JP4785486B2 - Electronic device manufacturing method and manufacturing apparatus - Google Patents

Electronic device manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP4785486B2
JP4785486B2 JP2005290641A JP2005290641A JP4785486B2 JP 4785486 B2 JP4785486 B2 JP 4785486B2 JP 2005290641 A JP2005290641 A JP 2005290641A JP 2005290641 A JP2005290641 A JP 2005290641A JP 4785486 B2 JP4785486 B2 JP 4785486B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
main heating
electronic device
preheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290641A
Other languages
Japanese (ja)
Other versions
JP2007103618A (en
Inventor
均 竹内
信治 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005290641A priority Critical patent/JP4785486B2/en
Publication of JP2007103618A publication Critical patent/JP2007103618A/en
Application granted granted Critical
Publication of JP4785486B2 publication Critical patent/JP4785486B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81805Soldering or alloying involving forming a eutectic alloy at the bonding interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Description

本発明は、回路基板にICチップなどの電子部品が接合された電子装置の製造方法である。特に電子部品がベアチップICの場合はフリップチップ実装と呼ばれる分野に関する。   The present invention is a method of manufacturing an electronic device in which an electronic component such as an IC chip is bonded to a circuit board. In particular, when the electronic component is a bare chip IC, it relates to a field called flip chip mounting.

従来より、ベアチップICのフリップチップ実装としては、ICの電極上にはんだや金などからなるバンプ呼ばれる突起電極を設けて、基板側の電極と対向させた状態で、加熱または加熱と加圧を併用することにより、はんだを溶融結したり、金と基板側の錫などの金属と反応させたりして、接合する方法が知られている。   Conventionally, for flip chip mounting of bare chip ICs, bumps called bumps made of solder, gold, etc. are provided on the electrodes of the IC, and heating or heating and pressing are used in combination with the electrodes facing the substrate side. By doing so, a method is known in which the solder is melt-bonded or bonded to gold and a metal such as tin on the substrate side.

しかし、基板とICの線膨張係数の違いや、加熱・冷却時の温度変化および温度分布などにより、接合部近傍に過大な応力が発生し、図8に示すように、ICチップ1のIC電極61と基板3の基板電極62が、はんだなどの接合部2で、フリップチップ実装されている場合に、接合部近傍に、ICクラック63、接合部クラック64、基板クラック65を生じたり、図示はしていないが電極の剥離が発生する場合があった。   However, excessive stress is generated in the vicinity of the joint due to the difference in the linear expansion coefficient between the substrate and the IC, the temperature change and temperature distribution during heating and cooling, and the IC electrode of the IC chip 1 as shown in FIG. When the 61 and the substrate electrode 62 of the substrate 3 are flip-chip mounted at the joint 2 such as solder, an IC crack 63, a joint crack 64, and a substrate crack 65 are generated in the vicinity of the joint. Although not performed, peeling of the electrode sometimes occurred.

そこで、電子装置の接合部近傍の応力を緩和するために各種の対策が考えられている。その一つとして、基板に切り溝を入れるものがある。(例えば特許文献1参照)
この電子装置によれば、接合部近傍に発生した応力を切り溝部が変形することにより逃がすことが出来、接合部の信頼性を向上出来る。
Therefore, various countermeasures have been considered in order to relieve stress in the vicinity of the joint portion of the electronic device. One of them is to cut grooves in the substrate. (For example, see Patent Document 1)
According to this electronic device, the stress generated in the vicinity of the joint can be released by the deformation of the groove and the reliability of the joint can be improved.

また、別の対策を行ったものとして、ICチップに形成されたバンプに応力緩和層を設けたものがある。(例えば、特許文献2図2参照)。   As another measure, there is a method in which a stress relaxation layer is provided on a bump formed on an IC chip. (For example, see Patent Document 2 and FIG. 2).

この電子装置においては、接合部近傍に発生した応力をICチップのバンプ部に形成された応力緩和層で吸収することにより、バンプ根元やIC保護膜など硬く脆い部分への過大な応力集中を回避することが出来るので、接合部の信頼性を向上出来る。   In this electronic device, the stress generated in the vicinity of the joint is absorbed by the stress relaxation layer formed in the bump part of the IC chip, thereby avoiding excessive stress concentration on hard and brittle parts such as the bump base and IC protective film. Therefore, the reliability of the joint can be improved.

更には、ICチップと基板の線膨張係数の違いに着目し、使用環境で想定される温度変化範囲の中心値付近で、線膨張係数の違いによる応力の発生がキャンセルされるように、加熱接合後、ICチップと基板の一方を高温に維持しながら、もう一方を所定の温度まで冷却する製造方法も提案されている(例えば特許文献3参照。)。   Furthermore, paying attention to the difference in the linear expansion coefficient between the IC chip and the substrate, heat bonding is performed so that the generation of stress due to the difference in the linear expansion coefficient is canceled near the center value of the temperature change range assumed in the usage environment. Thereafter, a manufacturing method has also been proposed in which one of the IC chip and the substrate is maintained at a high temperature while the other is cooled to a predetermined temperature (see, for example, Patent Document 3).

特許文献3記載の電子装置の製造方法によれば、接合後の使用状態での接合部にかかる応力が抑制され、信頼性の向上が期待出来る。
特開昭53−38286号公報 特開2001−326235号公報 特開平10−247670号公報
According to the method for manufacturing an electronic device described in Patent Document 3, the stress applied to the bonded portion in the used state after bonding is suppressed, and improvement in reliability can be expected.
Japanese Patent Laid-Open No. 53-38286 JP 2001-326235 A Japanese Patent Laid-Open No. 10-247670

しかしながら、上述した従来の電子装置及び電子装置の製造方法では、以下の課題が残されている。   However, the following problems remain in the above-described conventional electronic device and method for manufacturing the electronic device.

即ち、特許文献1及び2等に記載されている基板やICチップに応力緩和部を備えた電子装置では接合部近傍にかかる応力の緩和では優れてはいるが、応力緩和部を設けるためにICや基板上にスペース空ける必要があり、設計上の制約があったり、小型化に向かなかったりする。さらに応力緩和部を形成するための工程も必要になり、コストが高く生産性が悪い。   That is, in the electronic device provided with the stress relaxation portion on the substrate or IC chip described in Patent Documents 1 and 2, etc., the stress relaxation in the vicinity of the joint portion is excellent, but the IC is provided to provide the stress relaxation portion. In addition, there is a need to make a space on the board, and there are design restrictions and it is not suitable for miniaturization. Furthermore, a process for forming the stress relaxation part is also required, which is expensive and poor in productivity.

