WO2018164038A1 - Soldering device - Google Patents

Soldering device Download PDF

Info

Publication number
WO2018164038A1
WO2018164038A1 PCT/JP2018/008269 JP2018008269W WO2018164038A1 WO 2018164038 A1 WO2018164038 A1 WO 2018164038A1 JP 2018008269 W JP2018008269 W JP 2018008269W WO 2018164038 A1 WO2018164038 A1 WO 2018164038A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
ferrite
coil
electronic component
Prior art date
Application number
PCT/JP2018/008269
Other languages
French (fr)
Japanese (ja)
Inventor
田嶋 久容
杉山 和弘
Original Assignee
東レエンジニアリング株式会社
株式会社ワンダーフューチャーコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社, 株式会社ワンダーフューチャーコーポレーション filed Critical 東レエンジニアリング株式会社
Publication of WO2018164038A1 publication Critical patent/WO2018164038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/002Soldering by means of induction heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate using induction heating.
  • Patent Document 1 discloses a method of locally heating a portion to be soldered using induction heating. In this method, with the heating element in contact with the substrate, the heat of the heating element heated by induction heating is transmitted to the solder via the electrode of the substrate that is in contact with the solder. It is to be melted.
  • the present invention has been made in view of the above problems, and its main purpose is to suppress heating of a substrate in a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate by using induction heating.
  • an object of the present invention is to provide a soldering apparatus with high heating efficiency, which can easily solder even a small electronic component.
  • a solder bonding apparatus capable of soldering the electronic component with high productivity is provided. There is to do.
  • a solder bonding apparatus is a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate while transporting the substrate on which the electronic component is mounted, and transports the substrate on which the electronic component is mounted. And a heating means for melting the solder interposed between the electrode and the electronic component and soldering the electronic component to the electrode, and the heating means has a space portion on the inside in a plan view.
  • a coil, a plurality of ferrites arranged in the space of the coil along the substrate conveyance direction, an adjustment mechanism for independently adjusting the distance between each ferrite and the electrode formed on the substrate, and an alternating current to the coil A power source that applies a voltage and induction-heats an electrode formed on the substrate.
  • a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate by using induction heating, heating of the substrate is suppressed, and even a small electronic component can be easily soldered. Therefore, it is possible to provide a solder bonding apparatus with high heating efficiency. Furthermore, in a solder bonding apparatus for soldering an electronic component to an electrode formed on the substrate while conveying the board on which the electronic component is mounted, a solder bonding apparatus capable of soldering the electronic component with high productivity is provided. can do.
  • (A), (b) is the figure which showed the relationship between the space
  • (A)-(e) is the figure which showed the state in the middle of conveying the board
  • (A), (b) is the figure which showed the arrangement
  • the applicant of the present application arranges the coil above the solder bonding target portion (electrode) of the substrate, arranges the ferrite adjacent to the solder bonding target portion inside the coil, supplies current to the coil, and performs solder bonding.
  • a solder joining apparatus for solder joining by induction heating of a target portion is disclosed in the application specification of PCT / JP2016 / 076332.
  • the magnetic flux generated inside the coil can be transmitted through the ferrite so as to be focused on the solder bonding target site without being attenuated. Therefore, it is possible to perform soldering efficiently. Further, the range of induction heating can be limited to the solder bonding target site by matching the tip of the ferrite with the size of the solder bonding target site. Thereby, even a small electronic component can be easily soldered. Moreover, since the solder bonding target site (electrode) is directly heated by induction heating rather than heat conduction from the heating element, heating of the substrate can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of a board
  • solder bonding apparatus As a result of further examination of the above-described solder bonding apparatus, the inventors of the present application soldered the electronic component to the electrode formed on the substrate while transporting the substrate on which the electronic component is mounted. The present inventors have found an excellent solder bonding apparatus and have come up with the present invention.
  • FIG. 1 is a diagram schematically showing a configuration of a solder bonding apparatus according to an embodiment of the present invention.
  • the solder bonding apparatus according to the present embodiment is a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate while conveying the substrate on which the electronic component is mounted.
  • the solder bonding apparatus 10 includes a conveying means 12 that conveys a substrate 11 on which an electronic component C is mounted, and a solder interposed between an electrode (not shown) and the electronic component C. And a heating means for melting (not shown) and soldering the electronic component C to the electrode.
  • the heating means includes a coil 20 having a space portion 21 on the inner side in a plan view (z direction), and a plurality of ferrites 30 arranged in the space portion 21 of the coil 20 along the transport direction A of the substrate 11. is doing.
  • the distance between each ferrite 30 and the electrode formed on the substrate 11 is independently adjusted by the adjusting mechanism 40.
  • the adjustment of the interval can be performed using, for example, an actuator (for example, a robot cylinder, a linear slider, etc.) 41 provided for each ferrite 30.
  • the substrate 11 is transported in the direction of arrow A (x direction) by the transport means 12 and passes under the coil 20 and the ferrite 30. Both ends of the coil 20 are connected to the power source 50 via the wiring 51, and by applying an AC voltage to the coil 20, the electrode formed on the substrate 11 located below the ferrite 30 is induction-heated.
  • FIG. 2 is a diagram illustrating a method of soldering an electronic component to an electrode formed on the substrate 11 using induction heating in the present embodiment.
  • solder 14 is supplied to the electrode 13 formed on the substrate 11, and an electronic component (for example, a chip capacitor, chip resistor, etc.) C having terminals (not shown) is soldered thereon. ing.
  • each ferrite 30 has a tapered shape in accordance with the size of the electrode 13 that is a solder bonding target site.
  • a magnetic flux ⁇ is generated around the coil 20.
  • the magnetic flux ⁇ generated inside the coil 20 travels through the ferrite 30 disposed inside the coil 20 and is perpendicular (z) to the electrode 13 formed on the substrate 11 from the end 30a of the ferrite 30.
  • the electrode 13 is induction-heated.
  • the heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, whereby the terminal 15 of the electronic component C is soldered to the electrode 13.
  • the magnetic flux ⁇ generated inside the coil 20 can be transmitted to the electrode (solder bonding target site) 13 via the ferrite 30 without being attenuated. Therefore, soldering can be performed efficiently. Further, the range of induction heating can be limited to the electrode 13 by matching the end 30 a of the ferrite 30 with the size of the electrode 13. Thereby, even a small electronic component C can be easily soldered. Moreover, since the electrode 13 is directly heated by induction heating, the heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board
  • the substrate 11 on which the plurality of electronic components C are mounted is replaced with the plurality of ferrites.
  • a plurality of electronic components C can be continuously soldered to the electrodes formed on the substrate 11.
  • the electronic component C can be soldered to the electrode formed on the substrate 11 with high productivity.
  • the electronic component C is locally solder-bonded while the substrate 11 is continuously conveyed, so that the solder heating time is set to the conventional reflow method (usually time in minutes). Can be very short (usually time in seconds).
  • the interval between each ferrite 30 and the electrode formed on the substrate 11 is set such that the plurality of electrodes arranged inside the coil 20 are heated by induction heating.
  • An adjustment mechanism 40 that adjusts in advance so that the temperature has a predetermined temperature profile along the conveyance direction A is provided.
  • FIGS. 3A and 3B are diagrams showing the temperature change of the electrode 13 heated by induction heating when the distance D between the end 30a of the ferrite 30 and the electrode 13 on the substrate 11 is changed. It is.
