WO2018164039A1 - Soldering device - Google Patents

Soldering device Download PDF

Info

Publication number
WO2018164039A1
WO2018164039A1 PCT/JP2018/008271 JP2018008271W WO2018164039A1 WO 2018164039 A1 WO2018164039 A1 WO 2018164039A1 JP 2018008271 W JP2018008271 W JP 2018008271W WO 2018164039 A1 WO2018164039 A1 WO 2018164039A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
ferrite
coil
bonding apparatus
Prior art date
Application number
PCT/JP2018/008271
Other languages
French (fr)
Japanese (ja)
Inventor
田嶋 久容
杉山 和弘
Original Assignee
東レエンジニアリング株式会社
株式会社ワンダーフューチャーコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社, 株式会社ワンダーフューチャーコーポレーション filed Critical 東レエンジニアリング株式会社
Publication of WO2018164039A1 publication Critical patent/WO2018164039A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate using induction heating.
  • Patent Document 1 discloses a method of locally heating a portion to be soldered using induction heating. In this method, with the heating element in contact with the substrate, the heat of the heating element heated by induction heating is transmitted to the solder via the electrode of the substrate that is in contact with the solder. It is to be melted.
  • the present invention has been made in view of the above problems, and its main purpose is to suppress heating of a substrate in a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate by using induction heating.
  • an object of the present invention is to provide a soldering apparatus with high heating efficiency, which can easily solder even a small electronic component. It is another object of the present invention to provide a solder bonding apparatus capable of simultaneously bonding different types of electronic components with an appropriate amount of heating even when different types of electronic components are mounted on a substrate.
  • an object of the present invention is to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity.
  • a solder bonding apparatus is a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate, and melts the solder interposed between the electrode and the electronic component so that the Heating means for soldering parts together
  • the heating means includes a coil having a space inside, a plurality of ferrites arranged in the space of the coil, and electrodes formed on each ferrite and the substrate in plan view And an adjustment mechanism that independently adjusts the distance between the electrodes and a power source that applies an AC voltage to the coil to inductively heat the electrodes formed on the substrate, and each ferrite and the electrodes formed on the substrate, The interval is adjusted in advance by an adjustment mechanism so that when an AC voltage is applied to the coil, the temperature of each electrode heated by induction heating is uniform for a plurality of electrodes arranged inside the coil.
  • solder bonding apparatus for soldering an electronic component to an electrode formed on a substrate by melting solder interposed between the electrode and the electronic component, Heating means for soldering electronic components to the coil, and the heating means applies, in plan view, a coil having a space portion inside, a plurality of ferrites arranged in the space portion of the coil, and an AC voltage applied to the coil.
  • a power source for inductively heating the electrodes formed on the substrate, and the area of the end surface on the substrate side of each ferrite with respect to the plurality of electrodes arranged inside the coil when an AC voltage is applied to the coil Thus, the temperature of each electrode heated by induction heating is adjusted in advance so as to be uniform.
  • an object of the present invention is to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity.
  • (A), (b) is the figure which showed typically the structure of the soldering apparatus used as the premise of this invention. It is the figure which showed typically the structure of the solder joint apparatus in one Embodiment of this invention. In one Embodiment of this invention, it is the figure explaining the method of solder-joining an electronic component to the electrode formed on the board
  • (A), (b) is the figure which showed the temperature change of the electrode heated by induction heating, when the space
  • the applicant of the present application forms a shape surrounding the predetermined region above or below the predetermined region where the electronic component is mounted.
  • PCT / JP2016 / 072056, PCT / 2016/076332 are arranged by supplying a current to the coil and inductively heating an electrode on which an electronic component is mounted in the coil.
  • 1 (a) and 1 (b) are diagrams schematically showing a configuration of a solder bonding apparatus disclosed in the above application specification.
  • a plurality of electronic components C are mounted on the substrate 11, and a coil 20 having a shape surrounding the region A is disposed above the region A where the electronic components C are mounted. ing.
  • FIG. 1B when an AC voltage is applied to the coil 20, the magnetic flux ⁇ generated inside the coil 20 is irradiated perpendicularly to the electrode 13 formed on the substrate 11. Thereby, the electrode 13 is induction-heated. The heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, whereby the electronic component C is soldered to the electrode 13.
  • the induction heating range can be limited to the electrode 13 on which the electronic component C is mounted in the coil 20.
  • the electrode 13 used as the solder bonding target site is directly heated not by heat conduction from the heating element but by induction heating, heating of the substrate 11 can be suppressed.
  • thermal deformation of the substrate 11 can be suppressed even when a flexible substrate with low heat resistance is used.
  • solder bonding can be easily performed even with a minute electronic component.
  • the size of the electrode 13 on which the electronic component C is mounted may vary depending on the type and size of the electronic component C. Therefore, the amount of heating by which the electrode 13 on which the electronic component C is mounted in the region A is induction-heated by the magnetic flux ⁇ generated inside the coil 20 is the size of the electrode 13, that is, the type and size of the electronic component C. It depends on the size. As a result, when electronic components C of different types and sizes are mixed on the substrate 11, the heating amount of the electrodes 13 on which the electronic components C are mounted changes. For this reason, since the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, there may be variations in solder joints in electronic components of different types and sizes.
  • the magnetic flux ⁇ generated inside the coil 20 is not necessarily uniform.
  • the distribution of the magnetic flux ⁇ generated inside the coil 20 also changes depending on the shape of the coil 20.
  • the magnetic flux ⁇ irradiated to the electrode 13 varies due to warpage or bending of the substrate. Therefore, the heating amount of the electrode 13 on which the electronic component C is mounted may change.
  • the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, there may be variations in solder joints in electronic components of different types and sizes.
  • the present invention has been made to eliminate such inconveniences, and even when different types of electronic components are mounted on a board, different types of electronic components can be simultaneously soldered with an appropriate heating amount.
  • the present invention provides a solder bonding apparatus that can perform the above. It is another object of the present invention to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity even if there is a variation in the magnetic flux ⁇ generated inside the coil 20.
  • FIG. 2 is a diagram schematically showing a configuration of a solder bonding apparatus according to an embodiment of the present invention.
  • the solder bonding apparatus 10 is a solder bonding apparatus that solder-bonds an electronic component C to an electrode (not shown) formed on a substrate 11. There is provided heating means for melting the solder (not shown) interposed between the electrodes and soldering the electronic component C to the electrodes.
  • the heating means includes a coil 20 having a space portion 21 inside and a plurality of ferrites 30 arranged in the space portion 21 of the coil 20 in a plan view (z direction).
  • the distance between each ferrite 30 and the electrode formed on the substrate 11 is independently controlled by the adjusting mechanism 40.
  • the adjustment of the interval can be performed using, for example, an actuator (for example, a robot cylinder, a linear slider, etc.) 41 provided for each ferrite 30.
  • Both ends of the coil 20 are connected to the power source 50 via the wiring 51, and by applying an AC voltage to the coil 20, the electrode formed on the substrate 11 located below the ferrite 30 is induction-heated.
  • FIG. 3 is a diagram illustrating a method of soldering an electronic component to an electrode formed on the substrate 11 using induction heating in the present embodiment.
  • solder 14 is supplied to the electrode 13 formed on the substrate 11, and an electronic component (for example, a chip capacitor, chip resistor, etc.) C having terminals (not shown) is soldered thereon. ing.
  • each ferrite 30 has a tapered shape in accordance with the size of the electrode 13 which is a target portion for solder bonding.
  • an AC voltage is applied to the coil 20
  • a magnetic flux is generated around the coil 20.
  • the magnetic flux ⁇ generated inside the coil 20 travels through the ferrite 30 disposed inside the coil 20, and irradiates perpendicularly to the electrode 13 formed on the substrate 11 from the end portion 31 of the ferrite 30. Is done.
  • the electrode 13 is induction-heated.
  • the heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, and the terminals of the electronic component C are soldered to the electrode 13.
  • the magnetic flux ⁇ generated inside the coil 20 can be transmitted to the electrode 13 through the ferrite 30 without being attenuated, so that the solder bonding is efficiently performed. It can be performed. Further, the range of induction heating can be limited to the electrode 13 by matching the end 31 of the ferrite 30 with the size of the electrode 13. Thereby, even a small electronic component C can be easily soldered. Moreover, since the electrode 13 is directly heated by induction heating, the heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board
  • the magnetic flux ⁇ generated inside the coil 20 is not necessarily uniform. Further, the magnetic flux ⁇ irradiated to the electrode 13 also varies due to warpage or bending of the substrate 11. For this reason, the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, so that there may be variations in solder joints.
  • the solder bonding apparatus is configured so that the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is equal to the coil 20
  • An adjustment mechanism 40 that adjusts in advance so that the temperature of each electrode 13 heated by induction heating is uniform with respect to the plurality of electrodes 13 arranged on the inner side is provided.
  • FIGS. 4A and 4B are diagrams showing the temperature change of the electrode 13 heated by induction heating when the distance D between the end 31 of the ferrite 30 and the electrode 13 on the substrate 11 is changed. It is.
  • the magnetic flux ⁇ irradiated to the electrode 13 from the end portion 31 of the ferrite 30 is proportional to the square of the distance D between the end portion 31 of the ferrite 30 and the electrode 13 on the substrate 11. It attenuates. Therefore, since the heating amount of the electrode 13 heated by induction heating is proportional to the magnetic flux ⁇ , the temperature of the electrode 13 is set on the end portion 31 of the ferrite 30 and the substrate 11 as shown in FIG. It changes in inverse proportion to the square of the distance D from the electrode 13. Therefore, by adjusting the distance D between each ferrite 30 and the electrode 13 on the substrate 11, the temperature of each electrode 13 heated by induction heating can be controlled uniformly.
  • FIG. 5 shows a distance D 1 between the ferrites 30A and 30B and the electrodes 13A and 13B formed on the substrate 11 when two electronic components Ca and Cb having different sizes are mounted on the substrate 11.
  • the area of the electrode 13A is made larger than the area of the electrode 13B in accordance with the sizes of the electronic components Ca and Cb.
