6と受信機補償部11を個別のブロックで表現しているが、送信機補償部6は送信信号処理部4の一部であってもよく、受信機補償部11は受信信号処理部12の一部であってもよい。
 光受信機9は、偏波分離器9a、レーザモジュール9b(局発LD)、偏波ダイバーシティ90°ハイブリッド9c、フォトダイオード (PD: Photo Diode)(図示せず)、TIA9d(Transimpedance Amplifier)、及びA/D変換器9eを備える。
 レーザモジュール9bは、直線偏光のCW光を偏波ダイバーシティ90°ハイブリッド9cに送る。偏波ダイバーシティ90°ハイブリッド9cは受信した光信号とCW光を干渉させる。フォトダイオードがそれを光電変換する。TIA9dがその電流信号を電圧信号に変換する。A/D変換器9eがその電圧信号をA/D変換する。これらにより、受信した光信号をベースバンドのデジタル信号に変換する。
 光受信機9のA/D変換器9e、データバッファ10、受信機補償部11、受信信号処理部12、第1及び第2の受信機伝達関数推定部13,14、及び送信機伝達関数推定部8の一部又は全部は、例えばASIC又はFPGA等のハードウェアで構成できる。また、これらの一部又は全部は、CPU等のプロセッサが記憶部に記憶されたプログラムを実行することにより機能するソフトウェでも構成できる。また、第1及び第2の受信機伝達関数推定部13,14及び送信機伝達関数推定部8は、光送受信機とは独立した外部装置、例えばPC又はそれに相当する装置によって構成することができる。また、受信信号処理部12も、第1及び第2の受信機伝達関数推定部13,14及び送信機伝達関数推定部8と同様の機能を有することができ、それらとの共用化も可能である。
 データバッファ10は、一般的にはメモリ回路(RAM)で構成でき、光受信機9で受信した信号をA/D変換したデータを一時的に蓄えておく。データバッファ10に蓄えられたデータは、順次的に後段の受信機補償部11と受信信号処理部12へ送られる。それらのデータを第1及び第2の受信機伝達関数推定部13,14及び送信機伝達関数推定部8が取得することも可能である。なお、データバッファ10を使用せず、第1及び第2の受信機伝達関数推定部13,14及び送信機伝達関数推定部8がA/D変換されたデータをリアルタイムで直接的に取得してもよい。以後、データバッファ10のデジタルデータを用いて説明する全ての例は、受信データをリアルタイムで直接的に取得する方法も含んでいる。
 受信機補償部11は、光受信機9の伝達関数の推定結果を第2の受信機伝達関数推定部14から取得し、その推定結果に基づいて光受信機9のXIレーン、XQレーン、YIレーン、YQレーンの伝達関数とそのレーン間差を補償する。受信機補償部11は、例えばFIRフィルタ等のデジタルフィルタにより構成できる。また、受信機補償部11は、個別に4レーン間の遅延時間差を保証する機能を持つ機能部を持っても良い。
 受信信号処理部12には、受信機補償部11からデジタル信号が入力される。伝送路2では例えば波長分散、偏波モード分散、偏波変動又は非線形光学効果によって光信号に波形歪が生じる。受信信号処理部12は伝送路2において生じた波形歪を補償する。また、受信信号処理部12は、光送信機7のレーザモジュール7bの光の周波数と光受信機9のレーザモジュール9bの局発光の周波数との差を補償する。更に、受信信号処理部12は、光送信機7のレーザモジュール7bの光の線幅と光受信機9のレーザモジュール9bの局発光の線幅とに応じた位相雑音を補償する。
 第1の受信機伝達関数推定部13は、光受信機9の入力端に、白色雑音に相当するASE(Amplified Spontaneous Emission)信号を入力した時に受信部3が取得したデジタルデータから、光受信機9の仮の伝達関数又は逆伝達関数を推定する。ASE信号は光アンプから発生させることができる。ASEのみを出力する場合は、何も入力しない状態で光アンプを用いる。この光アンプは別途用意してもよいが、伝送路2の光アンプを用いることもできる。ASE信号のスペクトラム(周波数特性)は均一であるため、それを通すことで周波数特性を取得することができる。従って、ASE信号を入力した状態で、データバッファ10に保存されたデータを、第1の受信機伝達関数推定部13が取得することで、周波数特性を推定することができる。これらは、レーンごとに推定可能である。第1の受信機伝達関数推定部13の構成例は後ほど示す。
 周波数特性の推定は、デジタルデータをフーリエ変換することで伝達関数として得られる。更に逆伝達関数を求める手法としては、逆数を計算する他に、適応フィルタの解を求める方法がある。適応フィルタの解を求める方法として、一般的にウィナー解を求める方法、及び、LMS(least mean square)アルゴリズム又はRLS(recursive least square)アルゴリズム等によっても求める方法がある。ここで、伝達関数は時間的には比較的変化しないため、「適応」は時間的な対応を意味しない。以降、「適応」は、収束解を求めるためのフィードバック回路に対する適応を意味することとする。第1の受信機伝達関数推定部13の詳細な構成例は後ほど示す。なお、上記の説明ではASE信号を使用したが、ASE信号には限定されず、スペクトラムが既知な信号であればどのような試験信号でも使用可能である。
 送信機伝達関数推定部8は、送信部1から受信部3に第1の既知信号を伝送した時に受信部3が取得した第1のデジタルデータと、受信部3の光受信機9の仮の伝達関数又は逆伝達関数とから、光送信機7の伝達関数又は逆伝達関数を推定する。推定方法としては、例えば適応フィルタを用いて光送信機7の伝達関数を推定する。適応フィルタは、例えばLMSアルゴリズムに基づくフィルタ又はRMSアルゴリズムに基づくフィルタである。
 第2の受信機伝達関数推定部14は、送信部1から受信部3に第2の既知信号を伝送した時に受信部3が取得した第2のデジタルデータと、推定した光送信機7の伝達関数又は逆伝達関数とから、光受信機9の真の伝達関数又は逆伝達関数を推定する。推定方法としては、例えば適応フィルタを用いて光受信機9の逆伝達関数を推定する。適応フィルタは、例えばLMSアルゴリズムに基づくフィルタ又はRLSアルゴリズムに基づくフィルタである。この場合もレーンごとに推定可能である。
