JP6077696B1 - 光伝送システム - Google Patents

光伝送システム Download PDF

Info

Publication number
JP6077696B1
JP6077696B1 JP2016060588A JP2016060588A JP6077696B1 JP 6077696 B1 JP6077696 B1 JP 6077696B1 JP 2016060588 A JP2016060588 A JP 2016060588A JP 2016060588 A JP2016060588 A JP 2016060588A JP 6077696 B1 JP6077696 B1 JP 6077696B1
Authority
JP
Japan
Prior art keywords
unit
optical
skew
lane
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016060588A
Other languages
English (en)
Other versions
JP2017175441A (ja
Inventor
政則 中村
政則 中村
光輝 吉田
光輝 吉田
一茂 米永
一茂 米永
平野 章
章 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2016060588A priority Critical patent/JP6077696B1/ja
Application granted granted Critical
Publication of JP6077696B1 publication Critical patent/JP6077696B1/ja
Publication of JP2017175441A publication Critical patent/JP2017175441A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】光送信機がスキュー補正値を変化させない場合でも、光送信機から送信される光信号のスキューを補償することが可能である光伝送システムを提供する。【解決手段】光伝送システムは、予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、変調対象信号の同相成分及び直交位相成分の間における遅延時間差を遅延時間差の推定値に基づいて補償するスキュー補償部と、変調対象信号を変調して光信号を生成する変調部とを有する光送信機と、光信号から抽出された既知パタン情報に基づいて変調対象信号の位相差を同相成分及び直交位相成分ごとに推定するスキュー推定部と、位相差に応じた遅延時間差の推定値をスキュー補償部に送信する送信部とを有する光受信機とを備える。【選択図】図2

