WO2018164098A1 - 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム - Google Patents

心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム Download PDF

Info

Publication number
WO2018164098A1
WO2018164098A1 PCT/JP2018/008511 JP2018008511W WO2018164098A1 WO 2018164098 A1 WO2018164098 A1 WO 2018164098A1 JP 2018008511 W JP2018008511 W JP 2018008511W WO 2018164098 A1 WO2018164098 A1 WO 2018164098A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell population
cell
model
fibrosis
cells
Prior art date
Application number
PCT/JP2018/008511
Other languages
English (en)
French (fr)
Inventor
芳樹 澤
繁 宮川
充弘 齋藤
弘子 伊勢岡
裕啓 柳
Original Assignee
国立大学法人大阪大学
株式会社カルディオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 株式会社カルディオ filed Critical 国立大学法人大阪大学
Priority to JP2019504589A priority Critical patent/JPWO2018164098A1/ja
Publication of WO2018164098A1 publication Critical patent/WO2018164098A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to a cell population used as a cardiac fibrosis model, a manufacturing method thereof, a screening method using the cell population, a cardiac fibrosis model evaluation method, and a cardiac fibrosis model evaluation system.
  • Heart fibrosis is one of the main causes of heart failure, and the development of new drugs targeting heart fibrosis is important in the treatment of heart failure.
  • An object of the present invention is to provide a cardiac fibrosis model that is closer to myocardial tissue.
  • the present inventors have used a cell population that can be obtained by culturing a cell population containing pluripotent stem cell-derived cardiomyocytes in the presence of a fibrosis-inducing factor, thereby making the cardiac fibrosis model closer to myocardial tissue. Found that can provide.
  • the present invention has been completed through further trial and error, and includes the following aspects.
  • Item 1 A cell population that can be obtained by culturing a cell population containing pluripotent stem cell-derived cardiomyocytes in the presence of a fibrosis-inducing factor.
  • Item 2. The cell population according to Item 1, wherein the ratio of the pluripotent stem cell-derived cardiomyocytes to the total cells is 50 to 70%.
  • Item 3. The cell population according to Item 1 or 2, wherein the pluripotent stem cell-derived cardiomyocytes are iPS cell-derived cardiomyocytes.
  • Item 4. Item 4. The cell population according to any one of Items 1 to 3, which is used as a cardiac fibrosis model.
  • Item 5. Item 5.
  • the cell population according to Item 4 which is used for screening for a therapeutic agent for cardiac fibrosis.
  • Item 6. A method for producing a cell population used as a cardiac fibrosis model, comprising the step of culturing a cell population containing pluripotent stem cell-derived cardiomyocytes in the presence of a fibrosis inducing factor to obtain the cell population.
  • Item 7. A screening method for a therapeutic agent for cardiac fibrosis, (1) contacting the candidate compound with the cell population according to any one of items 1 to 3, (2-1) a step of measuring the expression level of a fibrosis marker in the cell population obtained by the step (1), and / or (2-2) contraction of the cell population obtained by the step (1).
  • a method for evaluating a cardiac fibrosis model comprising: (1-1) A step of evaluating apoptosis in the cell population according to any one of items 1 to 3, and / or (1-2) hypertrophy in the cell population according to any one of items 1 to 3. A method comprising the step of evaluating crystallization.
  • a system for evaluating a cardiac fibrosis model (A) the cell population according to any one of items 1 to 3, (B) an apparatus for culturing the cell population (A); (C-1) A system comprising: an apparatus for evaluating apoptosis in the cell population (A); and / or (C-2) an apparatus for evaluating hypertrophy in the cell population (A).
  • a cardiac fibrosis model closer to myocardial tissue can be provided.
  • FIG. 1 shows an example of a method for preparing a cell population and an evaluation method thereof according to the present invention.
  • An example of the analysis result of a cell structure in the Example of the cell population of this invention is shown.
  • cTnT cTroponin
  • FIG. 1 shows an example of the response (ECM production) to the fibrosis stimulation in the Example of the cell population of the present invention.
  • ECM production An example of the response (ECM production) to the fibrosis stimulation in the Example of the cell population of the present invention.
  • TGF- ⁇ stimulation significantly increased the expression of fibrosis-related factors such as collagen and MMP.
  • An example of the responsiveness (cardiomyocyte function) to the fibrosis stimulation in the Example of the cell population of this invention is shown.
  • cardiac function By quantifying the cell movement, the contraction and relaxation ability were evaluated, and the parameters corresponding to the contraction / relaxation speed and the contraction / relaxation force were significantly decreased by the stimulation of TGF- ⁇ .
  • An example of the response (ECM production) to the fibrosis stimulation in the Example of the cell population of the present invention is shown.
  • ECM production to the fibrosis stimulation in the Example of the cell population of the present invention.
  • As cardiomyocyte purity increased the expression of fibrosis-related factors such as collagen and MMP decreased, and the response to TGF- ⁇ stimulation decreased.
  • An example of the responsiveness to the fibrosis stimulus in the Example of the cell population of the present invention is shown.
  • the pluripotent stem cell-derived cardiomyocyte pluripotent stem cell is not particularly limited and can be used widely.
  • As the pluripotent stem cell either an induced pluripotent stem cell or an embryonic stem cell can be used.
  • the artificial pluripotent stem cell is not particularly limited, and for example, iPS cells can be used. Although it does not specifically limit as embryonic stem cells, For example, a nuclear transfer embryonic stem cell (ntES cell) etc. other than a normal ES cell can be used. Among these, iPS cells and ES cells are particularly preferable from the viewpoint of safety and the like, especially when considering use as a medicine. In particular, human-derived iPS cells (h-iPS cells) are preferable.
  • a conventionally known method can be appropriately used.
  • the methods described in Biochemical & and Biophysical & Research & Communications " 425 " (2012) < 321-327 " can be used.
  • the cell population containing pluripotent stem cell-derived cardiomyocytes used in the present invention is preferably at least one other pluripotent stem cell-derived cardiomyocyte.
  • the other cells preferably include at least one selected from the group consisting of endothelial cells, smooth muscle cells and fibroblasts.
  • the cell population as a whole has functions and characteristics similar to those of living body myocardial tissue.
  • the cell population containing pluripotent stem cell-derived cardiomyocytes contains any of these three types. These three types are all cell types constituting the heart tissue of a living body.