  • the magnetic flux ⁇ irradiated to the electrode 13 from the end 30 a of the ferrite 30 is proportional to the square of the distance D between the end 30 a of the ferrite 30 and the electrode 13 on the substrate 11. It attenuates. Therefore, since the heating amount of the electrode 13 heated by induction heating is proportional to the magnetic flux ⁇ , the temperature of the electrode 13 is set on the end 30a of the ferrite 30 and the substrate 11 as shown in FIG. It changes in inverse proportion to the square of the distance D from the electrode 13. Therefore, by adjusting the distance D between each ferrite 30 and the electrode 13 formed on the substrate 11, the temperature of each electrode 13 heated by induction heating can be accurately set along the conveyance direction A. Can do.
  • FIG. 4 is a diagram showing a state from t 0 to t 4 in time series.
  • the electronic component C has two terminals, and the two terminals are arranged in the transport direction A of the substrate 11.
  • FIG. 5 is a graph schematically showing a temporal change in the temperature of the electrode on the transport direction A side in the electronic component C 1 at the head in the transport direction A.
  • P 2 a constant temperature T 2 is maintained, and then the temperature drops. That is, the interval between each ferrite 30 and the electrode formed on the substrate 11 is adjusted in advance so that the temperature change of the electrode becomes a temperature change as shown in FIG.
  • temperatures T 1 is set to the activation temperature of the flux
  • temperature T 2 is set to a heating temperature for melting the solder.
  • the temperature of one electrode is preferably increased to T 1.
  • the graph shown in FIG. 5 shows the time variation of the temperature of the electronic components C 1 electrodes at the beginning of the conveying direction A, the temperature of each electrode on the substrate 11 at a certain time, the transport direction A A temperature profile similar to the temperature change shown in FIG.
  • the solder bonding apparatus can transmit the magnetic flux generated inside the coil 20 to the electrode 13 on the substrate 11 through the ferrite 30 without being attenuated. Solder bonding can be performed well.
  • the induction heating range can be limited to the electrode 13. Thereby, even a small electronic component can be easily soldered.
  • the electrode 13 is directly heated not by heat conduction from the heating element but by induction heating, heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board
  • the substrate 11 on which the plurality of electronic components C are mounted is conveyed below the plurality of ferrites 30 arranged along the conveyance direction A of the substrate 11, so that a plurality of electrodes 13 are formed on the substrate 11.
  • the electronic component C can be continuously soldered.
  • the electronic component C can be soldered to the electrode 13 formed on the substrate 11 with high productivity.
  • the plurality of electrodes 13 arranged inside the coil 20 are heated by induction heating.
  • the temperature of each electrode 13 can be adjusted along the conveyance direction A so as to have a predetermined temperature profile. Thereby, for example, it is possible to prevent “chip standing” that occurs due to a time difference in which the solder of the two terminals of the electronic component melts.
  • the ferrite 30 only needs to have a high magnetic permeability that can transmit the magnetic flux generated inside the coil 20 so as to be focused on the solder joint target portion (electrode) without being attenuated.
  • soft ferrite can be used as the ferrite 30.
  • Soft ferrite is a soft magnetic material mainly composed of iron oxide, has a large electric resistance, and hardly conducts current. For this reason, eddy currents are unlikely to occur in soft ferrite during induction heating. As a result, since the soft ferrite itself can be prevented from generating heat when performing induction heating, the influence of the heat received by the substrate 11 can be reduced even if the soft ferrite is close to the solder joint target portion (electrode).
  • the adjusting mechanism 40 that independently adjusts the distance between each ferrite 30 and the electrode formed on the substrate 11 is formed on each ferrite 30 and the substrate 11 as shown in FIG. Based on the data stored in the storage unit 43 and the data stored in the storage unit 43, the electrodes 13 formed on the ferrite 11 and the substrate 11 You may further have the control part 42 which adjusts these space
  • the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is such that the temperature of each electrode 13 heated by induction heating has a predetermined temperature profile along the transport direction A.
  • the data set in is stored.
  • the control unit 42 automatically adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 based on the data stored in the storage unit 43.
  • the optimal temperature profile varies depending on conditions such as the type of solder used, the type of electronic component C, and the arrangement. Therefore, an optimal temperature profile suitable for each condition is acquired in advance, and data on the interval between each ferrite 30 set to have the optimal temperature profile and the electrode 13 formed on the substrate 11 is stored. By storing it in the unit 43, automated solder bonding can be realized.
  • the substrate 11 is opposite to the side where the coil 20 is disposed and is parallel to the substrate 11 at a position facing the plurality of ferrites 30.
  • a ferrite plate 31 may be provided.
  • the magnetic flux transmitted through the ferrite 30 on the coil 20 side passes through the substrate 11 and is transmitted to the ferrite plate 31, the magnetic flux generated in the coil 20 is more reliably applied to the solder bonding target site (electrode). Can do.
  • the electronic component C can be soldered more reliably.
  • rod-shaped ferrite may be disposed at a position facing the ferrite 30.
  • the substrate 11 may be made of an insulating material, and the type thereof is not particularly limited.
  • a circuit substrate having circuit wiring formed on the surface an interposer having electrode pads formed on both surfaces, or the like can be used.
  • the electronic component C should just be a component which has a terminal, and the kind is not specifically limited.
  • a chip capacitor, a chip resistor, an LED element, a semiconductor element, an LSI, or the like can be used.
  • the electrode 13 that is a solder bonding target site has an area that can be locally heated by induction heating.
  • the area of the electrode 13 is preferably 0.25 mm ⁇ 0.25 mm or more.
  • an auxiliary heating metal pad may be provided adjacent to the electrode 13.
  • the coil 20 is not particularly limited as long as the coil 20 is parallel to the substrate 11 and has a space portion on the inner side in plan view. Further, the coil 20 may be formed in a pipe shape and circulated inside with a refrigerant.
  • the plurality of ferrites 30 are arranged along the conveyance direction A of the substrate 11, and the arrangement is aligned with the arrangement of the electronic components C mounted on the substrate 11.
  • FIG. 1 illustrates the ferrites 30 arranged in a line on the substrate 11 so as to be aligned with the electronic components C arranged in a line.
  • the size of the end portion of the ferrite 30 is adjusted to the size including the solder bonding target portion (electrode) of the electronic component C.
  • the size of the ferrite 30 is reduced.
  • the size may be adjusted so as to include the solder bonding target portion (electrode) of two electronic components arranged in parallel.
  • the ferrite 30 has a belt-like shape extending in the direction (y direction) perpendicular to the transport direction A of the substrate 11. In this case, solder joining by induction heating is simultaneously performed on the two electronic components C arranged in parallel.
  • the ferrite 30 is omitted.
  • the coils 20 ⁇ / b> A and 20 ⁇ / b> B may be arranged for the column including the parallel electronic component Ca and the column including the parallel electronic component Cb, respectively.
  • ferrite is omitted, but the shape may be as shown in FIG.
  • the shape and arrangement of the ferrites 30 are not limited to those shown in FIGS. 1, 6A, 6B, and 7, and the electrons mounted on the substrate 11 are not limited to those shown in FIGS. It can be changed as appropriate according to the type and size of the component C, the way of arrangement, and the like.
  • the length of the ferrite 30 is preferably in the range of 30 to 40 mm.
  • the ferrite 30 preferably has a shape as close as possible to the inner dimension of the coil 20.
  • the ferrite 30 is tapered at the end portion 30a on the substrate 11 side, but the shape is not particularly limited.
  • the end 30a of the ferrite 30 can be two-sided or four-sided. Further, the end portion 30a on the substrate 11 side is not necessarily tapered.
  • the interval between each ferrite 30 and the electrode formed on the substrate 11 is automatically adjusted based on the data stored in the storage unit 43.
  • a unit in which the distance from the electrode formed on the substrate 11 is adjusted may be prepared, and the unit may be replaced according to the size and arrangement of the electronic components C mounted on the substrate 11. .
  • the interval between each ferrite 30 and the electrode formed on the substrate 11 is set in order to prevent “chip standing” that occurs due to a time difference in which the solder of the two terminals of the electronic component melts.
  • the temperature of each electrode heated by induction heating is adjusted to have a predetermined temperature profile, the present invention is not limited to such an object. For example, you may adjust so that it may have a temperature profile similar to the temperature profile in the conventional reflow system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