従来の電子装置の製造方法では、接合後、使用温度まで完全に冷却されたあとの残留応力は小さくなるが、加熱接合工程によって一体化されたICチップと基板を、それぞれ異なる温度に制御しながら冷却するのは非常に高度な制御を必要として、製造装置は複雑で高価になり、かつ製品設計上の制約も多くなる。また、正確な制御が出来ない場合は十分な残留応力緩和効果は期待出来ない。また冷却工程中は、ICチップと基板は接合部で一体化され、お互いに熱伝導される状態になっているので、それぞれICチップ内、基板内、及び接合部内での温度差が発生する。特に接合部近傍の温度差は大きくなると想定される。これらの冷却過程における温度差に起因する応力の発生によるクラックや剥離の発生や、信頼性の低下も懸念される。   In the conventional method of manufacturing an electronic device, the residual stress after being completely cooled to the operating temperature after bonding is reduced, but the IC chip and the substrate integrated by the heat bonding process are controlled at different temperatures. Cooling requires a very high degree of control, making the manufacturing equipment complex and expensive, and increasing product design constraints. In addition, when accurate control cannot be performed, a sufficient residual stress relaxation effect cannot be expected. Further, during the cooling process, the IC chip and the substrate are integrated at the joint and are in a state of being thermally conducted with each other, so that temperature differences occur in the IC chip, the substrate, and the joint, respectively. In particular, it is assumed that the temperature difference near the joint becomes large. There are also concerns about the occurrence of cracks and delamination due to the generation of stress due to temperature differences in these cooling processes, and a decrease in reliability.

本発明は、このような事情に考慮してなされたもので、その目的は、製造に手間、時間やコストがかからず、低コストで生産性に優れていると共に、接合時の応力緩和が可能となる信頼性が優れた高品質な電子装置の製造方法を提供することである。   The present invention has been made in view of such circumstances, and its purpose is that it does not require labor, time and cost for production, is low in cost and excellent in productivity, and also reduces stress during bonding. It is an object of the present invention to provide a method for manufacturing a high-quality electronic device with excellent reliability.

本発明は、前記課題を解決するために以下の手段を提供する。   The present invention provides the following means in order to solve the above problems.

本発明の電子装置の製造方法は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造方法において
電子部品と前記基板を接合する本加熱工程と、本加熱熱工程の後に電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度で一定時間維持するテールヒート工程、を有することを特徴とするものである。
An electronic device manufacturing method of the present invention is an electronic device manufacturing method comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. And a tail heating step that is maintained at a temperature lower than the temperature at which the joint between the electronic component and the substrate is melted or reacted after the main heating and heating step for a certain period of time. .

この発明にかかる電子装置の製造方法においては、本加熱工程後にテールヒート工程により、常温より高く本加熱よりは低い温度に一定時間維持する。これにより、本加熱工程後にテールヒート工程を経ずに常温まで冷却するのに比べ、温度下降幅が小さくなる。従って、本加熱工程後に発生する温度下降前後の時系列で発生する温度差に起因する応力の発生が小さくなる。また、温度下降を二回に分けて行うことにより、温度分布の均一化が図れ、面方向で発生する温度差が小さく出来、それに伴う応力の発生も抑制出来る。さらに、温度下降速度を遅く出来るので、急激な熱収縮による過大な応力の発生も抑制出来る。   In the method of manufacturing the electronic device according to the present invention, the tail heating process is performed after the main heating process, and the temperature is maintained at a temperature higher than normal temperature and lower than the main heating for a certain time. Thereby, compared with cooling to normal temperature without passing through a tail heating process after this heating process, a temperature fall width becomes small. Therefore, the generation of stress due to the temperature difference generated in time series before and after the temperature decrease generated after the main heating process is reduced. Further, by performing the temperature decrease in two steps, the temperature distribution can be made uniform, the temperature difference generated in the surface direction can be reduced, and the generation of stress associated therewith can be suppressed. Furthermore, since the temperature decrease rate can be slowed, the generation of excessive stress due to rapid thermal contraction can be suppressed.

その後は自然に常温まで冷却させる。このときも、テールヒート工程が存在することにより、本加熱工程後にテールヒート工程を経ずに常温まで冷却するのに比べ、温度下降幅が小さくなり、テールヒート工程と同様に接合部にかかる応力を緩和できる。   Then let it cool to room temperature naturally. At this time, since the tail heating process exists, the temperature decrease width becomes smaller than the cooling to the normal temperature without the tail heating process after the main heating process, and the stress applied to the joint as in the tail heating process. Can be relaxed.

また、本発明の電子装置の製造方法は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造方法において、電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度に予熱されるプリヒート工程と、電子部品と基板を接合する本加熱工程、を有することを特徴とするものである。   According to another aspect of the present invention, there is provided an electronic device manufacturing method comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. A preheating step in which the bonding portion is preheated to a temperature lower than the temperature at which the bonding portion melts or reacts and higher than the normal temperature, and a main heating step for bonding the electronic component and the substrate.

この発明にかかる電子装置の製造方法においては、まず、プリヒート工程により、ICチップなど電子部品と基板を、常温より高く、本加熱よりは低い温度まで昇温する。次に本加熱工程により、電子部品と基板が接合可能な温度までさらに昇温する。これにより、本加熱工程での昇温幅は、常温からプリヒート工程を経ずに本加熱温度に上げるのよりも小さくなる。従って、本加熱工程の昇温前後の時系列で発生する温度差に起因する応力の発生が小さくなる。また、昇温を二回に分けて行うことにより、温度分布の均一化が図れ、面方向で発生する温度差が小さく出来、それに伴う応力の発生も抑制出来る。さらに、同じ工程時間であれば昇温速度を遅く出来るので、急激な熱膨張による過大な応力の発生も抑制出来る。逆に昇温速度を同じにすれば、より短時間で必要な温度まで上げることが出来、生産性の向上を図れる。   In the method for manufacturing an electronic device according to the present invention, first, an electronic component such as an IC chip and a substrate are heated to a temperature higher than normal temperature and lower than main heating by a preheating process. Next, in this heating step, the temperature is further raised to a temperature at which the electronic component and the substrate can be joined. Thereby, the temperature increase width in the main heating step is smaller than that from normal temperature to the main heating temperature without going through the preheating step. Therefore, the generation of stress due to the temperature difference generated in time series before and after the temperature increase in the main heating process is reduced. In addition, by performing the temperature increase in two steps, the temperature distribution can be made uniform, the temperature difference generated in the surface direction can be reduced, and the accompanying stress can be suppressed. Furthermore, since the rate of temperature rise can be slowed for the same process time, generation of excessive stress due to rapid thermal expansion can be suppressed. Conversely, if the heating rate is made the same, the temperature can be increased to a required temperature in a shorter time, and productivity can be improved.

また、本発明の電子装置の製造方法は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造方法において、電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度に予熱されるプリヒート工程と、電子部品と基板を接合する本加熱工程と、本加熱熱工程の後に電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度で一定時間維持するテールヒート工程、を有することを特徴とするものである。   According to another aspect of the present invention, there is provided an electronic device manufacturing method comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. A preheating process in which the bonding part is preheated to a temperature lower than the temperature at which the bonding part melts or reacts and higher than room temperature, a main heating process for bonding the electronic component and the substrate, and a bonding part between the electronic component and the substrate are melted after the main heating and heating process. Or it has the tail heat process maintained at the temperature lower than the temperature which reacts and higher than normal temperature for a fixed time, It is characterized by the above-mentioned.