  • the cell population containing pluripotent stem cell-derived cardiomyocytes and other cells may be prepared after preparing each separately.
  • a cell population containing cardiomyocytes and other cells obtained by inducing differentiation of cardiomyocytes from pluripotent stem cells can be used as it is. If the mixing ratio in the cell population itself obtained by differentiation induction is not within the preferred range, this cell population is once separated into pluripotent stem cell-derived cardiomyocytes and other cells, and then both are mixed at a preferred ratio. A cell population obtained by remixing may be used. Separation of pluripotent stem cell-derived cardiomyocytes from other cells is not particularly limited.
  • pluripotent stem cell-derived cardiomyocytes are cardiomyocyte-specific marker positive cells, and other cells are cardiomyocyte-specific markers. Negative cells can be separated using a cell sorter or the like.
  • the cardiomyocyte-specific marker at this time is not particularly limited, but CD172a is preferable.
  • the proportion of pluripotent stem cell-derived cardiomyocytes in the entire cell population is preferably 50% or more, more preferably 50 to 80%, and still more preferably 50 to 70%. Such a ratio makes it easy for the cell population as a whole to exhibit functions and characteristics similar to those of biological myocardial tissue.
  • the ratio of pluripotent stem cell-derived cardiomyocytes in the cell population is determined using the expression of a cardiomyocyte-specific marker as an index. Specifically, it can be determined by flow cytometry analysis.
  • the cardiomyocyte-specific marker is not particularly limited, and examples thereof include cardiac troponin (cTnT), CD172a (SIRPA or SHPS-1), KDR (CD309, FLK1 or VEGFR2), PDGFRA, EMILIN2, and VCAM.
  • cardiac troponin cTnT
  • CD172a SIRPA or SHPS-1
  • KDR CD309, FLK1 or VEGFR2
  • PDGFRA EMILIN2
  • Flow cytometry analysis can be performed as follows, for example.
  • a cell detachment solution such as Accutase is allowed to act on about 1 ⁇ 10 5 to 5 ⁇ 10 5 cells adherently cultured on a culture dish at 37 ° C. for 5 minutes, and the cells are detached and collected by centrifugation.
  • the cells are suspended in 100 ⁇ L each of PBS containing about 0.5% BSA or about 1-2% FBS, and each of the fluorescence-labeled antibody and the isotype control antibody is added and reacted at 4 ° C. in the dark for 20 minutes. .
  • the differentiated cells are washed with PBS and collected by centrifugation, then suspended in 300 ⁇ L each of the above PBS containing BSA or FBS, passed through a cell strainer, and then collected in a FACS tube.
  • the fluorescence emission is detected and quantified by a detector corresponding to the labeled fluorescence.
  • a fraction stained with an isotype control antibody is defined as a negative fraction, and a fraction with higher fluorescence intensity is defined as a positive fraction. Of the fraction stained with an antibody, the proportion belonging to the positive fraction is quantitatively expressed as a percentage.
  • other cells in the cell population include, for example, CD31 positive cells and / or CD144 positive cells as the first other cell population, desmin positive cells and / or calponin positive cells as the second other cell population, and TE-7 positive cells and / or vimentin positive cells can be classified as being the third other cell population.
  • a fourth or more cell population may be included. Specifically, it can be determined by flow cytometry analysis.
  • the first other cell population is mainly vascular endothelial cells
  • the second other cell population is mainly smooth muscle cells
  • the third other cell population is mainly fibroblasts.
  • the cell population of the present invention can be obtained by culturing a cell population containing pluripotent stem cell-derived cardiomyocytes in the presence of a fibrosis inducing factor.
  • the fibrosis inducing factor is not particularly limited, and a wide variety of known factors can be used.
  • TGF- ⁇ , PDGF, endothelin, angiotensin, CCN2 and the like can be mentioned.
  • One kind of fibrosis inducing factor may be used alone, or two or more kinds may be used in combination.
  • TGF- ⁇ is preferably used as the fibrosis inducing factor.
  • the mixing ratio of pluripotent stem cell-derived cardiomyocytes and other cells is preferably as described above.
  • the mixing ratio in the cell population itself obtained by differentiation induction is not within the preferred range, and once separated into pluripotent stem cell-derived cardiomyocytes and other cells as described above, the two are remixed at the preferred ratio Is preferably cultured for 72 to 120 hours after remixing and before culturing in the presence of fibrosis inducing factor.
  • Culture in the presence of a fibrosis inducing factor is not particularly limited and can be set as appropriate. As an example, it can be performed for 48 to 72 hours.
  • the concentration of the fibrosis-inducing factor in the culture solution is preferably 5 to 10 ⁇ g / ml.
  • the cell population of the present invention can be used as a cardiac fibrosis model. Specifically, the production of fibrosis markers increases.
  • at least one fibrosis marker selected from the group consisting of type I collagen, type III collagen, matrix metalloproteinase 2 (MMP2), and ⁇ -smooth muscle actin ( ⁇ SMA) is produced.
  • MMP2 matrix metalloproteinase 2
  • ⁇ SMA ⁇ -smooth muscle actin
  • the degree to which production increases is preferably such that the gene expression level increases by 1.2 times or more, preferably by 1.5 times or more. In this case, the gene expression level is usually 3 times or less.
  • the measurement of the gene expression level is not particularly limited, but can be performed by, for example, a real-time PCR method.
  • the screening method for therapeutic agent for cardiac fibrosis according to the present invention comprises: (1) contacting the candidate compound with the cell population of the present invention; (2-1) a step of measuring the expression level of a fibrosis marker in the cell population obtained by the step (1), and / or (2-2) contraction of the cell population obtained by the step (1). Measuring the ability and / or relaxation ability; (3) Based on at least one parameter selected from the group consisting of the expression level of fibrosis marker, contractility and relaxation ability measured in the above step (2-1) and / or (2-2) Selecting a compound having a therapeutic effect on the disease. It is.
  • the contact between the cell population and the candidate compound may be performed under any conditions and time as long as the cell population is not seriously affected such as death, and is appropriately set according to the characteristics of the candidate compound. can do. Usually, it can be performed by adding a candidate compound to the medium in which the cell population is cultured.
  • the method for measuring the expression level of fibrosis marker in step (2-1) is not particularly limited, and can be performed by, for example, real-time PCR.
