WO2018164479A1 - 구리 나노입자 및 이의 제조방법 - Google Patents

구리 나노입자 및 이의 제조방법 Download PDF

Info

Publication number
WO2018164479A1
WO2018164479A1 PCT/KR2018/002708 KR2018002708W WO2018164479A1 WO 2018164479 A1 WO2018164479 A1 WO 2018164479A1 KR 2018002708 W KR2018002708 W KR 2018002708W WO 2018164479 A1 WO2018164479 A1 WO 2018164479A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
formula
nanoparticles
copper nanoparticles
compound
Prior art date
Application number
PCT/KR2018/002708
Other languages
English (en)
French (fr)
Inventor
김성웅
이규형
김예지
박종호
이승용
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170029985A external-priority patent/KR101935273B1/ko
Priority claimed from KR1020180016493A external-priority patent/KR20190055678A/ko
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to US16/612,318 priority Critical patent/US11643568B2/en
Publication of WO2018164479A1 publication Critical patent/WO2018164479A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to copper nanoparticles and a method for manufacturing the same, and more particularly, to a low-temperature sinterable copper particle material prepared by using an electronide and an organocopper compound and a method for manufacturing the same.
  • Electronide is a new concept of material in which electrons exist as interstitial electrons in an empty space inside a crystal, not around an atomic nucleus, and directly determine the functionality of a material regardless of constituent elements and structural factors.
  • E-cargo can be used as an electron-emitting material with low work function, and can be used as a magnetic material (light magnetic material, magnetic heat material, etc.) due to high magnetic entropy change, and widely used as a catalyst material due to high electron transfer efficiency It can be a substance.
  • the electronics are divided into organic and inorganic electronics, and the developed organic electronics are unstable at room temperature and thus cannot be applied as an electronic material.
  • the inorganic electronics stable at room temperature are C12A7 developed in 2003, that is, 12CaO ⁇ 7A l2 O. 3 is representative, and recently, a Japanese patent company developed and applied for a nitride electronic cargo (AE3N) at Tokyo Institute of Technology (JP 2014-024712, JP 2012-166325). In Korea, the Korea Ceramic Institute of Technology has filed a patent for C12A7 (KR 2013-0040232, etc.), but no inorganic electronic cargo containing other components has been reported.
  • metal nanoparticles having a diameter of 100 nm or less exhibit different properties from bulk metals in various physical properties (thermal, magnetic, and electrical), their application to various technical fields is expected. For example, there is a research to manufacture an electronic circuit composed of metal fine wiring on a substrate by making a fine wiring printing ink from metal nanoparticles using the characteristics that the surface area increases and the melting point decreases as the particles become smaller. .
  • Silver nanoparticles are mainly used as the fine wiring ink material.
  • silver nanoparticles have a disadvantage in that silver in the fine wiring is easily oxidized to cause migration phenomenon.
  • Gold is suitable due to its low migration, but it is expensive in terms of price. Therefore, as a metal used for ink for fine wiring printing, migration phenomenon is less likely to occur than silver, and copper, which is relatively inexpensive, attracts attention.
  • Bulk copper which is used as an existing metal wire, is easy to oxidize, which may lower conductivity and have a high firing temperature.
  • copper nanoparticles are expected to have a lower sintering temperature than bulk copper and can be formed as a material capable of forming metal fine wiring on a substrate such as paper or plastic, which is weak to heat.
  • copper nanoparticles are easier to aggregate than other metal nanoparticles and have various particle sizes, it is difficult to synthesize uniform copper nanoparticles having a particle diameter of 10 nm or less which is particularly useful as an ink material.
  • hydrazine was successfully used to homogeneously synthesize copper nanoparticles of 10 nm or less.
  • hydrazine is known to be extremely toxic by eroding the skin, mucous membranes, enzymes, respiratory organs and the like.
  • a process for producing copper nanoparticles that is not harmful to the environment and has a uniform dispersion has not been presented.
  • the protection method of copper nanoparticles that are easily oxidized includes the use of organic amines, but it has to be stored at a low temperature (less than 10 degrees), thereby limiting in terms of simplicity and convenience of transportation.
  • the copper nanoparticles used in the low-temperature sinterable conductive copper ink material are (1) nanoparticles having an average particle diameter of 10 nm or less with a significant melting point drop, (2) a protective agent for copper particles can be easily removed, ( 3) No harmful substances in the process, (4) Oxidation of copper nanoparticles is inhibited, (5) Inexpensive in terms of industrialization, (6) Copper nanoparticles can be protected at room temperature The requirements must be met.
  • the present inventors studied the reducing power of an electron cargo having a high electron concentration and a low work function, and the metal copper having an average diameter of about 5 nm from the reduction reaction on the surface of the electron cargo through heat treatment of the divalent organocopper compound Nanoparticles have been developed. In addition, it was found that the oxidation of copper is prevented from the electrons of the electronized material, so that it can be stored at room temperature.
  • an object of the present invention is to provide a copper nanoparticles prepared using the electronide material as a reducing agent and a method of manufacturing the same.
  • the inventors of the present invention while studying the reducing power of carbide-based electron carbide having a high electron concentration and low work function, the size of about 10 nm from the reduction reaction on the surface of the carbide-based electron carbide through the heat treatment of the divalent organic copper compound The metal copper nanoparticles having were developed. In addition, it was found that the oxidation of copper is prevented from the electron of the electronized material, so that it can be stored at room temperature.
  • an object of the present invention is to provide a copper nano-particles prepared using the carbide-based electronic material, a method for manufacturing the same, and a conductive ink using the synthesized copper nano-particles.
  • the present invention provides a reducing agent for reducing an organic copper compound to nanocopper particles, including one or two or more of the carriers represented by the following formulas (1) to (4):
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • the electronide may be bulk, single crystal or thin film
  • the organic copper compound may be any one selected from the group consisting of Cu (CH 2 COO) 2 , CuCl 2 , Cu (NO 3) 2, and CuSO 4 .
  • the present invention provides a method for producing copper nanoparticles by reducing an organocopper compound using one or two or more converted compounds represented by Formulas 1 to 4 below:
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • the electronide may be bulk, single crystal or thin film
  • the organic copper compound may be any one selected from the group consisting of Cu (CH 2 COO) 2 , CuCl 2 , Cu (NO 3) 2, and CuSO 4 .
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • It provides a method of producing a copper nanoparticles by the reduction of the organic copper compound, comprising; a second step of heat-treating the mixture.
  • the form of the electronide may be bulk, single crystal or thin film.
  • the organic copper compound may be any one selected from the group consisting of Cu (CH 2 COO) 2 , CuCl 2 , Cu (NO 3) 2, and CuSO 4 , but is not limited thereto.
  • the organic copper compound and the electronic compound represented by Chemical Formula 1 may be mixed with each other, but may be mixed with a nonpolar solvent.
  • the nonpolar solvent may include, but is not limited to, a chain-based alkane or a ring-based alkane.
  • Non-polar solvents are used to homogeneously distribute the organocopper compound on the surface of the electronide.
  • the heat treatment may be heat treatment in a vacuum atmosphere, it is preferable to heat treatment for 10 hours to 30 hours at a temperature of 100 to 200 °C.
  • Nano copper particles may be prepared by mixing the above-mentioned electronic materials, organocopper compounds, and nonpolar solvents (heptane, hexane, pentane, etc.) and reducing them in a vacuum atmosphere at about 150 ° C.