この発明にかかる電子装置の製造方法においては、プリヒート工程とテールヒート工程を併用することにより、より大きな応力抑制と生産性の向上を図れる。   In the method for manufacturing an electronic device according to the present invention, the combined use of the preheating process and the tail heating process makes it possible to further suppress stress and improve productivity.

プリヒート工程と、テールヒート工程は、製品や製造装置の仕様などを考慮して、両方とも実施する場合と、一方の工程のみを実施する場合とが想定される。   The preheating process and the tail heating process are assumed to be performed both in consideration of the specifications of the product and the manufacturing apparatus, and when only one of the processes is performed.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、電子部品の電極部には半田バンプが形成され、プリヒート工程の前に、フラックス供給工程、アライメント工程、マウント工程を有し、プリヒート工程での接合部温度は、半田バンプの融点より低く、テールヒート工程での接合部温度は半田バンプの融点より低いことを特徴とするものである。   The electronic device manufacturing method according to the present invention is the electronic device manufacturing method according to the present invention, wherein a solder bump is formed on the electrode portion of the electronic component, and the flux supplying step, the alignment step, and the mount before the preheating step. The junction temperature in the preheating step is lower than the melting point of the solder bump, and the junction temperature in the tail heating step is lower than the melting point of the solder bump.

この発明にかかる電子装置の製造方法においては、接合は電子部品に形成された半田バンプによって行われる。まず、フラックス供給工程により、半田付け時に必要な活性剤であるフラックスを、半田バンプ先端、または基板の電極部に適量を供給する。次にアライメント工程により電子部品と基板の電極の位置合わせを行う。フラックス供給工程とアライメント工程は逆の順番になる場合もある。次にマウント工程により、電子部品を基板上に載せる。この際、フラックスの粘着性により電子部品と基板は仮固定される。   In the method for manufacturing an electronic device according to the present invention, the joining is performed by solder bumps formed on the electronic component. First, in the flux supply process, an appropriate amount of flux, which is an activator necessary for soldering, is supplied to the tip of the solder bump or the electrode portion of the substrate. Next, the alignment of the electronic component and the electrode of the substrate is performed by an alignment process. The flux supply process and the alignment process may be reversed. Next, the electronic component is placed on the substrate by a mounting process. At this time, the electronic component and the substrate are temporarily fixed by the adhesiveness of the flux.

その後は、プリヒート工程により、ICチップなど電子部品と基板を、常温より高く、は半田バンプの融点よりも低い温度まで昇温する。次に本加熱工程により、半田バンプの融点よりも高い温度までさらに昇温する。   Thereafter, the temperature of the electronic component such as an IC chip and the substrate is raised to a temperature higher than normal temperature and lower than the melting point of the solder bump by a preheating process. Next, in this heating step, the temperature is further raised to a temperature higher than the melting point of the solder bump.

次に、テールヒート工程により、常温より高く半田バンプの融点よりも低い温度に一定時間維持した後、自然に常温までゆっくり冷却させる。冷却過程においては、半田バンプ融点を下回ると、バンプのはんだは再凝固し固定される。再凝固後の温度変化は、基板とICチップの線膨張係数の差によって、接合部近傍に応力が発生し、クラックや剥離の発生の原因になる。本発明によれば、再凝固後も温度下降速度や温度下降幅を小さく抑えることが出来る。これにより、半田バンプを用いた電子装置の製造を、接合部にかかる応力を抑えつつ実現できる。   Next, after maintaining for a certain period of time at a temperature higher than normal temperature and lower than the melting point of the solder bump by a tail heating process, it is naturally cooled slowly to normal temperature. In the cooling process, when the solder bump melting point is not reached, the bump solder is re-solidified and fixed. The temperature change after re-solidification causes stress in the vicinity of the joint due to the difference in the linear expansion coefficient between the substrate and the IC chip, causing cracks and peeling. According to the present invention, the temperature decrease rate and the temperature decrease width can be kept small even after re-solidification. Thereby, manufacture of the electronic device using a solder bump is realizable, suppressing the stress concerning a junction part.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、プリヒート工程は、フラックス活性温度近傍であることを特徴とするものである。   The electronic device manufacturing method of the present invention is characterized in that, in the electronic device manufacturing method of the present invention, the preheating step is near the flux activation temperature.

この発明にかかる電子装置の製造方法においては、プリヒート工程においてフラックスの活性温度、すなわち酸化還元機能が効率よく発揮できる温度、例えば80〜200℃程度の範囲から選ぶ最適と思われる温度、に昇温することにより、応力緩和とフラックスの酸化還元機能による確実な接合(半田濡れ)を同時に図ることが出来る。   In the method of manufacturing an electronic device according to the present invention, the temperature of the flux is raised to the activation temperature in the preheating process, that is, the temperature at which the oxidation-reduction function can be efficiently exhibited, for example, the optimum temperature selected from the range of about 80 to 200 ° C. By doing so, it is possible to simultaneously achieve reliable bonding (solder wetting) by the stress relaxation and the oxidation / reduction function of the flux.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、 プリヒート工程または、テールヒート工程は基板の下側に設置されたセラミック製のヒートプレートから熱が供給されることを特徴とするものである
この発明にかかる電子装置の製造方法においては、適切な温度に調整されたセラミック製のプレートと基板底面が接触または、近接した状態で熱を伝える。これにより簡便にプリヒート工程及びテールヒート工程を実現できる。さらに、セラミックは金属などに比べ熱伝導率が低いので、温度変化が緩やかになり、応力が緩和される。
The electronic device manufacturing method of the present invention is the electronic device manufacturing method of the present invention, wherein the preheating step or the tail heating step is supplied with heat from a ceramic heat plate installed below the substrate. In the method of manufacturing an electronic device according to the present invention, heat is transferred in a state where the ceramic plate adjusted to an appropriate temperature and the bottom surface of the substrate are in contact with or close to each other. Thereby, a preheating process and a tail heating process are simply realizable. Furthermore, since the thermal conductivity of ceramic is lower than that of metal or the like, the temperature change becomes gentle and the stress is relaxed.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、 基板は、連続したテープ状に形成され、工程ごとに所定長さ分移動しながら搬送され、プリヒート工程または、テールヒート工程は基板の下側に設置されたヒートプレートから熱が供給され、ヒートプレートに、突起部及び切り欠き部を有することを特徴とするものである。   The electronic device manufacturing method of the present invention is the electronic device manufacturing method of the present invention described above, wherein the substrate is formed in a continuous tape shape and is transported while moving by a predetermined length for each process, and the preheating process or The tail heating process is characterized in that heat is supplied from a heat plate installed on the lower side of the substrate, and the heat plate has a protrusion and a notch.