  • fibrosis markers type I collagen, type III collagen, matrix metalloproteinase 2 (MMP2), ⁇ -smooth muscle actin ( ⁇ SMA), ACTA2, AGT, AKT1, BCL2, BMP7, CAV1 , CCL11, CCL2, CCL3, CCR2, CEBPB, COL1A2, COL3A1, CTGF, CXCR4, DCN, EDN1, EGF, ENG, FASLG, GREM1, HGF, IFNG, IL10, IL13, IL13RA2, IL1A, IL1B, IL4, IL5, IL5 , INHBE, ITGA1, ITGA2, ITGA3, ITGAV, ITGB1, ITGB3, ITGB5, ITGB6, ITGB8, JUN, LOX, LTBP1, MMP1, MMP13, MMP14, M MP3, MMP8, MMP9, MYC, NFKB1, PDGFA, PDGFB, PLAT, PLAU, PLG, SE
  • the fibrosis marker is preferably at least one fibrosis marker selected from the group consisting of type I collagen, type III collagen, matrix metalloproteinase 2 (MMP2) and ⁇ -smooth muscle actin ( ⁇ SMA).
  • MMP2 matrix metalloproteinase 2
  • ⁇ SMA ⁇ -smooth muscle actin
  • the contractility in the step (2-2) can be measured by the contraction speed and / or the contraction deformation distance.
  • relaxation ability can be measured by relaxation rate and / or relaxation deformation distance.
  • the measurement of these parameters is not particularly limited, but can be performed by, for example, moving image processing using a high-performance video camera.
  • moving image processing using a high-performance video camera.
  • Cell Motion Imaging System SI8000 manufactured by Sony Corporation
  • the method of the present invention for evaluating a cardiac fibrosis model comprises: (1-1) A method comprising evaluating apoptosis in the cell population of the present invention and / or (1-2) evaluating hypertrophy in the cell population of the present invention.
  • the pathological condition of cardiac fibrosis can be observed in vitro by the method of the present invention for evaluating a cardiac fibrosis model.
  • the evaluation of apoptosis can be performed by a conventionally known method.
  • the appearance of apoptosis can be visualized by caspase staining.
  • Cell enlargement can be evaluated by measuring the cell size. Although not particularly limited, for example, it can be performed by taking a photograph.
  • the method of the present invention for evaluating a cardiac fibrosis model further includes a step of giving a stimulus to a cell population, if necessary, a stimulus that can affect, or is expected to be expected to affect fibrosis. Also good.
  • the system of the present invention for evaluating a cardiac fibrosis model comprises: (A) the cell population of the present invention; (B) an apparatus for culturing the cell population (A); (C-1) a system comprising an apparatus for evaluating apoptosis in the cell population (A) and / or (C-2) an apparatus for evaluating hypertrophy in the cell population (A).
  • the system of the present invention is a system for performing the method of the present invention for evaluating a cardiac fibrosis model.
  • ⁇ Experiment method> 1 Flow cytometry analysis After washing the cells with 0.5% BSA / PBS, the cells after washing were reacted with PE-labeled anti-CD31 and CD144 antibodies (BD) for measurement of cell surface markers. For measurement of intracellular or nuclear antigens, the washed cells are fixed and permeabilized with a fixative / permeabilization agent (BD Cytofix Cytoperm, Fixation / Permeabilization Solution Kit, manufactured by BD).
  • BD Cytofix Cytoperm Fixation / Permeabilization Solution Kit
  • cTnT antibody manufactured by Santa Cruz biotechnology or Thermo Fisher Scientific
  • anti-Nkx2.5 calponin
  • vimentin manufactured by abcam
  • TE-7 manufactured by Millipore
  • desmin manufactured by DAKO
  • fluorescence This was performed by reacting with a labeled secondary antibody (Alexa Fluor 647-labeled goat-anti-mouse IgG2a, mouse IgG1, or rabbit antibody, manufactured by Thermo Fisher Scientific).
  • the labeled cells were analyzed using a BD FACS Canto II flow cytometer and BD FACS Diva software (both manufactured by BD).
  • the fluorescent immunostained cells were washed with PBS, fixed with 4% paraformaldehyde, and permeabilized with PBD containing 0.3% Triton. After reacting with anti-collagen type I, MMP2 antibody (Abcam) cTNT antibody, it was reacted with fluorescent labeled secondary antibody (Alexa Fluor 488 or 555 labeled goat-anti-rabbit, mouse IgG2a, or mouse IgG1 antibody) . Observation was performed after nuclear staining with Hoechst33342 (Thermo Fisher Scientific).
  • RNAeasy kit QIAGEN
  • SuperScript VILO cDNA synthesis kit Thermo Fisher Scientific
  • cDNA synthesis was performed.
  • TaqMan PCR master mix and Taqman gene expression assay (Thermo Fisher Scientific) are used.
  • Collagen type I, collagen type III, MMP2, ⁇ SMA using Viia7 Real-time PCR system Thermo Fisher Scientific The expression of was compared between samples.
  • Example 1 Analysis of cell structure After the embryoid body after myocardial differentiation induction from human iPS cells was dispersed into single cells, the structure of cells contained in the TnT-negative fraction was analyzed by flow cytometry analysis. As a result, the expression of Nkx2.5, a myocardial marker, was hardly observed in TnT-negative cells, whereas the endothelial cell markers (CD31, CD144) were about 4%, and smooth muscle markers (desmin, calponin) were 30 to 30%. The cells were positive in about 40%, fibroblast marker TE-7 about 30-40%, and vimentin about 90% (FIG. 2).
  • Example 2 Responsiveness to Fibrosis Stimulation A cell population containing cardiomyocytes differentiated from human iPS cells was seeded at a density of 3 ⁇ 10e5 cells / cm 2 and cultured for 3 days. On day 3, serum-free or culture medium changed to 1% FBS / DMEM, cultured for 1 day, then added with TGF- ⁇ (5 ⁇ g / ml), further cultured for 48-72 hours to express gene, cardiomyocytes The function was evaluated. As a result, the expression of collagen type I, collagen type III, and MMP2 was significantly increased by the addition of TGF- ⁇ . Furthermore, regarding the cardiomyocyte function, a significant decrease in contraction / relaxation rate and contraction / relaxation deformation distance was observed. From the above results, it was suggested that this evaluation system can respond to fibrosis stimulation similar to that of a living body (FIGS. 3 and 4).
  • Example 3 Difference in responsiveness due to cardiomyocyte purity After separating cardiomyocytes and non-cardiomyocytes from a cell population containing cardiomyocytes differentiated from human iPS cells by MACS, the cardiomyocytes are 50, 60, 70, Cells were remixed to contain 80%. The responsiveness to fibrosis was analyzed in the same manner as 2 for the mixed cells. As a result, regarding the expression of collagen type I and MMP2, the responsiveness to TGF- ⁇ stimulation tended to decrease as the cardiomyocyte purity increased (FIG. 5).
  • Example 4 Comprehensive analysis of fibrosis-related genes As in Example 3, fibrosis-related genes were given after TGF- ⁇ stimulation was applied to a cell population containing 50, 60, 70, and 80% of cardiomyocytes. The expression change was comprehensively analyzed. As a result, the responsiveness was different depending on the cardiomyocyte purity, and the responsiveness tended to be high particularly in 60 to 70% (FIG. 6).
  • Example 5 Drug response
  • ONO-1301 0.1, 0.3, 1 ⁇ M
  • pirfenidone 0.1, 0.3, 1 mM