  • a third step of removing the electronics by using water or an alcohol solvent and selectively separating only the nano-copper particles from the surface of the electronics is a third step of removing the electronics by using water or an alcohol solvent and selectively separating only the nano-copper particles from the surface of the electronics.
  • the copper particle separation may be performed by ultrasonication in a non-polar solvent to selectively separate the copper particles
  • the non-polar organic solvent used in the ultrasonic treatment may include a chain-based alkanes (Alkane) or a ring-based alkanes (Alkane). However, it is not limited to this.
  • the present invention provides a copper nanoparticles prepared using the reducing agent according to the present invention.
  • the copper nanoparticles may have a round shape with a diameter of 1 to 10 nm.
  • the present invention provides a protector for oxidation prevention comprising the copper nanoparticles according to the present invention.
  • the present invention provides a conductive copper ink containing the copper nanoparticles according to the present invention.
  • the copper nanoparticles of the present invention have an average particle diameter of about 5 nm, the melting point is remarkably low, the sintering temperature is low, and metal fine wiring can be formed on a substrate such as paper or plastic, which is weak to heat.
  • the copper nanoparticles of the present invention are stably protected by receiving electrons from an electronide, and thus have an effect of preventing oxidation.
  • the electronide which functions as a protective material can be easily removed and used with water or an alcohol-based organic solvent, it can be preferably used as a copper nanoparticle ink material.
  • the metal copper nanoparticles prepared by the present invention are produced by being dispersed from the manufacturing process, the metal copper nanoparticles can be formed at a lower temperature because the metal copper nanoparticles are excellent in dispersibility and have a size of about 5 nm.
  • the hydrazine which is a hazardous substance, is not used in the manufacturing process of the present invention, it can greatly contribute to environmental aspects and safety of the process.
  • the simple manufacturing process is expected to contribute significantly to the cost reduction aspect.
  • the copper nanoparticle protection effect of the present invention is stable at room temperature, movement and storage can be made stable.
  • FIG. 1 shows SEM images of nano copper particles prepared on the surface of Ca 2 N, showing that they are well prepared without aggregation of particles.
  • Figure 2 is a BFSTEM image of the nano-copper particles prepared on the surface of Ca 2 N showing that the size of the nano-copper particles evenly produced in the average diameter of about 5 nm.
  • Figure 3 proves that the particles prepared on the surface of the copper TEM-EDS analysis of the nano-copper particles prepared on the surface of Ca 2 N.
  • Fig. 4 shows copper nanoparticles which are prevented from oxidation by the electron transfer capability of Ca 2 N, and proves that they are zero-valent copper metals by EELS spectrum.
  • Figure 5 shows several tens of nm copper nanoparticles prepared by the heat treatment method control.
  • Figure 6 shows several hundred nm copper nanoparticles prepared by controlling the heat treatment method.
  • FIG. 8 is an HRTEM photograph of copper particles (Example 1) having an average diameter of about 10 nm synthesized using a carbide-based electron carbide (Y 2 C).
  • Figure 1 shows that the interatomic spacing is 0.21 nm, a state in which copper is not oxidized (copper oxide interatomic distance: 0.25 nm).
  • Example 9 is a SEM photograph of the nanoparticles (Example 1, Example 2) synthesized on the Y 2 C and the Gd 2 C electronics.
  • FIG. 10 shows that the particles prepared on the surface are copper by TEM-EDS analysis of the nanocopper particles (Example 2) prepared on the surface of Gd 2 C.
  • FIG. 10 shows that the particles prepared on the surface are copper by TEM-EDS analysis of the nanocopper particles (Example 2) prepared on the surface of Gd 2 C.
  • FIG. 11 is a STEM image of nanocopper particles (Example 2) prepared on the surface of Gd 2 C.
  • FIG. Copper nanoparticles whose oxidation is prevented by the electron transfer ability of Gd 2 C have been demonstrated to be zero valent copper metals by EELS spectrum.
  • the present invention provides a reducing agent for reducing an organocopper compound to nanocopper particles, comprising one or two or more tetrahydrates represented by Formulas 1 to 4 below:
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • the form of the electronics may be bulk, single crystal or thin film, and the bulk electronic material may be a sintered material prepared by single crystal or sintering.
  • the electronide contains high density interlayer electrons and exhibits a great effect as a reducing agent due to its low work function.
  • the organic copper compound may be any one selected from the group consisting of Cu (CH 2 COO) 2 , CuCl 2 , Cu (NO 3) 2, and CuSO 4 .
  • the present invention provides a method for producing copper nanoparticles by reducing an organocopper compound using one or two or more converted compounds represented by Formulas 1 to 4 below:
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • the electronide comprises a high density localized electron layer and exhibits a great effect as a reducing agent by its low work function properties.
  • the electronic material used to fabricate the nanocopper particles may be powder or bulk.
  • the bulk electronic material may be a sintered material prepared by single crystal or sintering.
  • glass copper compound (Cu (CH 2 COO) 2 ), CuCl 2 , Cu (NO 3 ) 2 , CuSO 4, etc. may be used, but is not limited thereto.
  • the organocopper compound and the electronide are mixed, the organocopper compound is mixed with the electronide so that 1-30 wt% of Cu is added based on the mass of the electronide. If the amount of copper is less than the above range it is difficult to obtain because the nano-copper particles are not produced sufficiently, if it exceeds the above range it is not preferable because the organic copper is not decomposed.
  • (c) separating the raw material obtained in (b) from the electronic cargo; the method for producing copper nanoparticles, or a method for reducing the organic copper-based compound using the electronic cargo To provide.
  • M 2 C M: Y, Gd, Tb, Dy, or Ho
  • Hf 2 Z (Z: S or Se);
  • a third step of removing the electronide support using water or an alcohol solvent and selectively separating only the nano copper particles from the surface of the electronide may be further included.
  • the first step is to mix each raw material for the production of a homogeneous mixture of the organic copper and the electronics before the heat treatment process.
  • the form of the electronide may be bulk, single crystal or thin film.
  • the organic copper compound may be any one selected from the group consisting of Cu (CH 2 COO) 2 , CuCl 2 , Cu (NO 3) 2, and CuSO 4 , but is not limited thereto.
  • the organocopper compound and the electronic compound represented by Chemical Formula 1 may be mixed by themselves, but are preferably mixed with a nonpolar solvent.
  • Nonpolar solvents are used to more homogeneously distribute the organocopper compound, which is a precursor, to the surface of the electronics.
  • the nonpolar solvent may include, but is not limited to, a chain-based alkane or a ring-based alkane.
  • Non-polar solvents are used to homogeneously distribute the organocopper compound on the surface of the electronide.
  • the organic copper compound and the electronic compound represented by Chemical Formula 1 are preferably mixed with the nonpolar solvent and evenly mixed until all of the nonpolar solvent evaporates.
  • the organic copper may be used in an amount of 2.5 wt% to 10 wt% in terms of the weight of the electronized product, and when less than 2.5 wt% is used, it is difficult to obtain copper nanoparticles, and when the organic copper exceeds 10 wt%, organic copper remains. There is.
  • a nonpolar organic solvent it is preferable to add a nonpolar organic solvent to the said mixture, and it is preferable to use the thing containing a chain-based alkane (Alkane) or a ring-based alkane (Alkane) as said nonpolar organic solvent.
  • Alkane chain-based alkane
  • Alkane ring-based alkane
  • the electroless and organic copper compound raw material is added to a nonpolar solvent, a nonpolar organic solvent is added thereto, and the mixture is evenly mixed in one direction until all of the solvent evaporates.