この発明にかかる電子装置の製造方法においては、プリヒート工程、本加熱工程、テールヒート工程はそれぞれ固定された場所で行われ、プリヒート工程とテールヒート工程では適切な温度に調整されたヒートプレートの突起部と基板底面が接触または、近接した状態で熱を伝える。基板は各工程を移動していくため、省スペースで生産性を高く出来る。
また、ヒートプレートからの熱は本加熱される場所だけではなく、周辺の基板にも伝わり、本加熱開始直前にはICチップ及び周辺の基板がともにプリヒートされる。この後の本加熱時にICチップ部周辺のみを局所加熱する場合に、周囲とIC部の温度差を小さく出来る。さらに、基板にプリヒート加熱したくない場所は、ヒートプレートの切り欠き部になるようにすることにより必要な部分のみを加熱出来る。
In the method of manufacturing an electronic device according to the present invention, the preheating process, the main heating process, and the tail heating process are performed at fixed locations, and the protrusions of the heat plate adjusted to appropriate temperatures in the preheating process and the tail heating process. Heat is transferred with the part and the bottom of the substrate in contact or close to each other. Since the substrate moves through each process, it can save space and increase productivity.
Further, the heat from the heat plate is transmitted not only to the place where the main heating is performed but also to the peripheral substrate, and both the IC chip and the peripheral substrate are preheated immediately before the start of the main heating. When only the periphery of the IC chip portion is locally heated during the subsequent main heating, the temperature difference between the periphery and the IC portion can be reduced. Furthermore, only a necessary part can be heated by making it a notch part of a heat plate in the place which does not want to preheat-heat to a board | substrate.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、 突起部に面取り部を有することを特徴とするものである。   The electronic device manufacturing method of the present invention is characterized in that, in the electronic device manufacturing method of the present invention, the protrusion has a chamfered portion.

この発明にかかる電子装置の製造方法においては、突起部に切り欠きを設けることにより、テープ状の基板が搬送されるときに、基板の穴部やパターンなどの段差に引っかかることを防げる。   In the method of manufacturing an electronic device according to the present invention, by providing a notch in the protrusion, it is possible to prevent the tape-like substrate from being caught by steps such as holes and patterns in the substrate when the substrate is transported.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、 本加熱工程は、エアヒータを用いることを特徴とするものである。   The electronic device manufacturing method of the present invention is characterized in that, in the electronic device manufacturing method of the present invention, the heating step uses an air heater.

この発明にかかる電子装置の製造方法においては、エアヒータによって必要な部分のみを生産性よく効率的に加熱することが出来る。   In the method of manufacturing an electronic device according to the present invention, only a necessary portion can be efficiently heated with high productivity by an air heater.

また、本発明の電子装置の製造方法は、上記本発明の電子装置の製造方法において、 電子部品の電極部には金バンプが形成され、基板の電極部には錫メッキが形成され、 本加熱工程は、加熱ヘッドによる熱圧着によってなされ、プリヒート工程は、接合部が30℃以上、280℃未満であり、テールヒート工程は接合部が30℃以上、280℃未満であることを特徴とするものである。   The electronic device manufacturing method of the present invention is the above-described electronic device manufacturing method of the present invention, in which gold bumps are formed on the electrode portions of the electronic components, tin plating is formed on the electrode portions of the substrate, and the main heating. The process is performed by thermocompression bonding with a heating head, the preheating process is performed at 30 ° C. or higher and lower than 280 ° C., and the tail heating process is performed at 30 ° C. or higher and lower than 280 ° C. It is.

この発明にかかる電子装置の製造方法においては、接合は電子部品に形成された金バンプと基板側に形成された錫メッキが反応し、融点が約280℃の金−錫合金になることによって行われる。まず、プリヒート工程により、ICチップなど電子部品と基板を、30℃より高く、金−錫合金の融点である280℃よりも低い温度まで昇温する。次に本加熱工程により、280℃よりも高い、例えば300〜500℃の間の適切な温度に加熱したヘッドで、ICチップ上面から加圧・加熱することにより、金−錫共晶合金の接合部を得る。次に、テールヒート工程により、30℃より高く、金−錫共晶合金の融点である280℃よりも低い温度に一定時間維持した後、自然に常温まで冷却させる。これにより、金バンプを用いた電子装置の製造を、接合部にかかる応力を抑えつつ実現できる。さらに、この後に半田付け工程がある場合にも、再溶融しないで接合信頼性を維持できる。   In the method of manufacturing an electronic device according to the present invention, bonding is performed by a reaction between a gold bump formed on an electronic component and a tin plating formed on the substrate side to form a gold-tin alloy having a melting point of about 280 ° C. Is called. First, an electronic component such as an IC chip and a substrate are heated to a temperature higher than 30 ° C. and lower than 280 ° C., which is the melting point of the gold-tin alloy, by a preheating process. Next, in this heating step, the gold-tin eutectic alloy is bonded by pressing and heating from the upper surface of the IC chip with a head heated to an appropriate temperature higher than 280 ° C., for example, between 300 to 500 ° C. Get a part. Next, after maintaining at a temperature higher than 30 ° C. and lower than 280 ° C., which is the melting point of the gold-tin eutectic alloy, for a certain period of time by a tail heating process, it is naturally cooled to room temperature. Thereby, the manufacture of the electronic device using the gold bump can be realized while suppressing the stress applied to the joint portion. Furthermore, even when there is a soldering process after this, the joining reliability can be maintained without remelting.

また、本発明の電子装置の製造装置は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造装置において、電子部品と基板を接合する本加熱手段と、本加熱熱後に電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度で一定時間維持するテールヒート手段、を有することを特徴とするものである。   According to another aspect of the present invention, there is provided an electronic device manufacturing apparatus comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. And a tail heating means for maintaining for a certain time at a temperature lower than the temperature at which the bonded portion of the electronic component and the substrate melts or reacts after the main heating heat and higher than room temperature. .

この発明にかかる電子装置の製造装置においては、上記で説明してきた、テールヒート工程による応力緩和及び生産性向上を実現するための、製造装置を提供できる。   In the apparatus for manufacturing an electronic device according to the present invention, a manufacturing apparatus for realizing stress relaxation and productivity improvement by the tail heat process described above can be provided.

また、本発明の電子装置の製造装置は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造装置において、電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度に予熱されるプリヒート手段と、電子部品と基板を接合する本加熱手段、を有することを特徴とするものである。   According to another aspect of the present invention, there is provided an electronic device manufacturing apparatus comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. It has preheating means preheated to a temperature lower than the temperature at which the joining portion melts or reacts and higher than room temperature, and a main heating means for joining the electronic component and the substrate.

この発明にかかる電子装置の製造装置においては、上記で説明してきた、プリヒート工程による応力緩和及び生産性向上を実現するための、製造装置を提供できる。   In the apparatus for manufacturing an electronic device according to the present invention, a manufacturing apparatus for realizing stress relaxation and productivity improvement by the preheating process as described above can be provided.