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

心筋組織により近い、心臓線維化モデルを提供する。 多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより得られうる、細胞集団。

Description

心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム
 本発明は、心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システムに関する。
 心臓の線維化は、心不全の主要因の一つであり、心線維化を標的とした新薬開発は心不全治療において重要である。
 しかし、そのための薬効評価系は現在、動物モデルを用いるものが主流であり、コスト面の問題や、ヒトにおける薬効と相違する結果が得られるといった問題等が指摘されている。
 このため、in vitro評価系の開発が求められている。例えば、細胞を用いない評価系として、ビメンチンと潜在関連ペプチド(LAP)部分断片との結合を阻害する活性を指標とし、TGF-β活性化抑制剤をスクリーニングする方法等が提案されている(特許文献1)。
 さらに、好ましくは、細胞、より好ましくはヒト細胞、を用いたin vitro評価系の開発が求められている。
 これまで、in vitroの細胞を用いた線維化モデルとして、線維芽細胞を単独で用いたモデルが提案されている。しかし、組織内であれば起こるはずの異種細胞間の相互作用を反映することができない、心筋組織としての反応を反映していない、といった問題があった。
国際公開第2005/105144号
 本発明は、心筋組織により近い、心臓線維化モデルを提供することを課題とする。
 本発明者らは、多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより得られうる細胞集団を利用することにより、心筋組織により近い、心臓線維化モデルを提供できることを見出した。本発明は、さらなる試行錯誤を経て完成されたものであり、以下の態様を含む。
 項1.
多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより得られうる、細胞集団。
 項2.
全細胞に対する前記多能性幹細胞由来心筋細胞の割合が、50~70%である、項1に記載の細胞集団。
 項3.
前記多能性幹細胞由来心筋細胞が、iPS細胞由来心筋細胞である、項1又は2に記載の細胞集団。
 項4.
心臓線維化モデルとして用いられる、項1~3のいずれか一項に記載の細胞集団。
 項5.
心臓線維症治療薬のスクリーニングのために用いられる、項4に記載の細胞集団。
 項6.
心臓線維化モデルとして用いられる細胞集団の製造方法であって、多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより前記細胞集団を得る工程を含む方法。
 項7.
心臓線維症治療薬のスクリーニング方法であって、
(1)項1~3のいずれか一項に記載の細胞集団に、候補化合物を接触させる工程と、
(2-1)前記工程(1)により得られた細胞集団における、線維化マーカーの発現量を測定する工程、及び/又は
(2-2)前記工程(1)により得られた細胞集団の収縮能及び/又は弛緩能を測定する工程と、
(3)前記工程(2-1)及び/又は(2-2)で測定された線維化マーカーの発現量、収縮能並びに弛緩能からなる群より選択される少なくとも一種のパラメーターに基づいて、線維症治療作用を有する化合物を選抜する工程
とを含む、方法。
 項8.
心臓線維化モデルを評価する方法であって、
(1-1)項1~3のいずれか一項に記載の細胞集団におけるアポトーシスを評価する工程、及び/又は
(1-2)項1~3のいずれか一項に記載の細胞集団における肥大化を評価する工程を含む、方法。
 項9.
心臓線維化モデルを評価するシステムであって、
(A)項1~3のいずれか一項に記載の細胞集団と、
(B)前記細胞集団(A)を培養する装置と、
(C-1)前記細胞集団(A)におけるアポトーシスを評価する装置、及び/又は
(C-2)前記細胞集団(A)における肥大化を評価する装置
とを備える、システム。
 本発明によれば、心筋組織により近い、心臓線維化モデルを提供することができる。
本発明の細胞集団の作成方法及びその評価方法の一例を示す。 本発明の細胞集団の実施例における、細胞構成の解析結果の一例を示す。cTroponin(cTnT)陰性細胞の分画に含まれる細胞を解析したところ、心筋細胞マーカーの発現は認められず、内皮細胞、平滑筋細胞、線維芽細胞のマーカーを示す細胞が含まれていた。 本発明の細胞集団の実施例における、線維化刺激への応答性(ECM産生)の一例を示す。TGF-βの刺激により、collagenやMMPなどの線維化関連因子の発現が有意に増加した。 本発明の細胞集団の実施例における、線維化刺激への応答性(心筋細胞機能)の一例を示す。細胞の動きを数値化することにより、収縮、弛緩能を評価したところ、TGF-βの刺激により、収縮・弛緩の速度、収縮力・弛緩力に相当するパラメーターはいずれも有意に低下した。 本発明の細胞集団の実施例における、線維化刺激への応答性(ECM産生)の一例を示す。心筋細胞純度が高くなるにつれ、collagenやMMPなどの線維化関連因子の発現が低下するなど、TGF-β刺激への応答性が低下する傾向が認められた。 本発明の細胞集団の実施例における、線維化刺激への応答性の一例を示す。TGF-β刺激による線維化関連遺伝子の発現変化を網羅的に解析したところ、心筋細胞純度により応答性が異なる傾向が認められた。 本発明の細胞集団の実施例における、薬剤応答性の一例を示す。TGF-βに加えてONO-1301またはPirfenidoneを添加することにより、collagen産生の低下、収縮・弛緩に関するパラメーターの改善傾向が認められた。
 1.本発明の細胞集団
 1.1 多能性幹細胞由来心筋細胞
 多能性幹細胞としては、特に限定されず、幅広く用いることができる。多能性幹細胞としては、人工多能性幹細胞又は胚性幹細胞のいずれも用いることができる。