  • the second step is a step of producing nanoparticles by reducing the divalent copper combined with the organic copper compound to the metal copper by heat treatment in a vacuum atmosphere using the reducing ability of the electron.
  • the heat treatment is preferably a heat treatment for 10 hours to 30 hours at a temperature of 100 to 200 °C, more preferably 12 to 24 hours at a temperature of about 150 °C. If the heat treatment time is less than the above range, there is a problem that the organocopper compound does not decompose well, and if the heat treatment time is exceeded, it may promote oxidation of the electronide.
  • the heat treatment temperature is 150 °C is optimal, there is a problem of residual organic copper at a temperature of less than 100 °C, the evaporation of M 3 N 2 at a high temperature of 200 °C or more Decomposition to the phase is not suitable for production.
  • the copper nanoparticles are put into a silica tube connected to a pump facility which can continuously draw a vacuum during the heat treatment of the mixture of the raw materials prepared in the first step, and then go through the heat treatment process. Particles were prepared.
  • the nano-copper particles prepared on the surface of the electronide of Formula 1 can be adjusted to a size of several nm to several hundred nm in diameter according to the heat treatment conditions.
  • the third step is a step of separating the copper nanoparticles prepared by using the reducing ability of the electronide from the electronide.
  • the heat treatment may be further subjected to the step of separating the copper nanoparticles.
  • the mixture heat-treated in the second step is sonicated in a non-polar solvent to selectively separate copper particles, or electrons using alcohol or water to separate nanocopper particles on the surface of the electron cargo. Can dissolve and selectively separate nanocopper particles.
  • the nano-copper particles on the surface of the prepared e- cargo can be used to dissolve the e- cargo using the alcohol or water to the e- cargo, only the nano-copper particles can be selectively separated.
  • the present invention provides a copper nanoparticles prepared using the reducing agent according to the present invention.
  • the copper nanoparticles can be adjusted to a size of several nm to several hundred nm in diameter according to heat treatment conditions, and particularly preferably have a round shape with a diameter of 1 to 10 nm.
  • the present invention provides a conductive copper ink containing the copper nanoparticles according to the present invention.
  • the copper nanoparticles may be usefully used as a conductive copper ink material having a small particle size and high dispersibility.
  • the prepared raw material can be seen that copper nanoparticles were formed in a well dispersed form on the surface of Ca 2 N.
  • BFSTEM Bright-Field Scanning TEM
  • the previously reported method utilizes a powerful reducing agent called hydrazine to produce nanocopper particles and uses amines as its protective layer.
  • the size of the copper nanoparticles decreases, the size of the surface area to volume increases, which tends to be easily oxidized.
  • the nanocopper particles developed in the present invention are not easily oxidized because they are protected by an electronide support having an excellent electron providing ability and reactivity and having an advantage of a competitive reaction in an oxidation reaction.
  • copper identified by TEM-EELS was a zero-valent metal, and oxidation was prevented by the electron cargo.
  • the prepared raw material can be seen that the copper nanoparticles are well synthesized in an even size as can be seen in the SEM image shown in FIG.
  • the prepared raw material can be seen that the copper nanoparticles are well synthesized in an even size as can be seen in the SEM image shown in FIG.
  • TEM measurements were performed using a Si TEM grid dispersed in heptane. As can be seen in the STEM image shown in FIG. 11, it can be seen that copper nanoparticles were well prepared on the surface in an evenly rounded shape with an average diameter of 10-20 nm.
  • TEM-EDS analysis of FIG. 10 demonstrates that the nanoparticles formed on the surface of Gd 2 C are copper nanoparticles.
  • the previously reported method utilizes a powerful reducing agent called hydrazine to produce nanocopper particles and uses amines as its protective layer.
  • the nanocopper particles developed in the present invention are not easily oxidized because they are protected by an electron cargo support having an excellent electron providing ability and reactivity and having an advantage of a competitive reaction in an oxidation reaction.
  • the copper identified by TEM-EELS was a zero-valent metal, and oxidation was prevented by the electron cargo.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 전자화물과 유기구리화합물을 이용하여 제조한 저온 소결 가능한 구리입자 물질 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 입자 크기가 작고 분산성이 높아 전도성 구리잉크 재료로서 유용하게 사용될 수 있 구리 나노입자, 및 전자화물을 환원제로 사용하여 유기구리화합물을 환원시켜 상기 구리 나노입자를 제조하는 방법에 관한 것이다. 본 발명은 구리의 산화가 억제되고, 평균 입자 직경이 5 nm 내외로, 융점의 강하를 일으킬 수 있으며, 분산성이 높고, 간단한 초음파처리 공정으로서 전자화물을 제거할 수 있어, 전도성 구리 나노 잉크 재료에 적합하게 사용할 수 있는 구리 나노입자를 제공하며, 제조된 구리나노 입자는 입자 크기가 작고 분산성이 높은 산화방지 보호체 또는 전도성 구리잉크 재료로서의 유용하게 사용될 수 있다.

Description

구리 나노입자 및 이의 제조방법
본 발명은 구리 나노입자 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 전자화물과 유기구리화합물을 이용하여 제조한 저온 소결 가능한 구리입자 물질 및 그 제조 방법에 관한 것이다.
기존 소재의 전자와는 전혀 다른 상태의 전자를 포함하는 전자화물(Electride)에 대한 관심이 높아지고 있다. 전자화물은 전자가 원자핵 주위가 아닌 결정 내부의 빈 공간에 격자간 전자(Interstitial Electrons)로 존재하면서 구성 원소 및 구조적 요인에 상관없이 소재의 기능성을 직접 결정하는 역할을 하는 신개념의 물질이다.
전자화물은 낮은 일함수를 가져 전자방출소재로 활용 가능하고, 높은 자기 엔트로피 변화량으로 인해 자성소재(경자성 소재, 자기열 소재 등)로 활용 가능하며, 높은 전자전달 효율로 인해 촉매 소재로 널리 활용될 수 있는 물질이다.
전자화물은 유기와 무기 전자화물로 나눠지며 현재 개발된 유기 전자화물은 실온에서 불안정해 전자소재로 응용이 불가능한 상황이며, 실온에서 안정한 무기 전자화물은 2003년 개발된 C12A7 즉, 12CaO·7Al2O3이 대표적이며, 최근 일본 동경공대에서 질화물 전자화물(AE3N)을 개발하여 특허출원한 바 있다(JP 2014-024712, JP 2012-166325). 국내에서는 한국세라믹기술원에서 C12A7에 대하여 특허출원한 바 있으나(KR 2013-0040232 등), 아직까지 타 성분을 포함하는 무기 전자화물에 대해서는 보고된 바 없다.
또한, 전자화물은 기존 화학양론적 소재의 개념과는 전혀 다른 결정 내부의 특정 공간에 전자가 존재하는 특성의 소재로 구현 가능한 조성에 대한 설계 및 합성이 어렵고, 물성이 구성 원소 및 구조적 특성에 따라서 민감하게 변하여 그 기능적 특성을 예측하는 것에도 기술적인 제약이 있어 최근까지 연구 사례는 매우 드문 상황이다.