 続いて、本実施の形態に係る光伝送特性推定システムが光送受信機の光伝送特性を推定する方法について図面を用いて説明する。図2は、本発明の実施の形態に係る光伝送特性推定方法を示すフローチャートである。まず、第1の受信機伝達関数推定部13にて、光受信機9の仮の伝達関数又は逆伝達関数を推定する(ステップS1)。次に、送信機伝達関数推定部8にて、光送信機7の伝達関数又は逆伝達関数を推定する(ステップS2)。次に、第2の受信機伝達関数推定部14にて、光受信機9の真の伝達関数又は逆伝達関数を推定する(ステップS3)。
 次に、それぞれのステップの詳細な動作について説明する。図3は、本発明の実施の形態に係る光受信機の仮の伝達関数を推定するフローチャートである。まず、光受信機9の入力にASE信号を挿入する(ステップS101)。ASE信号のスペクトラムは均一であることが既知であるため、それを通すことで周波数特性を取得することができる。次に、ASE信号を入力した状態で、データバッファ10が受信データを取得する(ステップS102)。次に、第1の受信機伝達関数推定部13がデータバッファ10からデジタルデータを取得してFFT処理し、仮の伝達関数を取得する(ステップS103)。次に、取得した仮の伝達関数から仮の逆伝達関数を計算する(ステップS104)。次に、計算した仮の逆伝達関数を受信機補償部11に設定する(ステップS105)。
 図4は、本発明の実施の形態1に係る第1の受信機伝達関数推定部を示す図である。第1の受信機伝達関数推定部13は、X偏波の受信信号とY偏波の受信信号をそれぞれFFT(高速フーリエ変換)処理するFFTと、それらの出力をそれぞれ1/伝達関数処理して逆伝達関数を計算する回路とを備える。なお、X偏波の受信信号をXI+jXQ、Y偏波の受信信号をYI+jYQとしているが、XIとXQの間、及びYIとYQの間に遅延差が無い場合を想定している。遅延差がある場合は、XI、XQ、YI、YQを個別にフーリエ変換及び1/伝達関数処理することが可能である。なお、フーリエ変換できればFFT処理に限定する必要はなく、その他の方法でもよい。以降の「FFT」の表記はフーリエ変換の機能を意味する。
 データバッファ10にて取得したデジタルデータは、時間領域のデータのため、X偏波及びY偏波のレーンで、それぞれFFT処理によって周波数領域のデータに変換される。
Figure JPOXMLDOC01-appb-M000001
(n)はデータバッファ10にて取得したデジタルデータ、X(k)はFFT処理したデータである。FFTはDFT(Discrete Furrier Transfer)の高速処理を意味する。なお、連続信号に対する一般的なFFT処理では、有限のデータ数N毎に行うが、隣接する処理との間でデータをオーバーラップして処理することは言うまでもない(オーバーラップAdd、オーバーラップSave等の方法がある)。以降のFFT処理においても同様である。X(k)の絶対値は振幅情報を示し、これを仮の伝達関数として得る。その逆数を計算することで仮の逆伝達関数を得ることができる。この逆伝達関数は受信機補償部11に設定することができる。また、逆伝達関数は光送信機7の伝達関数を推定する際にも使用される。この場合は、必ずしも仮の伝達関数の逆伝達関数を受信機補償部11に設定する必要はない。
 図5は、本発明の実施の形態1に係る受信機補償部を示す図である。受信機補償部11はIQベクトル処理(時間領域処理)を行う。即ち、X偏波及びY偏波を、それぞれXI+jXQ、及びYI+jYQと複素ベクトル信号表示して、FIRフィルタによって伝送特性を補償する。ステップS104で計算された逆伝達関数は、図示していないIFFT処理によって時間応答信号に変換され、FIRフィルタのフィルタ係数として設定される。
 図6は、本発明の実施の形態2に係る受信機補償部を示す図である。受信機補償部11はIQベクトル処理(周波数領域処理)を行う。即ち、X偏波及びY偏波を、それぞれXI+jXQ、及びYI+jYQと複素ベクトル信号表示して、一度FFT処理によって周波数領域に変換し、ステップS104で計算された逆伝達関数を乗算することで伝送特性を補償する。その後、IFFT処理によって時間領域の信号に戻す。
 図7は、本発明の実施の形態3に係る受信機補償部を示す図である。受信機補償部11はIQ個別処理(時間領域処理)を行う。即ち、X偏波のXI、XQ、及びY偏波のYI、YQの伝送特性をそれぞれFIRフィルタにより補償する。この場合、各FIRフィルタのフィルタ係数は、ステップS103~S105において、図4の第1の受信機伝達関数推定部13の処理をXI、XQ、YI、及びYQに対して個別に行って、更に図示していないIFFT処理することによって求めることができる。
 図8は、本発明の実施の形態4に係る受信機補償部を示す図である。受信機補償部11はIQ個別処理(周波数領域処理)を行う。即ち、X偏波のXI、XQ、及びY偏波のYI、YQは、それぞれ一度FFT処理で周波数変換し、ステップS104で計算された逆伝達関数を乗算することで伝送特性を補償する。この場合、各逆伝達関数は、先のステップS103~S105において、図4の第1の受信機伝達関数推定部13の処理をXI、XQ、YI、及びYQに対して個別に行って求めることができる。その後、IFFT処理によって時間領域の信号に戻す。
 受信機補償部11は、上述したように種々の構成をとることができ、上述した構成に限定されず、伝達関数を補償できればどのような構成でもよい。受信機補償部11による周波数領域での補償は以下の式で示される。ただし、それぞれIFFTによって時間領域でFIRフィルタを用いて補償できることは言うまでもない。
Figure JPOXMLDOC01-appb-M000002