 人工多能性幹細胞としては、特に限定されないが、例えば、iPS細胞等を用いることができる。胚性幹細胞としては、特に限定されないが、例えば、通常のES細胞の他、核移植胚性幹細胞(ntES細胞)等も用いることができる。これらの中でも、特に医薬としての利用を考えた場合、安全性等の面からiPS細胞及びES細胞が特に好ましい。特にヒト由来のiPS細胞(h-iPS細胞)が好ましい。
 心筋細胞への分化誘導方法は、従来公知の方法を適宜使用することができる。例えば、h-iPS細胞からの心筋細胞への分化誘導方法としては、Biochemical and Biophysical Research Communications 425 (2012) 321-327に記載の方法等を用いることができるが、これらに限定されない。
 1.2 多能性幹細胞由来心筋細胞を含む細胞集団
 本発明で用いる、多能性幹細胞由来心筋細胞を含む細胞集団は、好ましくは、多能性幹細胞由来心筋細胞に加えて、その他の少なくとも一種の細胞を含む。その他の細胞としては、内皮細胞、平滑筋細胞及び線維芽細胞からなる群より選択される少なくとも一種が含まれていることが好ましい。これらのうち少なくとも一種の細胞が含まれていることにより、細胞集団が全体として生体の心筋組織と類似の機能及び特性を有するようになる。多能性幹細胞由来心筋細胞を含む細胞集団には、これら三種がいずれも含まれていることがより好ましい。これら三種は、いずれも生体の心臓組織を構成する細胞種である。
 多能性幹細胞由来心筋細胞と、その他の細胞とを含む細胞集団は、それぞれを別々に用意した上で混合されていてもよい。また、多能性幹細胞から心筋細胞を分化誘導することにより得られる、心筋細胞とその他の細胞とを含む細胞集団を、そのまま使用することもできる。分化誘導により得られた細胞集団そのものにおける混合割合が好ましい範囲内にない場合は、この細胞集団をいったん、多能性幹細胞由来心筋細胞と、その他の細胞とにいったん分離した後に両者を好ましい割合で再混合して得られる細胞集団を使用してもよい。多能性幹細胞由来心筋細胞と、その他の細胞との分離は、特に限定されないが、例えば、多能性幹細胞由来心筋細胞を心筋細胞特異的マーカー陽性細胞として、その他の細胞を心筋細胞特異的マーカー陰性細胞として、セルソーター等を用いて分離することができる。このときの心筋細胞特異的マーカーとしては、特に限定されないが、CD172aが好ましい。
 かかる細胞集団の全体に占める、多能性幹細胞由来心筋細胞の割合は、好ましくは50%以上であり、より好ましくは50~80%であり、さらに好ましくは50~70%である。このような割合となっていることにより、細胞集団が全体として生体の心筋組織と類似の機能及び特性を示しやすくなる。なお、本発明において、細胞集団における多能性幹細胞由来心筋細胞の割合は、心筋細胞特異的マーカーを発現していることを指標として決定するものとする。具体的には、フローサイトメトリー解析により決定することができる。
 心筋細胞特異的マーカーとしては、特に限定されないが、例えば、心筋トロポニン(cTnT)、CD172a(SIRPA又はSHPS-1)、KDR(CD309、FLK1又はVEGFR2)、PDGFRA,EMILIN2及びVCAM等が挙げられる。心筋細胞特異的マーカーとしては、一種単独を使用してもよいし、複数種を組み合わせて使用してもよい。心筋細胞特異的マーカーの好ましい組合せとしては、cTnT及びCD172a等が挙げられる。心筋細胞特異的マーカーを単独で使用する場合、cTnT又はCD172aを使用することが好ましい。
 フローサイトメトリー解析は、例えば以下のようにして行うことができる。培養ディッシュ上で付着培養した約1×10~5×10個の細胞にAccutase等の細胞剥離液を37℃、5分間作用させ、細胞を剥離及び遠心回収する。細胞を、0.5%程度のBSA又は1~2%程度のFBSを含むPBS100μLずつに懸濁し、蛍光標識された抗体及びアイソタイプコントロール抗体をそれぞれ添加し、4℃、暗所で20分間反応させる。分化細胞をPBSで洗浄し遠心回収後、それぞれBSA又はFBSを含む上記のPBS300μLずつに懸濁し、セルストレイナーを通した後FACSチューブに回収する。フローサイトメトリー解析においては、標識蛍光に対応した検出器でその蛍光発光を検出し定量化する。アイソタイプコントロール抗体で染まる分画を陰性分画と定義し、それに比して蛍光強度の高い分画を陽性分画と定義する。抗体で染まる分画のうち、陽性分画に属する割合をパーセンテージで定量表記する。
 同様に、細胞集団におけるその他の細胞は、例えば、CD31陽性細胞及び/又はCD144陽性細胞を第一のその他の細胞集団、デスミン陽性細胞及び/又はカルポニン陽性細胞を第二のその他の細胞集団、並びにTE-7陽性細胞及び/又はビメンチン陽性細胞を第三のその他の細胞集団であるとして分類することができる。さらに第四以上の細胞集団が含まれていてもよい。具体的には、フローサイトメトリー解析により決定することができる。第一のその他の細胞集団は主に血管内皮細胞であり、第二のその他の細胞集団は主に平滑筋細胞であり、第三のその他の細胞集団は主に線維芽細胞である。
 1.3 線維化誘導因子の存在下での培養
 本発明の細胞集団は、多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより得られうる。
 線維化誘導因子としては、特に限定されず、公知のものを幅広く使用できる。例えば、TGF-β、PDGF、エンドセリン、アンジオテンシン、CCN2等が挙げられる。線維化誘導因子は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。線維化誘導因子としては、TGF-βが好ましく用いられる。
 このとき、多能性幹細胞由来心筋細胞を含む細胞集団においては、多能性幹細胞由来心筋細胞と、その他の細胞との混合割合が先述のとおりとなっていることが好ましい。分化誘導により得られた細胞集団そのものにおける混合割合が好ましい範囲内になく、先述のように多能性幹細胞由来心筋細胞と、その他の細胞とにいったん分離した後に両者を好ましい割合で再混合した場合は、再混合の後、線維化誘導因子の存在下で培養する前に、72~120時間培養することが好ましい。