また、本発明の電子装置の製造装置は、一方の面に複数の電極をもつ電子部品と、電子部品に対応する電極を有する基板とを備えた、電子装置の製造装置において、電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度に予熱されるプリヒート手段と、電子部品と基板を接合する本加熱手段と、本加熱後に電子部品及び基板の接合部が溶融または反応する温度より低く常温より高い温度で一定時間維持するテールヒート手段、を有することを特徴とするものである。   According to another aspect of the present invention, there is provided an electronic device manufacturing apparatus comprising: an electronic component having a plurality of electrodes on one surface; and a substrate having an electrode corresponding to the electronic component. Preheating means that is preheated to a temperature lower than the temperature at which the joint part melts or reacts and higher than room temperature, a main heating means that joins the electronic component and the substrate, and a joint part between the electronic component and the substrate melts or reacts after the main heating. And tail heat means for maintaining for a certain period of time at a temperature lower than the room temperature and higher than the room temperature.

この発明にかかる電子装置の製造装置においては、上記で説明してきた、プリヒート工程及びテールヒート工程による応力緩和及び生産性向上を実現するための、製造装置を提供できる。   In the electronic device manufacturing apparatus according to the present invention, it is possible to provide a manufacturing apparatus for realizing stress relaxation and productivity improvement by the preheating process and the tail heating process described above.

本発明に係る電子装置の製造方法によれば、製造に手間、時間やコストがかからず、低コストで生産性を向上することができると共に、接合部にかかる応力を緩和し、接続信頼性を向上させて高品質化を図ることができる。   According to the method for manufacturing an electronic device according to the present invention, it is possible to improve the productivity at low cost without taking time, cost and cost, and to reduce the stress applied to the joint portion and to improve the connection reliability. To improve the quality.

以下、本発明の実施例1を図1及び図7を参照して説明する。   Embodiment 1 of the present invention will be described below with reference to FIGS.

図1は、連続したテープ状の基板3に、ICチップ1を一定時間ごとに、搬送方向Aに一定距離(この場合、各ICチップ1間の距離)移動しながら、各工程を同時に製造している様子を示している。   FIG. 1 shows that each process is simultaneously performed on a continuous tape-shaped substrate 3 while moving the IC chip 1 in the transport direction A at regular intervals (in this case, the distance between the IC chips 1). It shows how it is.

ICチップ1には電極部にバンプ2が、例えばSn-Ag系の225℃程度の融点の半田合金で形成されている。テープ状の基板はポリイドベースで柔軟性があり、銅の配線がされ、接合部付近の配線表面には、金またははんだメッキが施されている。   On the IC chip 1, bumps 2 are formed on the electrode portions, for example, of a Sn—Ag-based solder alloy having a melting point of about 225 ° C. The tape-like substrate is a polyimide base and has flexibility, copper wiring, and the wiring surface in the vicinity of the joint is gold or solder plated.

ヒートプレート6は、基板3の下面に接触または近接した状態で、プリヒート部101、本加熱部102、テールヒート部103をまたがるように一体に形成され、材質はセラミックなどで、セラミック中にシーズヒーターを挿入したり、下側からシートヒーターを接触させたりして加熱し、温度センサで表面近傍温度をモニタしながらフィードバック制御により表面温度が150℃になるように、制御されている。   The heat plate 6 is integrally formed so as to straddle the preheating unit 101, the main heating unit 102, and the tail heating unit 103 in a state where it is in contact with or close to the lower surface of the substrate 3, and is made of ceramic or the like. It is controlled so that the surface temperature becomes 150 ° C. by feedback control while monitoring the temperature near the surface with a temperature sensor by inserting a sheet heater or contacting a seat heater from the lower side.

図示されていない、左の方では、フラックス供給工程、アライメント工程、マウント工程を経て、プリヒート部に搬送される直前には、ICチップ1のバンプ2は、基板3の電極(図示されていない)と位置が合っていて、フラックスの粘着性により仮固定された状態になっている。   On the left side, not shown, the bump 2 of the IC chip 1 is an electrode (not shown) of the substrate 3 immediately before being transferred to the preheating portion through the flux supply process, the alignment process, and the mounting process. Are in a state of being temporarily fixed due to the adhesiveness of the flux.

プリヒート部101においては、図示されていない左方向から移動してきたICチップ1及び基板3にヒートプレート6からの熱が伝わり、ICチップ1、バンプ2部付近、及びヒートプレート上の基板3は、概150℃まで昇温される。一定時間が経過すると、搬送方向Aに移動し、本加熱部102に移動する In the preheating portion 101, heat from the heat plate 6 is transmitted to the IC chip 1 and the substrate 3 that have moved from the left direction (not shown), and the IC chip 1, the vicinity of the bump 2 portion, and the substrate 3 on the heat plate are The temperature is raised to about 150 ° C. When a certain time has elapsed, the sheet moves in the conveyance direction A and moves to the main heating unit 102 .

本加熱部102においては、上部にエアヒータ4が固定され、熱風5がICチップ1の上面に吹きつけられるようになっている。エアヒータ4は内部に見える熱線抵抗にかける電力と内部に流す大気や窒素などの流体の流量で熱風を制御する。またシャッター機能を備えて、所定時間のみ熱風5をかけて、所定時間経過後は熱風5を遮断する場合もある。プリヒート部から搬送されて来たICチップ1は、ヒートプレート1及びエアヒータ4からの熱風5によって加熱され、バンプ2部付近が、半田の融点以上、例えば250℃になるように、熱風及びエアヒータ4の位置を調整する。これによりバンプ2は溶融し、(図示されていない)基板側の電極に濡れて接合される。 In the main heating unit 102, the air heater 4 is fixed to the upper part, and hot air 5 is blown onto the upper surface of the IC chip 1. The air heater 4 controls the hot air 5 by the electric power applied to the hot wire resistance visible inside and the flow rate of fluid such as air or nitrogen flowing inside. In some cases, a shutter function is provided so that the hot air 5 is applied only for a predetermined time, and the hot air 5 is shut off after the predetermined time has elapsed. The IC chip 1 conveyed from the preheating part is heated by the hot air 5 from the heat plate 1 and the air heater 4 and the hot air 5 and the air heater are set so that the vicinity of the bump 2 part is higher than the melting point of the solder, for example, 250 ° C. Adjust the position of 4. As a result, the bumps 2 are melted and bonded to the substrate-side electrode (not shown).

テールヒート部103においては、約250℃まで加熱されたICチップ1及びバンプ2部付近は、大気中及びヒートプレート6へ熱を逃がしながら冷却されるが、ヒートプレートとの温度差が小さくなると温度下降は緩やかになり、やがてヒートプレート6の表面温度150℃付近まで下降する。バンプ2は融点以下に下がった時点で再凝固し、ICチップと基板は機械的かつ電気的に接合された状態となる。   In the tail heat portion 103, the vicinity of the IC chip 1 and the bump 2 portion heated to about 250 ° C. is cooled while releasing heat to the atmosphere and the heat plate 6. However, when the temperature difference from the heat plate becomes small, the temperature is reduced. The descending becomes gentle and eventually descends to near the surface temperature of the heat plate 6 of 150 ° C. When the bump 2 falls below the melting point, it resolidifies, and the IC chip and the substrate are mechanically and electrically bonded.