  • the electrode 13B having a smaller area than the electrode 13A having a larger area compensates for the magnetic flux ⁇ because the irradiated magnetic flux ⁇ is smaller and the heating amount is smaller. Instead, it is necessary to increase the magnetic flux intensity and the heating amount.
  • the distance D 1 of the ferrite 30A and the electrode 13A it may be adjusted as better spacing D 2 between the ferrite 30B and the electrode 13B is reduced.
  • the heating amount of the electrodes 13A and 13B heated by induction heating can be adjusted to an appropriate amount, the temperature of the electrodes 13A and 13B can be controlled uniformly.
  • the temperature profile is measured in advance by transporting a temperature measurement substrate (a substrate in which a temperature sensor is attached to the heated electrodes 13A, 13B, etc.). Equally, the temperature of each electrode 13 heated by induction heating can be uniformly controlled by adjusting the distance D between each ferrite 30 and the electrode 13 on the substrate 11 according to the temperature profile. it can.
  • the solder bonding apparatus 10 attenuates the magnetic flux generated inside the coil 20 through the ferrite 30 by arranging the plurality of ferrites 30 in the space of the coil 20. Therefore, it can be transmitted so as to be focused on the electrode 13 on the substrate 11, so that soldering can be performed efficiently.
  • the induction heating range can be limited to the electrode 13.
  • each ferrite 30 and the electrode 13 formed on the substrate 11 can be adjusted independently so as to be inside the coil 20.
  • the temperature of each electrode 13 heated by induction heating can be uniformly controlled with respect to the plurality of arranged electrodes 13.
  • different types of electronic components C can be soldered simultaneously with an appropriate amount of heating.
  • each ferrite 30 and the electrode 13 formed on the substrate 11 is adjusted independently, thereby being arranged inside the coil 20.
  • the temperature of each electrode 13 heated by induction heating can be uniformly controlled with respect to the plurality of electrodes 13 formed. Thereby, a plurality of electronic components can be soldered simultaneously with good uniformity.
  • each ferrite 30 and the electrode 13 formed on the substrate 11 is independently adjusted to be arranged inside the coil 20.
  • the temperature of each electrode 13 heated by induction heating can be controlled uniformly with respect to the plurality of electrodes 13. Thereby, a plurality of electronic components can be soldered simultaneously with good uniformity.
  • the ferrite 30 only needs to have a high magnetic permeability that can transmit the magnetic flux generated inside the coil 20 to the electrode 13 that is a target site for solder bonding without being attenuated.
  • soft ferrite can be used as the ferrite 30.
  • Soft ferrite is a soft magnetic material mainly composed of iron oxide, has a large electric resistance, and hardly conducts current. For this reason, eddy currents are unlikely to occur in soft ferrite during induction heating. As a result, since the soft ferrite itself can be prevented from generating heat when performing induction heating, the influence of the heat received by the substrate 11 can be reduced even when the soft ferrite is close to the electrode 13.
  • the adjustment mechanism 40 that independently adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is provided on each ferrite 30 and the substrate 11 as shown in FIG.
  • the electrodes formed on the ferrite 30 and the substrate 11 based on the data stored in the storage unit 43 storing data in which the distance from the formed electrode 13 is set to a predetermined value.
  • 13 may further include a control unit 42 that automatically adjusts the distance from the control unit 13.
  • the storage unit 43 stores data in which the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is set so that the temperature of each electrode 13 heated by induction heating is uniform. .
  • the control unit 42 automatically adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 based on the data stored in the storage unit 43.
  • each electrode 13 arranged inside the coil 20 depends on the area of each electrode 13, the type and size of the electronic component to be soldered to each electrode 13, or the warp or bend of the substrate 11. change. Therefore, an appropriate amount of heating suitable for each condition is acquired in advance, and each ferrite 30 set so that the temperature of each electrode 13 heated by induction heating is uniform and the electrode 13 on the substrate 11 are By storing the interval data in the storage unit 43, automated solder bonding can be realized.
  • the substrate 11 is opposite to the side where the coil 20 is disposed, and is parallel to the substrate 11 at a position facing the plurality of ferrites 30.
  • a ferrite plate 32 may be provided. Thereby, since the magnetic flux transmitted through the ferrite 30 on the coil 20 side passes through the substrate 11 and is transmitted to the ferrite plate 32, the magnetic flux generated in the coil 20 can be irradiated to the electrode 13 more reliably. As a result, the electronic component C can be soldered more reliably.
  • rod-shaped ferrite may be arranged at a position facing the ferrite 30.
  • the substrate 11 may be made of an insulating material, and the type thereof is not particularly limited.
  • a circuit substrate having circuit wiring formed on the surface an interposer having electrode pads formed on both surfaces, or the like can be used.
  • the electronic component C is not particularly limited as long as it is a component having a terminal.
  • a chip capacitor, a chip resistor, an LED element, a semiconductor element, an LSI, or the like can be used.
  • the electrode 13 that is a target site for solder bonding has an area that can be locally heated by induction heating.
  • the area of the electrode 13 is preferably 0.25 mm ⁇ 0.25 mm or more.
  • an auxiliary heating metal pad may be provided adjacent to the electrode 13.
  • the coil 20 is not particularly limited as long as the coil 20 is parallel to the substrate 11 and has a space portion on the inner side in plan view. Further, the coil 20 may be formed in a pipe shape and circulated inside with a refrigerant.
  • the solder bonding apparatus has a configuration in which a coil 20 having a shape surrounding the area is arranged above the area where the electronic component C is mounted.
  • the solder bonding apparatus 10 shown in FIG. 2 illustrates a configuration in which a coil 20 having a shape surrounding the area is arranged above the area where the electronic components C arranged in a row are mounted.
  • FIG. 6 is a diagram schematically showing a configuration of a solder bonding apparatus corresponding to such a case.
  • electronic components C arranged in two rows are mounted on a substrate 11, and a coil 20 having a shape surrounding the region is disposed above the mounted region.
  • a plurality of ferrites 30 arranged in two rows are arranged in the space 21 of the coil 20.
  • the coil 20 can be adjusted by independently adjusting the distance between each ferrite 30 and the electrode formed on the substrate 11.
  • the temperature of each electrode heated by induction heating can be controlled uniformly with respect to the plurality of electrodes arranged inside the.
  • different types of electronic components C can be soldered simultaneously with an appropriate amount of heating.
  • the electronic components C arranged in a plurality of rows are mounted by soldering at the same time, the area of the region surrounded by the coil 20 is increased. Therefore, the uniformity of the magnetic flux ⁇ generated inside the coil 20 may be reduced. Alternatively, the substrate 11 may be greatly affected by warping or bending. Even in such a case, by arranging the ferrites 30 arranged in a plurality of rows in the space portion 21 of the coil 20, the heating amount is adjusted to an appropriate amount for the plurality of electrodes arranged inside the coil 20. be able to. Thereby, since the temperature of each electrode 13 heated by induction heating can be controlled uniformly, a plurality of electronic components C can be soldered simultaneously with good uniformity.
  • the ferrites 30 arranged in two rows are illustrated in the space portion 21 of the coil 20.
  • the ferrites 30 arranged in three or more rows are arranged. Also good.
  • the shape and arrangement method of the ferrite 30 are not particularly limited, and can be appropriately changed according to the type and size of the electronic components C mounted on the substrate 11 and the arrangement method.
  • the length of the ferrite 30 is preferably in the range of 30 to 40 mm.
  • the ferrite 30 preferably has a shape as close as possible to the inner dimension of the coil 20.
  • the magnetic flux ⁇ generated inside the coil 20 is transmitted through the ferrite 30 disposed inside the coil 20, and the electrode 13 formed on the substrate 11 from the end 31 of the ferrite 30. Irradiated perpendicular to As a result, the electrode 13 is heated by induction heating, and this heating amount attenuates in proportion to the square of the distance D between the ferrite 30 and the electrode on the substrate 11.
  • the solder bonding apparatus shown in FIG. 2 utilizes this property, and a plurality of electrodes arranged inside the coil 20 by adjusting the distance between each ferrite 30 and the electrode formed on the substrate 11. On the other hand, the temperature of each electrode heated by induction heating is controlled to be uniform.
  • the magnetic flux irradiated from the end 31 of the ferrite 30 ⁇ is also applied to areas other than the chip Cb. Therefore, if there are other chips or conductive materials in the vicinity of the chip Cb, they are also heated by induction heating, which is not preferable. Therefore, in order to avoid such influence, the area of the end face of the ferrite 30 is preferably changed in accordance with the size of the chip.
  • FIG. 7 shows a case where two electronic components Ca and Cb having different sizes are mounted on the substrate 11 in the same manner as shown in FIG.
  • the area of the electrode 13A is made larger than the area of the electrode 13B in accordance with the sizes of the electronic components Ca and Cb.
  • the areas of the end faces 31A and 31B of the ferrites 30A and 30B arranged to face the chips Ca and Cb are changed to be the same as the areas of the electrodes 13A and 13B, respectively.
  • the density of the magnetic flux ⁇ irradiated to the electrodes 13A and 13B from the end faces 31A and 31B of the ferrites 30A and 30B changes.
  • the electrode 13A having a larger area has a lower resistance value than the electrode 13B having a smaller area
  • the eddy current generated in the electrode 13A is larger than the eddy current generated in the electrode 13B. Because of these factors, the amount of heating for the electrodes 13A and 13B changes, so it is necessary to adjust the amount of heating for the electrodes 13A and 13B so that the temperature of the electrodes 13A and 13B heated by induction heating is uniform.
  • the amount of heating of the electrode 13A is, shows a higher than the heating amount to the electrodes 13B, in this case, the distance D 2 between the ferrite 30B and the electrode 13B, the ferrite 30A and the electrode 13A it may be adjusted to be smaller than the distance D 1.
  • the heating amount of the electrodes 13A and 13B heated by induction heating can be adjusted to an appropriate amount, the temperature of the electrodes 13A and 13B can be controlled uniformly.
  • the amount of heating of the electrode 13B is higher than the heating amount to the electrodes 13A is a distance D 1 of the ferrite 30A and the electrode 13A, adjusted to be smaller than the distance D 2 between the ferrite 30B and the electrode 13B do it.
  • the ferrite 30 is tapered at the end 31 on the substrate 11 side, but the shape is not particularly limited.
  • the end portion 31 of the ferrite 30 can be two-sided or four-sided. Further, the end portion 31 on the substrate 11 side is not necessarily tapered.
  • the interval between each ferrite 30 and the electrode 13 formed on the substrate 11 is automatically adjusted based on the data stored in the storage unit 43.
  • a unit in which the distance between the electrode 11 and the electrode 13 formed on the substrate 11 is adjusted is prepared, and the unit is exchanged according to the type, size, arrangement, etc. of the electronic components C mounted on the substrate 11. You may make it do.