 線維化誘導因子の存在下での培養は、特に限定されず、適宜設定することができる。一例として、48~72時間行うことができる。線維化誘導因子の培養液中の濃度は、5~10μg/mlが好ましい。
 線維化誘導因子の存在下で培養することにより、本発明の細胞集団は、心臓線維化モデルとして用いることができるようになる。具体的には、線維化マーカーの産生が増加する。本発明の細胞集団においては、好ましくは、I型コラーゲン、III型コラーゲン、マトリックスメタロプロテアーゼ2(MMP2)、α-平滑筋アクチン(αSMA)からなる群より選択される少なくとも一種の線維化マーカーの産生が増加している。本発明の細胞集団においては、より好ましくは、上記四種全ての産生が増加している。上記において、産生が増加する程度は、好ましくは、遺伝子発現量が、1.2倍以上、好ましくは1.5倍以上、増加する程度である。また、この場合において、遺伝子発現量は、通常、3倍以下である。遺伝子発現量の測定は、特に限定されないが、例えば、リアルタイムPCR法等により行うことができる。
 2.本発明の、心臓線維症治療薬のスクリーニング方法
 本発明の、心臓線維症治療薬のスクリーニング方法は、
(1)本発明の細胞集団に、候補化合物を接触させる工程と、
(2-1)前記工程(1)により得られた細胞集団における、線維化マーカーの発現量を測定する工程、及び/又は
(2-2)前記工程(1)により得られた細胞集団の収縮能及び/又は弛緩能を測定する工程と、
(3)前記工程(2-1)及び/又は(2-2)で測定された線維化マーカーの発現量、収縮能並びに弛緩能からなる群より選択される少なくとも一種のパラメーターに基づいて、線維症治療作用を有する化合物を選抜する工程
とを含む、方法。である。
 工程(1)における、細胞集団と候補化合物との接触は、細胞集団が死滅など重大な影響を受けない限りにおいていかなる条件、時間で行われてもよく、候補化合物の特性等に応じて適宜設定することができる。通常は、細胞集団を培養している培地中に候補化合物を添加することにより行うことができる。
 工程(2-1)における、線維化マーカー発現量の測定方法は、特に限定されないが、例えば、リアルタイムPCR法等により行うことができる。
 工程(2-1)において、線維化マーカーとしては、I型コラーゲン、III型コラーゲン、マトリックスメタロプロテアーゼ2(MMP2)、α-平滑筋アクチン(αSMA)、ACTA2、AGT、AKT1、BCL2、BMP7、CAV1、CCL11、CCL2、CCL3、CCR2、CEBPB、COL1A2、COL3A1、CTGF、CXCR4、DCN、EDN1、EGF、ENG、FASLG、GREM1、HGF、IFNG、IL10、IL13、IL13RA2、IL1A、IL1B、IL4、IL5、ILK、INHBE、ITGA1、ITGA2、ITGA3、ITGAV、ITGB1、ITGB3、ITGB5、ITGB6、ITGB8、JUN、LOX、LTBP1、MMP1、MMP13、MMP14、MMP3、MMP8、MMP9、MYC、NFKB1、PDGFA、PDGFB、PLAT、PLAU、PLG、SERPINA1、SERPINE1、SERPINH1、SMAD2、SMAD3、SMAD4、SMAD6、SMAD7、SNAI1、SP1、STAT1、STAT6、TGFB1、TGFB2、TGFB3、TGFBR1、TGFBR2、TGIF1、THBS1、THBS2、TIMP1、TIMP2、TIMP3、TIMP4、TNF及びVEGFA等が挙げられる。
 線維化マーカーとしては、I型コラーゲン、III型コラーゲン、マトリックスメタロプロテアーゼ2(MMP2)及びα-平滑筋アクチン(αSMA)からなる群より選択される少なくとも一種の線維化マーカーが好ましい。
 工程(2-2)における、収縮能は、具体的には、収縮速度及び/又は収縮変形距離により測定できる。同様に弛緩能は、弛緩速度及び/又は弛緩変形距離により測定できる。
これらのパラメーターの測定は、特に限定されないが、例えば、高性能ビデオカメラを利用した動画像処理等により行うことができる。例えば、セルモーションイメージングシステムSI8000(ソニー株式会社製)等を使用できる。
 3.心臓線維化モデルを評価する本発明の方法
 心臓線維化モデルを評価する本発明の方法は、
(1-1)本発明の細胞集団におけるアポトーシスを評価する工程、及び/又は
(1-2)本発明の細胞集団における肥大化を評価する工程
を含む、方法である。
 心臓線維化モデルを評価する本発明の方法によって、心臓線維化の病態をin vitroで観察することができる。
 アポトーシスの評価は、従来公知の方法により行うことができる。例えば、カスパーゼ染色によりアポトーシスの様子を可視化することができる。
 細胞の肥大化は、細胞のサイズを測定することにより評価できる。特に限定されないが、例えば、写真を撮影することにより行うことができる。
 心臓線維化モデルを評価する本発明の方法においては、必要に応じて、線維化に影響を与えうる、あるいは影響を与えることが期待ないし予想される刺激を細胞集団に与える工程をさらに含んでいてもよい。
 4.心臓線維化モデルを評価する本発明のシステム
 心臓線維化モデルを評価する本発明のシステムは、
(A)本発明の細胞集団と、
(B)前記細胞集団(A)を培養する装置と、
(C-1)前記細胞集団(A)におけるアポトーシスを評価する装置、及び/又は
(C-2)前記細胞集団(A)における肥大化を評価する装置
とを備える、システムである。
 本発明のシステムは、心臓線維化モデルを評価する本発明の方法を実行するためのシステムである。
 以下に実施例を示して、本発明をさらに具体的に説明する。なお、本発明は、以下の実施例に何ら限定されるものではない。
<実験方法>
1.フローサイトメトリー解析