Provided is a soldering device comprising: a conveyance means 12 that conveys a substrate 11 on which an electronic part C is mounted; and a heating means that melts solder interposed between an electrode 13 and the electronic part to solder the electronic part to the electrode. The heating means comprises: a coil 20 having a space on the inside thereof; a plurality of ferrites 30 that are arranged in the space of the coil along the conveyance direction of the substrate; an adjustment mechanism 40 that independently adjusts the interval between each ferrite and the electrode formed on the substrate; and a power source 50 that applies an alternating current voltage to the coil to inductively heat the electrode formed on the substrate.

Description

半田接合装置Solder bonding equipment
 本発明は、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置に関する。 The present invention relates to a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate using induction heating.
 従来のリフロー方式による半田接合装置では、電子部品を実装した基板が、半田が溶融する温度まで加熱される。そのため、半田接合の対象となる領域以外にも過度な熱が加わり、電子部品や基板等に対する熱的負荷が大きくなる。 In a conventional soldering apparatus using a reflow method, a board on which electronic components are mounted is heated to a temperature at which the solder melts. For this reason, excessive heat is applied to a region other than the region to be soldered, and the thermal load on the electronic component, the substrate, etc. is increased.
 近年、電子機器の小型、軽量化に伴い、微小な電子部品を実装する基板として、フレキシブル基板が使用されているが、フレキシブル基板のコスト削減のために、従来のポリイミド樹脂に代えて、ポリエステルやポリエチレンなどの樹脂が使用されつつある。 In recent years, as electronic devices have become smaller and lighter, flexible substrates have been used as substrates for mounting minute electronic components. However, in order to reduce the cost of flexible substrates, polyester or Resins such as polyethylene are being used.
 しかしながら、ポリエステルなどの安価な樹脂は、ポリイミド樹脂よりも融点が低い。そのため、半田接合の際、フレキシブル基板が耐熱温度よりも高く加熱されると、基板が変形してしまうという問題がある。 However, inexpensive resins such as polyester have a lower melting point than polyimide resins. Therefore, there is a problem that the substrate is deformed when the flexible substrate is heated to a temperature higher than the heat-resistant temperature at the time of soldering.
 このような問題に対して、特許文献1には、誘導加熱を利用して、半田接合の対象となる部位を局所的に加熱する方法が開示されている。この方法は、発熱体を基板に当接させた状態で、誘導加熱で加熱された発熱体の熱を、半田と当接している基板の電極を介して、半田に伝達することによって、半田を溶融させるものである。 For such a problem, Patent Document 1 discloses a method of locally heating a portion to be soldered using induction heating. In this method, with the heating element in contact with the substrate, the heat of the heating element heated by induction heating is transmitted to the solder via the electrode of the substrate that is in contact with the solder. It is to be melted.
特開2009-95873号公報JP 2009-95873 A
 しかしながら、特許文献1に開示された方法では、誘導加熱で加熱された発熱体の熱を、熱伝導により、半田と当接している基板の電極に伝えるため、加熱効率が悪い。また、誘導加熱で加熱された発熱体は、半田と当接している基板の電極近傍の基板も、無用に加熱するため、基板が変形するおそれがある。また、微小な電子部品を基板に実装する場合、半田接合の対象となる部位が小さいため、発熱体を基板に当接する際、半田接合の対象となる部位に、正確に当接させることが難しくなる。 However, in the method disclosed in Patent Document 1, the heat of the heating element heated by induction heating is transmitted to the electrode of the substrate in contact with the solder by heat conduction, so that the heating efficiency is poor. Further, since the heating element heated by induction heating unnecessarily heats the substrate in the vicinity of the electrode of the substrate in contact with the solder, the substrate may be deformed. In addition, when a small electronic component is mounted on a substrate, since the part to be soldered is small, it is difficult to accurately contact the part to be soldered when the heating element is brought into contact with the board. Become.
 本発明は、上記課題に鑑みなされたもので、その主な目的は、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置において、基板の加熱を抑制するとともに、微小な電子部品でも、容易に半田接合が可能な、加熱効率の高い半田接合装置を提供することにある。さらに、電子部品を搭載した基板を搬送しながら、基板上に形成された電極に、電子部品を半田接合する半田接合装置において、電子部品を生産性良く半田接合することができる半田接合装置を提供することにある。 The present invention has been made in view of the above problems, and its main purpose is to suppress heating of a substrate in a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate by using induction heating. In addition, an object of the present invention is to provide a soldering apparatus with high heating efficiency, which can easily solder even a small electronic component. Furthermore, in a solder bonding apparatus for soldering an electronic component to an electrode formed on the substrate while conveying the board on which the electronic component is mounted, a solder bonding apparatus capable of soldering the electronic component with high productivity is provided. There is to do.
 本発明に係る半田接合装置は、電子部品を搭載した基板を搬送しながら、基板上に形成された電極に、電子部品を半田接合する半田接合装置であって、電子部品を搭載した基板を搬送する搬送手段と、電極と電子部品との間に介在させた半田を溶融させて、電極に電子部品を半田接合する加熱手段とを備え、加熱手段は、平面視において、内側に空間部を有するコイルと、コイルの空間部に、基板の搬送方向に沿って配列された複数のフェライトと、各フェライトと基板上に形成された電極との間隔を、独立に調整する調整機構と、コイルに交流電圧を印加して、基板上に形成された電極を誘導加熱する電源とを有している。 A solder bonding apparatus according to the present invention is a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate while transporting the substrate on which the electronic component is mounted, and transports the substrate on which the electronic component is mounted. And a heating means for melting the solder interposed between the electrode and the electronic component and soldering the electronic component to the electrode, and the heating means has a space portion on the inside in a plan view. A coil, a plurality of ferrites arranged in the space of the coil along the substrate conveyance direction, an adjustment mechanism for independently adjusting the distance between each ferrite and the electrode formed on the substrate, and an alternating current to the coil A power source that applies a voltage and induction-heats an electrode formed on the substrate.
 本発明によれば、誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する半田接合装置において、基板の加熱を抑制するとともに、微小な電子部品でも、容易に半田接合が可能な、加熱効率の高い半田接合装置を提供することができる。さらに、電子部品を搭載した基板を搬送しながら、基板上に形成された電極に、電子部品を半田接合する半田接合装置において、電子部品を生産性良く半田接合することができる半田接合装置を提供することができる。 According to the present invention, in a solder bonding apparatus that solders an electronic component to an electrode formed on a substrate by using induction heating, heating of the substrate is suppressed, and even a small electronic component can be easily soldered. Therefore, it is possible to provide a solder bonding apparatus with high heating efficiency. Furthermore, in a solder bonding apparatus for soldering an electronic component to an electrode formed on the substrate while conveying the board on which the electronic component is mounted, a solder bonding apparatus capable of soldering the electronic component with high productivity is provided. can do.
本発明の一実施形態における半田接合装置の構成を模式的に示した図である。It is the figure which showed typically the structure of the solder joint apparatus in one Embodiment of this invention. 誘導加熱を利用して、基板上に形成された電極に電子部品を半田接合する方法を説明した図である。It is the figure explaining the method of solder-joining an electronic component to the electrode formed on the board | substrate using induction heating. (a)、(b)は、フェライトと基板上の電極との間隔と、誘導加熱によって加熱される電極の温度との関係を示した図である。(A), (b) is the figure which showed the relationship between the space | interval of a ferrite and the electrode on a board | substrate, and the temperature of the electrode heated by induction heating. (a)~(e)は、複数の電子部品を搭載した基板を、基板の搬送方向に沿って配列された複数のフェライトの下方に搬送する途中の状態を時系列で示した図である。(A)-(e) is the figure which showed the state in the middle of conveying the board | substrate which mounted several electronic components under the several ferrite arranged along the conveyance direction of a board | substrate in time series. 搬送方向の先頭にある電子部品を半田接合する電極の温度の時間変化を、模式的に示したグラフである。It is the graph which showed typically the time change of the temperature of the electrode which solder-joins the electronic component in the head of a conveyance direction. (a)、(b)は、本発明の変形例における電子部品の配列とコイルの配置を示した図である。(A), (b) is the figure which showed the arrangement | sequence of the electronic component and arrangement | positioning of a coil in the modification of this invention. 本発明の変形例における電子部品の配列とコイルの配置を示した図である。It is the figure which showed the arrangement | sequence of the electronic component and arrangement | positioning of a coil in the modification of this invention.
 本願出願人は、基板の半田接合対象部位(電極)の上方にコイルを配置するとともに、コイルの内側に、半田接合対象部位に近接するフェライトを配置し、コイルに電流を供給して、半田接合対象部位を誘導加熱することによって、半田接合する半田接合装置を、PCT/JP2016/076332の出願明細書に開示している。 The applicant of the present application arranges the coil above the solder bonding target portion (electrode) of the substrate, arranges the ferrite adjacent to the solder bonding target portion inside the coil, supplies current to the coil, and performs solder bonding. A solder joining apparatus for solder joining by induction heating of a target portion is disclosed in the application specification of PCT / JP2016 / 076332.
