WO2018164343A1 - 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치 - Google Patents

식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치 Download PDF

Info

Publication number
WO2018164343A1
WO2018164343A1 PCT/KR2017/013232 KR2017013232W WO2018164343A1 WO 2018164343 A1 WO2018164343 A1 WO 2018164343A1 KR 2017013232 W KR2017013232 W KR 2017013232W WO 2018164343 A1 WO2018164343 A1 WO 2018164343A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
chamber
food
processing apparatus
sample
Prior art date
Application number
PCT/KR2017/013232
Other languages
English (en)
French (fr)
Inventor
최성길
김아나
이교연
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2018164343A1 publication Critical patent/WO2018164343A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/001Packaging other articles presenting special problems of foodstuffs, combined with their conservation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/14Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
    • A23B7/144Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23B7/148Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere, e.g. partial vacuum, comprising only CO2, N2, O2 or H2O
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
    • B65B31/025Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas specially adapted for rigid or semi-rigid containers

Definitions

  • the present invention relates to a vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of food, and more particularly, to form a vacuum inside the chamber when processing fruits and the like, and oxygen is blocked by introducing nitrogen.
  • Antioxidants are a generic term for antioxidants, and they are starting to attract attention as they know that free radicals are involved in various diseases.
  • Foods include polyphenols, vitamin C, vitamin E and ⁇ -carotene. Foods contain a variety of substances, such as fruits that have antioxidant functions. One of them is a polyphenol compound which is a substance having two or more hydroxyl groups. Vitamin C, vitamin E, and ⁇ -carotene have antioxidant properties and are called antioxidant vitamins.
  • phenolic compounds known as antioxidants.
  • phenolic compounds bind with oxygen in the air and are easily oxidized, and a significant amount of phenolic compounds are denatured during processing of the fruit.
  • the phenolic component is easily oxidized as the surface area is increased.
  • This phenomenon is the most important quality deterioration factor in the raw material and various food processing, it is very important to suppress it.
  • Conventional fruit vegetable processing methods for preventing such browning include a method of using a browning inhibitor such as vitamin C during processing, a method of inhibiting oxidation by replacing oxygen with nitrogen injection, and immersing in salt water or sugar water when cooking. How to use or store.
  • a browning inhibitor such as vitamin C during processing
  • a method of inhibiting oxidation by replacing oxygen with nitrogen injection and immersing in salt water or sugar water when cooking. How to use or store.
  • the conventional fruit vegetable processing method has a problem of using an expensive nitrogen replacement device or a combination of other artificial additives in food processing plants and production organizations to suppress browning phenomenon.
  • the present invention relates to a blender capable of processing food, and the food is easily oxidized by combining with oxygen because it is processed in a state where oxygen is contained in the container in which the food is stored. There is this.
  • the present invention has been made to solve the above problems,
  • the inside of the chamber is formed in a vacuum state, nitrogen is introduced, pulverized samples of fruits, etc. in a state in which oxygen is blocked, and then vacuum-packed, so that oxidation and It is an object of the present invention to provide a vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of foods that can prevent browning reactions and prevent quality deterioration.
  • the present invention and the chamber is hollow inside so that the sample is introduced from the outside;
  • a temperature controller for controlling the temperature in the chamber according to the sample
  • a grinder installed in the chamber to grind the introduced sample
  • a vacuum pump connected to the chamber and a vacuum tube to make the interior of the chamber into a vacuum state
  • a nitrogen tank connected to the chamber and a nitrogen pipe to supply nitrogen to the inside of the chamber;
  • a vacuum storage container connected to a pulverizer and a transfer tube installed in the chamber to transfer a sample pulverized in the pulverizer, and connected to the vacuum pump and a vacuum tube to maintain a vacuum inside;
  • the present invention relates to a vacuum-gas exchanged pulverizing and continuous packaging processing apparatus for the prevention of oxidation.
  • the chamber of the present invention is introduced to the sample from the outside through the upper portion, the upper portion of the chamber relates to a vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of the food, characterized in that the closed cover. will be.
  • the temperature controller of the present invention controls the temperature of the chamber so that the inside of the chamber and the temperature of the sample and the grinder is maintained at the set temperature, and controls the food to be maintained at the set temperature even when the grinder is operated.
  • the present invention relates to a vacuum-gas substituted grinding and continuous packaging processing device for preventing oxidation.
  • the set temperature of the temperature controller of the present invention relates to a vacuum-gas exchanged pulverization and continuous packaging processing apparatus for preventing oxidation of food, characterized in that 5 ⁇ 10 °C to prevent browning of the sample.
  • each tube of the present invention relates to a vacuum-gas exchanged pulverization and continuous packaging processing apparatus for preventing oxidation of food, characterized in that the solenoid valve is installed to open and close the inside.
  • the present invention relates to a vacuum-gas substituted crushing and continuous packaging processing apparatus for preventing oxidation of food, further comprising a controller for controlling the operation of the pulverizer of the present invention and a solenoid valve installed in a plurality of tubes.
  • the upper part of the pulverizer of the present invention relates to a vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of food, characterized in that the pulverizer lid is further formed with a through hole.
  • the vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of the food of the present invention forms the inside of the chamber in a vacuum state when processing fruits, and nitrogen is blocked by introducing nitrogen.
  • pulverizing a sample such as fruit in the vacuum packaging there is an effect that can prevent quality degradation by inhibiting the oxidation and browning reaction that may occur during the processing, packaging and distribution of food.
  • FIG. 1 is a schematic view showing a vacuum-gas-substituted pulverization and continuous packaging processing apparatus for preventing oxidation of food according to an embodiment of the present invention
  • Figure 2 is a photograph showing the appearance of the apple puree according to the grinding temperature according to an embodiment of the present invention
  • FIG. 3 is a graph showing the browning degree of the apple puree according to the grinding temperature according to an embodiment of the present invention
  • FIG. 6 is a photograph showing the effect of the heat treatment using an antioxidant reactor according to an embodiment of the present invention on the total phenol content, antioxidant activity, browning of apples,
  • FIG. 7 is a photograph showing the effect of the antioxidant reactor and vacuum packaging on the browning of apple puree according to an embodiment of the present invention.
  • FIG. 1 is a schematic view showing a vacuum-gas-substituted crushing and continuous packaging processing apparatus for preventing oxidation of food according to an embodiment of the present invention
  • Figure 2 is an apple puree according to the grinding temperature according to an embodiment of the present invention
  • Figure 3 is a photograph showing the appearance
  • Figure 3 is a graph showing the browning degree of the apple puree according to the grinding temperature according to an embodiment of the present invention
  • Figure 4 is a total of apple puree according to the grinding temperature according to an embodiment of the present invention
  • Figure 5 is a graph showing the phenol content
  • Figure 5 is a graph showing the antioxidant activity (DPPH radical scavenging ability) of apple puree according to the grinding temperature according to an embodiment of the present invention
  • Figure 6 is an oxidation according to an embodiment of the present invention Photo shows the effect of the heat treatment using the prevention reactor on the total phenol content, antioxidant activity, browning of the apple
  • Figure 7 is an antioxidant reactor and vacuum packaging according to an embodiment of the present invention
  • the chamber 10 the temperature controller 20, the pulverizer 30, It consists of a vacuum pump 40, a nitrogen tank 50, a vacuum storage container 60, and a controller 70.