Abstract

Provided is a soldering device comprising a heating means that solders an electronic part C to an electrode 13, the heating means comprising: a coil 20 having a space on the inside thereof; a plurality of ferrites 30 disposed in the space of the coil; an adjustment mechanism 40 that independently adjusts the interval between each ferrite and the electrode formed on a substrate; and a power source 50 that applies an alternating current voltage to the coil to inductively heat the electrode. The interval between each ferrite and the electrode is adjusted in advance so that the temperature of each electrode that is inductively heated is uniform among a plurality of electrodes disposed inside the coil.

Description

半田接合装置Solder bonding equipment
 本発明は、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置に関する。 The present invention relates to a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate using induction heating.
 従来のリフロー方式による半田接合装置では、電子部品を実装した基板が、半田が溶融する温度まで加熱される。そのため、半田接合の対象となる領域以外にも過度な熱が加わり、電子部品や基板等に対する熱的負荷が大きくなる。 In a conventional soldering apparatus using a reflow method, a board on which electronic components are mounted is heated to a temperature at which the solder melts. For this reason, excessive heat is applied to a region other than the region to be soldered, and the thermal load on the electronic component, the substrate, etc. is increased.
 近年、電子機器の小型、軽量化に伴い、微小な電子部品を実装する基板として、フレキシブル基板が使用されているが、フレキシブル基板のコスト削減のために、従来のポリイミド樹脂に代えて、ポリエステルやポリエチレンなどの樹脂が使用されつつある。 In recent years, as electronic devices have become smaller and lighter, flexible substrates have been used as substrates for mounting minute electronic components. However, in order to reduce the cost of flexible substrates, polyester or Resins such as polyethylene are being used.
 しかしながら、ポリエステルなどの安価な樹脂は、ポリイミド樹脂よりも融点が低い。そのため、半田接合の際、フレキシブル基板が耐熱温度よりも高く加熱されると、基板が変形してしまうという問題がある。 However, inexpensive resins such as polyester have a lower melting point than polyimide resins. Therefore, there is a problem that the substrate is deformed when the flexible substrate is heated to a temperature higher than the heat-resistant temperature at the time of soldering.
 このような問題に対して、特許文献1には、誘導加熱を利用して、半田接合の対象となる部位を局所的に加熱する方法が開示されている。この方法は、発熱体を基板に当接させた状態で、誘導加熱で加熱された発熱体の熱を、半田と当接している基板の電極を介して、半田に伝達することによって、半田を溶融させるものである。 For such a problem, Patent Document 1 discloses a method of locally heating a portion to be soldered using induction heating. In this method, with the heating element in contact with the substrate, the heat of the heating element heated by induction heating is transmitted to the solder via the electrode of the substrate that is in contact with the solder. It is to be melted.
特開2009-95873号公報JP 2009-95873 A
 しかしながら、特許文献1に開示された方法では、誘導加熱で加熱された発熱体の熱を、熱伝導により、半田と当接している基板の電極に伝えるため、加熱効率が悪い。また、誘導加熱で加熱された発熱体は、半田と当接している基板の電極近傍の基板も、無用に加熱するため、基板が変形するおそれがある。また、微小な電子部品を基板に実装する場合、半田接合の対象となる部位が小さいため、発熱体を基板に当接する際、半田接合の対象となる部位に、正確に当接させることが難しくなる。 However, in the method disclosed in Patent Document 1, the heat of the heating element heated by induction heating is transmitted to the electrode of the substrate in contact with the solder by heat conduction, so that the heating efficiency is poor. In addition, since the heating element heated by induction heating unnecessarily heats the substrate in the vicinity of the electrode of the substrate in contact with the solder, the substrate may be deformed. In addition, when a small electronic component is mounted on a substrate, since the part to be soldered is small, it is difficult to accurately contact the part to be soldered when the heating element is brought into contact with the board. Become.
 本発明は、上記課題に鑑みなされたもので、その主な目的は、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置において、基板の加熱を抑制するとともに、微小な電子部品でも、容易に半田接合が可能な、加熱効率の高い半田接合装置を提供することにある。さらに、異なる種類の電子部品が基板を搭載されている場合においても、適切な加熱量で、異なる種類の電子部品を同時に半田接合することができる半田接合装置を提供することにある。加えて、複数の電子部品を、均一性よく、同時に半田接合することができる半田接合装置を提供することにある。 The present invention has been made in view of the above problems, and its main purpose is to suppress heating of a substrate in a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate by using induction heating. In addition, an object of the present invention is to provide a soldering apparatus with high heating efficiency, which can easily solder even a small electronic component. It is another object of the present invention to provide a solder bonding apparatus capable of simultaneously bonding different types of electronic components with an appropriate amount of heating even when different types of electronic components are mounted on a substrate. In addition, an object of the present invention is to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity.
 本発明に係る半田接合装置は、基板上に形成された電極に電子部品を半田接合する半田接合装置であって、電極と電子部品との間に介在させた半田を溶融させて、電極に電子部品を半田接合する加熱手段を備え、加熱手段は、平面視において、内側に空間部を有するコイルと、コイルの空間部に配置された複数のフェライトと、各フェライトと基板上に形成された電極との間隔を、独立に調整する調整機構と、コイルに交流電圧を印加して、基板上に形成された電極を誘導加熱する電源とを有し、各フェライトと基板上に形成された電極との間隔は、コイルに交流電圧を印加したとき、コイルの内側に配置された複数の電極に対して、誘導加熱によって加熱される各電極の温度が一様になるよう、調整機構によって予め調整される。 A solder bonding apparatus according to the present invention is a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate, and melts the solder interposed between the electrode and the electronic component so that the Heating means for soldering parts together, the heating means includes a coil having a space inside, a plurality of ferrites arranged in the space of the coil, and electrodes formed on each ferrite and the substrate in plan view And an adjustment mechanism that independently adjusts the distance between the electrodes and a power source that applies an AC voltage to the coil to inductively heat the electrodes formed on the substrate, and each ferrite and the electrodes formed on the substrate, The interval is adjusted in advance by an adjustment mechanism so that when an AC voltage is applied to the coil, the temperature of each electrode heated by induction heating is uniform for a plurality of electrodes arranged inside the coil. The
 本発明に係る他の半田接合装置は、基板上に形成された電極に電子部品を半田接合する半田接合装置であって、電極と電子部品との間に介在させた半田を溶融させて、電極に電子部品を半田接合する加熱手段を備え、加熱手段は、平面視において、内側に空間部を有するコイルと、コイルの空間部に配置された複数のフェライトと、コイルに交流電圧を印加して、基板上に形成された電極を誘導加熱する電源とを有し、各フェライトの基板側の端面の面積が、コイルに交流電圧を印加したとき、コイルの内側に配置された複数の電極に対して、誘導加熱によって加熱された各電極の温度が一様になるよう、予め調整される。 Another solder bonding apparatus according to the present invention is a solder bonding apparatus for soldering an electronic component to an electrode formed on a substrate by melting solder interposed between the electrode and the electronic component, Heating means for soldering electronic components to the coil, and the heating means applies, in plan view, a coil having a space portion inside, a plurality of ferrites arranged in the space portion of the coil, and an AC voltage applied to the coil. A power source for inductively heating the electrodes formed on the substrate, and the area of the end surface on the substrate side of each ferrite with respect to the plurality of electrodes arranged inside the coil when an AC voltage is applied to the coil Thus, the temperature of each electrode heated by induction heating is adjusted in advance so as to be uniform.
 本発明によれば、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置において、基板の加熱を抑制するとともに、微小な電子部品でも、容易に半田接合が可能な、加熱効率の高い半田接合装置を提供することができる。さらに、異なる種類の電子部品が基板を搭載されている場合においても、適切な加熱量で、異なる種類の電子部品を、同時に精度良く半田接合することができる半田接合装置を提供することができる。加えて、複数の電子部品を、均一性よく、同時に半田接合することができる半田接合装置を提供することにある。 According to the present invention, in a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate by using induction heating, heating of the substrate is suppressed, and even a small electronic component can be easily soldered. Therefore, it is possible to provide a solder bonding apparatus with high heating efficiency. Furthermore, even when different types of electronic components are mounted on a substrate, it is possible to provide a solder bonding apparatus capable of simultaneously and accurately soldering different types of electronic components with an appropriate amount of heating. In addition, an object of the present invention is to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity.
(a)、(b)は、本発明の前提となる半田接合装置の構成を模式的に示した図である。(A), (b) is the figure which showed typically the structure of the soldering apparatus used as the premise of this invention. 本発明の一実施形態における半田接合装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the solder joint apparatus in one Embodiment of this invention. 本発明の一実施形態において、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する方法を説明した図である。In one Embodiment of this invention, it is the figure explaining the method of solder-joining an electronic component to the electrode formed on the board | substrate using induction heating. (a)、(b)は、フェライト30の端部と、基板上の電極との間隔を変えたときに、誘導加熱によって加熱される電極の温度変化を示した図である。(A), (b) is the figure which showed the temperature change of the electrode heated by induction heating, when the space | interval of the edge part of the ferrite 30 and the electrode on a board | substrate was changed. 本発明の一実施形態において、基板上に大きさの異なる2つの電子部品が実装されている場合に、フェライトと基板上に形成された電極との間隔を調整する仕方を例示した図である。In one embodiment of the present invention, when two electronic parts having different sizes are mounted on a substrate, it is a diagram illustrating how to adjust the interval between a ferrite and an electrode formed on the substrate. 本発明の変形例における半田接合装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the soldering apparatus in the modification of this invention. 本発明の変形例における半田接合装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the soldering apparatus in the modification of this invention.
 本願出願人は、絶縁性の基板上に形成された電極に半田を介して電子部品を半田接合する半田接合装置において、電子部品を実装した所定領域の上方または下方に、当該所定領域を囲う形状のコイルを配置し、コイルに電流を供給して、コイル内で電子部品が実装された電極を誘導加熱することによって、半田接合する半田接合装置を、PCT/JP2016/072056、PCT/2016/076332の出願明細書に開示している。 In the solder joint apparatus for soldering an electronic component to the electrode formed on the insulating substrate via solder, the applicant of the present application forms a shape surrounding the predetermined region above or below the predetermined region where the electronic component is mounted. PCT / JP2016 / 072056, PCT / 2016/076332 are arranged by supplying a current to the coil and inductively heating an electrode on which an electronic component is mounted in the coil. In the specification of the application.
 図1(a)、(b)は、上記出願明細書に開示した半田接合装置の構成を模式的に示した図である。 1 (a) and 1 (b) are diagrams schematically showing a configuration of a solder bonding apparatus disclosed in the above application specification.
 図1(a)に示すように、基板11上に複数の電子部品Cが実装されており、電子部品Cが実装された領域Aの上方に、当該領域Aを囲う形状のコイル20が配置されている。そして、図1(b)に示すように、コイル20に交流電圧が印加されると、コイル20の内側に発生した磁束Φは、基板11上に形成された電極13に対して垂直に照射され、これにより、電極13が誘導加熱される。電極13から、誘導加熱により加熱された熱が半田14に伝達されることによって、半田14が溶融し、これにより、電子部品Cが電極13に半田接合される。 As shown in FIG. 1A, a plurality of electronic components C are mounted on the substrate 11, and a coil 20 having a shape surrounding the region A is disposed above the region A where the electronic components C are mounted. ing. As shown in FIG. 1B, when an AC voltage is applied to the coil 20, the magnetic flux Φ generated inside the coil 20 is irradiated perpendicularly to the electrode 13 formed on the substrate 11. Thereby, the electrode 13 is induction-heated. The heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, whereby the electronic component C is soldered to the electrode 13.