Description

本発明は、光伝送システムに関する。
近年の通信トラヒックの拡大と、400Gbps又は1Tbpsのイーサネット(登録商標)等のクライアント信号の容量の増加とによって、光通信システムの基幹網では1チャネルあたりの伝送容量の拡大が求められている。1チャネルあたり100Gbpsのシステムでは、デジタルコヒーレント光伝送方式が採用されている(非特許文献1)。デジタルコヒーレント光伝送方式では、変調速度は、例えば、32GBaudである。デジタルコヒーレント光伝送方式では、変調方式は、例えば、DP−QPSK(Dual Polarization-Quadrature Phase Shift Keying)である。
1チャネルあたりの伝送容量を拡大させるため、次世代の400Gbps又は1Tbps級の光伝送システムでは、変調速度の向上と変調方式における多値化とが検討されている(非特許文献2)。次世代の光伝送システムでは、変調速度の向上に伴うシンボル間の時間間隔の縮小と、変調方式の多値化に伴うシンボル点間のユークリッド距離の縮小とによって、光送信機及び光受信機における信号のレーン間の遅延時間差(スキュー)の影響が顕著となる。
スキューの要因には、配線等のデバイスの不完全性がある。デバイスの不完全性とは、例えば、複数の配線における配線長の違いである。デバイスの不完全性の対策として、不完全性をデジタル信号処理によって補償することが検討されている(非特許文献3)。
次世代の光伝送システムでは、プラガブルデバイス(Pluggable device)を用いることによって光送信機及び光受信機を小型化することが検討されている(非特許文献4)。プラガブルデバイスは、例えば、CFP2−ACO(Analog Coherent Optics)である。プラガブルデバイスでは、光回路及びアナログ回路がモジュール化されている。信号の変調速度が速くかつ多値化された信号をプラガブルデバイスによって高品質に伝送するには、プラガブルデバイスごとにスキューを高精度に検出して、プラガブルデバイスごとにスキューを補償する必要がある。さらに、回線が導通した後も温度変化やデバイスの経年劣化によるスキューの変化を検出し、スキューを補償する必要がある。
OIF、"100G Ultra Long Haul DWDM Framework Document"、[online]、[平成28年3月9日検索]、インターネット<URL:http://www.oiforum.com/public/documents/OIF-FD-100G-DWDM-01.0.pdf> T. J. Xia, S. Gringeri, and M. Tomizawa, "High-capacity optical transport networks," IEEE Commun. Mag., vol. 50, no. 11, pp. 170-178, Nov. 2012. Takahito Tanimura, Shoichiro Oda, Toshiki Tanaka, Takeshi Hoshida, Zhenning Tao, and Jens C. Rasmussen, "A Simple Digital Skew Compensator for Coherent Receiver" ECOC2009. 7.3.2. Thomas Duthel, James E.A. Whiteaway, and Theodor Kupfer. "Impact of Pluggable Analog Coherent Optics Modules on Line Card Architecture and DSP Functionality." OFC2015. W1H.3. Seiji Okamoto, Mitsuteru Yoshida, Kazushige Yonenaga, and Tomoyoshi Kataoka. "Adaptive Pre-equalization using Bidirectional Pilot Sequences to Estimate and Feed Back Amplitude Transfer Function and Chromatic Dispersion." OFC2015 Th2A.29.
非特許文献3には、光伝送システムにおけるスキューを推定及び補償する方法が提案されている。スキューは、例えば、光受信機及び光送信機におけるスキューの変化に応じて、スキューを補正するための値(以下、「スキュー補正値」という。)に対応する受信信号の品質がモニタされることによって推定される。
しかしながら、光伝送システムは、光送信機がスキュー補正値を変化させなければ、光送信機から送信される光信号のスキューを補償することができないという問題がある。
上記事情に鑑み、光送信機がスキュー補正値を変化させない場合でも、光送信機から送信される光信号のスキューを補償することが可能である光伝送システムを提供することを目的としている。
本発明の一態様は、予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、前記変調対象信号の同相成分及び直交位相成分の間における遅延時間差を前記遅延時間差の推定値に基づいて補償するスキュー補償部と、前記変調対象信号を変調して光信号を生成する変調部とを有する光送信機と、前記光信号から抽出された前記既知パタン情報に基づいて前記変調対象信号の位相差を前記同相成分及び前記直交位相成分ごとに推定するスキュー推定部と、前記位相差に応じた前記遅延時間差の推定値を前記スキュー補償部に送信する送信部とを有する光受信機とを備える光伝送システムである。
本発明の一態様は、上記の光伝送システムであって、前記既知パタン情報は、ランダムな信号系列を表すパタン情報であり、前記スキュー推定部は、前記ランダムな信号系列に基づいて前記同相成分及び前記直交位相成分ごとに前記光送信機の伝達関数の前記位相差を推定する。
本発明の一態様は、上記の光伝送システムであって、前記挿入部は、前記変調対象信号の前記同相成分及び前記直交位相成分に同一の前記既知パタン情報を挿入する。
本発明の一態様は、上記の光伝送システムであって、前記既知パタン情報は、正弦波の信号系列を表すパタン情報であり、前記スキュー推定部は、前記正弦波の信号系列に基づいて前記同相成分及び前記直交位相成分ごとに前記光送信機の伝達関数の前記位相差を推定する。
本発明の一態様は、上記の光伝送システムであって、前記スキュー補償部は、複数の前記遅延時間差の推定値に基づいて前記遅延時間差を補償する。
本発明の一態様は、予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、前記変調対象信号の同相成分及び直交位相成分の間における遅延時間差を伝達関数に基づいて補償する伝達関数補償部と、前記変調対象信号を変調して光信号を生成する変調部とを有する光送信機と、前記光信号から抽出された前記既知パタン情報に基づいて前記伝達関数を前記同相成分及び直交位相成分ごとに推定する伝達関数推定部と、前記伝達関数を前記伝達関数補償部に送信する送信部とを有する光受信機とを備える光伝送システムである。
本発明により、光送信機がスキュー補正値を変化させない場合でも、光送信機から送信される光信号のスキューを補償することが可能となる。
実施形態における、光伝送システムの構成の第1例を示す図である。 実施形態における、光伝送システムの構成の第2例を示す図である。 実施形態における、既知パタン挿入部の構成の第1例を示す図である。 実施形態における、フレームデータの構成の例を示す図である。 実施形態における、送信機スキュー推定部の構成の第1例を示す図である。 実施形態における、周波数と位相差との関係の第1例を示す図である。 実施形態における、スキューの真値とスキューの推定値との関係の第1例を示す図である。 実施形態における、スキューの真値と真値からの誤差との関係の第1例を示す図である。 実施形態における、スキューの真値と標準偏差との関係の第1例を示す図である。 実施形態における、光伝送システムの構成の第3例を示す図である。 実施形態における、既知パタン挿入部の構成の第2例を示す図である。 実施形態における、送信機スキュー推定部の構成の第2例を示す図である。 実施形態における、周波数と位相差との関係の第2例を示す図である。 実施形態における、スキューの真値とスキューの推定値との関係の第2例を示す図である。 実施形態における、スキューの真値と真値からの誤差との関係の第2例を示す図である。 実施形態における、スキューの真値と標準偏差との関係の第2例を示す図である。 実施形態における、光伝送システムの構成の第4例を示す図である。 実施形態における、既知パタン挿入部の構成の第3例を示す図である。 実施形態における、送信機スキュー推定部の構成の第3例を示す図である。 実施形態における、周波数と位相差との関係の第3例を示す図である。 実施形態における、スキューの真値とスキューの推定値との関係の第3例を示す図である。 実施形態における、スキューの真値と真値からの誤差との関係の第3例を示す図である。 実施形態における、スキューの真値と標準偏差との関係の第3例を示す図である。
本発明の実施形態について、図面を参照して詳細に説明する。
(第1実施形態)
図1は、光伝送システム1aの構成の例を示す図である。光伝送システム1aは、光信号を伝送するシステムである。光伝送システム1aは、光送信機10aと、光ファイバ20と、光増幅機21と、光受信機30aと、通信回線40とを備える。以下、光ファイバ20と光増幅機21とをまとめて「伝送路」という。光伝送システム1aは、経路切り替え機を伝送路に備えてもよい。
光送信機10a及び光受信機30aは、記憶部を更に備えてもよい。記憶部は、磁気ハードディスク装置や半導体記憶装置等の不揮発性の記憶媒体(非一時的な記録媒体)を有する記憶装置を用いて構成される。記憶部は、例えば、RAM(Random Access Memory)やレジスタなどの揮発性の記憶媒体を有していてもよい。
光送信機10aは、伝送路を介して、光信号を光受信機30aに送信する。光ファイバ20は、光送信機10aから送信された光信号を伝送する。光増幅機21は、光信号を増幅する。光受信機30aは、増幅された光信号を、伝送路を介して取得する。光受信機30aは、光送信機10aの伝達関数を表す情報を、通信回線40を介して光送信機10aに送信する。通信回線40は、例えば、コミュニケーションチャネルである。通信回線40は、例えば、ネットワーク・オペレーション・システム(NW−OpS)の制御チャネルでもよい。
光送信機10aは、既知パタン挿入部11a−X及び11a−Yと、送信パタン生成部12と、送信機伝達関数補償部13と、偏波多重IQ変調部14とを備える。以下、既知パタン挿入部11a−X及び11a−Yに共通する事項については、符号の一部を省略して、「既知パタン挿入部11a」と表記する。