  • the chamber 10 has an opening formed in an upward direction, and a hollow portion (not shown) is formed to contain material, and a sample is introduced from the outside through the opening, and the chamber ( The opening of 10) is further formed with a sealing cover 11 for sealing the hollow interior.
  • the sealing cover 11 may cover the outer circumferential surface of the opening formed on the upper side of the chamber 10 to prevent the sample pulverized in the crusher 30 from splashing out, and block the inflow of air.
  • the outer circumferential surface of the chamber 10 and the surface in contact with the sealing cover 11 may be treated with a sealing part (not shown) so as to prevent the leakage of air.
  • the outer surface of the chamber 10 may be provided with a vacuum measuring device 12, the vacuum measuring device 12 is a measuring device for measuring the pressure above the atmospheric pressure and the pressure below the pressure inside the chamber 10 Since it can measure, the internal pressure state of the chamber 10 can be visually confirmed in real time.
  • the temperature controller 20 controls the temperature in the chamber 10 in accordance with the sample, as shown in FIG. That is, by controlling the temperature in the chamber 10 by the temperature controller 20, it is possible to set a temperature at which the fruit is browned to a set temperature by presenting various temperatures according to the type of fruit (sample).
  • the temperature controller 20 controls the temperature of the chamber 10 so that the inside of the chamber 10 and the temperature of the sample and the grinder 30 are maintained at a set temperature, even when the grinder 30 is operated. Control to maintain the set temperature.
  • the set temperature is different depending on the sample, in the present embodiment is set to 5 ⁇ 10 °C to prevent browning of the apple green. The reason is described in the following experimental method.
  • the grinder 30 is a device installed in the chamber 10 to grind a sample introduced into the chamber by the grinding blade 31, and a through hole is formed in the upper part of the grinder 30. It is blocked by the mill lid 32 formed.
  • the grinder 30 rotates the grinding blade 31 by a drive unit (not shown) such as a motor therein, and controls the operation and strength of the drive unit by a controller 70 installed outside.
  • a drive unit such as a motor therein
  • a controller 70 installed outside.
  • the inside of the grinder 30 is connected by a transfer tube 33 so that the finished sample such as grinding is transferred to the vacuum storage container 60, the vacuum storage container 60 through the transfer tube 33.
  • the transfer pipe 33 is provided with a solenoid valve (electromagnetic valve, 34) that can open and close the inside.
  • the vacuum pump 40 is connected to the chamber 10 and the vacuum tube 41, as shown in Figure 1 to make the interior of the chamber 10 in a vacuum state, that is, the air inside the chamber 10 It is pulled out to make the inside of the chamber 10 into a vacuum state. Therefore, the pressure inside the chamber 10 can be made lower than atmospheric pressure. In general, it is difficult to create a completely airless state, so a low vacuum of 1/1000 mmHg or less can be defined as a vacuum. Therefore, the vacuum in this embodiment may be defined as a state of 1 / 1000mmHg or less.
  • the vacuum tube is formed through the upper side of the chamber is connected to the vacuum pump.
  • the vacuum tube 41 is also connected to the vacuum storage container 60 separately, the vacuum tube 41 is provided with a solenoid valve 42 that can open and close the inside.
  • the vacuum pump 40 may be a reciprocating type, a rotary type, a centrifugal type, and the like, and is not limited thereto as long as it can extract air from the chamber 10.
  • the vacuum pump 40 is installed on the upper side of the chamber 10, but the installation position is not limited thereto.
  • one vacuum pump 40 is provided on one side of the chamber 10, but two or more vacuum pumps 40 may be provided depending on the size or capacity of the chamber 10.
  • the nitrogen tank 50 is connected to the chamber 10 and the nitrogen pipe 51 to supply nitrogen to the inside of the chamber 10.
  • the nitrogen pipe 51 is connected to the upper side of the chamber 10, nitrogen is a gas used to prevent the sample, the workpiece, and the like is oxidized.
  • the nitrogen pipe 51 is provided with a solenoid valve 52 that can open and close the inside.
  • the nitrogen tank 50 introduces nitrogen into the interior of the chamber 10, and the nitrogen tank 50 enters nitrogen or discharges the workpiece to the outside while the interior of the chamber 10 becomes a vacuum. Nitrogen may be introduced into the chamber 10.
  • Nitrogen tank 50 is located on the upper side of the chamber 10, but the position is not limited, the nitrogen tank 50 may be provided with two or more depending on the size or capacity of the chamber (10).
  • the vacuum storage container 60 is connected to a grinder 30 installed in the chamber 10 and a transfer pipe 33 to transfer a sample pulverized in the grinder 30, and the vacuum It is connected to the pump 40 and the vacuum tube 41 is maintained inside the vacuum state.
  • the upper side of the vacuum storage container 60 is provided with a transfer pipe 33 connected to the grinder 30 and a discharge pipe 61 for discharging air, nitrogen, etc. inside the vacuum storage container 60 to the outside. do.
  • the transfer pipe 33 and the discharge pipe 61 is provided with a solenoid valve 62 that can open and close the inside.
  • the discharge pipe 61 is a vacuum tube 41 connected to the vacuum pump 40 is connected to one side, the interior of the vacuum storage container 60 is converted into a vacuum state through the vacuum tube 41.
  • the temperature is set by fitting the inside of the chamber 10 to a sample using the temperature controller 20.
  • the solenoid valve 34 of the transfer pipe 33 connected to the vacuum storage container 60 is closed, and the solenoid valve 62 formed in the discharge pipe 61 of the vacuum storage container 60 is opened to open the vacuum pump 40. After applying the vacuum in the vacuum reservoir 60), the solenoid valve 62 of the discharge pipe 61 is closed.
  • the solenoid valve 34 of the valve 52 and the transfer pipe 33 After closing the solenoid valve 34 of the valve 52 and the transfer pipe 33, the solenoid valve 42 of the vacuum tube 41 is opened to apply vacuum to the chamber 10 and all the tubes through the vacuum pump 40. give.
  • the solenoid valve 42 of the vacuum tube 41 is closed, the solenoid valve 52 of the nitrogen tube 51 is opened, and nitrogen of the nitrogen tank 50 is injected until normal pressure, and the vacuum tube 41 is again.
  • all solenoid valves 34, 42, 52, and 62 are closed, and the grinder 30 is operated through the controller 70 to grind the sample.
  • the solenoid valve 52 of the nitrogen pipe 51 is opened to inject nitrogen
  • the solenoid valve 34 of the transfer pipe 33 is opened
  • the solenoid valve 62 of the discharge pipe 61 is opened. Open and apply a vacuum to the vacuum storage container 60 through the vacuum pump 40.
  • the solenoid valve 34 of the transfer pipe 33 is opened to move the sample in the grinder 30 to the vacuum storage container 60, and when all the samples move, all the solenoid valves 34, 42, 52, Close 62).
  • the sample is stored in the vacuum storage container 60 and is vacuum packed, so that the sample may be transported separately from the vacuum storage container 60.
  • Vacuum-pulverization of apple water (1: 1) for 30 seconds at 2.67 kPa was carried out using the vacuum-gas replacement grinder.
  • Vacuum pulverization, general pulverization, vacuum heat treatment after vacuum pulverization, general heat treatment after vacuum pulverization Apple puree was left at room temperature (about 25 °C) for 1 day and then total phenol content, antioxidant activity (DPPH radical scavenging ability, ABTS Radical scavenging ability (FRAP) and browning degree were measured and compared.
  • the heat treatment using the antioxidant reactor showed that the browning degree was lower than that of the normal grinding (101.33 kPa) during vacuum grinding (2.67 kPa) as an experimental result of the total phenol content, antioxidant activity, and browning of the apple. And total phenolic content and antioxidant activity remained high.
  • vacuum heat treatment and general heat treatment were carried out using an oxidation prevention reactor immediately after vacuum grinding.
  • the vacuum heat-treated apple showed lower browning degree than the general heat-treated apple, and the total phenol content and antioxidant activity were effectively maintained.
  • Vacuum-pulverization of apple water (1: 1) for 30 seconds at 2.67 kPa was carried out using the vacuum-gas replacement grinder.
  • the anti-oxidation reactor and vacuum packaging were experimental results for browning of apple puree, and when the apples were left for 7 days after vacuum grinding (2.67 kPa), the apples generally packaged did not differ in appearance from the unpacked apples. It was found that browning progressed considerably, and the vacuum-packed apple did not show browning phenomenon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