ここで、Xout及びYoutは、それぞれXin=XI+jXQ、Yin=YI+jYQの補償後のデータである。XIout、XQout、YIout、及びYQoutは、それぞれXIin、XQin、YIin、及びYQinの補償後のデータである。H1~H16はその場合の逆伝達関数を示す。
 また、図示しないが、IQベクトル処理とIQ個別処理を組み合わせることも可能である。例えば、以下に示すように、一度IQベクトルとして複素フィルタでフィルタリング処理をした後、実数部と虚数部に分け、それぞれについて実数フィルタでフィルタリングを行う。
・X*複素フィルタ⇒XI*実数フィルタ、XQ*実数フィルタ(フィルタ係数は個別設定可能)
・Y*複素フィルタ⇒YI*実数フィルタ、YQ*実数フィルタ(フィルタ係数は個別設定可能)
ここで、X、Yはそれぞれ複素ベクトル表示、XI、XQ、YI、YQはそれぞれ実数表示、「*」は処理、「⇒」は処理の流れを示す。
 また、以下のような構成も考えられる。
・X、Y*複素フィルタ(時系列に同じ係数で処理)⇒XI*実数フィルタ、XQ*実数フィルタ、YI*実数フィルタ、YQ*実数フィルタ(フィルタ係数は個別設定可能)
・XI、XQ、YI、YQ*実数フィルタ(時系列に同じ係数で処理)⇒XI*実数フィルタ、XQ*実数フィルタ、YI*実数フィルタ、YQ*実数フィルタ(フィルタ係数は個別設定可能)
 実装上、X及びYに対応するフィルタ係数をレーン毎に個別に設定できない場合又は回路規模を低減するため1つのフィルタを使い回す場合に、上記のような構成が考えられる。フィルタ係数を同じにすることでメモリ又はセレクタ回路等を簡略化できる。これにより回路規模が低減できる。
 なお、X又はYなどの複素信号の複素フィルタリングは、周波数領域で一括で処理(FFT⇒伝達関数乗算⇒IFFT)する方が、個別に処理するよりも回路規模は小さくできる。また、実数フィルタリングは、時間領域での処理(FIRフィルタ(畳み込み演算))で処理する方が回路規模上効率がよい。以上により、周波数特性及び遅延差を補償することが可能となる。
 図9は、本発明の実施の形態2に係る第1の受信機伝達関数推定部を示す図である。データバッファ10のデジタルデータをFFT処理し、振幅情報の伝達関数を求める処理までは図4に示した実施の形態1と同じであるが、本実施の形態では逆伝達関数を求める方法が異なる。一般的な適応フィルタを用いた適応等化と称される手法で逆伝達関数を求める。ここでは、任意波形信号に伝達関数を乗じ、再び逆伝達関数で補償し、その結果が当初の任意波形信号と同じ(実際には、二乗誤差が最小)になるように処理される。この処理によって、適応フィルタを構成するFIRフィルタのフィルタ係数を、逆伝達関数の時間応答として求めることができる。この逆伝達関数を求める手法は一般的に下記に示すウィナー解又はLMS(Least Mean Square)アルゴリズムとして知られている。
Figure JPOXMLDOC01-appb-M000003
ここで、d(n)は既知信号、y(n)は適応フィルタの出力、e(n)はd(n)とy(n)の差、h(n)は適応フィルタの時間応答である。
 伝達関数の逆数によって逆伝達関数を計算する実施の形態1の方法では、伝達関数のある周波数成分が非常に小さくゼロに近い場合、逆数は無限大に発散し、不安定な逆特性となる。本実施の形態の方法では、そのような不安定性を防いで、安定に逆伝達関数を求めることができる。一方、適応フィルタを用いた手法では、入力信号が非常に小さくなる場合又は帯域外で非常に小さい場合に対して、発散が生じたり解が不安定になる場合がある。その場合は、入力信号に微小なノイズを付加することで回避できる。なお、ノイズは計算上、信号に付加してもよいし、また実際に伝送路上で信号に付加してもよい。以後の適当フィルタにおいても同様である。
 図10は、本発明の実施の形態3に係る第1の受信機伝達関数推定部を示す図である。本実施の形態は、実施の形態2と比べて任意波形信号に伝達関数を乗算する代わりにその伝達関数から変換した時間応答でFIRフィルタ処理している。どちらも伝達関数を適用する動作原理は等価である。その他の回路と逆伝達関数の解法は実施の形態2と同じである。この場合も、逆伝達関数を求める実施の形態1の方法と比べて安定に逆伝達関数を求めることができる。
 以上により、実施の形態1~3に係る第1の受信機伝達関数推定部13によって光受信機9の仮の伝達関数又は逆伝達関数を求めることができる。図11は、本発明の実施の形態に係る光受信機の仮の伝達関数の周波数応答(振幅情報)を示す図である。図12は、本発明の実施の形態に係る光受信機の仮の逆伝達関数の周波数応答(振幅情報)を示す図である。これらは各レーン毎に求められている。
 図13は、本発明の実施の形態に係る送信機伝達関数推定部を示す図である。送信機伝達関数推定部8は、既知信号同期部8a、種々の伝送特性補償部8b、受信機補償部8c、及びFIRフィルタ8d及び二乗誤差最小化部8eを有する適応フィルタを備える。種々の伝送特性補償部8bは、波長分散補償、周波数オフセット補償、偏波分散・偏波回転補償、クロック位相補償、位相雑音補償等の伝送時の歪を補償する種々の補償回路を含む。なお、既知信号同期部8aは、デジタルデータから既知信号を抽出する機能を有し、抽出した既知信号の状態から後段の種々の伝送特性補償に設定する補償データを各種推定ブロックにて推定する。即ち、光送信機7の伝達関数又は逆伝達関数の推定は伝送路2の伝送特性を推定する処理を含む。なお、受信機補償部8cは種々の伝送特性補償部8bの前段に配置することも可能である。
 波長分散補償部は既知信号同期部8aの前段に配置することも可能である。種々の伝送特性補償部の各補償部の順番は入れ替え可能である。また、偏波分散・偏波回転補償の(1TAP 2×2MIMO(Multi Input Multi Output))の意味は、フィルタのタップ数を1にして、光送受信機の帯域特性をこのブロックで補償せず、偏波回転のみ行うことを示している(一般的な複数タップの2×2MIMOフィルタでは帯域についても補償する。)。