既知パタン挿入部11aと送信パタン生成部12と送信機伝達関数補償部13と偏波多重IQ変調部14とのうち一部または全部は、例えば、CPU(Central Processing Unit)等のプロセッサが、記憶部に記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェア機能部であってもよい。
既知パタン挿入部11a−Xは、送信パタン生成部12が生成したXIレーン(第1レーン)の変調対象信号系列に、既知パタンの信号系列を挿入する。既知パタンの信号系列は、光送信機10aと光受信機30aとの間で共有されている。既知パタン挿入部11a−Xは、送信パタン生成部12が生成したXQレーン(第2レーン)の変調対象信号系列に、既知パタンの信号系列を挿入する。
既知パタン挿入部11a−Yは、送信パタン生成部12が生成したYIレーン(第3レーン)の変調対象信号系列に、既知パタンの信号系列を挿入する。既知パタン挿入部11a−Yは、送信パタン生成部12が生成したYQレーン(第4レーン)の変調対象信号系列に、既知パタンの信号系列を挿入する。
送信パタン生成部12は、送信データ系列に基づいて、フレームデータを生成する。送信データ系列は、バイナリ情報である。フレームデータは、偏波多重IQ変調部14において変調処理を施すための信号系列(変調対象信号系列)である。
送信パタン生成部12は、既知パタンの信号系列(既知パタン情報)が挿入されたフレームデータを、XIレーンを介して送信機伝達関数補償部13に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、XQレーンを介して送信機伝達関数補償部13に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、YIレーンを介して送信機伝達関数補償部13に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、YQレーンを介して送信機伝達関数補償部13に送信する。
送信機伝達関数補償部13は、伝達関数の推定結果を光受信機30aから取得する。送信機伝達関数補償部13は、伝達関数の推定結果に基づいて、XIレーンとXQレーンとYIレーンとYQレーンとの間における、フレームデータのスキュー(遅延時間差)と位相成分及び振幅成分の周波数特性とを補償する。送信機伝達関数補償部13は、例えば、FIR(Finite Impulse Response)フィルタ等を用いたデジタル信号処理方式によって、フレームデータのスキューと位相成分及び振幅成分の周波数特性とを補償する。送信機伝達関数補償部13は、例えば、位相器、遅延線又はアナログフィルタ等を用いたアナログ方式によって、フレームデータのスキューを補償してもよい。
偏波多重IQ変調部14は、スキューが補償されたフレームデータに変調処理を施すことによって、変調対象信号系列の光信号を生成する。偏波多重IQ変調部14は、ドライバアンプ140−XIと、ドライバアンプ140−XQと、ドライバアンプ140−YIと、ドライバアンプ140−YQと、レーザモジュール141と、ベクトル変調器142とを備える。
ドライバアンプ140−XIは、スキューが補償されたフレームデータを、XIレーンを介して取得する。ドライバアンプ140−XIは、取得したフレームデータの波形の振幅を増幅する。ドライバアンプ140−XIは、振幅が増幅されたフレームデータを、ベクトル変調器142に送信する。
ドライバアンプ140−XQは、スキューが補償されたフレームデータを、XQレーンを介して取得する。ドライバアンプ140−XQは、取得したフレームデータの波形の振幅を増幅する。ドライバアンプ140−XQは、振幅が増幅されたフレームデータを、ベクトル変調器142に送信する。
ドライバアンプ140−YIは、スキューが補償されたフレームデータを、YIレーンを介して取得する。ドライバアンプ140−YIは、取得したフレームデータの波形の振幅を増幅する。ドライバアンプ140−YIは、振幅が増幅されたフレームデータを、ベクトル変調器142に送信する。
ドライバアンプ140−YQは、スキューが補償されたフレームデータを、YQレーンを介して取得する。ドライバアンプ140−YQは、取得したフレームデータの波形の振幅を増幅する。ドライバアンプ140−YQは、振幅が増幅されたフレームデータを、ベクトル変調器142に送信する。レーザモジュール141は、局部発振光(以下、「局発光」という。)を、ベクトル変調器142に送信する。
ベクトル変調器142は、マッハチェンダ型ベクトル変調機である。ベクトル変調器142は、レーザモジュール141から送信された局発光の波形の振幅(強度)を、電気信号に基づいて変化させる。ベクトル変調器142は、レーザモジュール141から送信された局発光を偏波多重(Polarization multiplexing)方式によって変調することによって、光信号を生成する。ベクトル変調器142は、生成した光信号を、伝送路を介して光受信機30aに送信する。
光ファイバ20は、光送信機から出力された光信号を、光増幅機21に伝送する。光増幅機21は、光信号の波形の振幅を増幅する。光増幅機21は、増幅された光信号を、光受信機30aに伝送する。
光受信機30aは、レーザモジュール31と、光コヒーレント受信部32と、デジタル信号処理部33と、送信機伝達関数推定部34−Xと、送信機伝達関数推定部34−Yと、受信データ復調部35とを備える。以下、送信機伝達関数推定部34−X及び送信機伝達関数推定部34−Yに共通する事項については、符号の一部を省略して、「送信機伝達関数推定部34」と表記する。
光コヒーレント受信部32とデジタル信号処理部33と送信機伝達関数推定部34と受信データ復調部35とのうち一部または全部は、例えば、CPU等のプロセッサが、記憶部に記憶されたプログラムを実行することにより機能するソフトウェア機能部である。また、これらの機能部のうち一部または全部は、LSIやASIC等のハードウェア機能部であってもよい。
レーザモジュール31は、局発光を光コヒーレント受信部32に送る。光コヒーレント受信部32は、増幅された光信号を光増幅機21から取得する。光コヒーレント受信部32は、取得した光信号と局発光とを干渉させることによって、取得した光信号をベースバンド信号に変換する。光コヒーレント受信部32は、アナログ/デジタル変換(A/D変換)によって、ベースバンド信号をデジタル信号に変換する。
デジタル信号処理部33は、A/D変換後のデジタル信号を、光コヒーレント受信部32から取得する。伝送路では、例えば、波長分散、偏波変動又は非線形光学効果によって、光信号に波形劣化が生じる。デジタル信号処理部33は、伝送路において光信号に生じた波形劣化を補償する。デジタル信号処理部33は、光送信機10aのレーザモジュール141の光の周波数と、光受信機30aのレーザモジュール31の局発光の周波数との誤差を補償する。デジタル信号処理部33は、光送信機10aのレーザモジュール141の光の線幅と、光受信機30aのレーザモジュール31の局発光の線幅とに応じた位相雑音を補償する。デジタル信号処理部33は、A/D変換後のデジタル信号を、送信機伝達関数推定部34及び受信データ復調部35に送信する。
送信機伝達関数推定部34−Xは、XIレーンの光信号に基づくデジタル信号を、デジタル信号処理部33から取得する。送信機伝達関数推定部34−Xは、XQレーンの光信号に基づくデジタル信号を、デジタル信号処理部33から取得する。送信機伝達関数推定部34−Yは、YIレーンの光信号に基づくデジタル信号を、デジタル信号処理部33から取得する。送信機伝達関数推定部34−Yは、YQレーンの光信号に基づくデジタル信号を、デジタル信号処理部33から取得する。
送信機伝達関数推定部34は、既知パタン情報(既知パタンの信号系列)を、デジタル信号から抽出する。送信機伝達関数推定部34は、既知パタン情報の伝達関数を、レーンごとに推定する。送信機伝達関数推定部34は、例えば、適用フィルタを用いて伝達関数を推定する。適用フィルタは、例えば、LMS(Least Mean Square)アルゴリズムに基づくフィルタである。適用フィルタは、例えば、RLS(Recursive Least Square)アルゴリズムに基づくフィルタでもよい。
送信機伝達関数推定部34は、伝達関数の推定結果を表す情報を、通信回線40を介して光送信機10aの送信機伝達関数補償部13に送信する。すなわち、送信機伝達関数推定部34は、伝達関数の推定結果を、通信回線40を介して光送信機10aの送信機伝達関数補償部13にフィードバックする。
通信回線40は、コミュニケーションチャネル(非特許文献5参照)、ネットワークオペレーションシステム(NW−OpS)の制御チャネルである。
受信データ復調部35は、A/D変換後のデジタル信号を、デジタル信号処理部33から取得する。受信データ復調部35は、デジタル信号処理部33から取得したデジタル信号に復調処理を施す。受信データ復調部35は、復調処理の結果に基づいて、ビットデータを送信する。
以上のように、第1実施形態の光伝送システム1aは、光送信機10aと、光受信機30aとを備える。光送信機10aは、既知パタン挿入部11aと、送信機伝達関数補償部13と、偏波多重IQ変調部14とを有する。光受信機30aは、送信機伝達関数推定部34を備える。既知パタン挿入部11aは、予め定められた既知パタン情報を変調対象信号に挿入する。送信機伝達関数補償部13は、変調対象信号の同相成分(Iレーン)及び直交位相成分(Qレーン)の間における遅延時間差(スキュー)を伝達関数に基づいて補償する。偏波多重IQ変調部14は、変調対象信号を変調して光信号を生成する。送信機伝達関数推定部34は、光信号から抽出された既知パタン情報に基づいて伝達関数を同相成分及び直交位相成分ごとに推定する。送信機伝達関数推定部34(送信部)は、伝達関数を送信機伝達関数補償部13に送信する。
これによって、第1実施形態の光伝送システム1aは、光送信機10aがスキュー補正値を変化させない場合でも、光送信機から送信される光信号のスキューを補償することが可能となる。
第1実施形態の光伝送システム1aは、光送信機から送信される光信号のスキューが大きい場合でも、スキュー補正値(推定値)を光送信機10aにフィードバックして、推定を繰り返すことによって、スキュー補償の精度を高くすることが可能である。第1実施形態の光伝送システム1aは、伝送路の開通後に経年劣化又は温度依存性によるスキューが光信号に生じた場合でも、スキュー補償の精度を高くすることが可能である。
(第2実施形態)
第2実施形態では、光送信機10bが送信機スキュー補償部を備える点と、光受信機30bが送信機スキュー推定部を備える点とが、第1実施形態と相違する。第2実施形態では、第1実施形態との相違点についてのみ説明する。