본 발명은 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것으로서, 보다 상세하게는 과일 등을 가공할 때 챔버 내부를 진공상태로 형성하고 질소를 유입하여 산소가 차단된 상태에서 과일 등의 시료를 분쇄한 뒤, 진공 포장함으로써, 식품의 가공, 포장 및 유통 중 일어날 수 있는 산화 및 갈변 반응을 억제하여 품질 열화를 방지할 수 있는 특징이 있다.

Description

식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치
본 발명은 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것으로서, 보다 상세하게는 과일 등을 가공할 때 챔버 내부를 진공상태로 형성하고 질소를 유입하여 산소가 차단된 상태에서 과일 등의 시료를 분쇄한 뒤, 진공 포장함으로써, 식품의 가공, 포장 및 유통 중 일어날 수 있는 산화 및 갈변 반응을 억제하여 품질 열화를 방지할 수 있는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
항산화 물질은 산화를 방지하는 물질의 총칭이며, 이는 각종 질환에 활성산소가 관여한다는 것이 알려져 주목을 받기 시작했다. 식품 중에는 폴리페놀, 비타민 C, 비타민 E, β-카로틴 등이 있다. 식품 중에는 과일 등이 항산화 기능을 갖고 있는 여러 가지 물질이 포함되어 있다. 수산기를 2개 이상 갖고 있는 물질인 폴리페놀 화합물도 그 중 하나이다. 비타민 C, 비타민 E, β-카로틴 등은 항산화 기능을 갖고 있어 항산화성 비타민이라고 한다.
과일에는 항산화 물질로 알려진 페놀 화합물이 풍부하다. 하지만, 페놀 화합물은 공기 중의 산소와 결합하여 쉽게 산화되며, 과일의 가공 중 상당양의 페놀 화합물이 변성하게 된다. 특히, 과일 등을 작은 크기로 가공하는 경우 표면적이 넓어짐에 따라 페놀 성분이 쉽게 산화해 버리게 된다
이렇듯, 일반적으로 사과, 바나나, 포도 등 과채류는 산소와 접촉하게 되면 산화가 진행되어 품질이 저하되는데, 특히 이들 과채류는 폴리페놀 물질을 함유하기 때문에 산소 접촉으로 인해 폴리페놀 옥시데이즈라는 효소와 반응하여 갈변이 일어나게 되고, 또한 항산화 활성이 감소하게 된다.
이러한 현상은 과채류 원료 소재 및 다양한 식품 가공에 있어 가장 주요한 품질열화요소로서 이를 억제하는 것이 매우 중요하게 된다.
이와 같은 갈변 방지를 위한 종래의 과채류 가공방법은 가공 시 비타민 C 등의 갈변억제제를 사용하는 방법, 산소를 질소 주입으로 치환하여 산화를 억제하는 방법 등이 있으며, 조리 시 소금물이나 설탕물에 침지하여 사용하거나 보관하는 방법 등이 있다.
그러나, 종래의 과채류 가공방법은 갈변현상을 억제하기 위해 식품 가공 공장 및 생산 단체에서 고가의 질소 치환 장치를 이용하거나, 기타 인공 첨가물을 병용처리해야 하는 문제점이 있게 된다.
또한, 과채류를 식품으로 가공하는 경우, 과채류 가공 공정 중 분쇄 과정에서 과채류의 과육이 분쇄되면서 산소와 접촉하는 표면적이 넓어지고, 갈변 현상이 가속화되기 때문에 분쇄과정에서 산소 접촉을 방지하는 것이 매우 중요하다.
그리고, 한국등록실용신안 제20-0203484호에 따르면 음식물을 가공할 수 있는 믹서기에 관한 것으로서, 음식물이 보관되는 통에 산소가 포함된 상태에서 가공을 하므로 음식물이 산소와 결합하여 쉽게 산화해 버리는 문제점이 있다.
본 발명은 상기 종래의 문제점을 해소하기 위해 안출된 것으로서,
과일 등을 가공할 때 챔버 내부를 진공상태로 형성하고 질소를 유입하여 산소가 차단된 상태에서 과일 등의 시료를 분쇄한 뒤, 진공 포장함으로써, 식품의 가공, 포장 및 유통 중 일어날 수 있는 산화 및 갈변 반응을 억제하여 품질 열화를 방지할 수 있는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치를 제공하는데 목적이 있다.
상기 목적을 달성하고자, 본 발명은 외부로부터 시료가 유입되도록 내부가 중공된 챔버와;
상기 시료에 맞춰 챔버 내의 온도를 제어해주는 온도 조절기와;
상기 챔버 내에 설치되어 유입된 시료를 분쇄하는 분쇄기와;
상기 챔버와 진공관으로 연결되어 챔버의 내부를 진공상태로 만드는 진공펌프와;
상기 챔버와 질소관으로 연결되어 챔버의 내부에 질소를 공급하는 질소탱크와;
상기 챔버 내에 설치된 분쇄기와 이송관으로 연결되어 상기 분쇄기에서 분쇄된 시료가 전달되고, 상기 진공펌프와 진공관으로 연결되어 내부가 진공상태로 유지되는 진공 저장용기;를 포함하여 구성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 챔버는 상부를 통해 외부에서 시료가 유입되고, 상기 챔버의 상부는 밀폐 덮개에 의해 밀폐되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 온도 조절기는 챔버의 내부와, 시료 및 분쇄기의 온도가 설정된 온도로 유지되도록 챔버의 온도를 제어하고, 상기 분쇄기의 작동시에도 설정온도로 유지하도록 제어하는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 온도 조절기의 설정온도는 시료의 갈변을 방지하도록 5 ~ 10℃인 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 각각의 관에는 내부를 개폐하도록 솔레노이드 밸브가 설치되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 분쇄기의 작동과 다수의 관에 설치된 솔레노이드 밸브를 제어하는 제어기가 더 구성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