 また、送信機伝達関数推定部8は、図4の第1の受信機伝達関数推定部13と同様に、X偏波及びY偏波のそれぞれについて複素ベクトル信号として処理しているが、XI、XQ、YI、及びYQのそれぞれのレーンについて独立的に処理することも可能である。この場合、レーン間の遅延差についても抽出及び補償することが可能となる。X偏波について複素ベクトル信号として処理することは、XIとXQとの間に遅延差(Skew)がゼロとみなしている。遅延差が無視できない場合はレーン毎に伝達関数の抽出及び補償を行う必要がある。Y偏波についても同様である。
 図14は、本発明の実施の形態に係る光送信機の伝達関数又は逆伝達関数を取得するフローチャートである。まず、送信信号処理部4の入力に既知信号を入力し、光送信機7から光変調信号を送信する(ステップS201)。この時、送信機補償部6はバイパスする。なお、送信機補償部6は、図5~8に示した受信機補償部11と同じ構成を取ることができる。次に、受信側においてデータバッファ10で受信データが取得される(ステップS202)。次に、送信機伝達関数推定部8は、データバッファ10からデジタルデータを取得する(ステップS203)。既知信号同期部8aは、取得したデジタルデータから既知信号を抽出する。抽出した既知信号に対して、種々の伝送特性の補償及び光受信機補償が行われる。光受信機補償は、ステップS1で推定した光受信機9の仮の逆伝達関数を用いて行う。図13ではデータバッファ10の後段で受信機補償部11において仮の逆伝達関数で補償する構成が示されているが、この補償は上述の送信機伝達関数推定部8の処理には特に必要ない。
 種々の伝送特性の補償及び光受信機補償が処理された既知信号には、光送信機7の伝達関数の影響が残されている。従って、その信号に、その逆特性を設定したFIRフィルタ8dを適応フィルタとして適用し、その出力と既知信号との差分の二乗が最小になるように再び逆特性を修正する。この処理によって、適応フィルタを構成するFIRフィルタ8dのフィルタ係数を、逆伝達関数の時間応答として求めることができる。この逆伝達関数を求める手法は、一般的に下記に示すウィナー解又はLMSアルゴリズムとして知られている。
Figure JPOXMLDOC01-appb-M000004
ここで、s(n)は既知信号、y(n)は適応フィルタの出力、e(n)はs(n)とy(n)の差、h(n)は、適応フィルタの時間応答である。
 上記の例では、適応等化の回路によって光送信機7の逆伝達関数を直接求めることができるため、ステップS203とステップS204は一体として処理できる。一方、一度光送信機7の伝達関数が求められる場合は逆伝達関数を計算する(ステップS204)。
 次に、推定された光送信機7の逆伝達関数を送信機補償部6に設定する(ステップS205)。設定方法は、ステップS105で示した方法と同じである。この時、前述したように、XI、XQ、YI、及びYQのそれぞれのレーンについて独立的に処理することも可能である。この場合、レーン間の遅延差についても抽出及び補償することが可能となる。
 以上より、送信機伝達関数推定部8によって光送信機7の伝達関数又は逆伝達関数を求めることができる。図15は、送信機伝達関数推定部で求めた光送信機の逆伝達関数の時間応答を示す図である。図16は、送信機伝達関数推定部で求めた光送信機の逆伝達関数の周波数応答(振幅特性及び位相特性)を示す図である。
 図17は、本発明の実施の形態1に係る第2の受信機伝達関数推定部を示す図である。第2の受信機伝達関数推定部14は、既知信号同期部14a、波長分散補償、周波数オフセット補償、偏波分散・偏波回転付加、クロック位相付加、位相雑音付加等の伝送時の歪を模擬する回路14b、適応等化用のFIRフィルタ14c、二乗誤差最小化回路14dを有する。既知信号同期部14aは、デジタルデータから既知信号を抽出する機能を有し、抽出した既知信号の状態から後段の歪を模擬する回路に設定する付加データを各種推定ブロックにて推定する。即ち、光受信機9の伝達関数又は逆伝達関数の推定は伝送路2の伝送特性を推定する処理を含む。なお、波長分散補償、周波数オフセット補償、偏波分散・偏波回転付加、クロック位相付加、位相雑音付加等の伝送時の歪を模擬する回路14bの順番は入れ替え可能である。
 第2の受信機伝達関数推定部14では、図4の第1の受信機伝達関数推定部13の場合と同様に、X偏波及びY偏波のそれぞれについて複素ベクトル信号として処理しているが、XI、XQ、YI、及びYQのそれぞれのレーンについて独立的に処理することも可能である。この場合、レーン間の遅延差についても抽出及び補償することが可能となる。X偏波について複素ベクトル信号として処理することは、XIとXQとの間に遅延差がゼロとみなしている。遅延差が無視できない場合は、レーン毎に伝達関数の抽出及び補償を行う必要がある。Y偏波についても同様である。
 図18は、本発明の実施の形態に係る光受信機の真の伝達関数又は逆伝達関数を推定するフローチャートである。まず、送信信号処理部4の入力に既知信号を入力し、送信部1の光送信機7から受信部3に光変調信号を伝送する(S301)。この時、図2のステップS2にて推定した光送信機7の逆伝達関数を送信機補償部6に設定して、光送信機7の伝送特性を補償する。なお、送信機補償部6は、図5に示した受信機補償部11と同じ構成を取ることができる。
 次に、受信側においてデータバッファ10で受信データが取得される(ステップS302)。第2の受信機伝達関数推定部14は、データバッファ10からデジタルデータを取得する(ステップS303)。既知信号同期部14aは、取得したデジタルデータから既知信号を抽出する。抽出した既知信号は、適応フィルタとしてのFIRフィルタ14cに供給される。一方、既知信号に対して、伝送路歪として推定される波長分散、周波数オフセット、偏波分散・偏波回転、クロック位相、位相雑音が付加され、適応フィルタの出力と比較される。波長分散、周波数オフセット、偏波分散・偏波回転、クロック位相、位相雑音の付加量は、既知信号の状態から種々の推定ブロックにて推定される。