図2は、光伝送システム1bの構成の例を示す図である。光伝送システム1bは、光信号を伝送するシステムである。光伝送システム1bは、光送信機10bと、光ファイバ20と、光増幅機21と、光受信機30bと、通信回線40とを備える。光送信機10bは、既知パタン挿入部11b−X及び11b−Yと、送信パタン生成部12と、送信機スキュー補償部15と、偏波多重IQ変調部14とを備える。以下、既知パタン挿入部11b−X及び11b−Yに共通する事項については、符号の一部を省略して、「既知パタン挿入部11b」と表記する。
図3は、既知パタン挿入部11bの構成の例を示す図である。既知パタン挿入部11b−Xは、ランダム系列パタン生成部110−XIと、ランダム系列パタン生成部110−XQと、レーン同期用パタン付加部111−XIと、レーン同期用パタン付加部111−XQとを備える。既知パタン挿入部11b−Yは、ランダム系列パタン生成部110−YIと、ランダム系列パタン生成部110−YQと、レーン同期用パタン付加部111−YIと、レーン同期用パタン付加部111−YQとを備える。
以下、ランダム系列パタン生成部110−XIと、ランダム系列パタン生成部110−XQと、ランダム系列パタン生成部110−YIと、ランダム系列パタン生成部110−YQとに共通する事項については、符号の一部を省略して、「ランダム系列パタン生成部110」と表記する。
ランダム系列パタン生成部110は、スキューを推定するためのパタン情報(以下、「スキュー推定用パタン情報」という。)を表す信号系列を生成する。スキュー推定用パタン情報は、例えば、ランダムな信号系列を表すパタン情報である。ランダム系列パタン生成部110−XIは、スキュー推定用パタン情報を、レーン同期用パタン付加部111−XIに送信する。ランダム系列パタン生成部110−XQは、スキュー推定用パタン情報を、レーン同期用パタン付加部111−XQに送信する。ランダム系列パタン生成部110−YIは、スキュー推定用パタン情報を、レーン同期用パタン付加部111−YIに送信する。ランダム系列パタン生成部110−YQは、スキュー推定用パタン情報を、レーン同期用パタン付加部111−YQに送信する。
以下、レーン同期用パタン付加部111−XIと、レーン同期用パタン付加部111−XQと、レーン同期用パタン付加部111−YIと、レーン同期用パタン付加部111−YQとに共通する事項については、符号の一部を省略して、「レーン同期用パタン付加部111」と表記する。
レーン同期用パタン付加部111は、スキュー推定用パタン情報を取得する。レーン同期用パタン付加部111は、送信パタン生成部12が取得したペイロード情報に、スキュー推定用パタン情報をフレームごとに付加する。レーン同期用パタン付加部111は、XIレーンとXQレーンとYIレーンとYQレーンとを同期させるためのレーン同期用パタン情報を、送信パタン生成部12が取得したペイロード情報にフレームごとに付加する。レーン同期用パタン情報は、レーンごとに異なる識別情報である。
図4は、フレームデータの構成の例を示す図である。第Nフレーム(Nは、1以上の整数)は、ペイロード情報と、スキュー推定用パタン情報と、レーン同期用パタン情報とを含む。各フレームは、同じペイロード情報と、同じスキュー推定用パタン情報とを含んでもよい。
図2に示す送信パタン生成部12は、既知パタンの信号系列(既知パタン情報)が挿入されたフレームデータを、XIレーンを介して送信機スキュー補償部15に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、XQレーンを介して送信機スキュー補償部15に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、YIレーンを介して送信機スキュー補償部15に送信する。送信パタン生成部12は、既知パタンの信号系列が挿入されたフレームデータを、YQレーンを介して送信機スキュー補償部15に送信する。
送信機スキュー補償部15は、スキューの推定結果を光受信機30bから取得する。送信機スキュー補償部15は、スキューの推定結果に基づいて、XIレーンとXQレーンとYIレーンとYQレーンとの間のフレームデータのスキュー(遅延時間差)を補償する。送信機スキュー補償部15は、例えば、FIRフィルタ等を用いたデジタル信号処理方式によって、フレームデータのスキューを補償する。送信機スキュー補償部15は、例えば、位相器又は遅延線等を用いたアナログ方式によって、フレームデータのスキューを補償してもよい。
光受信機30bは、レーザモジュール31と、光コヒーレント受信部32と、デジタル信号処理部33と、送信機スキュー推定部36b−Xと、送信機スキュー推定部36b−Yと、受信データ復調部35とを備える。以下、送信機スキュー推定部36b−X及び送信機スキュー推定部36b−Yに共通する事項については、符号の一部を省略して、「送信機スキュー推定部36b」と表記する。
デジタル信号処理部33は、A/D変換後のデジタル信号を、送信機スキュー推定部36b及び受信データ復調部35に送信する。デジタル信号処理部33は、伝送路における伝達関数を補償する。
送信機スキュー推定部36bは、既知パタン情報(既知パタンの信号系列)を、デジタル信号から抽出する。送信機スキュー推定部36bは、既知パタン情報に基づいて、XIレーン及びXQレーンの間の伝達関数の位相差を推定する。送信機スキュー推定部36bは、XIレーン及びXQレーンの間の伝達関数の位相差に基づいて、XIレーン及びXQレーンの間のスキューを推定する。送信機スキュー推定部36bは、既知パタン情報に基づいて、YIレーン及びYQレーンの間の伝達関数の位相差を推定する。送信機スキュー推定部36bは、YIレーン及びYQレーンの間の伝達関数の位相差に基づいて、YIレーン及びYQレーンの間のスキューを推定する。
送信機スキュー推定部36bは、スキューの推定値を表す情報を、通信回線40を介して光送信機10bの送信機スキュー補償部15に送信する。すなわち、送信機伝達関数推定部34は、スキューの推定値を、通信回線40を介して光送信機10bの送信機スキュー補償部15にフィードバックする。
図5は、送信機スキュー推定部36bの構成の例を示す図である。送信機スキュー推定部36b−Xは、既知パタン同期部360−XIと、既知パタン同期部360−XQと、伝達関数推定部361−XIと、伝達関数推定部361−XQと、位相比較部362−Xと、乗算部363−Xと、減算部364−Xと、乗算部365−Xと、加算部366−Xとを備える。図5では、送信機スキュー推定部36b−Yは、送信機スキュー推定部36b−Xと同様の構成を有する。
既知パタン同期部360−XIは、A/D変換後のデジタル信号を、デジタル信号処理部33から取得する。既知パタン同期部360−XIは、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XIは、例えば、相互相関又はインパルス応答に基づいて、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XIは、XQレーンと同期したサンプル位置を表す情報を、減算部364−Xに送信する。
既知パタン同期部360−XIは、フレームデータが送信されたレーンとフレームデータが受信されたレーンとが入れ替わっているか否かを、レーン同期用パタン情報に基づいて判定する。すなわち、既知パタン同期部360−XIは、取得したデジタル信号がXIレーンのフレームデータであるかXQレーンのフレームデータであるかを判定する。
既知パタン同期部360−XIは、取得したデジタル信号がXIレーンのフレームデータである場合、XQレーンと同期させたスキュー推定用パタン情報を、伝達関数推定部361−XIに送信する。既知パタン同期部360−XIは、取得したデジタル信号がXQレーンのフレームデータである場合、XIレーンと同期させたスキュー推定用パタン情報を、伝達関数推定部361−XQに送信する。
既知パタン同期部360−XQは、A/D変換後のデジタル信号を、デジタル信号処理部33から取得する。既知パタン同期部360−XQは、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XQは、例えば、相互相関又はインパルス応答に基づいて、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XQは、XIレーンと同期したサンプル位置を表す情報を、減算部364−Xに送信する。
既知パタン同期部360−XQは、フレームデータが送信されたレーンとフレームデータが受信されたレーンとが入れ替わっているか否かを、レーン同期用パタン情報に基づいて判定する。すなわち、既知パタン同期部360−XQは、取得したデジタル信号がXIレーンのフレームデータであるかXQレーンのフレームデータであるかを判定する。
既知パタン同期部360−XQは、取得したデジタル信号がXQレーンのフレームデータである場合、XIレーンと同期させたスキュー推定用パタン情報を、伝達関数推定部361−XQに送信する。既知パタン同期部360−XQは、取得したデジタル信号がXIレーンのフレームデータである場合、XQレーンと同期させたスキュー推定用パタン情報を、伝達関数推定部361−XIに送信する。
伝達関数推定部361−XIは、既知パタン情報の伝達関数を、XQレーンと同期させたスキュー推定用パタン情報に基づいて算出する。光信号に基づくデジタル信号のIレーンとQレーンとは、搬送波の位相が補償される際に混合される。伝達関数推定部361−XIは、レーザの線幅の揺らぎ以上に相当する時間、デジタル信号処理部33が送信したデジタル信号を観測する。これによって、伝達関数推定部361−XIは、光送信機10bに起因する伝達関数を推定することができる。
伝達関数推定部361−XIは、XQレーンと同期させたXIレーンのスキュー推定用パタン情報の伝達関数を算出する。送信機伝達関数推定部34は、例えば、適用フィルタを用いて伝達関数を推定する。適用フィルタは、例えば、LMSアルゴリズムに基づくフィルタである。適用フィルタは、例えば、RLSアルゴリズムに基づくフィルタでもよい。送信機伝達関数推定部34は、例えば、適用フィルタのタップ係数を伝達関数として用いる。
光信号に基づくデジタル信号のIレーンとQレーンとは、搬送波の位相が補償される際に混合される。伝達関数推定部361−XQは、線幅揺らぎ以上の時間、デジタル信号処理部33が送信したデジタル信号を観測する。これによって、伝達関数推定部361−XQは、光送信機10bに起因する伝達関数を推定することができる。