또한, 본 발명의 분쇄기의 상부에는 관통구가 형성된 분쇄기 뚜껑이 더 형성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 관한 것이다.
이상에서 살펴 본 바와 같이, 본 발명의 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치는 과일 등을 가공할 때 챔버 내부를 진공상태로 형성하고 질소를 유입하여 산소가 차단된 상태에서 과일 등의 시료를 분쇄한 뒤, 진공 포장함으로써, 식품의 가공, 포장 및 유통 중 일어날 수 있는 산화 및 갈변 반응을 억제하여 품질 열화를 방지할 수 있는 효과가 있다.
도 1은 본 발명의 일실시 예에 따른 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치를 나타낸 개략도이고,
도 2는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 외관을 나타낸 사진이고,
도 3은 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 갈변도를 나타낸 그래프이고,
도 4는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 총 페놀 함량을 나타낸 그래프이고,
도 5는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 항산화 활성(DPPH 라디컬 소거능)을 나타낸 그래프이고,
도 6은 본 발명의 일실시 예에 따른 산화방지 반응기를 이용한 열처리가 사과의 총 페놀 함량, 항산화 활성, 갈변에 미치는 영향을 나타낸 사진이고,
도 7은 본 발명의 일실시 예에 따른 산화방지 반응기 및 진공포장이 사과 퓨레의 갈변에 미치는 영향을 나타낸 사진이다.
이와 같은 특징을 갖는 본 발명은 그에 따른 바람직한 실시 예를 통해 더욱 명확히 설명될 수 있을 것이다.
이하 첨부된 도면을 참조로 본 발명의 여러 실시 예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시 예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것으로 의도되지 않는다.
따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 일실시 예에 따른 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치를 나타낸 개략도이고, 도 2는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 외관을 나타낸 사진이고, 도 3은 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 갈변도를 나타낸 그래프이고, 도 4는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 총 페놀 함량을 나타낸 그래프이고, 도 5는 본 발명의 일실시 예에 따른 분쇄 온도에 따른 사과 퓨레의 항산화 활성(DPPH 라디컬 소거능)을 나타낸 그래프이고, 도 6은 본 발명의 일실시 예에 따른 산화방지 반응기를 이용한 열처리가 사과의 총 페놀 함량, 항산화 활성, 갈변에 미치는 영향을 나타낸 사진이고, 도 7은 본 발명의 일실시 예에 따른 산화방지 반응기 및 진공포장이 사과 퓨레의 갈변에 미치는 영향을 나타낸 사진이다.
도 1 내지 도 7에 도시한 바와 같이, 본 발명의 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치는 챔버(10)와, 온도 조절기(20)와, 분쇄기(30)와, 진공펌프(40)와, 질소탱크(50)와, 진공 저장용기(60)와, 제어기(70)로 구성된다.
상기 챔버(10)는 도 1에 도시한 바와 같이, 상 방향으로 개구부가 형성되며 재료를 담을 수 있도록 중공부(미도시)가 형성되고, 상기 개구부를 통해 외부에서 시료가 유입되며, 상기 챔버(10)의 개구부에는 중공된 내부를 밀폐하기 위한 밀폐 덮개(11)가 더 형성된다.
여기서, 상기 밀폐 덮개(11)는 챔버(10)의 상측에 형성된 개구부의 외주면을 덮어 분쇄기(30)에서 분쇄하는 시료가 밖으로 튀는 것을 방지하고, 공기가 유입되는 것을 차단할 수 있다. 또한, 챔버(10)의 외주면과 밀폐 덮개(11)가 접하는 면에는 공기가 새나가는 것을 방지할 수 있도록 씰링부(미도시)로 처리할 수 있다.
그리고, 상기 챔버(10)의 외측면에는 진공 측정기(12)가 구비될 수 있고, 상기 진공 측정기(12)는 대기압 이상의 압력과 이하의 압력을 계측하는 계측장치로서 챔버(10) 내부의 압력을 측정할 수 있으므로 챔버(10)의 내부 압력상태를 실시간으로 시각적으로 확인할 수 있다.
상기 온도 조절기(20)는 도 1에 도시한 바와 같이, 시료에 맞춰 챔버(10) 내의 온도를 제어해준다. 즉, 상기 온도 조절기(20)에 의해 챔버(10) 내의 온도가 조절됨으로써, 과일(시료)의 종류에 맞춰 다양한 온도를 제시하여 과일이 갈변 상태가 적은 온도를 설정 온도로 설정할 수 있는 것이다.