 上記出願明細書に開示した半田接合装置によれば、コイルの内側に発生する磁束を、フェライトを介して、減衰することなく、半田接合対象部位に集束するように伝えることができる。そのため、効率よく半田接合を行うことができる。また、フェライトの先端を、半田接合対象部位の大きさに合わせることによって、誘導加熱する範囲を、半田接合対象部位に限定することができる。これにより、微小な電子部品でも、容易に半田接合が可能となる。また、半田接合対象部位(電極)を、発熱体からの熱伝導でなく、誘導加熱により、直接加熱するため、基板の加熱を抑制することができる。これにより、耐熱性の低いフレキシブル基板を用いても、基板の熱変形を抑制することができる。 According to the solder bonding apparatus disclosed in the above application specification, the magnetic flux generated inside the coil can be transmitted through the ferrite so as to be focused on the solder bonding target site without being attenuated. Therefore, it is possible to perform soldering efficiently. Further, the range of induction heating can be limited to the solder bonding target site by matching the tip of the ferrite with the size of the solder bonding target site. Thereby, even a small electronic component can be easily soldered. Moreover, since the solder bonding target site (electrode) is directly heated by induction heating rather than heat conduction from the heating element, heating of the substrate can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of a board | substrate can be suppressed.
 本願発明者等は、上記の半田接合装置について、さらに検討を加えた結果、電子部品を搭載した基板を搬送しながら、基板上に形成された電極に、電子部品を半田接合する、生産性に優れた半田接合装置を見出し、本発明を想到するに至った。 As a result of further examination of the above-described solder bonding apparatus, the inventors of the present application soldered the electronic component to the electrode formed on the substrate while transporting the substrate on which the electronic component is mounted. The present inventors have found an excellent solder bonding apparatus and have come up with the present invention.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment. Moreover, it can change suitably in the range which does not deviate from the range which has the effect of this invention.
 図1は、本発明の一実施形態における半田接合装置の構成を模式的に示した図である。なお、本実施形態における半田接合装置は、電子部品を搭載した基板を搬送しながら、基板上に形成された電極に、電子部品を半田接合する半田接合装置である。 FIG. 1 is a diagram schematically showing a configuration of a solder bonding apparatus according to an embodiment of the present invention. The solder bonding apparatus according to the present embodiment is a solder bonding apparatus that solders an electronic component to an electrode formed on the substrate while conveying the substrate on which the electronic component is mounted.
 図1に示すように、本実施形態における半田接合装置10は、電子部品Cを搭載した基板11を搬送する搬送手段12と、電極(不図示)と電子部品Cとの間に介在させた半田(不図示)を溶融させて、電極に電子部品Cを半田接合する加熱手段とを備えている。 As shown in FIG. 1, the solder bonding apparatus 10 according to the present embodiment includes a conveying means 12 that conveys a substrate 11 on which an electronic component C is mounted, and a solder interposed between an electrode (not shown) and the electronic component C. And a heating means for melting (not shown) and soldering the electronic component C to the electrode.
 加熱手段は、平面視(z方向)において、内側に空間部21を有するコイル20と、コイル20の空間部21に、基板11の搬送方向Aに沿って配列された複数のフェライト30とを有している。ここで、各フェライト30と基板11上に形成された電極との間隔は、調整機構40によって、独立に調整される。当該間隔の調整は、例えば、各フェライト30毎に設けられたアクチュエータ(例えば、ロボットシリンダ、リニアスライダー等)41を用いて行うことができる。基板11は、搬送手段12により、矢印Aの方向(x方向)に搬送されて、コイル20及びフェライト30の下を通過する。コイル20の両端部は、配線51を介して電源50に接続されており、コイル20に交流電圧を印加することによって、フェライト30の下方に位置する基板11上に形成された電極が誘導加熱される。 The heating means includes a coil 20 having a space portion 21 on the inner side in a plan view (z direction), and a plurality of ferrites 30 arranged in the space portion 21 of the coil 20 along the transport direction A of the substrate 11. is doing. Here, the distance between each ferrite 30 and the electrode formed on the substrate 11 is independently adjusted by the adjusting mechanism 40. The adjustment of the interval can be performed using, for example, an actuator (for example, a robot cylinder, a linear slider, etc.) 41 provided for each ferrite 30. The substrate 11 is transported in the direction of arrow A (x direction) by the transport means 12 and passes under the coil 20 and the ferrite 30. Both ends of the coil 20 are connected to the power source 50 via the wiring 51, and by applying an AC voltage to the coil 20, the electrode formed on the substrate 11 located below the ferrite 30 is induction-heated. The
 図2は、本実施形態において、誘導加熱を利用して、基板11上に形成された電極に電子部品を半田接合する方法を説明した図である。ここでは、基板11上に形成された電極13に半田14を供給し、その上に、端子(不図示)を有する電子部品(例えば、チップコンデンサ、チップ抵抗等)Cを半田接合する例を示している。 FIG. 2 is a diagram illustrating a method of soldering an electronic component to an electrode formed on the substrate 11 using induction heating in the present embodiment. Here, an example is shown in which solder 14 is supplied to the electrode 13 formed on the substrate 11, and an electronic component (for example, a chip capacitor, chip resistor, etc.) C having terminals (not shown) is soldered thereon. ing.
 図2に示すように、各フェライト30の端部30aは、半田接合対象部位である電極13の大きさに合わせて、先細りの形状になっている。コイル20に交流電圧が印加されると、コイル20の周りに磁束Φが発生する。そして、コイル20の内側に発生した磁束Φは、コイル20の内側に配置されたフェライト30を伝わって、フェライト30の端部30aから、基板11上に形成された電極13に対して垂直(z方向)に照射される。これにより、電極13が誘導加熱される。電極13から、誘導加熱により加熱された熱が半田14に伝達されることによって、半田14が溶融し、これにより、電子部品Cの端子15が電極13に半田接合される。 As shown in FIG. 2, the end 30 a of each ferrite 30 has a tapered shape in accordance with the size of the electrode 13 that is a solder bonding target site. When an AC voltage is applied to the coil 20, a magnetic flux Φ is generated around the coil 20. The magnetic flux Φ generated inside the coil 20 travels through the ferrite 30 disposed inside the coil 20 and is perpendicular (z) to the electrode 13 formed on the substrate 11 from the end 30a of the ferrite 30. Direction). Thereby, the electrode 13 is induction-heated. The heat heated by induction heating is transmitted from the electrode 13 to the solder 14, so that the solder 14 is melted, whereby the terminal 15 of the electronic component C is soldered to the electrode 13.
 本実施形態における半田接合装置によれば、コイル20の内側に発生する磁束Φを、フェライト30を介して、減衰することなく、電極(半田接合対象部位)13へ集束するように伝えることができるため、効率よく半田接合を行うことができる。また、フェライト30の端部30aを、電極13の大きさに合わせることによって、誘導加熱する範囲を、電極13に限定することができる。これにより、微小な電子部品Cでも、容易に半田接合が可能となる。また、電極13を、誘導加熱によって直接加熱するため、基板11の加熱を抑制することができる。これにより、耐熱性の低いフレキシブル基板を用いても、基板11の熱変形を抑制することができる。 According to the solder bonding apparatus in the present embodiment, the magnetic flux Φ generated inside the coil 20 can be transmitted to the electrode (solder bonding target site) 13 via the ferrite 30 without being attenuated. Therefore, soldering can be performed efficiently. Further, the range of induction heating can be limited to the electrode 13 by matching the end 30 a of the ferrite 30 with the size of the electrode 13. Thereby, even a small electronic component C can be easily soldered. Moreover, since the electrode 13 is directly heated by induction heating, the heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board | substrate 11 can be suppressed.
 さらに、本実施形態では、コイル20の空間部21に、基板11の搬送方向Aに沿って複数のフェライト30が配置されているため、複数の電子部品Cを搭載した基板11を、複数のフェライト30の下方に搬送させることによって、基板11上に形成された電極に、複数の電子部品Cを連続的に半田接合することができる。これにより、基板11上に形成された電極に、電子部品Cを生産性良く半田接合することができる。 Furthermore, in this embodiment, since the plurality of ferrites 30 are arranged in the space portion 21 of the coil 20 along the conveyance direction A of the substrate 11, the substrate 11 on which the plurality of electronic components C are mounted is replaced with the plurality of ferrites. By transporting it below 30, a plurality of electronic components C can be continuously soldered to the electrodes formed on the substrate 11. Thereby, the electronic component C can be soldered to the electrode formed on the substrate 11 with high productivity.
 本実施形態における半田接合装置においては、基板11を連続的に搬送させながら、電子部品Cを局所的に半田接合するため、半田の加熱時間を、従来のリフロー方式(通常、分単位の時間)に比べて、非常に短く(通常、秒単位の時間)することができる。 In the solder bonding apparatus according to the present embodiment, the electronic component C is locally solder-bonded while the substrate 11 is continuously conveyed, so that the solder heating time is set to the conventional reflow method (usually time in minutes). Can be very short (usually time in seconds).
 本実施形態における半田接合装置は、各フェライト30と基板11上に形成された電極との間隔を、コイル20の内側に配置された複数の電極に対して、誘導加熱によって加熱される各電極の温度が、搬送方向Aに沿って、所定の温度プロファイルをもつよう、予め調整する調整機構40を備えている。 In the solder bonding apparatus according to the present embodiment, the interval between each ferrite 30 and the electrode formed on the substrate 11 is set such that the plurality of electrodes arranged inside the coil 20 are heated by induction heating. An adjustment mechanism 40 that adjusts in advance so that the temperature has a predetermined temperature profile along the conveyance direction A is provided.