직경이 100 nm 이하의 크기를 가지는 금속 나노입자는 여러 가지 물성 (열, 자기, 전기)에서 벌크 금속과는 다른 성질을 나타내기 때문에, 다양한 기술 분야에의 응용이 기대된다. 그 예로, 입자가 작아 질수록 표면적이 증가하고 융점의 저하가 발생하는 특성을 이용하여 금속 나노입자로 미세 배선 인쇄잉크를 제작하여, 기판 상에 금속 미세 배선으로 구성된 전자 회로를 제작하는 연구가 있다.
미세 배선 잉크 재료로는 주로 은나노 입자가 이용되고 있으나, 은나노 입자를 이용하면 미세 배선 중의 은이 산화되어 마이그레이션 현상이 발생하기 쉽다는 단점이 있다. 금은 마이그레이션 현상이 적어 적합하지만, 가격 측면에서 비싸다는 문제가 있다. 따라서 미세 배선 인쇄용 잉크에 사용되는 금속으로는 은 보다 마이그레이션 현상 발생이 어렵고, 비교적 저비용인 구리가 주목 받고 있다.
기존 금속 배선으로 사용되는 벌크 구리는 산화되기 쉬워 전도성이 저하될 수 있고 소성온도가 높은 것 등의 결점이 있다. 이에 대해 구리 나노 입자는 벌크 구리보다 소결 온도가 낮고, 열에 약한 종이나 플라스틱 등의 기판 상에 금속 미세 배선을 형성할 수 있는 재료로서 기대되고 있다.
그러나 구리 나노입자는 다른 금속 나노입자에 비해 응집하기 쉽고 다양한 입자의 크기를 갖기 때문에 잉크 재료로서, 특히 유용한 입자 직경이 10 nm이하의 균일한 구리 나노입자의 합성은 곤란하다.
최근 히드라진을 이용하여 10 nm 이하의 구리 나노 입자를 균질하게 합성하는데 성공하였다. 그러나 히드라진은 피부, 점막, 효소제, 호흡기 등을 크게 침식하여 극히 유독한 물질로 알려져 있다. 환경에 유해하지 않으며 균일한 분산을 가지는 구리 나노입자 제조 공정은 제시되지 않았다.
또한, 평균 입자 직경이 10 nm 이하의 구리 나노입자는 표면적이 크고 쉽게 산화되는 것으로 알려져 있다. 기존의 발명된 대부분의 나노입자 제조 특허는 구리 나노 입자가 산화되지 않는다는 것을 나타내지 않고 있다.
쉽게 산화되는 구리 나노입자의 보호 방법으로는 유기 아민의 사용 등이 있었으나 저온(10도 미만)에서 저장하여야 하여, 간편성 및 운송의 편리성 측면에서서 한계가 있었다.
이상의 관점에서 저온 소결 가능한 전도성 구리 잉크 재료에 사용되는 구리 나노 입자는 (1) 융점 강하가 현저한 평균 입자 직경 10 nm 이하의 나노 입자인 것, (2) 구리입자의 보호제가 쉽게 제거 가능한 것, (3) 공정에서 유해 물질이 없는 것, (4) 구리 나노입자의 산화가 억제되어 있는 것, (5) 산업화를 위한 비용 측면에서 저렴한 것, (6) 구리 나노입자를 상온에서 보호할 수 있을 것 등의 요건을 갖추어야 한다.
그러한 이러한 요구사항을 충족하는 구리 나노 입자 및 개발공정은 아직 제시되고 있지 않다.
본 발명자들은 높은 전자농도와 낮은 일함수를 가지는 전자화물의 환원력을 연구하던 중, 2가 유기구리화합물의 열처리를 통한 전자화물의 표면에서의 환원반응으로부터 평균 직경 5 nm 내외의 크기를 가지는 금속 구리 나노입자를 개발하였다. 또한, 전자화물의 전자로부터 구리의 산화를 막아 상온 보관이 가능함을 밝혔다.
따라서 본 발명은 상기 전자화물 물질을 환원제로 이용하여 제조한 구리 나노 입자 및 그 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명자들은 높은 전자농도와 낮은 일함수를 가지는 탄화물계 전자화물의 환원력을 연구하던 중, 2가 유기구리화합물의 열처리를 통한 탄화물계 전자화물의 표면에서의 환원반응으로부터 10 nm 내외의 크기를 가지는 금속 구리 나노입자를 개발하였다. 또한 전자화물의 전자로부터 구리의 산화를 막아 상온 보관이 가능함을 밝였다.
따라서 본 발명은 상기 탄화물계 전자화물 물질을 이용해 제조한 구리 나노 입자 및 그 제조방법, 그리고 합성된 구리나노 입자를 이용한 전도성잉크를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 포함하는, 유기구리화합물을 나노구리 입자로 환원시키기 위한 환원제를 제공한다:
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3).
여기서, 상기 전자화물은 벌크, 단결정 또는 박막일 수 있으며, 상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나일 수 있다.
또한, 본 발명은 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 사용하여, 유기구리화합물을 환원시켜 구리 나노입자를 제조하는 방법을 제공한다:
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3).
여기서, 상기 전자화물은 벌크, 단결정 또는 박막일 수 있으며, 상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나일 수 있다.
또한, 본 발명은
유기구리화합물 및 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 혼합한 혼합물을 제조하는 제 1 단계,
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3);
상기 혼합물을 열처리하는 제 2 단계;를 포함하는, 유기구리화합물의 환원에 의한 구리 나노입자의 제조방법을 제공한다.
여기서, 상기 전자화물의 형태는 벌크, 단결정 또는 박막일 수 있다.
상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나가 사용될 수 있으나, 여기에 한정되는 것은 아니다.
상기 제1 단계에서 유기구리화합물 및 상기 화학식 1로 표현되는 전자화물은 그 자체를 섞어 줄 수도 있으나, 비극성 용매와 함께 혼합할 수 있다.
상기 비극성 용매는 사슬계 알칸(Alkane) 또는 고리계 알칸(Alkane)을 포함할 수 있으나, 여기에 한정되는 것은 아니다. 비극성 용매는 전자화물의 표면에 유기구리화합물을 균질하게 분포시키기 위하여 사용된다.
상기 제 2 단계에서, 열처리는 진공분위기에서 열처리할 수 있고, 100 내지 200℃의 온도에서 10시간 내지 30시간 동안 열처리하는 것이 바람직하다.
상기 전자화물, 유기구리화합물 및 비극성용매(heptane, hexane, pentane 등)를 이용하여 혼합시킨 뒤, 150℃ 내외의 저온의 진공 분위기에서 환원시켜 나노 구리입자를 제조할 수 있다.
상기 열처리 후, 물 또는 알코올계 용매를 사용하여 전자화물을 제거하고, 전자화물 표면으로부터 나노 구리입자만을 선택적으로 분리하는 제 3 단계를 더 포함할 수 있다.
상기 구리입자 분리는 비극성 용매 내에서 초음파 처리하여 선택적으로 구리입자를 분리할 수 있고, 상기 초음파 처리시에 사용되는 비극성 유기용매는 사슬계 알칸(Alkane) 또는 고리계 알칸(Alkane)을 포함할 수 있으나, 여기에 한정되는 것은 아니다.
또한, 본 발명은 상기 본 발명에 따른 환원제를 이용하여 제조된 구리 나노입자를 제공한다.
상기 구리 나노입자는 직경 1 내지 10 nm의 크기로 둥근 형태를 가질 수 있다.
또한, 본 발명은 상기 본 발명에 따른 구리 나노입자를 포함하는 산화방지를 위한 보호체를 제공한다.
아울러, 본 발명은 상기 본 발명에 따른 구리 나노입자를 포함하는 전도성 구리잉크를 제공한다.