 上記のような構成によれば、誘導加熱する範囲を、コイル20内で電子部品Cが実装された電極13に限定することができる。これにより、半田接合の対象部位となる電極13を、発熱体からの熱伝導でなく、誘導加熱により直接加熱するため、基板11の加熱を抑制することができる。その結果、耐熱性の低いフレキシブル基板を用いても、基板11の熱変形を抑制することができる。また、発熱体を、半田接合の対象となる部位に直接当接させる必要がないため、微小な電子部品でも、容易に半田接合が可能になる。 According to the above configuration, the induction heating range can be limited to the electrode 13 on which the electronic component C is mounted in the coil 20. Thereby, since the electrode 13 used as the solder bonding target site is directly heated not by heat conduction from the heating element but by induction heating, heating of the substrate 11 can be suppressed. As a result, thermal deformation of the substrate 11 can be suppressed even when a flexible substrate with low heat resistance is used. In addition, since it is not necessary for the heating element to directly contact the part to be soldered, solder bonding can be easily performed even with a minute electronic component.
 ところで、電子部品Cが実装された電極13は、電子部品Cの種類や大きさによって、その大きさが変わる場合がある。そのため、コイル20の内側に発生した磁束Φによって、領域A内で電子部品Cの実装された電極13が誘導加熱される加熱量は、電極13の大きさ、つまり、電子部品Cの種類や大きさによって変わる。その結果、基板11上に、種類や大きさの異なる電子部品Cが混在している場合、電子部品Cが実装された電極13の加熱量が変わる。そのため、誘導加熱された電極13から半田14に伝達される熱が変わるため、種類や大きさの異なる電子部品において、半田接合にバラツキが生じる場合がある。 Incidentally, the size of the electrode 13 on which the electronic component C is mounted may vary depending on the type and size of the electronic component C. Therefore, the amount of heating by which the electrode 13 on which the electronic component C is mounted in the region A is induction-heated by the magnetic flux Φ generated inside the coil 20 is the size of the electrode 13, that is, the type and size of the electronic component C. It depends on the size. As a result, when electronic components C of different types and sizes are mixed on the substrate 11, the heating amount of the electrodes 13 on which the electronic components C are mounted changes. For this reason, since the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, there may be variations in solder joints in electronic components of different types and sizes.
 また、電子部品Cの種類や大きさが同じであっても、コイル20の内側に発生した磁束Φは、必ずしも一様ではない。また、コイル20の形状によっても、コイル20の内側に発生した磁束Φの分布が変わる。また、例えば、基板11がフレキシブル基板からなる場合、基板の反りや曲り等によって、電極13に照射される磁束Φにバラツキが生じる。そのため、電子部品Cが実装された電極13の加熱量が変わることがある。その結果、誘導加熱された電極13から半田14に伝達される熱が変わるため、種類や大きさの異なる電子部品において、半田接合にバラツキが生じる場合がある。 Also, even if the type and size of the electronic component C are the same, the magnetic flux Φ generated inside the coil 20 is not necessarily uniform. The distribution of the magnetic flux Φ generated inside the coil 20 also changes depending on the shape of the coil 20. Further, for example, when the substrate 11 is made of a flexible substrate, the magnetic flux Φ irradiated to the electrode 13 varies due to warpage or bending of the substrate. Therefore, the heating amount of the electrode 13 on which the electronic component C is mounted may change. As a result, since the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, there may be variations in solder joints in electronic components of different types and sizes.
 本発明は、このような不都合を解消するためになされたもので、異なる種類の電子部品が基板を搭載されている場合においても、適切な加熱量で、異なる種類の電子部品を、同時に半田接合することができる半田接合装置を提供するものである。また、コイル20の内側に発生した磁束Φにバラツキがあっても、複数の電子部品を、均一性よく、同時に半田接合することができる半田接合装置を提供することにある。 The present invention has been made to eliminate such inconveniences, and even when different types of electronic components are mounted on a board, different types of electronic components can be simultaneously soldered with an appropriate heating amount. The present invention provides a solder bonding apparatus that can perform the above. It is another object of the present invention to provide a solder bonding apparatus capable of simultaneously soldering a plurality of electronic components with high uniformity even if there is a variation in the magnetic flux Φ generated inside the coil 20.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention.
 図2は、本発明の一実施形態における半田接合装置の構成を模式的に示した図である。 FIG. 2 is a diagram schematically showing a configuration of a solder bonding apparatus according to an embodiment of the present invention.
 図2に示すように、本実施形態における半田接合装置10は、基板11上に形成された電極(不図示)に電子部品Cを半田接合する半田接合装置であって、電極と電子部品Cとの間に介在させた半田(不図示)を溶融させて、電極に電子部品Cを半田接合する加熱手段を備えている。 As shown in FIG. 2, the solder bonding apparatus 10 according to the present embodiment is a solder bonding apparatus that solder-bonds an electronic component C to an electrode (not shown) formed on a substrate 11. There is provided heating means for melting the solder (not shown) interposed between the electrodes and soldering the electronic component C to the electrodes.
 加熱手段は、平面視(z方向)において、内側に空間部21を有するコイル20と、コイル20の空間部21に配置された複数のフェライト30とを有している。ここで、各フェライト30と基板11上に形成された電極との間隔は、調整機構40によって、独立に制御される。当該間隔の調整は、例えば、フェライト30毎に設けられたアクチュエータ(例えば、ロボットシリンダ、リニアスライダー等)41を用いて行うことができる。コイル20の両端部は、配線51を介して電源50に接続されており、コイル20に交流電圧を印加することによって、フェライト30の下方に位置する基板11上に形成された電極が誘導加熱される。 The heating means includes a coil 20 having a space portion 21 inside and a plurality of ferrites 30 arranged in the space portion 21 of the coil 20 in a plan view (z direction). Here, the distance between each ferrite 30 and the electrode formed on the substrate 11 is independently controlled by the adjusting mechanism 40. The adjustment of the interval can be performed using, for example, an actuator (for example, a robot cylinder, a linear slider, etc.) 41 provided for each ferrite 30. Both ends of the coil 20 are connected to the power source 50 via the wiring 51, and by applying an AC voltage to the coil 20, the electrode formed on the substrate 11 located below the ferrite 30 is induction-heated. The
 図3は、本実施形態において、誘導加熱を利用して、基板11上に形成された電極に電子部品を半田接合する方法を説明した図である。ここでは、基板11上に形成された電極13に半田14を供給し、その上に、端子(不図示)を有する電子部品(例えば、チップコンデンサ、チップ抵抗等)Cを半田接合する例を示している。 FIG. 3 is a diagram illustrating a method of soldering an electronic component to an electrode formed on the substrate 11 using induction heating in the present embodiment. Here, an example is shown in which solder 14 is supplied to the electrode 13 formed on the substrate 11, and an electronic component (for example, a chip capacitor, chip resistor, etc.) C having terminals (not shown) is soldered thereon. ing.
 図3に示すように、各フェライト30の端部31は、半田接合の対象部位である電極13の大きさに合わせて、先細りの形状になっている。コイル20に交流電圧が印加されると、コイル20の周りに磁束が発生する。そして、コイル20の内側に発生した磁束Φは、コイル20の内側に配置されたフェライト30を伝わって、フェライト30の端部31から、基板11上に形成された電極13に対して垂直に照射される。これにより、電極13が誘導加熱される。電極13から、誘導加熱により加熱された熱が半田14に伝達されることによって、半田14が溶融し、これにより、電極13に電子部品Cの端子が半田接合される。 As shown in FIG. 3, the end portion 31 of each ferrite 30 has a tapered shape in accordance with the size of the electrode 13 which is a target portion for solder bonding. When an AC voltage is applied to the coil 20, a magnetic flux is generated around the coil 20. Then, the magnetic flux Φ generated inside the coil 20 travels through the ferrite 30 disposed inside the coil 20, and irradiates perpendicularly to the electrode 13 formed on the substrate 11 from the end portion 31 of the ferrite 30. Is done. Thereby, the electrode 13 is induction-heated. The heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, and the terminals of the electronic component C are soldered to the electrode 13.
 本実施形態における半田接合装置によれば、コイル20の内側に発生する磁束Φを、フェライト30を介して、減衰することなく、電極13に集束するように伝えることができるため、効率よく半田接合を行うことができる。また、フェライト30の端部31を、電極13の大きさに合わせることによって、誘導加熱する範囲を、電極13に限定することができる。これにより、微小な電子部品Cでも、容易に半田接合が可能となる。また、電極13を、誘導加熱によって直接加熱するため、基板11の加熱を抑制することができる。これにより、耐熱性の低いフレキシブル基板を用いても、基板11の熱変形を抑制することができる。 According to the solder bonding apparatus in the present embodiment, the magnetic flux Φ generated inside the coil 20 can be transmitted to the electrode 13 through the ferrite 30 without being attenuated, so that the solder bonding is efficiently performed. It can be performed. Further, the range of induction heating can be limited to the electrode 13 by matching the end 31 of the ferrite 30 with the size of the electrode 13. Thereby, even a small electronic component C can be easily soldered. Moreover, since the electrode 13 is directly heated by induction heating, the heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board | substrate 11 can be suppressed.
 上述したように、基板11上に、種類や大きさの異なる電子部品Cが混在していると、電子部品Cが実装された電極13の加熱量が変わる。そのため、誘導加熱された電極13から半田14に伝達される熱が変わるため、種類や大きさの異なる電子部品Cにおいて、半田接合にバラツキが生じる場合がある。 As described above, when electronic components C of different types and sizes are mixed on the substrate 11, the heating amount of the electrodes 13 on which the electronic components C are mounted changes. For this reason, since the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, there may be variations in solder joints in electronic components C of different types and sizes.
 また、電子部品Cの種類や大きさが同じであっても、コイル20の内側に発生した磁束Φは、必ずしも一様ではない。また、基板11の反りや曲り等によっても、電極13に照射される磁束Φにバラツキが生じる。そのため、誘導加熱された電極13から半田14に伝達される熱が変わるため、半田接合にバラツキが生じる場合がある。 Also, even if the type and size of the electronic component C are the same, the magnetic flux Φ generated inside the coil 20 is not necessarily uniform. Further, the magnetic flux Φ irradiated to the electrode 13 also varies due to warpage or bending of the substrate 11. For this reason, the heat transmitted from the induction-heated electrode 13 to the solder 14 changes, so that there may be variations in solder joints.
 本実施形態における半田接合装置は、このような不都合を解消するために、各フェライト30と基板11上に形成された電極13との間隔を、コイル20に交流電圧を印加したとき、コイル20の内側に配置された複数の電極13に対して、誘導加熱によって加熱される各電極13の温度が一様になるよう、予め調整する調整機構40を備えている。 In order to eliminate such inconveniences, the solder bonding apparatus according to the present embodiment is configured so that the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is equal to the coil 20 An adjustment mechanism 40 that adjusts in advance so that the temperature of each electrode 13 heated by induction heating is uniform with respect to the plurality of electrodes 13 arranged on the inner side is provided.
 図4(a)、(b)は、フェライト30の端部31と、基板11上の電極13との間隔Dを変えたときに、誘導加熱によって加熱される電極13の温度変化を示した図である。図3に示したように、フェライト30の端部31から、電極13に照射される磁束Φは、フェライト30の端部31と、基板11上の電極13との間隔Dの2乗に比例して減衰する。従って、誘導加熱によって加熱される電極13の加熱量は、磁束Φに比例するため、電極13の温度は、図4(b)に示すように、フェライト30の端部31と、基板11上の電極13との間隔Dの2乗にほぼ反比例して変化する。従って、各フェライト30と基板11上の電極13との間隔Dを調整することによって、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。 FIGS. 4A and 4B are diagrams showing the temperature change of the electrode 13 heated by induction heating when the distance D between the end 31 of the ferrite 30 and the electrode 13 on the substrate 11 is changed. It is. As shown in FIG. 3, the magnetic flux Φ irradiated to the electrode 13 from the end portion 31 of the ferrite 30 is proportional to the square of the distance D between the end portion 31 of the ferrite 30 and the electrode 13 on the substrate 11. It attenuates. Therefore, since the heating amount of the electrode 13 heated by induction heating is proportional to the magnetic flux Φ, the temperature of the electrode 13 is set on the end portion 31 of the ferrite 30 and the substrate 11 as shown in FIG. It changes in inverse proportion to the square of the distance D from the electrode 13. Therefore, by adjusting the distance D between each ferrite 30 and the electrode 13 on the substrate 11, the temperature of each electrode 13 heated by induction heating can be controlled uniformly.