図示されていない右の方では、テールヒート部103から搬送されたICチップ1及びバンプ1付近は、常温中で冷却される。   On the right side (not shown), the vicinity of the IC chip 1 and the bump 1 conveyed from the tail heat unit 103 is cooled at room temperature.

図7は本発明の実施例1、及び従来の電子装置の製造方法、における温度プロファイルを示すグラフである。横軸は時間X、縦軸は温度Yを示し、実線が本発明の接合部付近のプロファイル51の一例、点線が従来の接合部付近のプロファイル52の一例、一点鎖線が本発明の基板周辺部のプロファイル53、二点鎖線が従来の基板周辺部のプロファイル54を示している。基板周辺部とは、基板上でICからややはなれていて、本加熱時の影響をあまり受けない部分を指す。線が重なる部分は見やすくするためややずらしてある。プリヒート部101、本加熱部102、テールヒート部103はそれぞれ、図1の箇所と対応している。   FIG. 7 is a graph showing temperature profiles in Example 1 of the present invention and a conventional method for manufacturing an electronic device. The horizontal axis indicates time X, the vertical axis indicates temperature Y, the solid line indicates an example of the profile 51 near the junction of the present invention, the dotted line indicates an example of the profile 52 near the conventional junction, and the alternate long and short dash line indicates the peripheral portion of the substrate of the present invention. A profile 53 and a two-dot chain line show a profile 54 around the conventional substrate. The peripheral portion of the substrate refers to a portion that is slightly separated from the IC on the substrate and is not significantly affected by the main heating. The part where the lines overlap is slightly shifted for easy viewing. The preheating unit 101, the main heating unit 102, and the tail heating unit 103 correspond to the locations in FIG.

プリヒート開始時間t1においては、本発明の接合部付近のプロファイル51も従来の接合部付近のプロファイル52も常温T1で同じであるが、本加熱開始時間t2に至る過程で、従来の接合部付近のプロファイル52はプリヒート工程は行わないので常温T1のままであるが、本発明の接合部付近のプロファイル51においてはプリヒート温度T2に向けて温度が上昇している。ここで、プリヒート工程の加熱源は金属に比べ熱伝導率が低いセラミック製ヒートプレートなので、温度の上昇は緩やかになっている。仮にヒートプレートの熱伝導・熱伝導が高い場合はより急激にプリヒート温度T2に近づく。一方、基板周辺部は本発明も従来も接合部付近とほぼ同じになる。   At the preheating start time t1, the profile 51 near the joint of the present invention and the profile 52 near the conventional joint are the same at room temperature T1, but in the process up to the main heating start time t2, Since the profile 52 is not subjected to the preheating process, it remains at room temperature T1, but in the profile 51 near the joint of the present invention, the temperature rises toward the preheat temperature T2. Here, since the heating source in the preheating process is a ceramic heat plate having a lower thermal conductivity than that of metal, the temperature rise is moderate. If the heat conduction / heat conduction of the heat plate is high, the heat plate approaches the preheat temperature T2 more rapidly. On the other hand, the peripheral portion of the substrate is substantially the same as that in the vicinity of the joint portion in the present invention and the conventional one.

本加熱開始時間t2から本加熱終了時間t3にかけては、接合部付近の温度は本加熱温度T3に向けて温度が上昇する。この間に本発明の接合部付近のプロファイル51では、本加熱温度T3(250℃)−プリヒート温度T2(150℃)=温度変化100℃に対し、従来の接合部付近のプロファイル52では、本加熱温度T3(250℃)−常温T1(25℃)=温度変化225℃となる。内部応力は温度変化量が小さいほうが小さくなる。さらに、基板周辺部は、本発明の基板周辺部のプロファイル53ではプリヒート温度T2が維持され、従来の基板周辺部のプロファイル54は常温のままである。本加熱終了時間t3での、接合部付近と基板周辺部の温度差は、本発明の場合、本加熱温度T3(250℃)−プリヒート温度T2(150℃)=温度差100℃、従来の場合、本加熱温度T3(250℃)−常温T1(25℃)=温度差225℃となり、温度差による応力の発生も本発明のほうが有利になる。   From the main heating start time t2 to the main heating end time t3, the temperature in the vicinity of the junction increases toward the main heating temperature T3. In the meantime, in the profile 51 near the joint of the present invention, the main heating temperature T3 (250 ° C.) − Preheat temperature T2 (150 ° C.) = Temperature change 100 ° C. T3 (250 ° C.) − Normal temperature T 1 (25 ° C.) = Temperature change 225 ° C. The smaller the temperature change, the smaller the internal stress. Further, the substrate peripheral portion maintains the preheat temperature T2 in the substrate peripheral portion profile 53 of the present invention, and the conventional substrate peripheral portion profile 54 remains at room temperature. In the case of the present invention, the temperature difference between the vicinity of the bonding portion and the substrate periphery at the main heating end time t3 is the main heating temperature T3 (250 ° C.) − Preheat temperature T2 (150 ° C.) = Temperature difference 100 ° C. This heating temperature T3 (250 ° C.) − Normal temperature T1 (25 ° C.) = Temperature difference 225 ° C. The generation of stress due to the temperature difference is more advantageous in the present invention.

本加熱終了時間t3からテールヒート終了時間t4にかけては、冷却工程で温度が下降する。従来の接合部付近のプロファイル52では本加熱温度T3からバンプ融点T5を経て常温T1まで、本加熱時を逆にしたような曲線で急低下する。本発明の接合部付近のプロファイル51ではバンプ融点T5を経てさらにテールヒート温度T4に向けて緩やかに下降する。さらにテールヒート終了時間t4後も本発明の接合部付近のプロファイル51はゆっくりと温度が下降する。   From the main heating end time t3 to the tail heat end time t4, the temperature decreases in the cooling step. In the conventional profile 52 in the vicinity of the joint, the temperature rapidly decreases from the main heating temperature T3 to the normal temperature T1 through the bump melting point T5 with a curve that reverses the time of the main heating. In the profile 51 in the vicinity of the joint of the present invention, the temperature gradually decreases toward the tail heat temperature T4 via the bump melting point T5. Further, even after the tail heat end time t4, the temperature of the profile 51 near the joint of the present invention slowly decreases.

ここでもプリヒート時同様な温度変化と応力の関係があるが、冷却過程においては、バンプ融点T5(220℃)を下回ると、バンプのはんだは再凝固し固定されるので、その後の温度変化は、基板とICチップの線膨張係数の差による接合部近傍にかかる応力が、クラックや剥離の発生に特に影響が大きい。また、冷却時の傾き(冷却速度)も、小さい方が望ましいが、やはり本発明の接合部付近のプロファイル51の方が小さくなる。さらに、基板周辺部は、本発明の基板周辺部のプロファイル53ではプリヒート温度T2が維持され、従来の基板周辺部のプロファイル54は常温のままである。同様に基板周辺部と接合部付近の温度差についても本発明がより小さい。   Again, there is a relationship between stress and temperature change similar to that during preheating, but in the cooling process, if the melting point of the bump falls below T5 (220 ° C.), the solder of the bump is re-solidified and fixed. The stress applied to the vicinity of the joint due to the difference in the linear expansion coefficient between the substrate and the IC chip has a particularly large influence on the occurrence of cracks and peeling. In addition, the inclination during cooling (cooling rate) is preferably small, but the profile 51 near the joint of the present invention is also smaller. Further, the substrate peripheral portion maintains the preheat temperature T2 in the substrate peripheral portion profile 53 of the present invention, and the conventional substrate peripheral portion profile 54 remains at room temperature. Similarly, the present invention is smaller in the temperature difference between the periphery of the substrate and the vicinity of the junction.