伝達関数推定部361−XQは、XIレーンと同期させたXQレーンのスキュー推定用パタン情報の伝達関数を算出する。送信機伝達関数推定部34は、例えば、適用フィルタを用いて伝達関数を推定する。適用フィルタは、例えば、LMSアルゴリズムに基づくフィルタである。適用フィルタは、例えば、RLSアルゴリズムに基づくフィルタでもよい。送信機伝達関数推定部34は、例えば、適用フィルタのタップ係数を伝達関数として用いる。
位相比較部362−Xは、XIレーンのスキュー推定用パタン情報の伝達関数の推定値を、伝達関数推定部361−XIから取得する。位相比較部362−Xは、XQレーンのスキュー推定用パタン情報の伝達関数の推定値を、伝達関数推定部361−XQから取得する。位相比較部362−Xは、XIレーンとXQレーンとの位相差Δθを、サンプリングの周波数fごとに算出する。位相差Δθは、スキューτを用いて、式(1)のように表される。
Figure 0006077696
乗算部363−Xは、(1/2πf)を位相差Δθに乗算する。スキューの推定値は、位相差Δθの回帰直線がフィッティングされることによって、XIレーンとXQレーンの1サンプルよりも細かい粒度で算出可能である。
減算部364−Xは、XIレーンとXQレーンとの間で同期したサンプルの位置(同期位置)の差分を算出する。同期位置の差分が算出されることによって、スキューの推定値は、2分の1サンプル以上の大きなスキューが発生していた場合、1サンプルの粒度で算出可能である。乗算部365−Xは、同期位置の差分にサンプル間隔を乗算する。
加算部366−Xは、同期位置の差分にサンプル間隔を乗算した結果と、(1/2πf)を位相差Δθに乗算した結果とを加算する。加算部366−Xは、加算した結果を、スキューの推定値として送信機スキュー補償部15に送信する。
図6、図7、図8及び図9に、第2実施形態におけるスキューの推定値のシミュレーション結果を示す。変調方式は32GBaudのDP−QPSKである。光送信機10bのレーザの線幅は100kHzである。周波数オフセットは100MHzである。伝送路におけるOSNR(Optical Signal to Noise Ratio)は20dBである。
図6は、周波数と位相差との関係の第1例を示す図である。横軸は、サンプリングの周波数を示す。縦軸は、位相比較部362の出力として、IレーンとQレーンとの位相差を示す。図6に示す回帰直線は、式(1)によって表される位相差を、最小二乗法によりフィッティングした結果である。光送信機10bが8ps(真値)のスキューを光信号に付加した場合、スキューの推定値は7.87psである。
図7は、スキューの真値(Skew値)とスキューの推定値との関係の第1例を示す図である。横軸は、光送信機10bにおけるスキューの真値(ps)を示す。縦軸は、スキューの推定値の100回平均値を示す。
図8は、スキューの真値と真値からの誤差との関係の第1例を示す図である。横軸は、光送信機10bにおけるスキューの真値を示す。縦軸は、真値からの誤差の100回平均値を示す。
図9は、スキューの真値と標準偏差との関係の第1例を示す図である。横軸は、光送信機10bにおけるスキューの真値を示す。縦軸は、標準偏差の100回平均値を示す。
以上のように、第2実施形態の光伝送システム1bは、光送信機10bと、光受信機30bとを備える。光送信機10bは、既知パタン挿入部11bと、送信機スキュー補償部15と、偏波多重IQ変調部14とを有する。光受信機30bは、送信機スキュー推定部36bを備える。既知パタン挿入部11bは、予め定められた既知パタン情報を変調対象信号に挿入する。送信機スキュー補償部15は、変調対象信号の同相成分(Iレーン)及び直交位相成分(Qレーン)の間における遅延時間差(スキュー)を遅延時間差の推定値に基づいて補償する。偏波多重IQ変調部14は、変調対象信号を変調して光信号を生成する。送信機スキュー推定部36bは、光信号から抽出された既知パタン情報に基づいて変調対象信号の位相差を同相成分及び直交位相成分ごとに推定する。送信機スキュー推定部36b(送信部)は、位相差に応じた遅延時間差の推定値を送信機スキュー補償部15に送信する。
送信機スキュー補償部15は、複数の遅延時間差の推定値に基づいて遅延時間差を補償する。これによって、第2実施形態の光伝送システム1bは、複数のフレームについてスキューの推定値の平均値を算出することによって、スキューの推定値の精度を向上させることが可能となる。
既知パタン情報は、ランダムな信号系列を表すパタン情報でもよい。送信機スキュー推定部36bは、ランダムな信号系列に基づいて同相成分及び直交位相成分ごとに光送信機10bの伝達関数の位相差を推定してもよい。
(第3実施形態)
第3実施形態では、既知パタン挿入部の構成と送信機スキュー推定部の構成とが、第2実施形態と相違する。第3実施形態では、第2実施形態との相違点についてのみ説明する。
図10は、光伝送システム1cの構成の例を示す図である。光伝送システム1cは、光信号を伝送するシステムである。光伝送システム1cは、光送信機10cと、光ファイバ20と、光増幅機21と、光受信機30cと、通信回線40とを備える。光送信機10cは、既知パタン挿入部11c−X及び11c−Yと、送信パタン生成部12と、送信機スキュー補償部15と、偏波多重IQ変調部14とを備える。以下、既知パタン挿入部11c−X及び11c−Yに共通する事項については、符号の一部を省略して、「既知パタン挿入部11c」と表記する。
図11は、既知パタン挿入部11cの構成の例を示す図である。既知パタン挿入部11c−Xは、レーン同期用パタン付加部111−XIと、レーン同期用パタン付加部111−XQと、ランダム信号生成部112−Xと、スキュー推定用パタン生成部113−Xとを備える。既知パタン挿入部11c−Yは、レーン同期用パタン付加部111−YIと、レーン同期用パタン付加部111−YQと、ランダム信号生成部112−Yと、スキュー推定用パタン生成部113−Yとを備える。
ランダム信号生成部112−Xは、ランダム系列の信号を生成する。ランダム信号生成部112−Xは、ランダム系列の信号をスキュー推定用パタン生成部113−Xに送信する。スキュー推定用パタン生成部113−Xは、同一のスキュー推定用パタン情報を、レーン同期用パタン付加部111−XI及びレーン同期用パタン付加部111−XQに送信する。
ランダム信号生成部112−Yは、ランダム系列の信号を生成する。ランダム信号生成部112−Yは、ランダム系列の信号をスキュー推定用パタン生成部113−Yに送信する。スキュー推定用パタン生成部113−Yは、スキュー推定用パタン情報を、レーン同期用パタン付加部111−YI及びレーン同期用パタン付加部111−YQに送信する。
光受信機30cは、レーザモジュール31と、光コヒーレント受信部32と、デジタル信号処理部33と、送信機スキュー推定部36c−Xと、送信機スキュー推定部36c−Yと、受信データ復調部35とを備える。以下、送信機スキュー推定部36c−X及び送信機スキュー推定部36c−Yに共通する事項については、符号の一部を省略して、「送信機スキュー推定部36c」と表記する。
図12は、送信機スキュー推定部36cの構成の例を示す図である。送信機スキュー推定部36c−Xは、既知パタン同期部360−XIと、既知パタン同期部360−XQと、位相比較部362−Xと、乗算部363−Xと、減算部364−Xと、乗算部365−Xと、加算部366−Xと、フーリエ変換部367−XIと、フーリエ変換部367−XQとを備える。図12では、送信機スキュー推定部36c−Yは、送信機スキュー推定部36c−Xと同様の構成を有する。
フーリエ変換部367−XIは、XIレーンのスキュー推定用パタン情報に、フーリエ変換を施す。フーリエ変換部367−XIは、フーリエ変換の結果を、位相比較部362−Xに送信する。フーリエ変換部367−XQは、XQレーンのスキュー推定用パタン情報に、フーリエ変換を施す。フーリエ変換部367−XQは、フーリエ変換の結果を、位相比較部362−Xに送信する。
図13、図14、図15及び図16に、第3実施形態におけるスキューの推定値のシミュレーション結果を示す。変調方式は32GBaudのDP−QPSKである。光送信機10cのレーザの線幅は100kHzである。周波数オフセットは100MHzである。伝送路におけるOSNRは20dBである。
図13は、周波数と位相差との関係の第2例を示す図である。横軸は、サンプリングの周波数を示す。縦軸は、位相比較部362の出力として、IレーンとQレーンとの位相差を示す。図13に示す回帰直線は、式(1)によって表される位相差を、最小二乗法によりフィッティングした結果である。光送信機10bが8ps(真値)のスキューを光信号に付加した場合、スキューの推定値は8.34psである。
図14は、スキューの真値とスキューの推定値との関係の第2例を示す図である。横軸は、光送信機10cにおけるスキューの真値(ps)を示す。縦軸は、スキューの推定値の100回平均値を示す。
図15は、スキューの真値と真値からの誤差との関係の第2例を示す図である。横軸は、光送信機10cにおけるスキューの真値を示す。縦軸は、真値からの誤差の100回平均値を示す。
図16は、スキューの真値と標準偏差との関係の第2例を示す図である。横軸は、光送信機10cにおけるスキューの真値を示す。縦軸は、標準偏差の100回平均値を示す。
以上のように、第3実施形態の既知パタン挿入部11cは、変調対象信号の同相成分及び直交位相成分に同一の既知パタン情報を挿入してもよい。これによって、第3実施形態の光伝送システム1cは、レーンごとに適応フィルタを用いて伝達関数を推定することが不要となるので、回路実装性を向上させることが可能となる。
(第4実施形態)
第4実施形態では、既知パタン挿入部の構成と送信機スキュー推定部の構成とが、第3実施形態と相違する。第4実施形態では、第3実施形態との相違点についてのみ説明する。
図17は、光伝送システム1dの構成の例を示す図である。光伝送システム1dは、光信号を伝送するシステムである。光伝送システム1dは、光送信機10dと、光ファイバ20と、光増幅機21と、光受信機30dと、通信回線40とを備える。光送信機10dは、既知パタン挿入部11d−X及び11d−Yと、送信パタン生成部12と、送信機スキュー補償部15と、偏波多重IQ変調部14とを備える。以下、既知パタン挿入部11d−X及び11d−Yに共通する事項については、符号の一部を省略して、「既知パタン挿入部11d」と表記する。
図18は、既知パタン挿入部11dの構成の例を示す図である。既知パタン挿入部11d−Xは、レーン同期用パタン付加部111−XIと、レーン同期用パタン付加部111−XQと、スキュー推定用パタン生成部113−Xと、基準周波数信号生成部114−Xとを備える。既知パタン挿入部11d−Yは、レーン同期用パタン付加部111−YIと、レーン同期用パタン付加部111−YQと、スキュー推定用パタン生成部113−Yと、基準周波数信号生成部114−Yとを備える。