 ここで、適応フィルタの出力において、光送信機7の伝達関数は送信機補償部6で補償されているとみなされる。光受信機9の伝達関数が適応フィルタによって補償されれば、適応フィルタの出力は伝送路歪の影響のみ受ける。この信号が、伝送路歪が付加された既知信号と比較され、その差分(二乗誤差)が最小化されることで、適応フィルタであるFIRフィルタ14cのフィルタ係数を光受信機9の逆伝達関数の時間応答として求めることができる。この逆伝達関数を求める手法は、一般的に下記に示すウィナー解又はLMSアルゴリズムとして知られている。
Figure JPOXMLDOC01-appb-M000005
ここで、d(n)は既知信号、y(n)は適応フィルタの出力、e(n)はd(n)とy(n)の差、h(n)は適応フィルタの時間応答である。
 上記の例では、適応等化の回路によって、光送信機7の真の逆伝達関数を直接求めることができたため、ステップS303とステップS304は一体として処理できる。一方、光受信機9の真の伝達関数が求められる場合は、その伝達関数から真の逆伝達関数を計算する(ステップS304)。
 次に、推定された光受信機9の真の逆伝達関数を受信機補償部11に設定する(ステップS305)。設定方法は、ステップS105で示した方法と同じである。この時、前述したように、XI、XQ、YI、及びYQのそれぞれのレーンについて独立的に処理することも可能である。この場合、レーン間の遅延差についても抽出及び補償することが可能となる。
 以上より、第2の受信機伝達関数推定部14によって光受信機9の真の伝達関数又は逆伝達関数を求めることができる。図19は、第2の受信機伝達関数推定部で求めた光受信機の逆伝達関数の時間応答を示す図である。図20は、第2の受信機伝達関数推定部で求めた光受信機の逆伝達関数の周波数応答(振幅特性、位相特性)を示す図である。
 図21は、本発明の実施の形態2に係る第2の受信機伝達関数推定部を示す図である。図13に示した実施の形態1と比べて、図18に示すステップS301で送信機補償部6はバイパスすると共に、ステップS303で既知信号に伝送路歪を付加する他に、光送信機7の伝達関数を付加する。その他の処理は実施の形態1と同じである。本実施の形態では送信側での設定が不要となるため、受信側の計算のみで光送信機7の伝達関数又は逆伝達関数と光受信機9の伝達関数又は逆伝達関数を推定することができる。この場合、これらの推定計算を単独の装置として構成することができる。特に、データバッファ10のデジタルデータを取り込むインタフェースを備えたPCによって容易に構成できる。
 図22は、本発明の実施の形態に係る光伝送特性補償方法による補償後の周波数スペクトラムである。光送受信機の補償が無い場合、光送信機7の帯域特性によりスペクトラムの両肩が落ちている。一方、受信側周波数特性の切り分けをせずに送信側だけで補償を行った場合、結果的に光受信機9の周波数特性の両肩が上がっている。対して、光送信機7側と光受信機9側で個別に補償を行った場合、理想的な矩形スペクトルが確認できる。光伝送において、光アンプによる雑音(帯域的にフラット)が支配的となるので、光スペクトルが理想的な形状(今回のケースでは矩形)となる場合においてノイズエンハンスの影響を避けることができる。このように、光送信機7の伝達関数は光送信機7側で補償し、光受信機9の伝達関数は光受信機9側で補償することがノイズエンハンスの影響を抑制する上で重要である。本発明の実施の形態によりそれが実現可能となる。
 図23は、本発明の実施の形態に係る光伝送特性補償方法による補償後のQ値改善効果を示す図である。Q値は、誤り率を示す指標である。誤り率が低いほど高いQ値が得られる。OSNRは光信号対雑音比である。図22で示したスペクトラムと同様に、この場合も光送信機7側と光受信機9側で個別に補償を行った場合の方が、広いOSNRに対してQ値の改善量が大きい。
 以上説明したように、本実施の形態によれば光送信機7の伝達関数又は逆伝達関数と光受信機9の伝達関数又は逆伝達関数がそれぞれ推定可能となる。即ち、光送信機7及び光受信機9の伝送特性を推定することができる。それらの伝達関数又は逆伝達関数を送信機補償部6及び受信機補償部11に設定することによって、光送信機7における伝達関数と光受信機9における伝達関数を個別に補償することができる。よって、光送信機7及び光受信機9の伝送特性を補償することができるため、図22及び図23に示したように最適な伝送特性を得ることができる。また、本実施の形態に係る光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システムはPC等で容易に構成が可能であり、光通信における較正システムとしても有用となる。
 また、本実施の形態では、送信部1と受信部3とを接続状態にして、受信部3内の光受信機9の仮の伝達関数又は逆伝達関数を求め、それを利用して送信部1内の光送信機7の伝達関数又は逆伝達関数を求め、最終的に光受信機9の真の伝達関数又は真の逆伝達関数を求めた。しかしながら、光送信機7と光受信機9の一方の伝達関数又は逆伝達関数が事前に取得又は較正されている場合は、送信部1から受信部3に既知信号を伝送した時の受信部3におけるデジタルデータと、その事前に取得又は較正された伝達関数又は逆伝達関数とから、光送信機7と光受信機9の他方の伝達関数又は逆伝達関数を推定することができる。この場合、未知の伝達関数を持つ装置側のみを順次交換して、複数の装置の伝達関数又は逆伝達関数を求めることができる。これらの方法も本発明の技術的思想の範囲に含まれる。
 また、図2のフローチャートに示すステップS3で推定した光受信機9の真の伝達関数又は逆伝達関数をステップS2の光受信機9の仮の伝達関数又は逆伝達関数として用いてステップS2及びステップS3を2回以上繰り返してもよい。これにより、光送受信器の伝達関数又は逆伝達関数をより精度高く推定することができる。これも本発明の技術的思想の範囲に含まれる。
1 送信部、2 伝送路、3 受信部、6 送信機補償部、7 光送信機、8 送信機伝達関数推定部、9 光受信機、11 受信機補償部、13 第1の受信機伝達関数推定部、14 第2の受信機伝達関数推定部