 図5は、基板11上に、大きさの異なる2つの電子部品Ca、Cbが実装されている場合に、フェライト30A、30Bと、基板11上に形成された電極13A、13Bとの間隔D、Dを調整する仕方を示した図である。なお、ここで、電子部品Ca、Cbの大きさに応じて、電極13Aの面積は、電極13Bの面積よりも大きくする。誘導加熱によって、電極13A、13Bを同じ温度に加熱する場合、面積の大きい電極13Aよりも、面積の小さい電極13Bは、照射される磁束Φが少なく、加熱量が小さくなるため、磁束Φを補う代わりに磁束強度を大きくし加熱量を大きくする必要がある。そのためには、フェライト30Aと電極13Aとの距離Dよりも、フェライト30Bと電極13Bとの間隔Dの方が小さくなるように調整すればよい。これにより、誘導加熱によって加熱される電極13A、13Bの加熱量が、適切な量に調整できるため、電極13A、13Bの温度を一様に制御することができる。 FIG. 5 shows a distance D 1 between the ferrites 30A and 30B and the electrodes 13A and 13B formed on the substrate 11 when two electronic components Ca and Cb having different sizes are mounted on the substrate 11. is a diagram showing how to adjust the D 2. Here, the area of the electrode 13A is made larger than the area of the electrode 13B in accordance with the sizes of the electronic components Ca and Cb. When the electrodes 13A and 13B are heated to the same temperature by induction heating, the electrode 13B having a smaller area than the electrode 13A having a larger area compensates for the magnetic flux Φ because the irradiated magnetic flux Φ is smaller and the heating amount is smaller. Instead, it is necessary to increase the magnetic flux intensity and the heating amount. To this end, than the distance D 1 of the ferrite 30A and the electrode 13A, it may be adjusted as better spacing D 2 between the ferrite 30B and the electrode 13B is reduced. Thereby, since the heating amount of the electrodes 13A and 13B heated by induction heating can be adjusted to an appropriate amount, the temperature of the electrodes 13A and 13B can be controlled uniformly.
 また、コイル20の内側に発生した磁束Φが一様でない場合は、温度測定用基板(加熱される電極13A、13B等に温度センサーを取り付けた基板)を搬送させて、予め温度プロファイルを測定する等して、その温度プロファイルに応じて、各フェライト30と基板11上の電極13との間隔Dを調整することによって、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。 Further, when the magnetic flux Φ generated inside the coil 20 is not uniform, the temperature profile is measured in advance by transporting a temperature measurement substrate (a substrate in which a temperature sensor is attached to the heated electrodes 13A, 13B, etc.). Equally, the temperature of each electrode 13 heated by induction heating can be uniformly controlled by adjusting the distance D between each ferrite 30 and the electrode 13 on the substrate 11 according to the temperature profile. it can.
 また、基板11に反りや曲り等が生じている場合も、予め、反りや曲り等が生じている状態の基板11と各フェライト30との距離のバラツキを測定しておき、そのバラツキに応じて、各フェライト30と基板11上の電極13との間隔Dを調整することによって、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。 Further, even when the substrate 11 is warped or bent, a variation in the distance between the substrate 11 and the ferrite 30 in a state where the warp or the bending is generated is measured in advance, and according to the variation. By adjusting the distance D between each ferrite 30 and the electrode 13 on the substrate 11, the temperature of each electrode 13 heated by induction heating can be controlled uniformly.
 以上、説明したように、本発明における半田接合装置10は、コイル20の空間部に複数のフェライト30を配置することによって、コイル20の内側に発生する磁束を、フェライト30を介して、減衰することなく、基板11上の電極13に集束するように伝えることができるため、効率よく半田接合を行うことができる。また、フェライト30の先端を、電極13の大きさに合わせることによって、誘導加熱する範囲を、電極13に限定することができる。これにより、半田接合の対象部位となる電極13を、発熱体からの熱伝導でなく、誘導加熱により直接加熱するため、基板11の加熱を抑制することができる。その結果、耐熱性の低いフレキシブル基板を用いても、基板11の熱変形を抑制することができる。また、発熱体を、半田接合の対象となる部位に直接当接させる必要がないため、微小な電子部品でも、容易に半田接合が可能になる。 As described above, the solder bonding apparatus 10 according to the present invention attenuates the magnetic flux generated inside the coil 20 through the ferrite 30 by arranging the plurality of ferrites 30 in the space of the coil 20. Therefore, it can be transmitted so as to be focused on the electrode 13 on the substrate 11, so that soldering can be performed efficiently. In addition, by adjusting the tip of the ferrite 30 to the size of the electrode 13, the induction heating range can be limited to the electrode 13. Thereby, since the electrode 13 used as the solder bonding target site is directly heated not by heat conduction from the heating element but by induction heating, heating of the substrate 11 can be suppressed. As a result, thermal deformation of the substrate 11 can be suppressed even when a flexible substrate with low heat resistance is used. In addition, since it is not necessary for the heating element to directly contact the part to be soldered, solder bonding can be easily performed even with a minute electronic component.
 さらに、異なる種類の電子部品Cが基板11に実装されている場合においても、各フェライト30と基板11上に形成された電極13との間隔を、独立に調整することによって、コイル20の内側に配置された複数の電極13に対して、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。これにより、適切な加熱量で、異なる種類の電子部品Cを、同時に半田接合することができる。 Furthermore, even when different types of electronic components C are mounted on the substrate 11, the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 can be adjusted independently so as to be inside the coil 20. The temperature of each electrode 13 heated by induction heating can be uniformly controlled with respect to the plurality of arranged electrodes 13. As a result, different types of electronic components C can be soldered simultaneously with an appropriate amount of heating.
 また、コイル20の内側に発生した磁束Φが一様でない場合においても、各フェライト30と基板11上に形成された電極13との間隔を、独立に調整することによって、コイル20の内側に配置された複数の電極13に対して、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。これにより、複数の電子部品を、均一性よく、同時に半田接合することができる。 In addition, even when the magnetic flux Φ generated inside the coil 20 is not uniform, the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is adjusted independently, thereby being arranged inside the coil 20. The temperature of each electrode 13 heated by induction heating can be uniformly controlled with respect to the plurality of electrodes 13 formed. Thereby, a plurality of electronic components can be soldered simultaneously with good uniformity.
 また、基板11に反りや曲り等が生じている場合においても、各フェライト30と基板11上に形成された電極13との間隔を、独立に調整することによって、コイル20の内側に配置された複数の電極13に対して、誘導加熱によって加熱される各電極13の温度を一様に制御することができる。これにより、複数の電子部品を、均一性よく、同時に半田接合することができる。 Further, even when the substrate 11 is warped or bent, the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is independently adjusted to be arranged inside the coil 20. The temperature of each electrode 13 heated by induction heating can be controlled uniformly with respect to the plurality of electrodes 13. Thereby, a plurality of electronic components can be soldered simultaneously with good uniformity.
 本実施形態において、フェライト30は、コイル20の内側に発生する磁束を、減衰することなく、半田接合の対象部位となる電極13に伝えることができる透磁率の高いものであればよい。例えば、フェライト30として、ソフトフェライトを用いることができる。ソフトフェライトは、酸化鉄を主成分とする軟質磁性材料で、電気抵抗が大きく、電流をほとんど通さない。そのため、誘導加熱の際にソフトフェライトにおいて渦電流が発生しにくい。その結果、誘導加熱を行う際に、ソフトフェライト自体が発熱することを回避できるため、ソフトフェライトが電極13に近接していても、基板11が受ける熱の影響を小さくできる。 In the present embodiment, the ferrite 30 only needs to have a high magnetic permeability that can transmit the magnetic flux generated inside the coil 20 to the electrode 13 that is a target site for solder bonding without being attenuated. For example, soft ferrite can be used as the ferrite 30. Soft ferrite is a soft magnetic material mainly composed of iron oxide, has a large electric resistance, and hardly conducts current. For this reason, eddy currents are unlikely to occur in soft ferrite during induction heating. As a result, since the soft ferrite itself can be prevented from generating heat when performing induction heating, the influence of the heat received by the substrate 11 can be reduced even when the soft ferrite is close to the electrode 13.
 また、本実施形態において、各フェライト30と基板11上に形成された電極13との間隔を、独立に調整する調整機構40は、図2に示したように、各フェライト30と基板11上に形成された電極13との間隔が、所定の値に設定されたデータを記憶した記憶部43、及び記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極13との間隔を、自動で調整する制御部42をさらに有していてもよい。 In the present embodiment, the adjustment mechanism 40 that independently adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is provided on each ferrite 30 and the substrate 11 as shown in FIG. The electrodes formed on the ferrite 30 and the substrate 11 based on the data stored in the storage unit 43 storing data in which the distance from the formed electrode 13 is set to a predetermined value. 13 may further include a control unit 42 that automatically adjusts the distance from the control unit 13.
 記憶部43は、各フェライト30と基板11上に形成された電極13との間隔が、誘導加熱によって加熱される各電極13の温度が一様になるように設定されたデータを記憶している。そして、制御部42は、記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極13との間隔を自動で調整する。 The storage unit 43 stores data in which the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is set so that the temperature of each electrode 13 heated by induction heating is uniform. . The control unit 42 automatically adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 based on the data stored in the storage unit 43.
 コイル20の内側に配置された各電極13の適切な加熱量は、各電極13の面積、または各電極13に半田接合する電子部品の種類や大きさ、若しくは、基板11の反りや曲がり等によって変わる。そのため、各条件に合った適切な加熱量を予め取得しておき、誘導加熱によって加熱される各電極13の温度が一様になるように設定された各フェライト30と基板11上の電極13との間隔のデータを、記憶部43に記憶しておくことによって、自動化された半田接合を実現することができる。 The appropriate heating amount of each electrode 13 arranged inside the coil 20 depends on the area of each electrode 13, the type and size of the electronic component to be soldered to each electrode 13, or the warp or bend of the substrate 11. change. Therefore, an appropriate amount of heating suitable for each condition is acquired in advance, and each ferrite 30 set so that the temperature of each electrode 13 heated by induction heating is uniform and the electrode 13 on the substrate 11 are By storing the interval data in the storage unit 43, automated solder bonding can be realized.
 また、本実施形態において、図2に示したように、基板11に対して、コイル20が配置される側と反対側であって、複数のフェライト30と対向する位置に、基板11と平行なフェライト板32を設けておいてもよい。これにより、コイル20側のフェライト30を伝った磁束は、基板11を抜けてフェライト板32に伝わるため、コイル20で発生した磁束を、より確実に、電極13に照射することができる。その結果、電子部品Cの半田接合をより確実に行うことができる。なお、フェライト板32の代わりに、棒状のフェライトを、フェライト30に対向する位置に配置してもよい。 In the present embodiment, as shown in FIG. 2, the substrate 11 is opposite to the side where the coil 20 is disposed, and is parallel to the substrate 11 at a position facing the plurality of ferrites 30. A ferrite plate 32 may be provided. Thereby, since the magnetic flux transmitted through the ferrite 30 on the coil 20 side passes through the substrate 11 and is transmitted to the ferrite plate 32, the magnetic flux generated in the coil 20 can be irradiated to the electrode 13 more reliably. As a result, the electronic component C can be soldered more reliably. Instead of the ferrite plate 32, rod-shaped ferrite may be arranged at a position facing the ferrite 30.
 また、本実施形態において、基板11は、絶縁性の材料で構成されていればよく、その種類は特に限定されない。例えば、基板11として、表面に回路配線が形成された回路基板や、両面に電極パッドが形成されたインターポーザ等を用いることができる。また、電子部品Cは、端子を有する部品であれば、その種類は特に限定されない。例えば、電子部品として、チップコンデンサ、チップ抵抗、LED素子、半導体素子、LSI等を用いることができる。 In the present embodiment, the substrate 11 may be made of an insulating material, and the type thereof is not particularly limited. For example, as the substrate 11, a circuit substrate having circuit wiring formed on the surface, an interposer having electrode pads formed on both surfaces, or the like can be used. The electronic component C is not particularly limited as long as it is a component having a terminal. For example, as an electronic component, a chip capacitor, a chip resistor, an LED element, a semiconductor element, an LSI, or the like can be used.