 図3(a)、(b)は、フェライト30の端部30aと、基板11上の電極13との間隔Dを変えたときに、誘導加熱によって加熱される電極13の温度変化を示した図である。図2に示したように、フェライト30の端部30aから、電極13に照射される磁束Φは、フェライト30の端部30aと、基板11上の電極13との間隔Dの2乗に比例して減衰する。従って、誘導加熱によって加熱される電極13の加熱量は、磁束Φに比例するため、電極13の温度は、図3(b)に示すように、フェライト30の端部30aと、基板11上の電極13との間隔Dの2乗にほぼ反比例して変化する。従って、各フェライト30と基板11上に形成された電極13との間隔Dを調整することによって、誘導加熱によって加熱される各電極13の温度を、搬送方向Aに沿って、精度良く設定することができる。 FIGS. 3A and 3B are diagrams showing the temperature change of the electrode 13 heated by induction heating when the distance D between the end 30a of the ferrite 30 and the electrode 13 on the substrate 11 is changed. It is. As shown in FIG. 2, the magnetic flux Φ irradiated to the electrode 13 from the end 30 a of the ferrite 30 is proportional to the square of the distance D between the end 30 a of the ferrite 30 and the electrode 13 on the substrate 11. It attenuates. Therefore, since the heating amount of the electrode 13 heated by induction heating is proportional to the magnetic flux Φ, the temperature of the electrode 13 is set on the end 30a of the ferrite 30 and the substrate 11 as shown in FIG. It changes in inverse proportion to the square of the distance D from the electrode 13. Therefore, by adjusting the distance D between each ferrite 30 and the electrode 13 formed on the substrate 11, the temperature of each electrode 13 heated by induction heating can be accurately set along the conveyance direction A. Can do.
 図4(a)~(e)は、複数の電子部品Cを搭載した基板11を、基板11の搬送方向Aに沿って配列された複数のフェライト30の下方に搬送する途中の、時刻t=t~tの状態を時系列で示した図である。なお、ここでは、電子部品Cは、2つの端子を有し、2つの端子が、基板11の搬送方向Aに並んでいるとする。 4 (a) to 4 (e) show a time t = during transfer of the substrate 11 on which the plurality of electronic components C are mounted below the plurality of ferrites 30 arranged along the transfer direction A of the substrate 11. FIG. FIG. 4 is a diagram showing a state from t 0 to t 4 in time series. Here, it is assumed that the electronic component C has two terminals, and the two terminals are arranged in the transport direction A of the substrate 11.
 図5は、搬送方向Aの先頭にある電子部品Cにおいて、搬送方向A側の電極の温度の時間変化を、模式的に示したグラフである。図5に例示したグラフでは、電極の温度変化が、時刻t=tから温度が上昇し始め、Pで示した期間、一定の温度Tが維持され、その後、再び温度が上昇して、Pで示した期間、一定の温度Tが維持され、その後、温度が降下している。すなわち、各フェライト30と基板11上に形成された電極との間隔は、電極の温度変化が、図5に示したような温度変化になるように、予め調整されている。 FIG. 5 is a graph schematically showing a temporal change in the temperature of the electrode on the transport direction A side in the electronic component C 1 at the head in the transport direction A. In the graph illustrated in FIG. 5, the temperature change of the electrode starts to increase from time t = t 0 , and the constant temperature T 1 is maintained for the period indicated by P 1 , and then the temperature increases again. , P 2 , a constant temperature T 2 is maintained, and then the temperature drops. That is, the interval between each ferrite 30 and the electrode formed on the substrate 11 is adjusted in advance so that the temperature change of the electrode becomes a temperature change as shown in FIG.
 例えば、”チップ立ち”を防止するために、搬送方向A側の電極の温度と、もう一方の電極の温度とが、それぞれ、図5に示したような温度変化をもつように、各フェライト30と基板11上に形成された電極との間隔を、予め調整しておくのが好ましい。この場合、温度Tは、フラックスの活性化温度に設定され、温度Tは、半田を融点する加熱温度に設定される。また、搬送方向A側の電極の温度がTに上昇したとき、一方の電極の温度は、Tに上昇していることが好ましい。 For example, in order to prevent “chip standing”, the temperature of the electrode on the transport direction A side and the temperature of the other electrode have a temperature change as shown in FIG. It is preferable to adjust in advance the distance between the electrode and the electrode formed on the substrate 11. In this case, temperatures T 1 is set to the activation temperature of the flux, temperature T 2 is set to a heating temperature for melting the solder. Further, when the temperature of the conveying direction A of the side electrodes is increased to T 2, the temperature of one electrode is preferably increased to T 1.
 なお、図5に示したグラフは、搬送方向Aの先頭にある電子部品Cの電極の温度の時間変化を示しているが、ある時刻における基板11上の各電極の温度は、搬送方向Aに沿って、図5に示した温度変化に相似した温度プロファイルを有している。 Incidentally, the graph shown in FIG. 5 shows the time variation of the temperature of the electronic components C 1 electrodes at the beginning of the conveying direction A, the temperature of each electrode on the substrate 11 at a certain time, the transport direction A A temperature profile similar to the temperature change shown in FIG.
 以上、説明したように、本発明における半田接合装置は、コイル20の内側に発生する磁束を、フェライト30を介して、減衰することなく、基板11上の電極13に伝えることができるため、効率よく半田接合を行うことができる。また、フェライト30の先端を、電極13の大きさに合わせることによって、誘導加熱する範囲を、電極13に限定することができる。これにより、微小な電子部品でも、容易に半田接合が可能となる。また、電極13を、発熱体からの熱伝導でなく、誘導加熱により、直接加熱するため、基板11の加熱を抑制することができる。これにより、耐熱性の低いフレキシブル基板を用いても、基板11の熱変形を抑制することができる。 As described above, the solder bonding apparatus according to the present invention can transmit the magnetic flux generated inside the coil 20 to the electrode 13 on the substrate 11 through the ferrite 30 without being attenuated. Solder bonding can be performed well. In addition, by adjusting the tip of the ferrite 30 to the size of the electrode 13, the induction heating range can be limited to the electrode 13. Thereby, even a small electronic component can be easily soldered. Moreover, since the electrode 13 is directly heated not by heat conduction from the heating element but by induction heating, heating of the substrate 11 can be suppressed. Thereby, even if it uses a flexible substrate with low heat resistance, the thermal deformation of the board | substrate 11 can be suppressed.
 さらに、複数の電子部品Cを搭載した基板11を、基板11の搬送方向Aに沿って配列された複数のフェライト30の下方に搬送させることによって、基板11上に形成された電極13に、複数の電子部品Cを連続的に半田接合することができる。これにより、基板11上に形成された電極13に、電子部品Cを生産性良く半田接合することができる。加えて、各フェライト30と基板11上に形成された電極13との間隔を、独立に調整することによって、コイル20の内側に配置された複数の電極13に対して、誘導加熱によって加熱される各電極13の温度を、搬送方向Aに沿って、所定の温度プロファイルをもつように調整することができる。これにより、例えば、電子部品の2つの端子の半田が溶ける時間差に起因して発生する”チップ立ち”を防止することができる。 Furthermore, the substrate 11 on which the plurality of electronic components C are mounted is conveyed below the plurality of ferrites 30 arranged along the conveyance direction A of the substrate 11, so that a plurality of electrodes 13 are formed on the substrate 11. The electronic component C can be continuously soldered. Thus, the electronic component C can be soldered to the electrode 13 formed on the substrate 11 with high productivity. In addition, by independently adjusting the distance between each ferrite 30 and the electrode 13 formed on the substrate 11, the plurality of electrodes 13 arranged inside the coil 20 are heated by induction heating. The temperature of each electrode 13 can be adjusted along the conveyance direction A so as to have a predetermined temperature profile. Thereby, for example, it is possible to prevent “chip standing” that occurs due to a time difference in which the solder of the two terminals of the electronic component melts.
 本実施形態において、フェライト30は、コイル20の内側に発生する磁束を、減衰することなく、半田接合対象部位(電極)に集束するように伝えることができる透磁率の高いものであればよい。例えば、フェライト30として、ソフトフェライトを用いることができる。ソフトフェライトは、酸化鉄を主成分とする軟質磁性材料で、電気抵抗が大きく、電流をほとんど通さない。そのため、誘導加熱の際にソフトフェライトにおいて渦電流が発生しにくい。その結果、誘導加熱を行う際に、ソフトフェライト自体が発熱することを回避できるため、ソフトフェライトが半田接合対象部位(電極)に近接していても、基板11が受ける熱の影響を小さくできる。 In the present embodiment, the ferrite 30 only needs to have a high magnetic permeability that can transmit the magnetic flux generated inside the coil 20 so as to be focused on the solder joint target portion (electrode) without being attenuated. For example, soft ferrite can be used as the ferrite 30. Soft ferrite is a soft magnetic material mainly composed of iron oxide, has a large electric resistance, and hardly conducts current. For this reason, eddy currents are unlikely to occur in soft ferrite during induction heating. As a result, since the soft ferrite itself can be prevented from generating heat when performing induction heating, the influence of the heat received by the substrate 11 can be reduced even if the soft ferrite is close to the solder joint target portion (electrode).
 また、本実施形態において、各フェライト30と基板11上に形成された電極との間隔を、独立に調整する調整機構40は、図1に示したように、各フェライト30と基板11上に形成された電極との間隔が、所定の値に設定されたデータを記憶した記憶部43、及び記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極13との間隔を、自動で調整する制御部42をさらに有していてもよい。 In the present embodiment, the adjusting mechanism 40 that independently adjusts the distance between each ferrite 30 and the electrode formed on the substrate 11 is formed on each ferrite 30 and the substrate 11 as shown in FIG. Based on the data stored in the storage unit 43 and the data stored in the storage unit 43, the electrodes 13 formed on the ferrite 11 and the substrate 11 You may further have the control part 42 which adjusts these space | intervals automatically.
 記憶部43は、各フェライト30と基板11上に形成された電極13との間隔が、誘導加熱によって加熱される各電極13の温度が、搬送方向Aに沿って、所定の温度プロファイルをもつように設定されたデータを記憶している。そして、制御部42は、記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極13との間隔を自動で調整する。 In the storage unit 43, the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 is such that the temperature of each electrode 13 heated by induction heating has a predetermined temperature profile along the transport direction A. The data set in is stored. The control unit 42 automatically adjusts the distance between each ferrite 30 and the electrode 13 formed on the substrate 11 based on the data stored in the storage unit 43.