본 발명의 구리 나노입자는 평균입자 직경이 5 nm 내외이기 때문에, 융점 저하가 현저하고, 소결 온도가 낮아, 열에 약한 종이나 플라스틱 등의 기판 상에 금속 미세 배선을 형성할 수 있다.
또한, 본 발명의 구리 나노입자는 전자화물로부터 전자를 제공받아 안정하게 보호되고 있어 산화를 막는 효과가 있다. 또한, 이런 보호물질 작용을 하는 전자화물은 물이나 알코올계 유기 용매로 쉽게 제거 후 사용할 수 있기 때문에 구리 나노입자 잉크 재료로서 바람직하게 사용할 수 있다.
또한, 본 발명에 의해 제조된 금속 구리 나노입자는 제조 공정에서부터 분산되어 제조되기 때문에, 분산성이 뛰어나며 크기가 5 nm 내외이기 때문에 더욱 저온에서 금속 미세 배선을 형성하는 것이 가능하다.
또한, 본 발명의 제조공정에는 유해 물질인 히드라진 등을 사용하지 않기 때문에 환경적 측면 및 공정의 안전성 측면에도 크게 기여 가능하다. 또한, 제조공정이 간단하기 때문에 비용절감 측면에도 크게 기여할 수 있을 것으로 기대된다.
또한, 본 발명의 구리 나노입자 보호 효과는 상온에서 안정하기 때문에 이동 및 보관이 안정적으로 이루어질 수 있다.
도 1은 Ca2N의 표면에 제조된 나노 구리입자의 SEM 이미지로서 입자의 뭉침현상 없이 잘 제조됨을 보여준다.
도 2는 Ca2N의 표면에 제조된 나노 구리입자의 BFSTEM 이미지로서 나노 구리입자의 크기가 평균 직경 5 nm 내외로 고르게 제조되었음을 보여준다.
도 3은 Ca2N의 표면에 제조된 나노 구리입자의 TEM-EDS분석으로 표면에 제조된 입자가 구리임을 증명한다.
도 4는 Ca2N의 전자전달 능력에 의해 산화 방지되고 있는 구리 나노입자로, EELS 스펙트럼에 의해 0가의 구리 금속임을 증명하고 있다.
도 5는 열처리 방법 조절에 의해 제조된 수십 nm 구리 나노입자를 보여주고 있다.
도 6은 열처리 방법 조절에 의해 제조된 수백 nm 구리 나노입자를 보여주고 있다.
도 7은 히드라진을 이용해 제조한 구리 나노입자의 TEM 이미지이다.
도 8은 탄화물계 전자화물(Y2C)을 이용하여 합성한 평균직경 10 nm 내외의 구리입자(실시예 1)의 HRTEM 사진이다. 도 1에서는 원자간 간격이 0.21nm로 구리가 산화되지 않은 금속 상태임을 보여준다(구리 산화물 원자간 거리 : 0.25nm).
도 9는 Y2C 전자화물과 Gd2C 전자화물 위에 합성된 나노입자(실시예 1, 실시예 2)의 SEM 사진이다.
도 10은 Gd2C의 표면에 제조된 나노구리 입자(실시예2)의 TEM-EDS분석으로 표면에 제조된 입자가 구리임을 증명한다.
도 11은 Gd2C의 표면에 제조된 나노구리 입자(실시예2)의 STEM 이미지이다. Gd2C의 전자전달 능력에 의해 산화가 방지되고 있는 구리나노입자로, EELS 스펙트럼에 의해 0가의 구리 금속임을 증명하고 있다.
도 12는 저온소결을 하여도 전구체 유기구리가 완전히 분해되었음을 XRD측정을 통하여 확인하였다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되는 실시예를 참조하면 명확해질 것이다.
그러나 본 발명은 이하에서 개시되는 실시예로 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다.
본 명세서에서 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
따라서, 몇몇 실시예에서, 잘 알려진 구성 요소, 잘 알려진 동작 및 잘 알려진 기술들은 본 발명이 모호하게 해석되는 것을 피하기 위하여 구체적 설명이 생략될 수 있다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함하며, '포함(또는, 구비)한다'로 언급된 구성 요소 및 동작은 하나 이상의 다른 구성요소 및 동작의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 공통적 으로 이해될 수 있는 의미로 사용될 수 있을 것이다.
이하, 본 발명을 상세하게 설명한다.
본 발명은 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 포함하는, 유기구리화합물을 나노구리 입자로 환원시키기 위한 환원제를 제공한다:
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3).
상기 전자화물의 형태는 벌크, 단결정 또는 박막일 수 있으며, 상기 벌크상 전자화물 물질은 단결정 또는 소결에 의하여 제조되는 소결물일 수 있다.
상기 전자화물은 고밀도의 층간 전자를 포함하고, 낮은 일함수 특성에 의해 환원제로서 큰 효과를 발현한다.
상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나일 수 있다.
또한, 본 발명은 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 사용하여, 유기구리화합물을 환원시켜 구리 나노입자를 제조하는 방법을 제공한다:
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3).
상기 전자화물은 고밀도의 국소화된 전자층을 포함하고, 낮은 일함수 특성에 의해 환원제로서 큰 효과를 발현한다. 유기구리의 양과 열처리 조건을 조절하여, 직경 5 nm 내외의 균일한 구리 나노입자를 제조할 수 있다.
상기 나노구리 입자 제작에 사용한 전자화물 물질은 분말 또는 벌크상일 수 있다. 상기 벌크상 전자화물 물질은 단결정 또는 소결에 의하여 제조되는 소결물일 수 있다.
유리구리 화합물로는 (Cu(CH2COO)2), CuCl2, Cu(NO3)2, CuSO4 등이 사용될 수 있으나, 여기에 한정되는 것은 아니다.
유기구리 화합물과 전자화물의 혼합시, 전자화물 질량 기준으로 1~30wt%의 Cu가 첨가되도록 유기구리화합물을 전자화물과 혼합한다. 구리의 양이 위 범위에 미달할 경우 나노 구리 입자를 충분히 생성되지 않아 수득이 어렵고, 위 범위를 초과할 경우 유기구리가 분해되지 않아 바람직하지 못하다.
또한, 본 발명은
(a) 전구체 물질(유기구리계 화합물)을 비극성 용매와 함께 혼합하여 혼합물을 제조하는 단계; 및
(b)진공분위기의 열처리에서 유기구리계 화합물을 환원시켜 구리 나노입자를 제조하는 단계;을 포함하고,
선택적으로, (c) 상기 (b)에서 얻어진 원료를 전자화물로부터 분리해내는 단계;를 더 포함할 수 있는, 구리 나노입자의 제조방법, 또는 전자화물을 이용하여 유기구리계 화합물을 환원시키는 방법을 제공한다.
구체적으로, 상기 제조방법은
유기구리화합물 및 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 혼합한 혼합물을 제조하는 제 1 단계,
<화학식 1>
M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
<화학식 2>
X2N (X: Ca, Sr, 또는 Ba);
<화학식 3>
Hf2Z (Z: S 또는 Se);
<화학식 4>
C12A7(12CaOㆍ7Al2O3);
상기 혼합물을 진공분위기에서 열처리하는 제 2 단계;를 포함할 수 있다.
또한, 추가적으로 상기 열처리 후, 물 또는 알코올계 용매를 사용하여 전자화물 지지체를 제거하고, 전자화물 표면으로부터 나노 구리입자만을 선택적으로 분리하는 제 3 단계를 더 포함할 수 있다.