 また、本実施形態において、半田接合の対象部位である電極13は、誘導加熱によって局所的に加熱可能な面積を有していることが好ましい。電極13の面積は、好ましくは、0.25mm×0.25mm以上である。また、電極13の面積が小さい場合には、電極13に隣接して、補助加熱用の金属パッドを設けてもよい。 In the present embodiment, it is preferable that the electrode 13 that is a target site for solder bonding has an area that can be locally heated by induction heating. The area of the electrode 13 is preferably 0.25 mm × 0.25 mm or more. When the area of the electrode 13 is small, an auxiliary heating metal pad may be provided adjacent to the electrode 13.
 また、本実施形態において、コイル20は、平面視において、基板11に平行で、内側に空間部を有するものであればよく、その形状等は特に限定されない。また、コイル20をパイプ状にして、内部を冷媒で循環させるようにしてもよい。 Further, in the present embodiment, the coil 20 is not particularly limited as long as the coil 20 is parallel to the substrate 11 and has a space portion on the inner side in plan view. Further, the coil 20 may be formed in a pipe shape and circulated inside with a refrigerant.
 (変形例1)
 本実施形態における半田接合装置では、電子部品Cを実装した領域の上方に、当該領域を囲う形状のコイル20が配置された構成になっている。例えば、図2に示した半田接合装置10では、一列に配列された電子部品Cを実装した領域の上方に、当該領域を囲う形状のコイル20が配置された構成を例示している。しかしながら、基板11上に実装される電子部品Cが複数列あり、これらの電子部品Cを同時に半田接合する場合もある。
(Modification 1)
The solder bonding apparatus according to the present embodiment has a configuration in which a coil 20 having a shape surrounding the area is arranged above the area where the electronic component C is mounted. For example, the solder bonding apparatus 10 shown in FIG. 2 illustrates a configuration in which a coil 20 having a shape surrounding the area is arranged above the area where the electronic components C arranged in a row are mounted. However, there are a plurality of rows of electronic components C mounted on the substrate 11, and these electronic components C may be soldered simultaneously.
 図6は、このような場合に対応した半田接合装置の構成を模式的に示した図である。図6に示すように、基板11上に2列に配列された電子部品Cが実装されており、実装された領域の上方に、当該領域を囲う形状のコイル20が配置されている。そして、コイル20の空間部21には、2列に配列された複数のフェライト30が配置されている。 FIG. 6 is a diagram schematically showing a configuration of a solder bonding apparatus corresponding to such a case. As shown in FIG. 6, electronic components C arranged in two rows are mounted on a substrate 11, and a coil 20 having a shape surrounding the region is disposed above the mounted region. A plurality of ferrites 30 arranged in two rows are arranged in the space 21 of the coil 20.
 このような構成により、異なる種類の電子部品Cが基板11に実装されている場合においても、各フェライト30と基板11上に形成された電極との間隔を、独立に調整することによって、コイル20の内側に配置された複数の電極に対して、誘導加熱によって加熱される各電極の温度を一様に制御することができる。これにより、適切な加熱量で、異なる種類の電子部品Cを、同時に半田接合することができる。 With such a configuration, even when different types of electronic components C are mounted on the substrate 11, the coil 20 can be adjusted by independently adjusting the distance between each ferrite 30 and the electrode formed on the substrate 11. The temperature of each electrode heated by induction heating can be controlled uniformly with respect to the plurality of electrodes arranged inside the. As a result, different types of electronic components C can be soldered simultaneously with an appropriate amount of heating.
 また、複数列に配列して実装された電子部品Cを同時に半田接合する場合、コイル20が囲う領域の面積も大きくなる。そのため、コイル20の内側に発生した磁束Φの一様性が低下する場合がある。あるいは、基板11に反りや曲り等の影響が大きくなる場合がある。このような場合でも、コイル20の空間部21に、複数列に配列されたフェライト30を配置することによって、コイル20の内側に配置された複数の電極に対して、適切な加熱量に調整することができる。これにより、誘導加熱によって加熱される各電極13の温度を一様に制御することができるため、複数の電子部品Cを、同時に、均一性良く半田接合することができる。 Also, when the electronic components C arranged in a plurality of rows are mounted by soldering at the same time, the area of the region surrounded by the coil 20 is increased. Therefore, the uniformity of the magnetic flux Φ generated inside the coil 20 may be reduced. Alternatively, the substrate 11 may be greatly affected by warping or bending. Even in such a case, by arranging the ferrites 30 arranged in a plurality of rows in the space portion 21 of the coil 20, the heating amount is adjusted to an appropriate amount for the plurality of electrodes arranged inside the coil 20. be able to. Thereby, since the temperature of each electrode 13 heated by induction heating can be controlled uniformly, a plurality of electronic components C can be soldered simultaneously with good uniformity.
 なお、図6に示した半田接合装置の変形例では、コイル20の空間部21に、2列に配列されたフェライト30を例示したが、勿論、3列以上に配列したフェライト30を配置してもよい。 In the modified example of the solder bonding apparatus shown in FIG. 6, the ferrites 30 arranged in two rows are illustrated in the space portion 21 of the coil 20. Of course, the ferrites 30 arranged in three or more rows are arranged. Also good.
 また、フェライト30の形状や配列の仕方は、特に限定されず、基板上11に実装される電子部品Cの種類や大きさ、配列の仕方等に応じて、適宜、変更することができる。 Further, the shape and arrangement method of the ferrite 30 are not particularly limited, and can be appropriately changed according to the type and size of the electronic components C mounted on the substrate 11 and the arrangement method.
 なお、フェライト30の長さは、30~40mmの範囲にあることが好ましい。また、フェライト30は、コイル20の内寸にできるだけ接近した形状が好ましい。 The length of the ferrite 30 is preferably in the range of 30 to 40 mm. The ferrite 30 preferably has a shape as close as possible to the inner dimension of the coil 20.
 (変形例2)
 本発明における半田接合装置では、コイル20の内側に発生した磁束Φが、コイル20の内側に配置されたフェライト30を伝わって、フェライト30の端部31から、基板11上に形成された電極13に対して垂直に照射される。これにより、電極13が誘導加熱により加熱されるが、この加熱量は、フェライト30と基板11上の電極との間隔Dの2乗に比例して減衰する。図2に示した半田接合装置は、この性質を利用したもので、各フェライト30と基板11上に形成された電極との間隔を調整することによって、コイル20の内側に配置された複数の電極に対して、誘導加熱によって加熱される各電極の温度が一様になるよう制御するものである。
(Modification 2)
In the solder bonding apparatus according to the present invention, the magnetic flux Φ generated inside the coil 20 is transmitted through the ferrite 30 disposed inside the coil 20, and the electrode 13 formed on the substrate 11 from the end 31 of the ferrite 30. Irradiated perpendicular to As a result, the electrode 13 is heated by induction heating, and this heating amount attenuates in proportion to the square of the distance D between the ferrite 30 and the electrode on the substrate 11. The solder bonding apparatus shown in FIG. 2 utilizes this property, and a plurality of electrodes arranged inside the coil 20 by adjusting the distance between each ferrite 30 and the electrode formed on the substrate 11. On the other hand, the temperature of each electrode heated by induction heating is controlled to be uniform.
 ところで、図5に示したように、面積の小さいチップCbに対峙して配置されたフェライト30Bの端面の面積が、電極13Bの面積よりも大きいと、フェライト30の端部31から照射される磁束Φは、チップCb以外の領域にも照射される。そのため、チップCbの近傍に、他のチップや導電物などがあると、それらも誘導加熱により加熱されるため、好ましくない。従って、このような影響を避けるために、フェライト30の端面の面積は、チップの大きさに合わせて変えることが好ましい。 By the way, as shown in FIG. 5, when the area of the end face of the ferrite 30B arranged facing the chip Cb having a small area is larger than the area of the electrode 13B, the magnetic flux irradiated from the end 31 of the ferrite 30 Φ is also applied to areas other than the chip Cb. Therefore, if there are other chips or conductive materials in the vicinity of the chip Cb, they are also heated by induction heating, which is not preferable. Therefore, in order to avoid such influence, the area of the end face of the ferrite 30 is preferably changed in accordance with the size of the chip.
 図7は、図5で示したのと同様に、基板11上に、大きさの異なる2つの電子部品Ca、Cbが実装されている場合を示す。ここで、電子部品Ca、Cbの大きさに応じて、電極13Aの面積は、電極13Bの面積よりも大きくする。そして、チップCa、Cbに対峙して配置されたフェライト30A、30Bの端面31A、31Bの面積は、それぞれ、電極13A、13Bの面積と同じになるように変えている。 FIG. 7 shows a case where two electronic components Ca and Cb having different sizes are mounted on the substrate 11 in the same manner as shown in FIG. Here, the area of the electrode 13A is made larger than the area of the electrode 13B in accordance with the sizes of the electronic components Ca and Cb. The areas of the end faces 31A and 31B of the ferrites 30A and 30B arranged to face the chips Ca and Cb are changed to be the same as the areas of the electrodes 13A and 13B, respectively.
 一方、フェライト30A、30Bの端面31A、31Bの面積が変わると、フェライト30A、30Bの端面31A、31Bから電極13A、13Bに照射される磁束Φの密度が変わる。また、面積の大きい電極13Aの方が、面積の小さい電極13Bよりも抵抗値が低いため、電極13Aに発生する渦電流の方が、電極13Bに発生する渦電流よりも大きくなる。これらの要因により、電極13A、13Bに対する加熱量が変わるため、誘導加熱によって加熱される電極13A、13Bの温度が一様になるように、電極13A、13Bに対する加熱量を調整する必要がある。 On the other hand, when the areas of the end faces 31A and 31B of the ferrites 30A and 30B change, the density of the magnetic flux Φ irradiated to the electrodes 13A and 13B from the end faces 31A and 31B of the ferrites 30A and 30B changes. In addition, since the electrode 13A having a larger area has a lower resistance value than the electrode 13B having a smaller area, the eddy current generated in the electrode 13A is larger than the eddy current generated in the electrode 13B. Because of these factors, the amount of heating for the electrodes 13A and 13B changes, so it is necessary to adjust the amount of heating for the electrodes 13A and 13B so that the temperature of the electrodes 13A and 13B heated by induction heating is uniform.
 図7は、電極13Aに対する加熱量が、電極13Bに対する加熱量よりも高い場合を示したもので、この場合には、フェライト30Bと電極13Bとの間隔Dを、フェライト30Aと電極13Aとの距離Dよりも小さくなるように調整すればよい。これにより、誘導加熱によって加熱される電極13A、13Bの加熱量が、適切な量に調整できるため、電極13A、13Bの温度を一様に制御することができる。なお、電極13Bに対する加熱量が、電極13Aに対する加熱量よりも高い場合には、フェライト30Aと電極13Aとの間隔Dを、フェライト30Bと電極13Bとの距離Dよりも小さくなるように調整すればよい。 7, the amount of heating of the electrode 13A is, shows a higher than the heating amount to the electrodes 13B, in this case, the distance D 2 between the ferrite 30B and the electrode 13B, the ferrite 30A and the electrode 13A it may be adjusted to be smaller than the distance D 1. Thereby, since the heating amount of the electrodes 13A and 13B heated by induction heating can be adjusted to an appropriate amount, the temperature of the electrodes 13A and 13B can be controlled uniformly. Incidentally, the amount of heating of the electrode 13B is higher than the heating amount to the electrodes 13A is a distance D 1 of the ferrite 30A and the electrode 13A, adjusted to be smaller than the distance D 2 between the ferrite 30B and the electrode 13B do it.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態において、フェライト30を、基板11側の端部31において先細りの形状にしたが、その形状は特に限定されない。例えば、フェライト30の端部31を、二面取り、若しくは四面取りにすることができる。また、基板11側の端部31を、必ずしも先細りの形状にしなくてもよい。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, the ferrite 30 is tapered at the end 31 on the substrate 11 side, but the shape is not particularly limited. For example, the end portion 31 of the ferrite 30 can be two-sided or four-sided. Further, the end portion 31 on the substrate 11 side is not necessarily tapered.
 また、上記実施形態では、記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極13との間隔を自動で調整するようにしたが、予め、各フェライト30と基板11上に形成された電極13との間隔を調整したユニットを用意しておき、基板11上に搭載される電子部品Cの種類や大きさ、配列の仕方等に応じて、ユニット毎交換するようにしてもよい。 In the above embodiment, the interval between each ferrite 30 and the electrode 13 formed on the substrate 11 is automatically adjusted based on the data stored in the storage unit 43. A unit in which the distance between the electrode 11 and the electrode 13 formed on the substrate 11 is adjusted is prepared, and the unit is exchanged according to the type, size, arrangement, etc. of the electronic components C mounted on the substrate 11. You may make it do.
 10   半田接合装置 
 11   基板 
 12   搬送手段 
 13   電極 
 14   半田 
 15   端子 
 20   コイル 
 21   空間部 
 30   フェライト 
 31   フェライトの端面
 32   フェライト板 
 40   調整機構 
 42   制御部 
 43   記憶部
 50   電源 
 51   配線 
10 Solder bonding equipment
11 Substrate
12 Transport means
13 electrodes
14 Solder
15 terminals
20 coils
21 Space
30 Ferrite
31 Ferrite end face 32 Ferrite plate
40 Adjustment mechanism
42 Control unit
43 Memory 50 Power supply
51 Wiring