基準周波数信号生成部114−Xは、正弦波信号(既知パタン情報)を生成する。基準周波数信号生成部114−Xは、正弦波信号をスキュー推定用パタン生成部113−Xに送信する。スキュー推定用パタン生成部113−Xは、同一の正弦波信号を、レーン同期用パタン付加部111−XI及びレーン同期用パタン付加部111−XQに送信する。スキュー推定用パタン情報は、例えば、正弦波の信号系列を表すパタン情報である。
基準周波数信号生成部114−Yは、正弦波信号(既知パタン情報)を生成する。基準周波数信号生成部114−Yは、正弦波信号をスキュー推定用パタン生成部113−Yに送信する。スキュー推定用パタン生成部113−Yは、同一の正弦波信号を、レーン同期用パタン付加部111−YI及びレーン同期用パタン付加部111−YQに送信する。
図19は、送信機スキュー推定部36dの構成の例を示す図である。送信機スキュー推定部36d−Xは、既知パタン同期部360−XIと、既知パタン同期部360−XQと、位相比較部362−X1と、位相比較部362−X2と、乗算部363−Xと、減算部364−Xと、乗算部365−Xと、加算部366−Xと、乗算部368−X1と、乗算部368−X2と、乗算部368−X3と、乗算部368−X4と、積分部369−X1と、積分部369−X2と、積分部369−X3と、積分部369−X4と、加算部370−Xとを備える。図19では、送信機スキュー推定部36d−Yは、送信機スキュー推定部36d−Xと同様の構成を有する。
既知パタン同期部360−XIは、A/D変換後のデジタル信号を、デジタル信号処理部33から取得する。既知パタン同期部360−XIは、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XIは、例えば、相互相関又はインパルス応答に基づいて、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XIは、XQレーンと同期したサンプル位置を表す情報を、減算部364−Xに送信する。
既知パタン同期部360−XIは、フレームデータが送信されたレーンとフレームデータが受信されたレーンとが入れ替わっているか否かを、レーン同期用パタン情報に基づいて判定する。すなわち、既知パタン同期部360−XIは、取得したデジタル信号がXIレーンのフレームデータであるかXQレーンのフレームデータであるかを判定する。
既知パタン同期部360−XIは、取得したデジタル信号がXIレーンのフレームデータである場合、XQレーンと同期させたスキュー推定用パタン情報を、乗算部368−X1及び乗算部368−X3に送信する。既知パタン同期部360−XIは、取得したデジタル信号がXQレーンのフレームデータである場合、XIレーンと同期させたスキュー推定用パタン情報を、乗算部368−X2及び乗算部368−X4に送信する。
既知パタン同期部360−XQは、A/D変換後のデジタル信号を、デジタル信号処理部33から取得する。既知パタン同期部360−XQは、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XQは、例えば、相互相関又はインパルス応答に基づいて、レーン同期用パタン情報をデジタル信号から抽出する。既知パタン同期部360−XQは、XIレーンと同期したサンプル位置を表す情報を、減算部364−Xに送信する。
既知パタン同期部360−XQは、フレームデータが送信されたレーンとフレームデータが受信されたレーンとが入れ替わっているか否かを、レーン同期用パタン情報に基づいて判定する。すなわち、既知パタン同期部360−XQは、取得したデジタル信号がXIレーンのフレームデータであるかXQレーンのフレームデータであるかを判定する。
既知パタン同期部360−XQは、取得したデジタル信号がXQレーンのフレームデータである場合、XIレーンと同期させたスキュー推定用パタン情報を、乗算部368−X2及び乗算部368−X4に送信する。既知パタン同期部360−XQは、取得したデジタル信号がXIレーンのフレームデータである場合、XQレーンと同期させたスキュー推定用パタン情報を、乗算部368−X1及び乗算部368−X3に送信する。
乗算部368−X1は、スキュー推定用パタン情報に、(基準周波数±f)を持つ複素指数関数を乗算する。複素指数関数は、例えば、Exp(−i2πft)である。乗算部368−X1は、乗算結果を積分部369−X1に送信する。乗算部368−X2は、スキュー推定用パタン情報に、(基準周波数±f)を持つ複素指数関数を乗算する。乗算部368−X2は、乗算結果を積分部369−X2に送信する。乗算部368−X3は、スキュー推定用パタン情報に、(基準周波数±f)を持つ複素指数関数を乗算する。乗算部368−X3は、乗算結果を積分部369−X3に送信する。乗算部368−X4は、スキュー推定用パタン情報に、(基準周波数±f)を持つ複素指数関数を乗算する。乗算部368−X4は、乗算結果を積分部369−X4に送信する。
積分部369−X1(基準周波数抽出部)は、乗算部368−X1による乗算結果を積分する。これによって、積分部369−X1は、(基準周波数±f)の周波数成分を、スキュー推定用パタン情報から抽出することができる。積分部369−X1は、(基準周波数±f)の周波数成分を、位相比較部362−X1に送信する。
積分部369−X2(基準周波数抽出部)は、乗算部368−X2による乗算結果を積分する。これによって、積分部369−X2は、(基準周波数±f)の周波数成分を、スキュー推定用パタン情報から抽出することができる。積分部369−X2は、(基準周波数±f)の周波数成分を、位相比較部362−X1に送信する。
積分部369−X3(基準周波数抽出部)は、乗算部368−X3による乗算結果を積分する。これによって、積分部369−X3は、(基準周波数±f)の周波数成分を、スキュー推定用パタン情報から抽出することができる。積分部369−X3は、(基準周波数±f)の周波数成分を、位相比較部362−X2に送信する。
積分部369−X4(基準周波数抽出部)は、乗算部368−X4による乗算結果を積分する。これによって、積分部369−X4は、(基準周波数±f)の周波数成分を、スキュー推定用パタン情報から抽出することができる。積分部369−X4は、(基準周波数±f)の周波数成分を、位相比較部362−X2に送信する。
位相比較部362−X1は、積分部369−X1が抽出した周波数成分を、積分部369−X1から取得する。位相比較部362−X1は、積分部369−X2が抽出した周波数成分を、積分部369−X2から取得する。
位相比較部362−X1は、積分部369−X1によって抽出された周波数成分を、積分部369−X1から取得する。位相比較部362−X1は、積分部369−X2によって抽出された周波数成分を、積分部369−X2から取得する。位相比較部362−X1は、抽出された周波数成分同士の位相差Δθを、サンプリングの周波数fごとに算出する。
位相比較部362−X2は、積分部369−X3によって抽出された周波数成分を、積分部369−X2から取得する。位相比較部362−X3は、積分部369−X4によって抽出された周波数成分を、積分部369−X4から取得する。位相比較部362−X2は、抽出された周波数成分同士の位相差Δθを、サンプリングの周波数fごとに算出する。
減算部370−Xは、位相比較部362−X1によって算出された位相差Δθと、位相比較部362−X2によって算出された位相差Δθとの差分を算出する。位相差Δθの差分が算出されることによって、スキューの推定値は、1サンプルよりも細かい粒度で算出可能である。
図20、図21、図22及び図23に、第4実施形態におけるスキューの推定値のシミュレーション結果を示す。変調方式は32GBaudのDP−QPSKである。光送信機10bのレーザの線幅は100kHzである。周波数オフセットは100MHzである。伝送路におけるOSNRは20dBである。
図20は、周波数と位相差との関係の第3例を示す図である。横軸は、サンプリングの周波数を示す。縦軸は、位相比較部362の出力として、IレーンとQレーンとの位相差を示す。図20では、異なる周波数における位相差を結ぶ直線は、式(1)に示す傾きを表す。光送信機10dが8ps(真値)のスキューを光信号に付加した場合、スキューの推定値は7.89psである。
図21は、スキューの真値とスキューの推定値との関係の第3例を示す図である。横軸は、光送信機10cにおけるスキューの真値(ps)を示す。縦軸は、スキューの推定値の100回平均値を示す。
図22は、スキューの真値と真値からの誤差との関係の第3例を示す図である。横軸は、光送信機10cにおけるスキューの真値を示す。縦軸は、真値からの誤差の100回平均値を示す。
図23は、スキューの真値と標準偏差との関係の第3例を示す図である。横軸は、光送信機10cにおけるスキューの真値を示す。縦軸は、標準偏差の100回平均値を示す。
以上のように、第4実施形態の既知パタン情報は、正弦波の信号系列を表すパタン情報でもよい。送信機スキュー推定部36dは、正弦波の信号系列に基づいて同相成分及び直交位相成分ごとに光送信機10dの伝達関数の位相差を推定してもよい。
これによって、第4実施形態の光伝送システム1dは、フィッティング処理が不要となるので、回路実装性を向上させることが可能となる。第4実施形態の光伝送システム1dは、フーリエ変換部が不要となるので、回路実装性を向上させることが可能となる。第4実施形態の光伝送システム1dは、(基準周波数±f)にピークが存在するので、スキューの推定値の算出に使用される信号の信号対雑音電力比(SN比)を向上させることが可能となる。
上述した実施形態における光伝送システム、光送信機及び光受信機の少なくとも一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1a〜1d…光伝送システム、10a〜10d…光送信機、11a〜11d…既知パターン挿入部、12…送信パタン生成部、13…送信機伝達関数補償部、14…偏波多重IQ変調部、15…送信機スキュー補償部、20…光ファイバ、21…光増幅機、30a〜30d…光受信機、31…レーザモジュール、32…光コヒーレント受信部、33…デジタル信号処理部、34…送信機伝達関数推定部、35…受信データ復調部、36b〜36d…送信機スキュー推定部、40…通信回線、110…ランダム系列パタン生成部、111…レーン同期用パタン付加部、112…ランダム信号生成部、113…スキュー推定用パタン生成部、114…基準周波数信号生成部、140…ドライバアンプ、141…レーザモジュール、142…ベクトル変調器、360…既知パタン同期部、361…伝達関数推定部、362…位相比較部、363…乗算部、364…減算部、365…乗算部、366…加算部、367…フーリエ変換部、368…乗算部、369…積分部、370…減算部