次に、本発明の実施例2を図2を参照して説明する。ここで、実施例2は、参考例としての実施形態であり、以下では便宜上参考例1と称する。なお、参考例1において実施例1と同一の構成については、同一の符号を付しその説明を省略する。参考例1の実施例との異なる点は、実施例1では、ヒートプレート6が、プリヒート部101、本加熱部102、テールヒート部103をまたがって設置されていたのに対し、参考例1では、ヒートプレート11は本加熱部102、テールヒート部103のみにまたがるように設置した点である。 Next, a second embodiment of the present invention will be described with reference to FIG. Here, Example 2 is an embodiment as a reference example, and is hereinafter referred to as Reference Example 1 for convenience. Note that the same reference numerals in the first embodiment denote the same parts as those in the first embodiment, and a description thereof will be omitted. The difference between Example 1 of Reference Example 1, Example 1, heat plate 6, up reheat section 101, the heating unit 102, whereas was installed over tail heat unit 103, reference example 1 , the heat plate 11 is installed so as to extend over only the main heating unit 102 and the tail heating unit 103.

即ち、本参考例1では、プリヒート工程を省略し、本加熱部102、及びテールヒート部103の働きにより接合部にかかる応力緩和を実現するものである。ICチップ1や基板3の仕様などによっては、これで十分接合部の信頼性を確保可能な場合がある。また、ヒートプレート11が小さくなり、温度の制御性を向上させることが出来る。 That is, in the first reference example , the preheating step is omitted, and stress relaxation applied to the joint is realized by the functions of the main heating unit 102 and the tail heating unit 103 . Depending on the specifications of the IC chip 1 and the substrate 3, it may be possible to sufficiently secure the reliability of the joint. Moreover, the heat plate 11 becomes small and the controllability of temperature can be improved.

また、同じような大きさのヒートプレート11を、1サイクル分左側のプリヒート部と本加熱部102にまたがるように設置して、テールヒート工程を省略する場合や、プリヒート側に1サイクル分移動し、本加熱下部にはヒータプレート11を設置しないで、より長時間のテールヒートを行う場合、等、ヒータープレート11の位置は、プリヒートまたはテールヒートが実現できる位置であれば、どの位置に設置しても、どの工程にまたがっても構わない。   In addition, when the heat plate 11 having the same size is installed so as to straddle the preheating part on the left side and the main heating part 102 for one cycle and the tail heating process is omitted, it is moved to the preheating side by one cycle. If the heater plate 11 is not installed in the lower part of the main heating and the tail heat is performed for a longer time, the heater plate 11 may be installed at any position where preheating or tail heat can be realized. However, it does not matter even if it extends over any process.

次に、本発明に係る電子装置の製造方法の実施例3を図3を参照して説明する。ここで、実施例3は、参考例としての実施形態であり、以下では便宜上参考例2と称する。なお、参考例2において実施例1と同一の構成については、同一の符号を付しその説明を省略する。参考例2の実施例1との異なる点は、実施例1では、ヒートプレート6が、プリヒート部101、本加熱部102、テールヒート部103をまたがって一体に設置されていたのに対し、参考例2ではヒートプレート21、22、23が、それぞれ、プリヒート部101、本加熱部102、テールヒート部103に個別に設置されている点である。 Next, Embodiment 3 of the electronic device manufacturing method according to the present invention will be described with reference to FIG. Here, Example 3 is an embodiment as a reference example, and is hereinafter referred to as Reference Example 2 for convenience. Note that the same reference numerals in the reference example 2 denote the same components as those in the first embodiment, and a description thereof will be omitted. While differs from the embodiment 1 of Reference Example 2, in Example 1, heat plate 6, up reheat section 101, the heating section 102, was installed together across tail heat portion 103, heat plate 21, 22 and 23 in reference example 2, respectively, up reheat section 101, the heating unit 102 is that is installed separately to tail heat unit 103.

参考例2によれば、プリヒート部101、本加熱部102、テールヒート部103で、それぞれの工程に対して、最適な温度、位置、大きさにすることにより、より効果的な応力緩和などが可能となる。また、ヒートプレートはプリヒートまたはテールヒートが実現できる位置に一つ以上設置してあれば、本加熱工程省略したり、プリヒート側たはテールヒート側複数個設置したりすることも可能となる。エアヒート4を省略して、ヒートプレート22を高めの温度に設定し、ヒートプレート22からの熱の供給で本加熱を実施する場合も想定できる。 According to the present reference example 2, up reheat section 101, the heating unit 102, tail heat unit 103, for each step, optimum temperature, position, by the size, more effective stress relief It becomes possible. Also, the heat plate is if installed one or more positions can be realized preheat or tail heat omitting the heating step, preheating side or the possible or to several established to tail Heat side Become. It can be assumed that the air heat 4 is omitted, the heat plate 22 is set to a higher temperature, and the main heating is performed by supplying heat from the heat plate 22.

次に、本発明に係る電子装置の製造方法の実施例4を図4を参照して説明する。ここで、実施例4は、参考例としての実施形態であり、以下では便宜上参考例3と称する。なお、参考例3において実施例1と同一の構成については、同一の符号を付しその説明を省略する。参考例3の実施例1との異なる点は、各工程の加熱方法である。 Next, Embodiment 4 of the electronic device manufacturing method according to the present invention will be described with reference to FIG. Here, Example 4 is an embodiment as a reference example, and is hereinafter referred to as Reference Example 3 for convenience. In Reference Example 3 , the same components as those in Example 1 are denoted by the same reference numerals, and the description thereof is omitted. The difference between the reference example 3 and the example 1 is the heating method in each step.

即ち、ヒートプレートは設置せずに、プリヒート部101においては、赤外ランプ31をICチップ1の上方に設置し熱線32を照射することによって加熱し、本加熱部102においては熱圧着ヘッド33がIC上面に接触することにより加熱を行い、テールヒート部103においては、エアヒータ4を基板下側に設置し基板下面に熱風をあてることによって加熱する。それぞれの加熱条件は最適になるように調整し、応力緩和効果を発揮させる。これらの加熱手段は、本実施例で紹介していない方法を含めて、プリヒート部101、本加熱部102・テールヒート部103のどの工程に設置しても構わない。また同じ工程で複数の加熱手段を併用しても構わない。   That is, the heat plate is not installed, but in the preheating unit 101, the infrared lamp 31 is installed above the IC chip 1 and heated by irradiating the heat ray 32. In the main heating unit 102, the thermocompression bonding head 33 is provided. Heating is performed by coming into contact with the upper surface of the IC, and in the tail heat unit 103, the air heater 4 is installed on the lower side of the substrate and heated by applying hot air to the lower surface of the substrate. Each heating condition is adjusted to be optimal, and the stress relaxation effect is exhibited. These heating means may be installed in any process of the preheating unit 101, the main heating unit 102, and the tail heating unit 103, including a method not introduced in this embodiment. A plurality of heating means may be used in the same process.