Claims (9)

  1.  基板上に形成された電極に電子部品を半田接合する半田接合装置であって、
     前記電極と前記電子部品との間に介在させた半田を溶融させて、前記電極に前記電子部品を半田接合する加熱手段を備え、
     前記加熱手段は、
      平面視において、内側に空間部を有するコイルと、
      前記コイルの空間部に配置された複数のフェライトと、
      前記各フェライトと前記基板上に形成された電極との間隔を、独立に調整する調整機構と、
      前記コイルに交流電圧を印加して、前記基板上に形成された前記電極を誘導加熱する電源と
    を有し、
     前記各フェライトと前記基板上に形成された電極との間隔は、前記コイルに交流電圧を印加したとき、前記コイルの内側に配置された複数の電極に対して、誘導加熱によって加熱される前記各電極の温度が一様になるよう、前記調整機構によって予め調整される、半田接合装置。
    A solder bonding apparatus for soldering an electronic component to an electrode formed on a substrate,
    A heating means for melting the solder interposed between the electrode and the electronic component and soldering the electronic component to the electrode;
    The heating means includes
    In a plan view, a coil having a space inside,
    A plurality of ferrites arranged in the space of the coil;
    An adjustment mechanism for independently adjusting the interval between each ferrite and the electrode formed on the substrate;
    A power source for applying an AC voltage to the coil to inductively heat the electrode formed on the substrate;
    The intervals between the ferrites and the electrodes formed on the substrate are such that, when an AC voltage is applied to the coil, the plurality of electrodes disposed inside the coil are heated by induction heating. A solder bonding apparatus that is adjusted in advance by the adjusting mechanism so that the temperature of the electrode is uniform.
  2.  前記フェライトは、ソフトフェライトで構成されている、請求項1に記載の半田接合装置。 The solder joint device according to claim 1, wherein the ferrite is composed of soft ferrite.
  3.  前記各フェライトと前記基板上に形成された電極との間隔は、前記各電極の面積、または、前記各電極に半田接合する各電子部品の種類若しくは大きさに応じて、予め調整される、請求項1または2に記載の半田接合装置。 The interval between each ferrite and the electrode formed on the substrate is adjusted in advance according to the area of each electrode or the type or size of each electronic component to be soldered to each electrode. Item 3. The solder bonding apparatus according to Item 1 or 2.
  4.  前記各フェライトと前記基板上に形成された電極との間隔は、前記コイルの形状、または前記基板の反り若しくは曲がりに応じて、予め調整される、請求項1に記載の半田接合装置。 The solder bonding apparatus according to claim 1, wherein an interval between each ferrite and an electrode formed on the substrate is adjusted in advance according to a shape of the coil or a warp or bend of the substrate.
  5.  前記調整機構は、
      前記各フェライトと前記基板上に形成された電極との間隔が、所定の値に設定されたデータを記憶した記憶部と、
      前記記憶部に記憶されたデータに基づいて、前記各フェライトと前記基板上に形成された電極との間隔を、自動で調整する制御部と
    をさらに有している、請求項1~4の何れかに記載の半田接合装置。
    The adjustment mechanism is
    A storage unit storing data in which the interval between each ferrite and the electrode formed on the substrate is set to a predetermined value;
    The control unit according to any one of claims 1 to 4, further comprising a control unit that automatically adjusts an interval between each ferrite and an electrode formed on the substrate based on data stored in the storage unit. A solder bonding apparatus according to claim 1.
  6.  前記記憶部は、前記各電極の面積、または前記各電極に半田接合する各電子部品の種類、大きさ、若しくは配置場所、または、前記コイルの形状、または前記基板の反り若しくは曲がりに応じて、前記各フェライトと前記基板上に形成された電極との間隔が、所定の値に設定されたデータを記憶しており、
     前記制御部は、前記記憶部に記憶された前記データに基づいて、前記各フェライトと前記基板上に形成された電極との間隔を、自動で調整する、請求項5に記載の半田接合装置。
    According to the area of each electrode, or the type, size, or location of each electronic component to be soldered to each electrode, the shape of the coil, or the warp or bend of the substrate, The interval between each ferrite and the electrode formed on the substrate stores data set to a predetermined value,
    The solder bonding apparatus according to claim 5, wherein the control unit automatically adjusts an interval between each ferrite and an electrode formed on the substrate based on the data stored in the storage unit.
  7.  前記基板は絶縁性の材料で構成されており、
     前記電極は、誘導加熱によって局所的に加熱可能な面積を有している、請求項1~3のいずれかに記載の半田接合装置。
    The substrate is made of an insulating material,
    The solder bonding apparatus according to any one of claims 1 to 3, wherein the electrode has an area that can be locally heated by induction heating.
  8.  前記フェライトは、前記基板側の端部において先細りの形状になっている、請求項1に記載の半田接合装置。 The solder bonding apparatus according to claim 1, wherein the ferrite has a tapered shape at an end portion on the substrate side.
  9.  前記加熱手段は、前記基板に対して、前記コイルが配置される側と反対側であって、前記複数のフェライトと対向する位置に配置された、前記基板と平行なフェライト板をさらに有する、請求項1に記載の半田接合装置。 The heating means further includes a ferrite plate disposed on a side opposite to the side on which the coil is disposed with respect to the substrate and disposed in a position facing the plurality of ferrites and parallel to the substrate. Item 2. A solder bonding apparatus according to Item 1.
PCT/JP2018/008271 2017-03-08 2018-03-05 Soldering device WO2018164039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044131A JP6915843B2 (en) 2017-03-08 2017-03-08 Solder joining device
JP2017-044131 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164039A1 true WO2018164039A1 (en) 2018-09-13