 最適な温度プロファイルは、使用する半田の種類や、電子部品Cの種類、配列等の条件によって変わる。そのため、各条件に合った最適な温度プロファイルを予め取得しておき、最適な温度プロファイルをもつように設定された各フェライト30と基板11上に形成された電極13との間隔のデータを、記憶部43に記憶しておくことによって、自動化された半田接合を実現することができる。 The optimal temperature profile varies depending on conditions such as the type of solder used, the type of electronic component C, and the arrangement. Therefore, an optimal temperature profile suitable for each condition is acquired in advance, and data on the interval between each ferrite 30 set to have the optimal temperature profile and the electrode 13 formed on the substrate 11 is stored. By storing it in the unit 43, automated solder bonding can be realized.
 また、本実施形態において、図1に示したように、基板11に対して、コイル20が配置される側と反対側であって、複数のフェライト30と対向する位置に、基板11と平行なフェライト板31を設けておいてもよい。これにより、コイル20側のフェライト30を伝った磁束は、基板11を抜けてフェライト板31に伝わるため、コイル20で発生した磁束を、より確実に、半田接合対象部位(電極)に照射することができる。その結果、電子部品Cの半田接合をより確実に行うことができる。なお、フェライト板31の代わりに、棒状のフェライトを、フェライト30に対向する位置に配置してもよい。 Further, in the present embodiment, as shown in FIG. 1, the substrate 11 is opposite to the side where the coil 20 is disposed and is parallel to the substrate 11 at a position facing the plurality of ferrites 30. A ferrite plate 31 may be provided. Thereby, since the magnetic flux transmitted through the ferrite 30 on the coil 20 side passes through the substrate 11 and is transmitted to the ferrite plate 31, the magnetic flux generated in the coil 20 is more reliably applied to the solder bonding target site (electrode). Can do. As a result, the electronic component C can be soldered more reliably. In place of the ferrite plate 31, rod-shaped ferrite may be disposed at a position facing the ferrite 30.
 また、本実施形態において、基板11は、絶縁性の材料で構成されていればよく、その種類は特に限定されない。例えば、基板11として、表面に回路配線が形成された回路基板や、両面に電極パッドが形成されたインターポーザ等を用いることができる。また、電子部品Cは、端子を有する部品であればよく、その種類は特に限定されない。例えば、電子部品として、チップコンデンサ、チップ抵抗、LED素子、半導体素子、LSI等を用いることができる。 In the present embodiment, the substrate 11 may be made of an insulating material, and the type thereof is not particularly limited. For example, as the substrate 11, a circuit substrate having circuit wiring formed on the surface, an interposer having electrode pads formed on both surfaces, or the like can be used. Moreover, the electronic component C should just be a component which has a terminal, and the kind is not specifically limited. For example, as an electronic component, a chip capacitor, a chip resistor, an LED element, a semiconductor element, an LSI, or the like can be used.
 また、本実施形態において、半田接合対象部位である電極13は、誘導加熱によって局所的に加熱可能な面積を有していることが好ましい。電極13の面積は、好ましくは、0.25mm×0.25mm以上である。また、電極13の面積が小さい場合には、電極13に隣接して、補助加熱用の金属パッドを設けてもよい。 In the present embodiment, it is preferable that the electrode 13 that is a solder bonding target site has an area that can be locally heated by induction heating. The area of the electrode 13 is preferably 0.25 mm × 0.25 mm or more. When the area of the electrode 13 is small, an auxiliary heating metal pad may be provided adjacent to the electrode 13.
 また、本実施形態において、コイル20は、平面視において、基板11に平行で、内側に空間部を有するものであればよく、その形状等は特に限定されない。また、コイル20をパイプ状にして、内部を冷媒で循環させるようにしてもよい。 Further, in the present embodiment, the coil 20 is not particularly limited as long as the coil 20 is parallel to the substrate 11 and has a space portion on the inner side in plan view. Further, the coil 20 may be formed in a pipe shape and circulated inside with a refrigerant.
 (変形例)
 本発明において、複数のフェライト30は、基板11の搬送方向Aに沿って配列されるが、その配列は、基板11に搭載される電子部品Cの配列に揃えられる。例えば、図1では、基板11上に、一列に配列された電子部品Cに揃えて、一列に配列されたフェライト30を例示している。この場合、フェライト30の端部の大きさは、電子部品Cの半田接合対象部位(電極)を含む大きさに合わせられる。
(Modification)
In the present invention, the plurality of ferrites 30 are arranged along the conveyance direction A of the substrate 11, and the arrangement is aligned with the arrangement of the electronic components C mounted on the substrate 11. For example, FIG. 1 illustrates the ferrites 30 arranged in a line on the substrate 11 so as to be aligned with the electronic components C arranged in a line. In this case, the size of the end portion of the ferrite 30 is adjusted to the size including the solder bonding target portion (electrode) of the electronic component C.
 しかしながら、図6(a)、(b)に示すように、電子部品Cが接近(例えば、間隔が2~3mm以内)して2列に配列している場合には、フェライト30の大きさを、並列した2個の電子部品の半田接合対象部位(電極)を含む大きさに合わせてもよい。このとき、フェライト30は、図6(a)に示すように、基板11の搬送方向Aに対して垂直方向(y方向)に延びる、帯状の形状となる。また、この場合、並列した2個の電子部品Cに対して、同時に誘導加熱による半田接合が行われる。なお、図6(b)では、フェライト30を省略している。 However, as shown in FIGS. 6A and 6B, when the electronic components C are arranged close to each other (for example, the interval is within 2 to 3 mm) and arranged in two rows, the size of the ferrite 30 is reduced. Alternatively, the size may be adjusted so as to include the solder bonding target portion (electrode) of two electronic components arranged in parallel. At this time, as shown in FIG. 6A, the ferrite 30 has a belt-like shape extending in the direction (y direction) perpendicular to the transport direction A of the substrate 11. In this case, solder joining by induction heating is simultaneously performed on the two electronic components C arranged in parallel. In FIG. 6B, the ferrite 30 is omitted.
 また、図7は、基板11上に、電子部品Cが、基板11の搬送方向に沿って複数列(図7では、4列)に配列した例を示している。この場合、並列する電子部品Caを含む列、及び並列する電子部品Cbを含む列に対して、それぞれ、コイル20A、20Bを配してもよい。なお、図7では、フェライトを省略しているが、その形状は、図6(a)に示したような形状にすればよい。 7 shows an example in which the electronic components C are arranged on the substrate 11 in a plurality of rows (four rows in FIG. 7) along the transport direction of the substrate 11. In this case, the coils 20 </ b> A and 20 </ b> B may be arranged for the column including the parallel electronic component Ca and the column including the parallel electronic component Cb, respectively. In FIG. 7, ferrite is omitted, but the shape may be as shown in FIG.
 勿論、本実施形態において、フェライト30の形状や配列の仕方は、図1、図6(a)、(b)、及び図7に示したものに限定されず、基板11上に搭載される電子部品Cの種類や大きさ、配列の仕方等に応じて、適宜、変更することができる。 Of course, in the present embodiment, the shape and arrangement of the ferrites 30 are not limited to those shown in FIGS. 1, 6A, 6B, and 7, and the electrons mounted on the substrate 11 are not limited to those shown in FIGS. It can be changed as appropriate according to the type and size of the component C, the way of arrangement, and the like.
 なお、フェライト30の長さは、30~40mmの範囲にあることが好ましい。また、フェライト30は、コイル20の内寸にできるだけ接近した形状が好ましい。 The length of the ferrite 30 is preferably in the range of 30 to 40 mm. The ferrite 30 preferably has a shape as close as possible to the inner dimension of the coil 20.
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。例えば、上記実施形態において、フェライト30を、基板11側の端部30aにおいて先細りの形状にしたが、その形状は特に限定されない。例えば、フェライト30の端部30aを、二面取り、若しくは四面取りにすることができる。また、基板11側の端部30aを、必ずしも先細りの形状にしなくてもよい。 As mentioned above, although this invention has been demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible. For example, in the above embodiment, the ferrite 30 is tapered at the end portion 30a on the substrate 11 side, but the shape is not particularly limited. For example, the end 30a of the ferrite 30 can be two-sided or four-sided. Further, the end portion 30a on the substrate 11 side is not necessarily tapered.
 また、上記実施形態では、記憶部43に記憶されたデータに基づいて、各フェライト30と基板11上に形成された電極との間隔を自動で調整するようにしたが、予め、各フェライト30と基板11上に形成された電極との間隔を調整したユニットを用意しておき、基板11上に搭載される電子部品Cの大きさや配列の仕方に応じて、ユニット毎交換するようにしてもよい。 In the above embodiment, the interval between each ferrite 30 and the electrode formed on the substrate 11 is automatically adjusted based on the data stored in the storage unit 43. A unit in which the distance from the electrode formed on the substrate 11 is adjusted may be prepared, and the unit may be replaced according to the size and arrangement of the electronic components C mounted on the substrate 11. .
 また、上記実施形態では、電子部品の2つの端子の半田が溶ける時間差に起因して発生する”チップ立ち”を防止するために、各フェライト30と基板11上に形成された電極との間隔を、誘導加熱によって加熱される各電極の温度が、所定の温度プロファイルをもつように調整したが、本発明は、このような目的に限定されるものではない。例えば、従来のリフロー方式における温度プロファイルに類似した温度プロファイルをもつように調整してもよい。 In the above embodiment, the interval between each ferrite 30 and the electrode formed on the substrate 11 is set in order to prevent “chip standing” that occurs due to a time difference in which the solder of the two terminals of the electronic component melts. Although the temperature of each electrode heated by induction heating is adjusted to have a predetermined temperature profile, the present invention is not limited to such an object. For example, you may adjust so that it may have a temperature profile similar to the temperature profile in the conventional reflow system.
 10   半田接合装置 
 11   基板 
 12   搬送手段 
 13   電極 
 14   半田 
 15   端子 
 20   コイル 
 21   空間部 
 30   フェライト 
 31   フェライト板 
 40   調整機構 
 42   制御部 
 43   記憶部
 50   電源 
 51   配線 
10 Solder bonding equipment
11 Substrate
12 Transport means
13 electrodes
14 Solder
15 terminals
20 coils
21 Space
30 Ferrite
31 Ferrite plate
40 Adjustment mechanism
42 Control unit
43 Memory 50 Power supply
51 Wiring