여기서, 상기 온도 조절기(20)는 챔버(10)의 내부와, 시료 및 분쇄기(30)의 온도가 설정된 온도로 유지되도록 챔버(10)의 온도를 제어하고, 상기 분쇄기(30)의 작동시에도 설정온도로 유지하도록 제어한다. 이때, 상기 설정온도는 시료에 따라 상이한대, 본 일실시예로 사과 푸레의 갈변을 방지하도록 5 ~ 10℃로 설정한다. 그 이유는 이하의 실험방법에 기술한다.
상기 분쇄기(30)는 도 1에 도시한 바와 같이, 챔버(10) 내에 설치되어 내부에 유입된 시료를 분쇄날(31)에 의해 분쇄하는 장치이고, 상기 분쇄기(30)의 상부에는 관통구가 형성된 분쇄기 뚜껑(32)에 의해 차단된다.
여기서, 상기 분쇄기(30)는 내부에 모터 등의 구동부(미도시)에 의해 분쇄날(31)을 회전시키고, 외부에 설치된 제어기(70)에 의해 구동부의 작동 및 세기를 제어한다.
그리고, 상기 분쇄기(30)의 내부는 이송관(33)에 의해 연결되어 분쇄 등의 가공이 완료된 시료가 진공 저장용기(60)에 이송되고, 상기 이송관(33)을 통해 진공 저장용기(60)에 가공된 시료가 이송되는 방식은 이하에서 상세히 기술한다. 이때, 상기 이송관(33)에는 내부를 개폐할 수 있는 솔레노이드 밸브(전자밸브,34)가 설치된다.
상기 진공펌프(40)는 도 1에 도시한 바와 같이, 챔버(10)와 진공관(41)으로 연결되어 챔버(10)의 내부를 진공상태로 만드는데, 즉, 챔버(10) 내부에 있는 공기를 밖으로 빼내 챔버(10) 내부를 진공상태가 되게 한다. 따라서 챔버(10) 내부의 압력을 대기압보다 낮은 상태로 만들 수 있다. 일반적으로 완전히 공기가 없는 상태를 만들기 어렵기 때문에 1/1000mmHg 이하의 저진공 상태를 진공으로 정의할 수 있다. 따라서 본 실시예에서의 진공은 1/1000mmHg 이하의 상태로 정의될 수 있다. 이때, 상기 진공관은 챔버의 상부측에 관통 형성되어 진공펌프에 연결되는 것이다. 또한, 상기 진공관(41)은 진공 저장용기(60)와도 별도로 연결되고, 상기 진공관(41)에는 내부를 개폐할 수 있는 솔레노이드 밸브(42)가 설치된다.
여기서, 상기 진공펌프(40)는 왕복식, 회전식, 원심식 등이 있으며 챔버(10) 내부의 공기를 빼낼 수 있는 방법이면 이에 제한되지 않는다. 본 실시예에서 진공펌프(40)는 챔버(10)의 상측에 설치되었으나 그 설치 위치는 이에 제한되지 않다. 또한 진공펌프(40)는 챔버(10)의 일측면에 하나가 구비되었으나 진공펌프(40)는 챔버(10)의 크기나 용량에 따라서 두 개 이상이 구비될 수도 있다.
상기 질소탱크(50)는 도 1에 도시한 바와 같이, 챔버(10)와 질소관(51)으로 연결되어 챔버(10)의 내부에 질소를 공급한다. 이때, 상기 질소관(51)은 챔버(10)의 상부측에 연결되고, 질소는 시료, 가공물 등이 산화되는 것을 방지하기 위해서 사용되는 기체이다. 이때, 상기 질소관(51)에는 내부를 개폐할 수 있는 솔레노이드 밸브(52)가 설치된다.
여기서, 상기 질소탱크(50)는 챔버(10)의 내부에 질소를 유입시키는데, 질소탱크(50)는 챔버(10)의 내부가 진공이 된 상태에서 질소를 유입하거나 가공물을 외부로 배출할 때 질소를 챔버(10) 내부에 유입시킬 수 있다.
그리고, 챔버(10)의 내부를 진공 형성한 후에 질소를 유입시키면, 챔버(10)에 미량으로 남아 있는 공기가 시료와 결합되는 것을 방지하여 시료가 갈변되거나 항산화 활성 저하 등으로 인한 품질 열화를 방지할 수 있다. 상기 질소탱크(50)는 챔버(10)의 상측부에 위치하나 그 위치가 제한되지 않으며, 상기 질소탱크(50)는 챔버(10)의 크기나 용량에 따라 두 개 이상이 구비될 수도 있다.
상기 진공 저장용기(60)는 도 1에 도시한 바와 같이, 챔버(10) 내에 설치된 분쇄기(30)와 이송관(33)으로 연결되어 상기 분쇄기(30)에서 분쇄된 시료가 전달되고, 상기 진공펌프(40)와 진공관(41)으로 연결되어 내부가 진공상태로 유지된다.
여기서, 상기 진공 저장용기(60)의 상부측에는 분쇄기(30)와 연결되는 이송관(33) 및 진공 저장용기(60) 내부의 공기, 질소 등을 외부로 배출할 수 있는 배출관(61)이 설치된다. 이때, 상기 이송관(33)과 배출관(61)에는 내부를 개폐할 수 있는 솔레노이드 밸브(62)가 각각 설치된다.
그리고, 상기 배출관(61)은 진공펌프(40)와 연결되는 진공관(41)이 일측에 연결되고, 상기 진공관(41)을 통해 진공 저장용기(60)의 내부가 진공 상태로 변환되는 것이다.
이하에서는 상기에서 기술한 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치에 대한 가공방법에 대해 기술한다.
우선, 온도 조절기(20)를 이용하여 챔버(10) 내부를 시료에 맞춰 온도를 설정한다.
그런 다음, 진공 저장용기(60)와 연결된 이송관(33)의 솔레노이드 밸브(34)를 닫고, 상기 진공 저장용기(60)의 배출관(61)에 형성된 솔레노이드 밸브(62)를 열어 진공펌프(40)로 진공 저장용기(60) 내의 진공을 걸어준 후, 배출관(61)의 솔레노이드 밸브(62)를 닫는다.
그리고, 시료를 챔버(10)를 통해 분쇄기(30)에 넣어 준 후, 구멍이 있는 분쇄기 뚜껑(32)으로 닫고, 챔버(10)의 밀폐 덮개(11)를 닫고, 질소관(51)의 솔레노이드 밸브(52)와 이송관(33)의 솔레노이드 밸브(34)를 닫은 후 진공관(41)의 솔레노이드 밸브(42)는 열어 진공펌프(40)를 통해 챔버(10)와 모든 관 내부에 진공을 걸어준다.