 細胞を0.5% BSA/PBSで洗浄後、細胞表面マーカーの測定には、洗浄後の細胞をPE標識抗CD31、CD144抗体[BD社製]と反応させた。細胞内、または核内抗原の測定には、洗浄後の細胞を固定・透過処理剤(BD Cytofix Cytoperm、Fixation/Permeabilization Solution Kit、BD社製)で固定、透過処理し、処理後の細胞を抗cTnT抗体(Santa Cruz biotechnology社製、またはThermo Fisher Scientific社製)、抗Nkx2.5、calponin、vimentin(abcam社製)、TE-7(ミリポア製)、desmin(DAKO社製)抗体、次いで、蛍光標識二次抗体(Alexa Fluor 647標識ヤギ-抗マウスIgG2a、マウスIgG1、またはウサギ抗体、Thermo Fisher Scientific社製)と反応することにより行った。
 標識した細胞を、BD FACS Canto IIフローサイトメーターおよびBD FACS Divaソフトウェア(いずれもBD社製)を用いて解析した。
2.心筋細胞の分離
 iPS細胞から分化誘導した胚様体を0.05%トリプシン/EDTAにより単一細胞に分離した後、PE標識抗CD172a抗体(Biolegend社製)、抗PEマイクロビーズ(ミルテニ社製)と順次反応させた。反応後の細胞をMACSシステム(ミルテニ社製)を用いてCD172a陽性分画と陰性分画とに分離した。
3.蛍光免疫染色
 細胞をPBSで洗浄後、4%パラホルムアルデヒドで固定、0.3%Tritonを含むPBDで透過処理した。抗コラーゲンタイプI、MMP2抗体(Abcam社製)cTNT抗体を反応させた後、蛍光標識2次抗体(Alexa Fluor 488、または555標識ヤギ-抗ウサギ、マウスIgG2a、またはマウスIgG1抗体)と反応させた。Hoechst33342(Thermo Fisher Scientific社製)で核染したのち、観察を行った。
4.遺伝子発現解析
 細胞から、RNAeasy kit(QIAGEN社製)、SuperScript VILO cDNA synthesisキット(Thermo Fisher Scientific社製)を使用し、添付プロトコルに従ってトータルRNAを抽出、cDNA合成を行った。リアルタイムPCRにはTaqMan PCR master mix、Taqman gene expression assay(Thermo Fisher Scientific社製)を使用し、Viia7Real-time PCR system(Thermo Fisher Scientific社製)を用いてコラーゲンタイプI、コラーゲンタイプIII、MMP2、αSMAの発現について、サンプル間の比較を行った。
5.網羅的遺伝子発現解析
 細胞から、RNAeasy kit、RT2 First Strand Kit(QIAGEN社製)を用いて添付プロトコルに従ってトータルRNAの抽出、cDNA合成を行った。網羅的遺伝子発現の解析にはRT2 SYBR Green ROX qPCR Mastermix、RT2 ProfilerTM PCR Array Human Fibrosis(QIAGEN社製)を用いて、Viia7Real-time PCR systemにより測定を行った。
6.心筋細胞機能の解析
プレート上にて培養中の細胞をSI8000(ソニー社製)にセットし、動画を撮影した後、SI8000C Analyzer software(ソニー社製)を用いて動画を解析し、収縮速度、弛緩速度、収縮変形距離及び弛緩変形距離を算出した。
<実施例1>細胞構成の解析
 ヒトiPS細胞から心筋分化誘導後の胚様体を単一細胞に分散した後、フローサイトメトリー解析によりTnT陰性の分画に含まれる細胞の構成を解析した。その結果、TnT陰性細胞は心筋マーカーであるNkx2.5の発現はほとんど認められないのに対して、内皮細胞マーカー(CD31、CD144)が4%程度、平滑筋マーカー(desmin、calponin)が30~40%程度、線維芽細胞マーカーTE-7が30~40%程度、ビメンチンが90%程度の細胞において陽性であった(図2)。
<実施例2>線維化刺激への応答性
 ヒトiPS細胞から分化誘導した心筋細胞を含む細胞集団を3×10e5 cells/cm2の密度で播種し、3日間培養した。3日目に無血清、もしくは1%FBS/DMEMに培地を交換して1日培養した後、TGF-β(5μg/ml)を添加し、さらに48~72時間培養して遺伝子発現、心筋細胞機能の評価を行った。その結果、TGF-βの添加により、コラーゲンタイプI、コラーゲンタイプIII、MMP2の有意な発現増加が認められた。さらに、心筋細胞機能については、収縮・弛緩速度、収縮・弛緩変形距離の有意な低下が認められた。以上の結果より、本評価系が生体と同様の線維化刺激に対して応答しうることが示唆された(図3、4)。
<実施例3>心筋細胞純度による応答性の違い
 ヒトiPS細胞から分化誘導した心筋細胞を含む細胞集団から心筋細胞と非心筋細胞とをMACSにより分離したのち、心筋細胞が50、60、70、80%の割合で含まれるよう細胞を再混合した。混合した細胞に対して2と同様に線維化への応答性を解析した。その結果、コラーゲンタイプI、MMP2の発現に関して、心筋細胞純度が高くになるにつれてTGF-β刺激への応答性が低下する傾向が認められた(図5)。
<実施例4>線維化関連遺伝子の網羅的解析
 実施例3と同様に心筋細胞が50、60、70、80%含まれる細胞集団に対してTGF-β刺激を与えた後、線維化関連遺伝子の発現変化を網羅的に解析した。その結果、心筋細胞純度の違いにより応答性が異なり、特に60~70%において応答性が高い傾向が示された(図6)。
<実施例5>薬剤応答性
 実施例2と同様にTGF-βによる刺激を行う際、同時にONO-1301(0.1、0.3、1μM)、ピルフェニドン(0.1、0.3、1mM)(東京化成工業製)を培養系に添加し、遺伝子発現、細胞機能への影響を評価した。その結果、TGF-β刺激に加えて抗線維化作用の知られるオキシム誘導体ONO-1301、又は抗線維化薬ピルフェニドンを添加することにより、コラーゲンタイプI、コラーゲンタイプIIIの発現増加の抑制、心筋細胞収縮・弛緩能の低下の低減が認められた。以上の結果より、本評価系はTGF-βによる線維化刺激に応答するとともに、線維化抑制剤への刺激にも応答することが明らかとなった(図7)。