Claims (9)

  1.  電子部品を搭載した基板を搬送しながら、前記基板上に形成された電極に、前記電子部品を半田接合する半田接合装置であって、
     前記電子部品を搭載した前記基板を搬送する搬送手段と、
    前記電極と前記電子部品との間に介在させた半田を溶融させて、前記電極に前記電子部品を半田接合する加熱手段と
    を備え、
     前記加熱手段は、
      平面視において、内側に空間部を有するコイルと、
      前記コイルの空間部に、前記基板の搬送方向に沿って配列された複数のフェライトと、
      前記各フェライトと前記基板上に形成された電極との間隔を、独立に調整する調整機構と、
      前記コイルに交流電圧を印加して、基板上に形成された前記電極を誘導加熱する電源と
    を有している、半田接合装置。
    A solder bonding apparatus for solder-bonding the electronic component to an electrode formed on the substrate while conveying the substrate on which the electronic component is mounted,
    Transport means for transporting the substrate on which the electronic component is mounted;
    Heating means for melting the solder interposed between the electrode and the electronic component, and soldering the electronic component to the electrode;
    The heating means includes
    In a plan view, a coil having a space inside,
    In the space portion of the coil, a plurality of ferrites arranged along the transport direction of the substrate,
    An adjustment mechanism for independently adjusting the interval between each ferrite and the electrode formed on the substrate;
    A solder bonding apparatus, comprising: a power source that applies an AC voltage to the coil to inductively heat the electrode formed on the substrate.
  2.  前記フェライトは、ソフトフェライトで構成されている、請求項1に記載の半田接合装置。 The solder joint device according to claim 1, wherein the ferrite is composed of soft ferrite.
  3.  前記各フェライトと前記基板上に形成された電極との間隔は、前記コイルに交流電圧を印加したとき、前記コイルの内側に配置された複数の電極に対して、誘導加熱によって加熱される前記各電極の温度が、搬送方向に沿って、所定の温度プロファイルをもつよう、前記調整機構によって予め調整される、請求項1または2に記載の半田接合装置。 The intervals between the ferrites and the electrodes formed on the substrate are such that, when an AC voltage is applied to the coil, the plurality of electrodes disposed inside the coil are heated by induction heating. The solder bonding apparatus according to claim 1, wherein the temperature of the electrode is adjusted in advance by the adjusting mechanism so as to have a predetermined temperature profile along the conveyance direction.
  4.  前記各フェライトと前記基板上に形成された電極との間隔は、前記基板の搬送方向側に位置する電極の温度が、搬送方向と反対側に位置する電極の温度よりも高くなるよう、予め調整される、請求項1~3の何れかに記載の半田接合装置。 The distance between each ferrite and the electrode formed on the substrate is adjusted in advance so that the temperature of the electrode positioned on the substrate transport direction side is higher than the temperature of the electrode positioned on the opposite side of the transport direction. The solder bonding apparatus according to any one of claims 1 to 3, wherein:
  5.  前記調整機構は、
      前記各フェライトと前記基板上に形成された電極との間隔が、所定の値に設定されたデータを記憶した記憶部と、
      前記記憶部に記憶されたデータに基づいて、前記各フェライトと前記基板上に形成された電極との間隔を、自動で調整する制御部と
    をさらに有している、請求項1~4の何れかに記載の半田接合装置。
    The adjustment mechanism is
    A storage unit storing data in which the interval between each ferrite and the electrode formed on the substrate is set to a predetermined value;
    The control unit according to any one of claims 1 to 4, further comprising a control unit that automatically adjusts an interval between each ferrite and an electrode formed on the substrate based on data stored in the storage unit. A solder bonding apparatus according to claim 1.
  6.  前記記憶部は、前記各フェライトと前記基板上に形成された電極との間隔が、誘導加熱によって加熱される前記各電極の温度が、搬送方向に沿って、所定の温度プロファイルをもつように設定されたデータを記憶しており、
     前記制御部は、前記記憶部に記憶された前記データに基づいて、前記各フェライトと前記基板上に形成された電極との間隔を、自動で調整する、請求項5に記載の半田接合装置。
    The storage unit is set such that the distance between each ferrite and the electrode formed on the substrate is such that the temperature of each electrode heated by induction heating has a predetermined temperature profile along the transport direction. Remembered data,
    The solder bonding apparatus according to claim 5, wherein the control unit automatically adjusts an interval between each ferrite and an electrode formed on the substrate based on the data stored in the storage unit.
  7.  前記基板は絶縁性の材料で構成されており、
     前記電極は、誘導加熱によって局所的に加熱可能な面積を有している、請求項1~6の何れかに記載の半田接合装置。
    The substrate is made of an insulating material,
    7. The solder bonding apparatus according to claim 1, wherein the electrode has an area that can be locally heated by induction heating.
  8.  前記フェライトは、前記基板側の端部において先細りの形状になっている、請求項1に記載の半田接合装置。 The solder bonding apparatus according to claim 1, wherein the ferrite has a tapered shape at an end portion on the substrate side.
  9.  前記加熱手段は、前記基板に対して、前記コイルが配置される側と反対側であって、前記複数のフェライトと対向する位置に配置された、前記基板と平行なフェライト板をさらに有する、請求項1に記載の半田接合装置。 The heating means further includes a ferrite plate disposed on a side opposite to the side on which the coil is disposed with respect to the substrate and disposed in a position facing the plurality of ferrites and parallel to the substrate. Item 2. A solder bonding apparatus according to Item 1.
PCT/JP2018/008269 2017-03-08 2018-03-05 Soldering device WO2018164038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044127A JP6773331B2 (en) 2017-03-08 2017-03-08 Solder bonding equipment
JP2017-044127 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164038A1 true WO2018164038A1 (en) 2018-09-13