Claims (17)

  1.  光伝送特性推定システムが光送受信機の光伝送特性を推定する方法であって、
     前記光送受信機の送信部から受信部に第1の既知信号を伝送した時に前記受信部が取得した第1のデータと、前記受信部の光受信機の仮の伝達関数又は逆伝達関数とから、前記送信部の光送信機の伝達関数又は逆伝達関数を推定する第1のステップと、
     前記送信部から前記受信部に第2の既知信号を伝送した時に前記受信部が取得した第2のデータと、推定した前記光送信機の伝達関数又は逆伝達関数とから、前記光受信機の伝達関数又は逆伝達関数を推定する第2のステップとを備えることを特徴とする光伝送特性推定方法。
  2.  前記光受信機の入力端にスペクトラムが既知な試験信号を入力した時に前記受信部が取得した第3のデータから、前記光受信機の仮の伝達関数又は逆伝達関数を推定するステップを更に備えることを特徴とする請求項1に記載の光伝送特性推定方法。
  3.  前記光受信機の仮の伝達関数又は逆伝達関数の推定に適応フィルタを用いることを特徴とする請求項2に記載の光伝送特性推定方法。
  4.  前記光送信機の伝達関数又は逆伝達関数の推定及び前記光受信機の伝達関数又は逆伝達関数の推定は、前記送信部と前記受信部との間の伝送路の伝送特性を推定する処理を含むことを特徴とする請求項1~3の何れか1項に記載の光伝送特性推定方法。
  5.  前記光送信機の伝達関数又は逆伝達関数の推定及び前記光受信機の伝達関数又は逆伝達関数の推定に適応フィルタを用いることを特徴とする請求項1~4の何れか1項に記載の光伝送特性推定方法。
  6.  前記送信部から前記受信部に前記第2の既知信号を伝送する時に、推定した前記光送信機の伝達関数又は逆伝達関数を用いて前記光送信機の伝送特性を補償することを特徴とする請求項1~5の何れか1項に記載の光伝送特性推定方法。
  7.  前記第2のステップで推定した前記光受信機の伝達関数又は逆伝達関数を前記第1のステップの前記光受信機の仮の伝達関数又は逆伝達関数として用いて前記第1のステップ及び前記第2のステップを2回以上繰り返すことを特徴とする請求項1~6の何れか1項に記載の光伝送特性推定方法。
  8.  請求項1~7の何れか1項に記載の光伝送特性推定方法により推定した前記光送信機の伝達関数又は逆伝達関数と前記光受信機の伝達関数又は逆伝達関数を用いて、光伝送特性補償システムが前記光送信機及び前記光受信機の伝送特性を補償するステップを備えることを特徴とする光伝送特性補償方法。
  9.  光伝送特性推定システムが光送受信機の伝送特性を推定する方法であって、
     前記光送受信機の送信部から受信部に既知信号を伝送した時の前記受信部におけるデータと、前記送信部の光送信機と前記受信部の光受信機の一方の事前に取得又は較正された伝達関数又は逆伝達関数とから、前記光送信機と前記光受信機の他方の伝達関数又は逆伝達関数を推定することを特徴とする光伝送特性推定方法。
  10.  光送受信機の伝送特性を推定する光伝送特性推定システムであって、
     前記光送受信機の送信部から受信部に第1の既知信号を伝送した時に前記受信部が取得した第1のデータと、前記受信部の光受信機の仮の伝達関数又は逆伝達関数とから、前記送信部の光送信機の伝達関数又は逆伝達関数を推定する送信機伝達関数推定部と、
     前記送信部から前記受信部に第2の既知信号を伝送した時に前記受信部が取得した第2のデータと、推定した前記光送信機の伝達関数又は逆伝達関数とから、前記光受信機の伝達関数又は逆伝達関数を推定する受信機伝達関数推定部とを備えることを特徴とする光伝送特性推定システム。
  11.  前記光受信機の入力端にスペクトラムが既知な試験信号を入力した時に前記受信部が取得した第3のデータから、前記光受信機の仮の伝達関数又は逆伝達関数を推定する仮の受信機伝達関数推定部を更に備えることを特徴とする請求項10に記載の光伝送特性推定システム。
  12.  前記光受信機の仮の伝達関数又は逆伝達関数の推定に適応フィルタを用いることを特徴とする請求項11に記載の光伝送特性推定システム。
  13.  前記光送信機の伝達関数又は逆伝達関数の推定及び前記光受信機の伝達関数又は逆伝達関数の推定は、前記送信部と前記受信部との間の伝送路の伝送特性を推定する処理を含むことを特徴とする請求項10~12の何れか1項に記載の光伝送特性推定システム。
  14.  前記光送信機の伝達関数又は逆伝達関数の推定及び前記光受信機の伝達関数又は逆伝達関数の推定に適応フィルタを用いることを特徴とする請求項10~13の何れか1項に記載の光伝送特性推定システム。
  15.  前記送信部は、前記送信部から前記受信部に前記第2の既知信号を伝送する時に、推定した前記光送信機の伝達関数又は逆伝達関数を用いて前記光送信機の伝送特性を補償することを特徴とする請求項10~14の何れか1項に記載の光伝送特性推定システム。
  16.  請求項10~15の何れか1項に記載の光伝送特性推定システムと、
     推定した前記光送信機の伝達関数又は逆伝達関数を用いて前記光送信機の伝送特性を補償する送信機補償部と、
     推定した前記光受信機の伝達関数又は逆伝達関数を用いて前記光受信機の伝送特性を補償する受信機補償部とを備えることを特徴とする光伝送特性補償システム。
  17.  光送受信機の伝送特性を推定する光伝送特性推定システムであって、
     前記光送受信機の送信部から受信部に既知信号を伝送した時の前記受信部におけるデータと、前記送信部の光送信機と前記受信部の光受信機の一方の事前に取得又は較正された伝達関数又は逆伝達関数とから、前記光送信機と前記光受信機の他方の伝達関数又は逆伝達関数を推定することを特徴とする光伝送特性推定システム。
PCT/JP2017/040304 2017-03-14 2017-11-08 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム WO2018168061A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/470,800 US10637569B2 (en) 2017-03-14 2017-11-08 Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system
CA3047882A CA3047882C (en) 2017-03-14 2017-11-08 Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system
CN201780087386.6A CN110337788B (zh) 2017-03-14 2017-11-08 光传输特性估计方法、光传输特性补偿方法、光传输特性估计系统及光传输特性补偿系统
EP17901280.2A EP3553973B1 (en) 2017-03-14 2017-11-08 Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017048033A JP6319487B1 (ja) 2017-03-14 2017-03-14 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP2017-048033 2017-03-14