Claims (9)

  1. 多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより得られうる、細胞集団。
  2. 全細胞に対する前記多能性幹細胞由来心筋細胞の割合が、50~70%である、請求項1に記載の細胞集団。
  3. 前記多能性幹細胞由来心筋細胞が、iPS細胞由来心筋細胞である、請求項1又は2に記載の細胞集団。
  4. 心臓線維化モデルとして用いられる、請求項1~3のいずれか一項に記載の細胞集団。
  5. 心臓線維症治療薬のスクリーニングのために用いられる、請求項4に記載の細胞集団。
  6. 心臓線維化モデルとして用いられる細胞集団の製造方法であって、多能性幹細胞由来心筋細胞を含む細胞集団を線維化誘導因子の存在下で培養することにより前記細胞集団を得る工程を含む方法。
  7. 心臓線維症治療薬のスクリーニング方法であって、
    (1)請求項1~3のいずれか一項に記載の細胞集団に、候補化合物を接触させる工程と、
    (2-1)前記工程(1)により得られた細胞集団における、線維化マーカーの発現量を測定する工程、及び/又は
    (2-2)前記工程(1)により得られた細胞集団の収縮能及び/又は弛緩能を測定する工程と、
    (3)前記工程(2-1)及び/又は(2-2)で測定された線維化マーカーの発現量、収縮能並びに弛緩能からなる群より選択される少なくとも一種のパラメーターに基づいて、線維症治療作用を有する化合物を選抜する工程
    とを含む、方法。
  8. 心臓線維化モデルを評価する方法であって、
    (1-1)請求項1~3のいずれか一項に記載の細胞集団におけるアポトーシスを評価する工程、及び/又は
    (1-2)請求項1~3のいずれか一項に記載の細胞集団における肥大化を評価する工程を含む、方法。
  9. 心臓線維化モデルを評価するシステムであって、
    (A)請求項1~3のいずれか一項に記載の細胞集団と、
    (B)前記細胞集団(A)を培養する装置と、
    (C-1)前記細胞集団(A)におけるアポトーシスを評価する装置、及び/又は
    (C-2)前記細胞集団(A)における肥大化を評価する装置
    とを備える、システム。
PCT/JP2018/008511 2017-03-06 2018-03-06 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム WO2018164098A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504589A JPWO2018164098A1 (ja) 2017-03-16 2018-03-06 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017041930 2017-03-06
JP2017-041930 2017-03-06
JP2017-051394 2017-03-16
JP2017051394 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018164098A1 true WO2018164098A1 (ja) 2018-09-13

Family

ID=63449091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008511 WO2018164098A1 (ja) 2017-03-06 2018-03-06 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム

Country Status (1)

Country Link
WO (1) WO2018164098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015141A1 (es) * 2020-07-13 2022-01-20 Centro De Retina Médica Y Quirúrgica, S.C. Uso farmacéutico de pirfenidona para la reducción de fibrosis cardiaca en pacientes con cardiomiopatía y/o esteatosis cardiaca y/o covid-19

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017254A1 (ja) * 2007-07-31 2009-02-05 Asubio Pharma Co., Ltd. 心筋細胞の細胞塊作製方法及び当該心筋細胞塊の用途
WO2012108444A1 (ja) * 2011-02-07 2012-08-16 国立大学法人京都大学 心筋症特異的多能性幹細胞およびその用途
WO2013137491A1 (ja) * 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2015025957A1 (ja) * 2013-08-23 2015-02-26 国立大学法人大阪大学 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017254A1 (ja) * 2007-07-31 2009-02-05 Asubio Pharma Co., Ltd. 心筋細胞の細胞塊作製方法及び当該心筋細胞塊の用途
WO2012108444A1 (ja) * 2011-02-07 2012-08-16 国立大学法人京都大学 心筋症特異的多能性幹細胞およびその用途
WO2013137491A1 (ja) * 2012-03-15 2013-09-19 国立大学法人京都大学 人工多能性幹細胞から心筋および血管系混合細胞群を製造する方法
WO2015025957A1 (ja) * 2013-08-23 2015-02-26 国立大学法人大阪大学 薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISEOKA, HIROKO ET AL.: "Development of Drug Development Screening System by Heart Fiberization Models Using Human-iPS- Cell -Derived Myocardial Cells", REGENERATIVE MEDICINE, vol. 16, February 2017 (2017-02-01), pages 384 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022015141A1 (es) * 2020-07-13 2022-01-20 Centro De Retina Médica Y Quirúrgica, S.C. Uso farmacéutico de pirfenidona para la reducción de fibrosis cardiaca en pacientes con cardiomiopatía y/o esteatosis cardiaca y/o covid-19

Similar Documents

Publication Publication Date Title
JP7506011B2 (ja) 心筋細胞シート
Kumar et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts
JP7097814B2 (ja) ヒト心室前駆細胞の生着のための遺伝子マーカー
Tamburini et al. Chronic liver disease in humans causes expansion and differentiation of liver lymphatic endothelial cells
Wojakowski et al. Cardiomyocyte differentiation of bone marrow-derived Oct-4+ CXCR4+ SSEA-1+ very small embryonic-like stem cells
WO2016106160A1 (en) Methods for screening therapeutic compounds
JP2015511482A (ja) 3dインビトロ二相性軟骨構造物
Gao et al. Anti-PD-L1 DNA aptamer antagonizes the interaction of PD-1/PD-L1 with antitumor effect
JP6830893B2 (ja) 腎前駆細胞を製造する方法
Nery et al. Recognition of biomarkers and cell‐specific molecular signatures: Aptamers as capture agents
Conchinha et al. Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle
Hara et al. CD73+ epithelial progenitor cells that contribute to homeostasis and renewal are depleted in eosinophilic esophagitis
CN110607277A (zh) 一种人类多能干细胞分化巨噬细胞的方法
KR20240116751A (ko) 사람 유도성 제어성 t세포 및 그 제작 방법
Schäck et al. Expression of CD24 in Human Bone Marrow‐Derived Mesenchymal Stromal Cells Is Regulated by TGFβ3 and Induces a Myofibroblast‐Like Genotype
WO2018164098A1 (ja) 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム
Vidic et al. selection approach to develop DNA aptamers for a stem-like cell subpopulation of non-small lung cancer adenocarcinoma cell line A549
CN109837281A (zh) 特异性结合s100p蛋白的核酸适配体及其筛选、鉴定和应用
JPWO2018164098A1 (ja) 心臓線維化モデルとして用いられる細胞集団、その製造方法、それを利用したスクリーニング方法及び心臓線維化モデルの評価方法、並びに心臓線維化モデルの評価システム
US8747838B2 (en) Method for isolating smooth muscle stem cells
KR20240130083A (ko) T세포 관련 질환을 치료 또는 예방하기 위한 의약 조성물
WO2008093886A1 (ja) Mcf7由来細胞
Ke et al. Intercellular interaction between FAP fibroblasts and CD150 inflammatory monocytes mediates fibro-stenosis in Crohn’s disease
Ohira et al. Efficient and simple genetic engineering of enteroids using mouse isolated crypts for investigating intestinal functions
JP6587877B2 (ja) 表皮幹細胞を分離するためのマーカー及び三次元培養表皮の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504589

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763716

Country of ref document: EP

Kind code of ref document: A1