Claims (7)

  1. 予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、
    前記変調対象信号の同相成分及び直交位相成分の間における遅延時間差を前記遅延時間差の推定値に基づいて補償するスキュー補償部と、
    前記変調対象信号を変調して光信号を生成する変調部と
    を有する光送信機と、
    前記光信号から抽出された前記既知パタン情報に基づいて記同相成分及び前記直交位相成分の間の伝達関数の位相差を推定するスキュー推定部と、
    前記位相差に応じた前記遅延時間差の推定値を前記スキュー補償部に送信する送信部と
    を有する光受信機と
    を備える光伝送システム。
  2. 予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、
    前記変調対象信号の同相成分及び直交位相成分の間における遅延時間差を前記遅延時間差の推定値に基づいて補償するスキュー補償部と、
    前記変調対象信号を変調して光信号を生成する変調部と
    を有する光送信機と、
    前記光信号から抽出された前記既知パタン情報に基づいて記同相成分及び前記直交位相成分の間の前記変調対象信号の周波数成分の位相差を推定するスキュー推定部と、
    前記位相差に応じた前記遅延時間差の推定値を前記スキュー補償部に送信する送信部と
    を有する光受信機と
    を備える光伝送システム。
  3. 前記既知パタン情報は、ランダムな信号系列を表すパタン情報であ、請求項1又は請求項2に記載の光伝送システム。
  4. 前記既知パタン情報は、正弦波の信号系列を表すパタン情報であ、請求項1又は請求項2に記載の光伝送システム。
  5. 前記挿入部は、前記変調対象信号の前記同相成分及び前記直交位相成分に同一の前記既知パタン情報を挿入する、請求項1から請求項4のいずれか一項に記載の光伝送システム。
  6. 前記スキュー補償部は、複数の前記遅延時間差の推定値に基づいて前記遅延時間差を補償する、請求項1から請求項のいずれか一項に記載の光伝送システム。
  7. 予め定められた既知パタン情報を変調対象信号に挿入する挿入部と、
    前記変調対象信号の同相成分及び直交位相成分の間における遅延時間差を伝達関数に基づいて補償する伝達関数補償部と、
    前記変調対象信号を変調して光信号を生成する変調部と
    を有する光送信機と、
    前記光信号から抽出された前記既知パタン情報に基づいて前記伝達関数を前記同相成分及び直交位相成分ごとに推定する伝達関数推定部と、
    前記伝達関数を前記伝達関数補償部に送信する送信部と
    を有する光受信機と
    を備える光伝送システム。
JP2016060588A 2016-03-24 2016-03-24 光伝送システム Active JP6077696B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016060588A JP6077696B1 (ja) 2016-03-24 2016-03-24 光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016060588A JP6077696B1 (ja) 2016-03-24 2016-03-24 光伝送システム