Publications (1)

Publication Number Publication Date
WO2018168061A1 true WO2018168061A1 (ja) 2018-09-20

Family

ID=62106156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040304 WO2018168061A1 (ja) 2017-03-14 2017-11-08 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム

Country Status (6)

Country Link
US (1) US10637569B2 (ja)
EP (1) EP3553973B1 (ja)
JP (1) JP6319487B1 (ja)
CN (1) CN110337788B (ja)
CA (1) CA3047882C (ja)
WO (1) WO2018168061A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693922B2 (ja) * 2017-08-31 2020-05-13 日本電信電話株式会社 光伝送特性補償システム及び光伝送特性補償方法
JP6428881B1 (ja) * 2017-09-05 2018-11-28 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP6859457B2 (ja) * 2018-01-19 2021-04-14 日本電信電話株式会社 シンボル判定装置及びシンボル判定方法
JP6969506B2 (ja) * 2018-06-20 2021-11-24 日本電信電話株式会社 光周波数多重型コヒーレントotdr、試験方法、信号処理装置、及びプログラム
JP7230568B2 (ja) * 2019-02-15 2023-03-01 富士通株式会社 適応等化回路および光受信器
JP7128420B2 (ja) 2019-02-28 2022-08-31 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
US11228366B2 (en) 2019-02-28 2022-01-18 Ntt Electronics Corporation Optical transmission characteristics estimation method, optical transmission characteristics estimation system, and optical transmission characteristics compensation system
JP7235963B2 (ja) 2019-03-11 2023-03-09 日本電信電話株式会社 光受信機の評価方法及び光受信機の評価装置
JP6693592B1 (ja) * 2019-05-22 2020-05-13 Nttエレクトロニクス株式会社 光伝送特性補償方法及び光伝送特性補償システム
JP7252489B2 (ja) 2019-05-23 2023-04-05 日本電信電話株式会社 光伝送システム及び補償方法
WO2021093952A1 (en) * 2019-11-14 2021-05-20 Huawei Technologies Co., Ltd. Device for compensating imperfections at a coherent optical receiver
CN113014520B (zh) * 2019-12-20 2022-08-26 华为技术有限公司 一种频域均衡的方法、均衡器、光接收机和系统
US20230027345A1 (en) * 2021-05-31 2023-01-26 Solanium Labs Ltd. Signal reconstruction
WO2022254594A1 (ja) 2021-06-02 2022-12-08 日本電信電話株式会社 光信号制御装置、光信号制御方法、および光信号伝送システム
WO2023073927A1 (ja) * 2021-10-29 2023-05-04 日本電気株式会社 デジタル信号処理回路、方法、受信機、及び通信システム
WO2023152904A1 (ja) * 2022-02-10 2023-08-17 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム
WO2023152909A1 (ja) * 2022-02-10 2023-08-17 日本電信電話株式会社 信号処理方法、信号処理装置及び通信システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050643A1 (en) * 2000-01-06 2001-07-12 Adc Telecommunications, Inc. Pre-distorter with non-magnetic components for a non-linear device
JP2014042229A (ja) * 2012-06-06 2014-03-06 Zte (Usa) Inc 光通信システムにおける予等化およびポスト等化の方法および装置
JP2015115694A (ja) * 2013-12-10 2015-06-22 日本電信電話株式会社 無線信号伝送システム、リモート装置、マスタ装置及び伝送方法
JP2016146573A (ja) * 2015-02-09 2016-08-12 日本電信電話株式会社 光伝送システム及び伝送路補償方法
JP2016536948A (ja) * 2013-11-04 2016-11-24 ゼットティーイー コーポレーションZte Corporation 光通信における適応的予等化
JP6040288B1 (ja) * 2015-06-22 2016-12-07 日本電信電話株式会社 光データ伝送システム
JP6077696B1 (ja) 2016-03-24 2017-02-08 日本電信電話株式会社 光伝送システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0936759A2 (en) * 1998-02-16 1999-08-18 Hitachi, Ltd. Optical transmission system, end terminal and optical receiver
US7426350B1 (en) * 2001-10-26 2008-09-16 Cisco Technology, Inc. Hybrid optical and electrical fiber optic link linearizer
EP2248316B1 (en) * 2008-01-24 2012-07-18 Agence Spatiale Européenne A method for compensating signal distortion in an emitting payload
US7701842B2 (en) * 2008-02-13 2010-04-20 Nortel Networks Limited Low conversion rate digital dispersion compensation
US8139957B2 (en) * 2008-06-24 2012-03-20 General Instrument Corporation High sensitivity optical receiver employing a high gain amplifier and an equalizing circuit
WO2010022327A2 (en) * 2008-08-21 2010-02-25 Nistica, Inc. Optical channel monitor
JP5390607B2 (ja) * 2009-05-26 2014-01-15 三菱電機株式会社 予等化伝送システム
JP5406989B2 (ja) * 2010-07-09 2014-02-05 株式会社日立製作所 光受信器及び光伝送システム
US8526823B2 (en) * 2010-09-28 2013-09-03 Acacia Communications, Inc. Reconfigurable DSP performance in optical transceivers
WO2013008871A1 (ja) * 2011-07-11 2013-01-17 日本電気株式会社 送信装置、送信方法、および通信システム
CN105471777B (zh) * 2015-12-30 2019-04-05 广东顺德中山大学卡内基梅隆大学国际联合研究院 可见光信道估计方法与系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050643A1 (en) * 2000-01-06 2001-07-12 Adc Telecommunications, Inc. Pre-distorter with non-magnetic components for a non-linear device
JP2014042229A (ja) * 2012-06-06 2014-03-06 Zte (Usa) Inc 光通信システムにおける予等化およびポスト等化の方法および装置
JP2016536948A (ja) * 2013-11-04 2016-11-24 ゼットティーイー コーポレーションZte Corporation 光通信における適応的予等化
JP2015115694A (ja) * 2013-12-10 2015-06-22 日本電信電話株式会社 無線信号伝送システム、リモート装置、マスタ装置及び伝送方法
JP2016146573A (ja) * 2015-02-09 2016-08-12 日本電信電話株式会社 光伝送システム及び伝送路補償方法
JP6040288B1 (ja) * 2015-06-22 2016-12-07 日本電信電話株式会社 光データ伝送システム
JP6077696B1 (ja) 2016-03-24 2017-02-08 日本電信電話株式会社 光伝送システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GINNI KHANNABERNHARD SPINNLERSTEFANO CALABROERIK DE MANNORBERT HANIK: "A Robust Adaptive Pre-Distortion Method for Optical Communication Transmitters", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 28, no. 7, 1 April 2016 (2016-04-01), pages 752 - 755, XP011600487, DOI: doi:10.1109/LPT.2015.2509158
J. C. M. DINIZE. P DA SILVAM. PIELSD. ZIBAR: "Joint IQ Skew and Chromatic Dispersion Estimation for Coherent Optical Communication Receivers", ADVANCED PHOTONICS CONGRESS, 2016
R. R. MULLERJ. RENAUDIER: "Blind Receiver Skew Compensation and Estimation for Long-Haul Non-Dispersion Managed Systems Using Adaptive Equalizer", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 33, no. 7, 1 April 2015 (2015-04-01), pages 1315 - 1318, XP011575164, DOI: doi:10.1109/JLT.2014.2377582
See also references of EP3553973A4
ZHANG, JUNWEN ET AL.: "Transmission of 480-Gb/s dual-carrier PM-8QAM over 2550km SMF-28 using adaptive pre-equalization", OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC, 9 March 2014 (2014-03-09), pages 1 - 3, XP032632790, DOI: doi:10.1109/OFC.2014.6886851 *