상기 제조방법에 있어서, 제 1단계는 열처리 공정 이전에 유기구리와 전자화물의 균질한 혼합물 제조를 위한 각 원료 물질을 혼합하는 단계이다.
상기 제1 단계에서, 상기 전자화물의 형태는 벌크, 단결정 또는 박막일 수 있다.
또한, 상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나가 사용될 수 있으나, 여기에 한정되는 것은 아니다.
상기 유기구리화합물 및 상기 화학식 1로 표현되는 전자화물은 그 자체를 섞어서 혼합할 수 있으나, 비극성 용매와 함께 혼합하는 것이 바람직하다. 비극성 용매는 전자화물의 표면에 전구체인 유기구리화합물을 보다 균질하게 분포시키기 위하여 사용된다.
상기 비극성 용매는 사슬계 알칸(Alkane) 또는 고리계 알칸(Alkane)을 포함할 수 있으나, 여기에 한정되는 것은 아니다. 비극성 용매는 전자화물의 표면에 유기구리화합물을 균질하게 분포시키기 위하여 사용된다.
상기 유기구리화합물 및 상기 화학식 1로 표현되는 전자화물은 비극성 용매와 함께 혼합시킨 후 비극성 용매가 모두 증발할 때까지 골고루 섞어 주는 것이 바람직하다.
상기 유기구리는 전자화물 대비 무게비로 2.5 wt% 내지 10 wt%까지 사용할 수 있으며, 2.5 wt% 보다 적게 넣는 경우에는 구리 나노입자를 얻기 힘들며, 10 wt%를 초과하는 경우에는 유기구리가 잔류하는 문제가 있다.
상기 혼합물은 무극성 유기용매를 첨가하는 것이 바람직하고, 상기 무극성 유기용매로는 사슬계 알칸(Alkane) 또는 고리계 알칸(Alkane)을 포함하는 것을 사용하는 것이 바람직하다.
상기 무극성 용매의 적정사용량은 300 mg의 전자화물을 사용하였을 때, 3 내지 7 ml가 적정량으로 권장되며, 이때 3 ml 보다 적게 사용할 경우 발화의 위험이 있으며, 7 ml 보다 과량사용 시 골고루 섞이지 않는 문제점이 있다.
본 발명의 일 구현예에서, 무극성 용매에 전자화물 및 유기구리 화합물 원료를 유발에 넣고 무극성 유기 용매를 넣은 다음, 용매가 모두 증발할 때까지 한 방향으로 골고루 섞어 주었다.
상기 제조방법에 있어서, 상기 제 2단계는 진공분위기에서 열처리를 하여 전자화물의 환원 능력을 이용하여 유기구리 화합물에 화합된 2가의 구리를 금속구리로 환원하여 나노입자를 제작하는 단계이다.
구체적으로, 제1 단계에서 제조한 원료물질의 혼합물을 열처리 하는 동안 계속해서 진공을 뽑아 줄 수 있는 펌프설비가 연결된 silica tube에넣고 열처리 공정을 걸쳐 구리 나노입자를 제조한다.
상기 열처리는 100 내지 200℃의 온도에서 10시간 내지 30시간 동안 열처리하는 것이 바람직하고, 150℃ 내외의 온도에서 12시간 내지 24시간 동안 열처리하는 것이 더욱 바람직하다. 열처리 시간이 상기 범위에 미달할 경우 유기구리 화합물이 잘 분해되지 않아 잔류하는 문제가 있으며, 상기 범위를 초과할 경우 전자화물의 산화를 촉진할 수 있으므로 바람직하지 못하다.
상기 열처리 온도는 150℃가 최적이며, 100℃ 미만의 온도에서는 유기 구리의 잔류 문제가 있으며, 200℃ 이상의 고온에서는 전자화물이 M3N2 상으로 분해되어 제조에 적합하지 못하다.
상기 열처리는 진공 분위기에서 진행하는 것이 바람직하다.
본 발명의 일 구현예에서, 상기 제 1단계에서 제조한 원료물질의 혼합물을 열처리하는 동안 계속해서 진공을 뽑아 줄 수 있는 펌프설비가 연결된 실라카 튜브(silica tube)에 넣고 열처리 공정을 걸쳐 구리 나노입자를 제조하였다.
여기서, 유기구리의 양과 열처리 조건을 조절하여, 직경 5nm 내외의 균일한 구리 나노입자를 제조할 수 있다.
본 발명의 일 구현예에서, 상기 화학식 1의 전자화물의 표면에서 제조한 나노구리 입자는 열처리 조건 조절에 따라 직경 수 nm 내지 수백 nm의 크기로 조절이 가능함을 확인하였다.
상기 제조방법에 있어서, 상기 제 3단계는 전자화물의 환원능력을 이용하여 제조된 구리나노입자를 전자화물로부터 분리하는 단계이다.
상기 열처리 후 구리 나노입자를 분리하는 단계를 더 거칠 수 있다. 예를 들어, 상기 제 2 단계에서 열처리된 혼합물을 비극성 용매 내에서 초음파 처리하여 선택적으로 구리입자를 분리하거나, 전자화물의 표면에 있는 나노구리입자를 분리하기 위해 알코올류 또는 물을 이용하여 전자화물을 녹여내고 나노구리 입자만을 선택적으로 분리할 수 있다.
본 발명의 일 구현예에서, 제조한 전자화물의 표면에 있는 나노구리입자를 전자화물을 알코올류 또는 물을 이용하여 전자화물을 녹여내고, 나노구리 입자만을 선택적으로 분리할 수 있었다.
또한, 본 발명은 상기 본 발명에 따른 환원제를 이용하여 제조된 구리 나노입자를 제공한다.
상기 구리 나노입자는 열처리 조건 조절에 따라 직경 수 nm 내지 수백 nm의 크기로 조절이 가능하며, 특히 직경 1 내지 10 nm의 크기로 고르게 둥근 형태를 가지는 것이 바람직하다.
아울러, 본 발명은 상기 본 발명에 따른 구리 나노입자를 포함하는 전도성 구리잉크를 제공한다.
상기 구리 나노입자는 입자 크기가 작고 분산성이 높아 전도성 구리잉크 재료로서 유용하게 사용될 수 있다.
이하, 본 발명을 실시예 및 비교예를 이용하여 보다 상세히 설명한다.
<실시예 1> Ca2N의 전자화물을 이용하여 제조한 나노구리 입자 및 TEM, SEM 분석
아세트산 구리(Copper acetate) 43 mg와 헵탄(Heptane) 5 ml Ca2N 300 mg 을 잘 섞어 열처리를 위한 혼합물을 만든다. 잘 갈아서 섞은 유기 구리와 전자화물의 화합물을 파우더상으로 실리카 튜브(silica tube)에넣고 진공관을 연결한다. 그 후 150℃의 진공 분위기에서 12시간 동안 열분해 시킨다.
제조된 원료는 [도 1]에 나타낸 SEM 이미지에서 확인할 수 있듯이 Ca2N의 표면에서 구리 나노입자가 고르게 잘 분산된 형태로 형성되었음을 알 수 있다.
Ca2N의 표면에 합성된 나노 구리 입자의 정밀한 분석을 위하여 헵탄(heptane)에 분산시켜 Si TEM 그리드를 이용하여 TEM(transmission electron microscope) 측정을 실시하였다.