Publications (2)

Publication Number Publication Date
JP6077696B1 true JP6077696B1 (ja) 2017-02-08
JP2017175441A JP2017175441A (ja) 2017-09-28

Family

ID=57981610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016060588A Active JP6077696B1 (ja) 2016-03-24 2016-03-24 光伝送システム

Country Status (1)

Country Link
JP (1) JP6077696B1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168061A1 (ja) 2017-03-14 2018-09-20 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP6428881B1 (ja) * 2017-09-05 2018-11-28 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
JP2019009654A (ja) * 2017-06-26 2019-01-17 富士通株式会社 光受信装置、光送信装置、光通信システム、およびスキュー調整方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4351039A1 (en) * 2021-06-02 2024-04-10 Nippon Telegraph And Telephone Corporation Optical signal control device, optical signal control method, and optical signal transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522508A (ja) * 2003-04-03 2006-09-28 ノーテル・ネットワークス・リミテッド 光通信システムにおける非線形効果の電気的領域補償
JP2008288790A (ja) * 2007-05-16 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> 光伝送方法および送信器
JP2012222733A (ja) * 2011-04-13 2012-11-12 Fujitsu Ltd スキュー低減方法および光伝送システム
WO2014126132A1 (ja) * 2013-02-13 2014-08-21 日本電信電話株式会社 光伝送システム、位相補償方法、及び光受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522508A (ja) * 2003-04-03 2006-09-28 ノーテル・ネットワークス・リミテッド 光通信システムにおける非線形効果の電気的領域補償
JP2008288790A (ja) * 2007-05-16 2008-11-27 Nippon Telegr & Teleph Corp <Ntt> 光伝送方法および送信器
JP2012222733A (ja) * 2011-04-13 2012-11-12 Fujitsu Ltd スキュー低減方法および光伝送システム
WO2014126132A1 (ja) * 2013-02-13 2014-08-21 日本電信電話株式会社 光伝送システム、位相補償方法、及び光受信装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168061A1 (ja) 2017-03-14 2018-09-20 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
US10637569B2 (en) 2017-03-14 2020-04-28 Ntt Electronics Corporation Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system
JP2019009654A (ja) * 2017-06-26 2019-01-17 富士通株式会社 光受信装置、光送信装置、光通信システム、およびスキュー調整方法
JP6428881B1 (ja) * 2017-09-05 2018-11-28 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
WO2019049616A1 (ja) * 2017-09-05 2019-03-14 Nttエレクトロニクス株式会社 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム

Also Published As

Publication number Publication date
JP2017175441A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
US10637569B2 (en) Optical transmission characteristic estimation method, optical transmission characteristic compensation method, optical transmission characteristic estimation system and optical transmission characteristic compensation system
US9647767B2 (en) Estimation and compensation of local oscillator frequency offset and chromatic dispersion using pilot tones in spectral-shaping subcarrier modulation
EP3202056B1 (en) All-optical silicon-photonic constellation conversion of amplitude-phase modulation formats
JP6077696B1 (ja) 光伝送システム
EP2613452B1 (en) Digital filter device, digital filtering method, and control program for digital filter device
Gao et al. Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection
JP6673881B2 (ja) 光伝送特性補償システム及び光伝送特性補償方法
US10938500B2 (en) Methods and apparatus for dual polarisation optical communication
Nguyen et al. Efficient chromatic dispersion compensation and carrier phase tracking for optical fiber FBMC/OQAM systems
EP3367594B1 (en) Coherent light-receiving device
US20170338895A1 (en) Digital signal processor, digital optical receiver using the same, and digital signal processing method
Conroy et al. Demonstration of 40 GBaud intradyne transmission through worst-case atmospheric turbulence conditions for geostationary satellite uplink
JP6693922B2 (ja) 光伝送特性補償システム及び光伝送特性補償方法
Liu et al. Signal power distribution based modulation format identification for coherent optical receivers
CN108076002B (zh) 偏置漂移补偿装置、接收信号恢复装置以及接收机
WO2019049616A1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
Tao et al. Volterra series based blind equalization for nonlinear distortions in short reach optical CAP system
Kottke et al. Coherent UDWDM PON with joint subcarrier reception at OLT
US10819443B2 (en) Optical communications system and optical frequency control method
Fàbrega et al. Constant envelope coherent optical OFDM based on fast Hartley transform
Cui et al. Simple and robust symbol rate estimation method for digital coherent optical receivers
JP7415200B2 (ja) コヒーレント光受信装置およびコヒーレント光受信方法
Nordin et al. Coherent Optical Communication Systems in Digital Signal Processing
Liu Cognitive Transceivers and Systems for Next Generation Photonic Networks
Pinto et al. Real-time digital signal processing for coherent optical systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170112

R150 Certificate of patent or registration of utility model

Ref document number: 6077696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150