Family

ID=63448231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008269 WO2018164038A1 (en) 2017-03-08 2018-03-05 Soldering device

Country Status (3)

Country Link
JP (1) JP6773331B2 (en)
TW (1) TWI759440B (en)
WO (1) WO2018164038A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097363A (en) * 2021-03-17 2021-07-09 深圳市华星光电半导体显示技术有限公司 Repair equipment and repair method for micro light-emitting diode backboard

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928631B2 (en) * 2019-09-11 2021-09-01 株式会社スフィンクス・テクノロジーズ High frequency induction heating head and high frequency induction heating device using it
US20220263434A1 (en) * 2021-02-12 2022-08-18 Raytheon Company Electromagnetic pick & place induction heater
KR20230156859A (en) * 2022-05-06 2023-11-15 주식회사 비에스테크닉스 LED lamp for vehicle applying MID and magnetic induction technology And Manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390079A (en) * 1991-09-10 1995-02-14 Hitachi, Ltd. Tape carrier package
JP2008229709A (en) * 2007-03-23 2008-10-02 Toyota Industries Corp Soldering device, soldering method and manufacturing method of electronic equipment
JP2012143805A (en) * 2011-01-14 2012-08-02 Eco & Engineering Co Ltd Heating head, and connection devices for solar cell and solar cell string using the heating head
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
WO2017154242A1 (en) * 2016-03-10 2017-09-14 東レエンジニアリング株式会社 Solder joining device and solder joining method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038358A1 (en) * 2008-03-20 2010-02-18 Dingle Brad M Inductive soldering device
CN102581418B (en) * 2012-03-16 2014-07-09 宁夏小牛自动化设备有限公司 Solar battery series welding device and solar battery series welding head
EP2900036B1 (en) * 2012-09-21 2019-09-11 Nippon Steel Corporation High-frequency induction heating device and processing device
KR101576137B1 (en) * 2013-11-08 2015-12-09 주식회사 다원시스 Induction heating soldering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390079A (en) * 1991-09-10 1995-02-14 Hitachi, Ltd. Tape carrier package
JP2008229709A (en) * 2007-03-23 2008-10-02 Toyota Industries Corp Soldering device, soldering method and manufacturing method of electronic equipment
JP2012143805A (en) * 2011-01-14 2012-08-02 Eco & Engineering Co Ltd Heating head, and connection devices for solar cell and solar cell string using the heating head
WO2017026286A1 (en) * 2015-08-07 2017-02-16 東レエンジニアリング株式会社 Solder bonding method for mounting component and solder bonding apparatus for mounting component
WO2017154242A1 (en) * 2016-03-10 2017-09-14 東レエンジニアリング株式会社 Solder joining device and solder joining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097363A (en) * 2021-03-17 2021-07-09 深圳市华星光电半导体显示技术有限公司 Repair equipment and repair method for micro light-emitting diode backboard

Also Published As

Publication number Publication date
JP6773331B2 (en) 2020-10-21
TW201838750A (en) 2018-11-01
JP2018144093A (en) 2018-09-20
TWI759440B (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP6915843B2 (en) Solder joining device
WO2018164038A1 (en) Soldering device
US8931684B2 (en) Induction bonding
US6229124B1 (en) Inductive self-soldering printed circuit board
JP6896369B2 (en) Solder joining device and solder joining method
CA1264360A (en) Self-heating, self-soldering bus bar
KR102599213B1 (en) Thermoelectric element bonding apparatus and method of bonding the same
JP2923096B2 (en) Tape carrier package and high-frequency heating solder bonding equipment
JP2006261186A (en) Bonding method and bonding equipment
CN111128790B (en) Micro-element processing device, welding method and display panel
JP4282501B2 (en) Reflow soldering apparatus and method
JP2010253503A (en) Heater chip and joining apparatus
WO2017026286A1 (en) Solder bonding method for mounting component and solder bonding apparatus for mounting component
JP2009160617A (en) Heater tip and joining device
JP6738057B1 (en) Circuit board and mounting method
JP2001257458A (en) Member for soldering, and method of soldering
JPH08293668A (en) Soldering of electronic components onto printed board
JP5178756B2 (en) Pin terminal joining method and apparatus, and power board with pin terminals
JP2016051844A (en) Soldering method, soldering device and reflow furnace
JP2016203215A (en) Joint method
JP4785486B2 (en) Electronic device manufacturing method and manufacturing apparatus
JP2011140054A (en) Joining method and joining apparatus by high-frequency induction heating
JP2012243903A (en) Soldering method and device of electronic component
JP2008132508A (en) Soldering device
TW201529211A (en) Reflow apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764786

Country of ref document: EP

Kind code of ref document: A1