[도 2]에 나타낸 BFSTEM(Bright-Field Scanning TEM) 이미지에서 알 수 있듯이, 평균 직경 5 nm의 크기로 고르게 둥근 형태로 표면에서 구리 나노입자가 잘 제조되었음을 알 수 있다. [도 3]의 TEM-EDS 분석은 Ca2N의 표면에 형성된 나노입자가 구리 나노입자임을 증명한다.
<비교예 1> 히드라진을 이용한 나노구리 입자 제조
기존에 보고된 방법은 히드라진이라는 강력한 환원제를 이용하여, 나노구리 입자를 제조하고, 아민을 그 보호층으로 사용하였다.
[도 7]에 보이는 것처럼 고른 나노구리 입자가 제조되었으나, 제조공정에서 인체에 침투 가능하여 매우 유해한 히드라진을 사용하였으며, 보관하는 데는 아민을 사용하였다. 아민류는 물과 만나 쉽게 염을 형성하고, 친수성이 강한 물질이므로 장기 보관시에는 아민류에 수분이 함유되어 산화될 우려가 있으며, 염이 침전될 우려가 있다.
<실시예 2> Ca2N의 표면에서 산화 방지성 평가
구리 나노입자의 사이즈가 작아질수록 부피 대비 표면적의 크기가 커져, 쉽게 산화되는 경향을 가지고 있다.
그러나 본 발명에서 개발한 나노구리 입자는 전자 제공능력과, 반응성이 뛰어나 산화반응에서의 경쟁 반응의 우위를 가진 전자화물 지지체에 의해 보호받아 쉽게 산화되지 않는다.
[도 4]에서 확인할 수 있듯이 TEM-EELS로 확인한 구리는 0가의 금속으로 전자화물에 의해 산화가 방지되고 있었다.
<실시예 3> Y2C의 전자화물을 이용하여 제조한 나노구리 입자 및 TEM, SEM 분석
Copper acetate와 Y2C를 갈아서 혼합함 후 파우더상으로 silica tube에넣고 진공관을 연결한다. 그 후 150oC의 진공 분위기에서 12시간 동안 열분해 시킨다. Copper acetate와 Y2C의 혼합시, Y2C 500mg과 Y2C 기준 10wt%의 Cu를포함하도록 Copper acetate를 혼합하였다.
제조된 원료는 [도 9]에 나타낸 SEM 이미지에서 확인할 수 있듯이 구리 나노입자가 고른 크기로 잘 합성되었음을 알 수 있다.
Y2C의 표면에 합성된 나노구리 입자의 정밀한 분석을 위하여 heptane에 분산시켜 Si TEM 그리드를 이용하여 TEM 측정을 실시하였다. [도 8]에 나타낸 HRTEM 이미지에서 알 수 있듯이, 평균직경 10nm의 크기로 고르게 둥근 형태로 표면에서 구리 나노입자가 잘 제조되었음을 알 수 있다.
<실시예 4> Gd2C의 전자화물을 이용하여 제조한 나노구리 입자 및 TEM, SEM 분석
Copper acetate와 Gd2C를 갈아서 혼합함 후 파우더상으로 silica tube에넣고 진공관을 연결한다. 그 후 150oC의 진공 분위기에서 12시간 동안 열분해 시킨다. Copper acetate와 Gd2C의 혼합시, Gd2C 500mg과 Gd2C 기준 10wt%의 Cu를포함하도록 Copper acetate를 혼합하였다.
제조된 원료는 [도 9]에 나타낸 SEM 이미지에서 확인할 수 있듯이 구리 나노입자가 고른 크기로 잘 합성되었음을 알 수 있다.
Gd2C의 표면에 합성된 나노구리 입자의 정밀한 분석을 위하여 heptane에 분산시켜 Si TEM 그리드를 이용하여 TEM 측정을 실시하였다. [도 11]에 나타낸 STEM 이미지에서 알 수 있듯이, 평균직경 10-20nm의 크기로 고르게 둥근 형태로 표면에서 구리 나노입자가 잘 제조되었음을 알 수 있다. [도 10]의 TEM-EDS 분석은 Gd2C의 표면에 형성된 나노입자가 구리 나노입자임을 증명한다.
<비교예 2> 히드라진을 이용한 나노구리 입자 제조
기존에 보고된 방법은 히드라진이라는 강력한 환원제를 이용하여, 나노구리 입자를 제조하고, 아민을 그 보호층으로 사용하였다.
[도 7]에 보이는 것처럼 고른 나노구리 입자가 제조되었으나, 제조공정에서 인체에 침투가능하여 매우 유해한 히드라진을 사용하였으며, 보관하는 데는 아민을 사용하였다. 아민류는 물과 만나 쉽게 염을 형성하고, 친수성이 강한 물질이므로 장기 보관시에는 아민류에 수분이 함유되어 산화될 우려가 있으며, 염이 침전될 우려가 있다.
<실시예 5> Gd2C의 표면에서 산화방지성 평가
구리나노입자의 사이즈가 작아질수록 부피 대비 표면적의 크기가 커져, 쉽게 산화 되는 경향을 가지고 있다. 그러나 본 발명에서 개발한 나노구리 입자는 전자 제공능력과, 반응성이 뛰어나 산화반응에서의 경쟁 반응의 우위를 가진 전자화물 지지체에 의해 보호받아 쉽게 산화 되지 않는다.
[도 11]에서 확인할 수 있듯이 TEM-EELS로 확인한 구리는 0가의 금속으로 전자화물에 의해 산화가 방지되고 있었다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (15)

  1. 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 포함하는, 유기구리화합물을 나노구리 입자로 환원시키기 위한 환원제:
    <화학식 1>
    M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
    <화학식 2>
    X2N (X: Ca, Sr, 또는 Ba);
    <화학식 3>
    Hf2Z (Z: S 또는 Se);
    <화학식 4>
    C12A7(12CaOㆍ7Al2O3).
  2. 제 1항에 있어서,
    상기 전자화물의 형태는 벌크, 단결정 또는 박막인 것을 특징으로 하는 환원제.
  3. 제 1항에 있어서,
    상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 환원제.
  4. 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 사용하여, 유기구리화합물을 환원시켜 구리 나노입자를 제조하는 방법:
    <화학식 1>
    M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
    <화학식 2>
    X2N (X: Ca, Sr, 또는 Ba);
    <화학식 3>
    Hf2Z (Z: S 또는 Se);
    <화학식 4>
    C12A7(12CaOㆍ7Al2O3).
  5. 제 4항에 있어서,
    상기 전자화물의 형태는 벌크, 단결정 또는 박막인 것을 특징으로 하는 구리 나노입자를 제조하는 방법.
  6. 제 4항에 있어서,
    상기 유기구리화합물은 Cu(CH2COO)2, CuCl2, Cu(NO3)2 및 CuSO4로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 구리 나노입자를 제조하는 방법.
  7. 유기구리화합물 및 하기 화학식 1 내지 4로 표시되는 하나 또는 둘 이상의 전화화물을 혼합한 혼합물을 제조하는 제 1 단계,
    <화학식 1>
    M2C (M: Y, Gd, Tb, Dy, 또는 Ho);
    <화학식 2>
    X2N (X: Ca, Sr, 또는 Ba);
    <화학식 3>
    Hf2Z (Z: S 또는 Se);
    <화학식 4>
    C12A7(12CaOㆍ7Al2O3);
    상기 혼합물을 열처리하는 제 2 단계;를 포함하는,
    유기구리화합물의 환원에 의한 구리 나노입자의 제조방법.