Also Published As

Publication number Publication date
EP3553973A4 (en) 2020-08-19
CN110337788B (zh) 2021-11-12
US10637569B2 (en) 2020-04-28
CN110337788A (zh) 2019-10-15
JP6319487B1 (ja) 2018-05-09
US20200036440A1 (en) 2020-01-30
CA3047882C (en) 2021-04-13
JP2018152744A (ja) 2018-09-27
EP3553973B1 (en) 2022-02-23
EP3553973A1 (en) 2019-10-16
CA3047882A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP6319487B1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP5088271B2 (ja) 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
JP6673881B2 (ja) 光伝送特性補償システム及び光伝送特性補償方法
US20220149974A1 (en) Signal processing method, signal processing apparatus and communication system
US8831081B2 (en) Digital filter device, digital filtering method and control program for the digital filter device
JP6176012B2 (ja) 非線形歪み補償装置及び方法並びに通信装置
JP6135415B2 (ja) 非線形歪み補償装置及び方法並びに光受信器
JP6428881B1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP6693922B2 (ja) 光伝送特性補償システム及び光伝送特性補償方法
CN116210175A (zh) 用于在相干收发器中执行同相和正交偏斜校准的装置和方法
US10985845B2 (en) Adaptive equalization filter and signal processing device
WO2014060031A1 (en) Method and apparatus for estimating channel coefficients of a mimo communications channel
JP5188194B2 (ja) 送受信システム
JP7252489B2 (ja) 光伝送システム及び補償方法
JP6355465B2 (ja) 光受信器、送受信装置、光通信システムおよび波形歪補償方法
JP6984784B2 (ja) 光伝送特性推定方法、光伝送特性推定システム及び光伝送特性補償システム
JP6116001B2 (ja) 光送信装置及び光受信装置
WO2023073927A1 (ja) デジタル信号処理回路、方法、受信機、及び通信システム
Pakala Kalman Filtering for Mitigation of Optical Fiber Transmission Impairments
JP2023543270A (ja) 波形等化器、波形等化方法および波形等化プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17901280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3047882

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017901280

Country of ref document: EP

Effective date: 20190708

NENP Non-entry into the national phase

Ref country code: DE