그런 다음, 진공관(41)의 솔레노이드 밸브(42)를 닫은 후, 질소관(51)의 솔레노이드 밸브(52)를 열어 질소탱크(50)의 질소를 상압이 될 때까지 주입하고, 다시 진공관(41)의 솔레노이드 밸브(42)를 열어 설정된 진공도까지 진공을 걸어준 후, 모든 솔레노이드 밸브(34,42,52,62)를 닫고 제어기(70)를 통해 분쇄기(30)를 작동하여 시료를 분쇄한다.
이렇게 분쇄가 완료되면 질소관(51)의 솔레노이드 밸브(52)를 열어 질소를 주입하고, 이송관(33)의 솔레노이드 밸브(34)를 열어준 후, 배출관(61)의 솔레노이드 밸브(62)를 열어 진공펌프(40)를 통해 진공 저장용기(60)에 진공을 걸어준다.
그런 다음, 상기 이송관(33)의 솔레노이드 밸브(34)를 열어 분쇄기(30) 내의 시료를 진공 저장용기(60)에 이동시킨 후, 시료가 모두 이동하면 모든 솔레노이드 밸브(34,42,52,62)를 닫는다.
이렇게, 상기 진공 저장용기(60)에 시료가 저장되는 동시에 진공 포장되는 것으로 상기 진공 저장용기(60)를 별도로 이탈시켜 시료를 운반할 수 있는 것이다.
이하에서는 상기에서 기술한 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치를 이용한 실험방법 및 실험결과에 대해 기술한다.
실시예 1. 분쇄 온도가 사과 퓨레의 총 페놀 함량, 항산화 활성, 갈변도에 미치는 영향
[실험방법]
1. 모든 분쇄 도구, 물, 사과를 특정 온도로 설정된 배양기에 3시간 동안 넣어 분쇄 시 사용되는 모든 도구, 물, 사과의 온도를 맞춘다.
2. 배양기 내에서 사과의 과피를 제거한 후 8등분한다.
3. 사과 슬라이스 50g을 믹서기에 넣고 온도가 설정된 물(50g)을 넣어 30초간 분쇄하여 배양기에 보관한다.
4. 30분 동안 5분 간격으로 시료를 채취하여 총 페놀 함량, 항산화 활성(DPPH 라디컬 소거능), 갈변도를 측정한다.
[실험결과]
도 2 내지 도 5에 도시한 바와 같이, 분쇄 온도가 사과 퓨레의 총 페놀 함량, 항산화 활성, 갈변도에 대한 실험결과로써, 분쇄 온도가 높을수록 사과의 갈변현상이 빨리 진행되었고 총 페놀 함량, 항산화 활성이 더 빠르게 소실되었다.
따라서, 가장 낮은 온도인 5℃에서 분쇄 시 사과의 갈변현상을 억제에 효과적이고, 총 페놀 함량과 항산화 활성 또한 가장 높게 유지되는 것을 알 수 있다.
실시예 2. 산화방지 반응기를 이용한 열처리가 사과의 총 페놀 함량, 항산화 활성, 갈변에 미치는 영향
[실험방법]
1. 진공-가스치환 분쇄장치를 이용하여 사과:물(1:1)을 2.67kPa에서 30초간 진공 분쇄한 것을 진공분쇄로 하였다.
2. 사과:물(1:1)을 일반 공기 중 (101.33kPa)에서 30초간 분쇄한 것을 일반분쇄로 하였다.
3. 진공분쇄 직후, 산화방지 반응기에 50g을 담아 진공을 10분간 걸어주어 진공 상태로 만든 후 80℃에서 30분간 열처리한 것을 진공열처리로 하였다.
4. 진공분쇄 직후 bottle에 50g을 담아 일반 공기 중에서 80℃에서 30분간 열처리한 것을 일반열처리로 하였다.
5. 진공분쇄, 일반분쇄, 진공분쇄 후 진공열처리, 진공분쇄 후 일반열처리한 사과 퓨레를 상온(약 25℃에)서 1일 동안 방치한 후 총 페놀 함량, 항산화 활성(DPPH 라디컬 소거능, ABTS 라디컬 소거능, FRAP)과 갈변도를 측정하여 비교하였다.
[실험결과]
도 6에 도시한 바와 같이, 산화방지 반응기를 이용한 열처리가 사과의 총 페놀 함량, 항산화 활성, 갈변에 대한 실험결과로써, 진공분쇄(2.67kPa) 시 일반분쇄(101.33kPa) 보다 갈변도가 낮게 나타났으며, 총 페놀 함량, 항산화 활성이 높게 유지되었다.
또한, 진공분쇄 직후 산화방지 반응기를 이용하여 진공열처리와 일반열처리를 실시하였다. 그 결과 진공열처리한 사과가 일반열처리한 사과보다 낮은 갈변도를 나타내었고, 총 페놀 함량과 항산화 활성이 효과적으로 유지되는 것을 알 수 있다.
실시예 3. 산화방지 반응기 및 진공포장이 사과 퓨레의 갈변에 미치는 영향
[실험방법]
1. 진공-가스치환 분쇄장치를 이용하여 사과:물(1:1)을 2.67kPa에서 30초간 진공 분쇄한 것을 진공분쇄로 하였다.
2. 진공분쇄 후 산화방지 반응기에 50g을 넣어 다시 진공을 15분간 걸어 준다.
3. 이를 각각 일반포장 또는 진공포장하여 7일 동안 상온(약 25℃)에서 방치한 후 갈변 현상을 관찰·비교하였다.
[실험결과]
도 7에 도시한 바와 같이, 산화방지 반응기 및 진공포장이 사과 퓨레의 갈변에 대한 실험결과로써, 진공분쇄(2.67kPa) 후 7일간 방치하였을 때 일반포장한 사과는 포장하지 않은 사과와 외관상 차이없이 갈변이 상당히 진행된 것을 알 수 있었고, 진공포장한 사과는 갈변현상이 나타나지 않았다.
따라서 사과 퓨레를 진공분쇄 후 진공포장한다면 사과의 갈변현상을 효과적으로 방지할 수 있을 것이라 사료된다.
[부호의 설명]
10: 챔버 11 : 밀폐 덮개
12 : 진공 측정기
20 : 온도 조절기
30 : 분쇄기 31 : 분쇄날
32 : 분쇄기 뚜껑 33 : 이송관
34,42,52,62 : 솔레노이드 밸브
40 : 진공펌프 41 : 진공관
50 : 질소탱크 51 : 질소관
60 : 진공 저장용기 61 : 배출관
70 : 제어기