  8. 제 7항에 있어서,
    상기 제 1 단계에서, 혼합물은 무극성 유기용매를 첨가하는 것을 특징으로 하는 유기구리화합물의 환원에 의한 구리 나노입자의 제조방법.
  9. 제 8항에 있어서,
    상기 무극성 유기용매는 사슬계 알칸(Alkane) 또는 고리계 알칸(Alkane)을 포함하는 것을 특징으로 하는 유기구리화합물의 환원에 의한 구리 나노입자의 제조방법.
  10. 제 7항에 있어서,
    상기 제 2 단계에서, 열처리는 100 내지 200℃의 온도에서 10시간 내지 30시간 동안 열처리하는 것을 특징으로 하는 유기구리화합물의 환원에 의한 구리 나노입자의 제조방법.
  11. 제 7항에 있어서,
    상기 열처리 후, 물 또는 알코올계 용매를 사용하여 전자화물을 제거하고, 전자화물 표면으로부터 나노 구리입자만을 선택적으로 분리하는 단계를 더 포함하는 것을 특징으로 하는 유기구리화합물의 환원에 의한 구리 나노입자의 제조방법.
  12. 제4항 내지 제11항 중 어느 한 항의 제조방법에 의해 제조된 구리 나노입자.
  13. 제 12항에 있어서,
    상기 구리 나노입자는 직경 1 내지 10 nm의 크기로 둥근 형태를 가지는 것을 특징으로 하는 구리 나노입자.
  14. 제 12항에 따른 구리 나노입자를 포함하는 산화방지를 위한 보호체.
  15. 제 12항에 따른 구리 나노입자를 포함하는 전도성 구리잉크.
PCT/KR2018/002708 2017-03-09 2018-03-07 구리 나노입자 및 이의 제조방법 WO2018164479A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/612,318 US11643568B2 (en) 2017-03-09 2018-03-07 Copper nanoparticle and preparation method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020170029985A KR101935273B1 (ko) 2017-03-09 2017-03-09 구리 나노입자 및 이의 제조방법
KR10-2017-0029985 2017-03-09
KR20170152657 2017-11-15
KR10-2017-0152657 2017-11-15
KR1020180016493A KR20190055678A (ko) 2017-11-15 2018-02-09 탄화물계 전자화물과 유기구리화합물을 이용한 구리 나노입자 합성 및 전도성 잉크 제조
KR10-2018-0016493 2018-02-09

Publications (1)

Publication Number Publication Date
WO2018164479A1 true WO2018164479A1 (ko) 2018-09-13

Family

ID=63447787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002708 WO2018164479A1 (ko) 2017-03-09 2018-03-07 구리 나노입자 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2018164479A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814295B1 (ko) * 2006-10-10 2008-03-18 삼성전기주식회사 구리 나노입자의 제조방법 및 그에 의해 제조된 구리나노입자
KR20090032839A (ko) * 2007-09-28 2009-04-01 삼성전기주식회사 구리계 나노입자의 제조방법
JP2011074476A (ja) * 2009-10-01 2011-04-14 Furukawa Electric Co Ltd:The 銅微粒子の製造方法
KR20160126989A (ko) * 2014-02-27 2016-11-02 어 스쿨 코포레이션 칸사이 유니버시티 구리 나노 입자 및 그 제조 방법, 구리 나노 입자 분산액, 구리 나노 잉크, 구리 나노 입자의 저장 방법 및 구리 나노 입자의 소결 방법
US20160361712A1 (en) * 2014-02-27 2016-12-15 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814295B1 (ko) * 2006-10-10 2008-03-18 삼성전기주식회사 구리 나노입자의 제조방법 및 그에 의해 제조된 구리나노입자
KR20090032839A (ko) * 2007-09-28 2009-04-01 삼성전기주식회사 구리계 나노입자의 제조방법
JP2011074476A (ja) * 2009-10-01 2011-04-14 Furukawa Electric Co Ltd:The 銅微粒子の製造方法
KR20160126989A (ko) * 2014-02-27 2016-11-02 어 스쿨 코포레이션 칸사이 유니버시티 구리 나노 입자 및 그 제조 방법, 구리 나노 입자 분산액, 구리 나노 잉크, 구리 나노 입자의 저장 방법 및 구리 나노 입자의 소결 방법
US20160361712A1 (en) * 2014-02-27 2016-12-15 Japan Science And Technology Agency Supported metal catalyst and method of synthesizing ammonia using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ET AL.: "Computer-assisted Inverse Design of Inorganic Electrides", PHYSICAL REIVIEW X, vol. 7, no. 1, 14 February 2017 (2017-02-14), pages 1 - 11, XP055557866 *

Similar Documents

Publication Publication Date Title
WO2017065340A1 (ko) 2차원 하이브리드 복합체 제조 방법
WO2021177551A1 (ko) 표면작용기 제어를 통한 맥신의 산화안정성 향상 방법
WO2015003508A1 (zh) 高绝缘碳化硅/氮化硼陶瓷材料及其制备方法
WO2018212414A1 (ko) 탄화규소 분말 및 그 제조방법
WO2018143611A1 (ko) 대면적 금속 칼코겐 박막의 제조방법 및 이에 의해 제조된 금속 칼코겐 박막을 포함하는 전자소자의 제조방법
WO2016024658A1 (ko) 탄소나노물질을 포함하는 상전이 복합체 및 이의 제조방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2018164479A1 (ko) 구리 나노입자 및 이의 제조방법
WO2016114546A1 (ko) 전기선 폭발법 및 광소결을 통한 하이브리드 금속 패턴의 제조방법 및 이로부터 제조된 하이브리드 금속 패턴
WO2017018599A1 (ko) 탄화규소 분말, 탄화규소 소결체, 탄화규소 슬러리 및 이의 제조방법
WO2017073956A1 (ko) 광소결용 잉크조성물 및 이의 제조방법
WO2020122684A1 (ko) 마그네시아 및 그 제조 방법, 및 고열전도성 마그네시아 조성물, 이를 이용한 마그네시아 세라믹스
WO2016099155A1 (ko) 열전 파우더 및 이를 이용하여 제조된 열전 재료
WO2015034318A1 (ko) 열전 재료
WO2016053004A1 (ko) 산화 몰리브덴의 복합체 및 이의 제조방법
WO2020076138A1 (ko) 복합 코팅액, 이를 이용하여 제조된 금속 기판 구조체, 및 그 제조 방법
WO2017179805A1 (ko) 아크릴산의 제조방법
WO2014175519A1 (ko) 잉크젯 프린팅용 세라믹 잉크 조성물 및 그 제조방법
WO2022169073A1 (ko) 이방성 희토류 벌크자석의 제조방법 및 이로부터 제조된 이방성 희토류 벌크자석
WO2019225976A1 (ko) 절연성, 분산성 및 저항성이 향상된 안료 입자
WO2018034422A1 (ko) 진공척용 복합체 및 그 제조방법
WO2015034321A1 (ko) 열전 재료 제조 방법
WO2022065836A1 (ko) 건·습식 그래핀 플레이크 조성물의 제조방법 및 이에 따라 제조된 그래핀 플레이크 조성물
WO2023277350A1 (ko) 탄소나노튜브 분산액의 제조 방법
WO2014077602A1 (ko) 고체 히드라진 유도체를 이용한 환원 그래핀 옥사이드 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763299

Country of ref document: EP

Kind code of ref document: A1