Family

ID=63448229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008271 WO2018164039A1 (en) 2017-03-08 2018-03-05 Soldering device

Country Status (3)

Country Link
JP (1) JP6915843B2 (en)
TW (1) TWI757443B (en)
WO (1) WO2018164039A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814516A (en) * 2021-10-11 2021-12-21 珠海格力智能装备有限公司 Welding gun structure

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994771A (en) 2019-06-14 2022-01-28 株式会社旺得未来 Circuit board and mounting method
JP6928631B2 (en) * 2019-09-11 2021-09-01 株式会社スフィンクス・テクノロジーズ High frequency induction heating head and high frequency induction heating device using it
KR102221523B1 (en) * 2019-12-16 2021-03-02 오세돈 Welding device for inductive heating
KR102403214B1 (en) * 2021-03-30 2022-05-30 주식회사 비에스테크닉스 MID shouldering device using induction heat
KR102569407B1 (en) * 2021-12-15 2023-08-22 주식회사 비에스테크닉스 Induction Heating Soldering Coil and Jig Unit
KR102574733B1 (en) * 2021-12-15 2023-09-06 주식회사 비에스테크닉스 Induction Heating Multi- Soldering Coil Unit for MID
KR102595782B1 (en) * 2021-12-29 2023-10-30 주식회사 비에스테크닉스 Induction heating soldering automation apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390079A (en) * 1991-09-10 1995-02-14 Hitachi, Ltd. Tape carrier package
JP2008229709A (en) * 2007-03-23 2008-10-02 Toyota Industries Corp Soldering device, soldering method and manufacturing method of electronic equipment
JP2012143805A (en) * 2011-01-14 2012-08-02 Eco & Engineering Co Ltd Heating head, and connection devices for solar cell and solar cell string using the heating head
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
WO2017154242A1 (en) * 2016-03-10 2017-09-14 東レエンジニアリング株式会社 Solder joining device and solder joining method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038358A1 (en) * 2008-03-20 2010-02-18 Dingle Brad M Inductive soldering device
TW201233278A (en) * 2011-01-21 2012-08-01 Power Mate Technology Co Ltd Method for welding electronic components by high frequency
WO2014049628A1 (en) * 2012-09-25 2014-04-03 第一高周波工業株式会社 Heating device for strain relief
KR101576137B1 (en) * 2013-11-08 2015-12-09 주식회사 다원시스 Induction heating soldering device
CN103639558B (en) * 2013-12-12 2015-12-09 哈尔滨工业大学 Heat-ultrasonic electromagnetic many compound reflow welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390079A (en) * 1991-09-10 1995-02-14 Hitachi, Ltd. Tape carrier package
JP2008229709A (en) * 2007-03-23 2008-10-02 Toyota Industries Corp Soldering device, soldering method and manufacturing method of electronic equipment
JP2012143805A (en) * 2011-01-14 2012-08-02 Eco & Engineering Co Ltd Heating head, and connection devices for solar cell and solar cell string using the heating head
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
WO2017154242A1 (en) * 2016-03-10 2017-09-14 東レエンジニアリング株式会社 Solder joining device and solder joining method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113814516A (en) * 2021-10-11 2021-12-21 珠海格力智能装备有限公司 Welding gun structure
CN113814516B (en) * 2021-10-11 2023-08-25 珠海格力智能装备有限公司 Welding gun structure

Also Published As

Publication number Publication date
TWI757443B (en) 2022-03-11
JP6915843B2 (en) 2021-08-04
JP2018148136A (en) 2018-09-20
TW201842997A (en) 2018-12-16

Similar Documents

Publication Publication Date Title
WO2018164039A1 (en) Soldering device
WO2018164038A1 (en) Soldering device
US8931684B2 (en) Induction bonding
US6229124B1 (en) Inductive self-soldering printed circuit board
US7649159B2 (en) Apparatus and a method of soldering a part to a board
CA1264360A (en) Self-heating, self-soldering bus bar
JP6896369B2 (en) Solder joining device and solder joining method
JP2923096B2 (en) Tape carrier package and high-frequency heating solder bonding equipment
JP2010253503A (en) Heater chip and joining apparatus
CN111128790B (en) Micro-element processing device, welding method and display panel
JP4282501B2 (en) Reflow soldering apparatus and method
KR20200126230A (en) Thermoelectric element bonding apparatus and method of bonding the same
JP5178756B2 (en) Pin terminal joining method and apparatus, and power board with pin terminals
JP2023546355A (en) Controlled local heating of the substrate
JP6738057B1 (en) Circuit board and mounting method
JPH08293668A (en) Soldering of electronic components onto printed board
JP2009160617A (en) Heater tip and joining device
JP2001257458A (en) Member for soldering, and method of soldering
JP2016203215A (en) Joint method
JP2014136249A (en) Soldering device and semiconductor device manufacturing method
JP2009231379A (en) Soldering method
JP7412251B2 (en) Element mounting body, mounting equipment and mounting method
JP2012243903A (en) Soldering method and device of electronic component
JP2011140054A (en) Joining method and joining apparatus by high-frequency induction heating
TW445559B (en) High frequency semiconductor soldering method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764407

Country of ref document: EP

Kind code of ref document: A1