Claims (7)

  1. 외부로부터 시료가 유입되도록 내부가 중공된 챔버(10)와;
    상기 시료에 맞춰 챔버(10) 내의 온도를 제어해주는 온도 조절기(20)와;
    상기 챔버(10) 내에 설치되어 유입된 시료를 분쇄하는 분쇄기(30)와;
    상기 챔버(10)와 진공관(41)으로 연결되어 챔버(10)의 내부를 진공상태로 만드는 진공펌프(40)와;
    상기 챔버(10)와 질소관(51)으로 연결되어 챔버(10)의 내부에 질소를 공급하는 질소탱크(50)와;
    상기 챔버(10) 내에 설치된 분쇄기(30)와 이송관(33)으로 연결되어 상기 분쇄기(30)에서 분쇄된 시료가 전달되고, 상기 진공펌프(40)와 진공관(41)으로 연결되어 내부가 진공상태로 유지되는 진공 저장용기(60);
    를 포함하여 구성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  2. 제 1항에 있어서,
    상기 챔버(10)는 상부를 통해 외부에서 시료가 유입되고, 상기 챔버(10)의 상부는 밀폐 덮개(11)에 의해 밀폐되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  3. 제 1항에 있어서,
    상기 온도 조절기(20)는 챔버(10)의 내부와, 시료 및 분쇄기(30)의 온도가 설정된 온도로 유지되도록 챔버(10)의 온도를 제어하고, 상기 분쇄기(30)의 작동시에도 설정온도로 유지하도록 제어하는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  4. 제 3항에 있어서,
    상기 온도 조절기(20)의 설정온도는 시료의 갈변을 방지하도록 5 ~ 10℃인 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  5. 제 1항에 있어서,
    상기 각각의 관에는 내부를 개폐하도록 솔레노이드 밸브가 설치되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  6. 제 5항에 있어서,
    상기 분쇄기(30)의 작동과 다수의 관에 설치된 솔레노이드 밸브를 제어하는 제어기(70)가 더 구성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
  7. 제 1항에 있어서,
    상기 분쇄기(30)의 상부에는 관통구가 형성된 분쇄기 뚜껑(32)이 더 형성되는 것을 특징으로 하는 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치.
PCT/KR2017/013232 2017-03-09 2017-11-21 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치 WO2018164343A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170030096A KR101995241B1 (ko) 2017-03-09 2017-03-09 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치
KR10-2017-0030096 2017-03-09

Publications (1)

Publication Number Publication Date
WO2018164343A1 true WO2018164343A1 (ko) 2018-09-13

Family

ID=63449089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013232 WO2018164343A1 (ko) 2017-03-09 2017-11-21 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치

Country Status (2)

Country Link
KR (1) KR101995241B1 (ko)
WO (1) WO2018164343A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215653A1 (en) * 2022-05-03 2023-11-09 SPEX SamplePrep, LLC Cryogenic grinding system, apparatus, and methods of use thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212212A (ja) * 2002-01-22 2003-07-30 Nippon Tansan Gas Co Ltd 密封充填装置
KR20110127305A (ko) * 2010-05-19 2011-11-25 민창기 급속동결 파쇄 및 진공건조 포장 방법과 그 장치
KR20130095533A (ko) * 2012-02-20 2013-08-28 오메가 비젼 주식회사 미네랄 용출장치
JP2016097384A (ja) * 2014-11-26 2016-05-30 株式会社アイスティサイエンス ドライアイス凍結粉砕機
KR20160124145A (ko) * 2014-02-18 2016-10-26 미라다 리써치 앤드 디벨롭먼트, 인코포레이티드 커피 가공 방법 및 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200203484Y1 (ko) 1998-08-21 2000-12-01 고귀선 후드형 믹서기
KR200251270Y1 (ko) * 2001-07-31 2001-11-22 한국후지기계 주식회사 더블 챔버 타입의 진공 포장기
JP5843115B2 (ja) * 2012-04-19 2016-01-13 株式会社エナ 四酸化二窒素による滅菌法及び滅菌装置
KR101462528B1 (ko) * 2013-12-11 2014-11-17 주식회사 화진 담체에 부착된 나노 입자 제조 장치
KR101506276B1 (ko) * 2014-04-29 2015-03-27 경상대학교산학협력단 산화방지 가능한 가공장치 및 그를 이용한 가공방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212212A (ja) * 2002-01-22 2003-07-30 Nippon Tansan Gas Co Ltd 密封充填装置
KR20110127305A (ko) * 2010-05-19 2011-11-25 민창기 급속동결 파쇄 및 진공건조 포장 방법과 그 장치
KR20130095533A (ko) * 2012-02-20 2013-08-28 오메가 비젼 주식회사 미네랄 용출장치
KR20160124145A (ko) * 2014-02-18 2016-10-26 미라다 리써치 앤드 디벨롭먼트, 인코포레이티드 커피 가공 방법 및 장치
JP2016097384A (ja) * 2014-11-26 2016-05-30 株式会社アイスティサイエンス ドライアイス凍結粉砕機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023215653A1 (en) * 2022-05-03 2023-11-09 SPEX SamplePrep, LLC Cryogenic grinding system, apparatus, and methods of use thereof

Also Published As

Publication number Publication date
KR20180103321A (ko) 2018-09-19
KR101995241B1 (ko) 2019-07-02

Similar Documents

Publication Publication Date Title
Hemmati et al. Impact of cold atmospheric plasma on microbial safety, total phenolic and flavonoid contents, antioxidant activity, volatile compounds, surface morphology, and sensory quality of green tea powder
WO2013183807A1 (ko) 대기압 플라즈마를 이용한 밀봉 포장식품의 살균방법 및 이에 의해 제조된 밀봉 포장식품
WO2018164343A1 (ko) 식품의 산화방지를 위한 진공-가스치환 분쇄 및 연속 포장 가공장치
KR101864427B1 (ko) 고기의 습식숙성장치 및 이를 이용한 고기의 습식숙성방법
WO2013055048A1 (ko) 블루베리의 추출 방법, 블루베리 함유 음료 및 정제의 제조 방법
US3333963A (en) Processing of roasted coffee
CN109042854B (zh) 一种石榴籽的保鲜方法
CN110733684A (zh) 一种用于防止食品氧化的真空气体置换粉碎和连续包装处理装置
WO2015012627A1 (ko) 유통기한이 연장된 생나물 고명의 제조방법
WO2015167219A1 (ko) 산화방지 가능한 가공장치 및 그를 이용한 가공방법
GB2302258A (en) Apparatus and process for bacterial reduction in herbs and spices
CN104709614A (zh) 防止粮食结露发霉的钢板仓
US3180738A (en) Treatment of precooked fish
CN110771678B (zh) 一种抑制白萝卜蓝变的护色方法
CN107826303A (zh) 一种用于真空设备的密封装置
CN106035619A (zh) 一种柿子脱涩保鲜方法
EP0114849B1 (fr) Procede et installation de hachage et d' emballage de chair hachee sous atmosphere et temperature controlees et leur application a la fabrication de chair hachee a partir de carcasses de volailles
LU503445B1 (en) Sterilizing, enzyme inactivating and color stability maintaining method of fruit and vegetable
Piłat et al. Effect of freezing and enzymatic treatment on the output of juice and extraction of phenolic compounds in the pressing of lingonberry fruit
CN114027433A (zh) 一种发酵产品用的缓释生物防腐剂
KR101044081B1 (ko) 감의 탈삽 및 연화장치와 탈삽 및 연화방법
WO2016204544A1 (ko) 식물체로부터 라이코펜을 효율적으로 추출하는 방법
WO2023000187A1 (zh) 一种防褐变果蔬加工设备
MD192C2 (ro) Procedeu de producere a fructelor uscate
Lichanporn et al. Effect of organic acid and modified atmosphere conditions on quality of shredded green papaya (Carica papaya L.)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899510

Country of ref document: EP

Kind code of ref document: A1