次に、本発明に係る電子装置の製造方法の実施例5を図5を参照して説明する。ここで、実施例5は、参考例としての実施形態であり、以下では便宜上参考例4と称する。なお、参考例4において実施例1と同一の構成については、同一の符号を付しその説明を省略する。参考例4の実施例1との異なる点は、まず、メンテナンス、休憩、トラブル発生等の何らかの原因により製造装置の搬送が停止した状態になっていて、ヒートプレート6がエスケープ方向Bに移動し、基板3と距離が離れている点と、エアヒータ4から、熱風がICチップ1にあたっていない点である。 Next, a fifth embodiment of the method for manufacturing an electronic device according to the present invention will be described with reference to FIG. Here, Example 5 is an embodiment as a reference example, and hereinafter referred to as Reference Example 4 for convenience. Note that the same reference numerals in the reference example 4 denote the same parts as those in the first embodiment, and a description thereof will be omitted. The difference from Example 1 of Reference Example 4 is that, first, the transportation of the manufacturing apparatus is stopped for some reason such as maintenance, break, trouble occurrence, etc., the heat plate 6 moves in the escape direction B, That is, the distance from the substrate 3 is far away, and the hot air from the air heater 4 does not hit the IC chip 1.

即ち、製造装置の搬送が停止した状態で、ヒートプレート6が基板に近接した状態のままであると、長時間ヒートプレート6の熱が基板3、ICチップ1、バンプ2に供給され、例えば、プリヒート部でフラックスが劣化し、粘着性や活性力の低下する、等の問題が発生する場合がある。そこで、装置の搬送が停止した場合、熱が基板3、ICチップ1、バンプ2に供給されないように制御することによりこの問題を回避出来る。   That is, if the heat plate 6 remains close to the substrate while the transport of the manufacturing apparatus is stopped, the heat of the heat plate 6 is supplied to the substrate 3, the IC chip 1, and the bump 2 for a long time. In some cases, the flux deteriorates in the preheating portion, and problems such as a decrease in adhesiveness and activity may occur. Therefore, when the conveyance of the apparatus is stopped, this problem can be avoided by controlling so that heat is not supplied to the substrate 3, the IC chip 1, and the bump 2.

次に、本発明に係る電子装置の製造方法の実施例6を図6を参照して説明する。なお、実施例6において実施例1と同一の構成については、同一の符号を付しその説明を省略する。実施例と実施例1との異なる点は、各工程間の移動距離が2倍になり、各工程が終了すると搬送順Cに従って移動する点と、ここでは各工程に関与しないICチップ41の下面部はヒートプレート6の切り欠き部43になり、プリヒート部101、本加熱部102、テールヒート部103はそれぞれ、ヒートプレートの突起部42が基板3と近接するようになっていて、かつ、テールヒート部43の突起部42には左上側に面取りがされている点、である。 Next, a sixth embodiment of the electronic device manufacturing method according to the present invention will be described with reference to FIG. Note that the same reference numerals in the sixth embodiment denote the same components as those in the first embodiment, and a description thereof will be omitted. The difference between the sixth embodiment and the first embodiment is that the movement distance between each process is doubled, and each process is moved according to the conveyance order C. The lower surface portion is a cutout portion 43 of the heat plate 6, and the preheating portion 101, the main heating portion 102, and the tail heat portion 103 are such that the protruding portions 42 of the heat plate 6 are close to the substrate 3, and The protrusion 42 of the tail heat portion 43 is chamfered on the upper left side.

生産性を向上するために、同一ライン上に接合工程を2箇所設けた場合には、1個飛ばしで搬送を行うことになる。このときに、図1のような平らなヒートプレートを設置すると、一方の接合工程には関係のないIC(ここでICチップ41)にも熱が伝わってしまい、例えば、後から接合工程を行うICの接合部のフラックスの劣化や、熱履歴による特性や信頼性への影響がでる、等の問題がある。そこで、ICチップ41の下に切り欠き部を設けることにより、この問題を回避出来る。また、搬送時に基板の段差や切り欠き部(図示されていない)などが突起部42の角に引っかかる問題もあるが、突起部42の特に先に基板と接触する側の角を面取り部44を設置することにより、引っかかりを無くす、または減少させることが出来る。ここでは、テールヒート部のみに面取り部44を設けたが、他の工程の突起部に設けてもよい。   In order to improve productivity, when two joining processes are provided on the same line, one piece is transported. At this time, if a flat heat plate as shown in FIG. 1 is installed, the heat is also transferred to an IC (here, IC chip 41) which is not related to one of the bonding processes. For example, the bonding process is performed later. There are problems such as deterioration of the flux at the joint portion of the IC and effects on the characteristics and reliability due to the thermal history. Therefore, this problem can be avoided by providing a notch under the IC chip 41. In addition, there is a problem that a step or a notch (not shown) of the substrate is caught on the corner of the projection 42 during conveyance. By installing, it is possible to eliminate or reduce the catch. Here, the chamfered portion 44 is provided only in the tail heat portion, but it may be provided in a protruding portion in another process.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の組み合わせや変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various combinations and changes can be made without departing from the spirit of the present invention.

例えば、電子部品は、ICチップ以外にもPZT、水晶、SAWデバイス、センサ、発光素子、冷却素子、等でも構わない。バンプは、半田の場合は、Sn-Ag系、以外にもSn-Cu系、Sn-Ag-Cu系、Sn-Zn系、Sn-Bi系、Sn-In系、Sn-Sb系、Sn-Pb系、Au-Sn系、等でも構わない。半田以外の場合も、金以外にも、銅、銀、ニッケル、アルミ、等でも構わない。   For example, the electronic component may be a PZT, a crystal, a SAW device, a sensor, a light emitting element, a cooling element, or the like in addition to the IC chip. In the case of solder, the bump is Sn-Ag, Sn-Cu, Sn-Ag-Cu, Sn-Zn, Sn-Bi, Sn-In, Sn-Sb, Sn-- Pb type, Au-Sn type, etc. may be used. In the case other than solder, copper, silver, nickel, aluminum, etc. may be used in addition to gold.

基板は、搬送形態としてはテープ状のもの以外にも、固片を単独またはキャリアなどに乗せて搬送したり、短冊形状にラインまたは面付けする形態でも構わない。基材としてはポリイミド以外にも、PET、液晶ポリマー、ガラスエポキシ、セラミック、シリコン、窒化アルミ、等で、フレキシブルでもリジッドでも構わない。配線は銅以外にも、銀、金、アルミ、ニッケル等でも構わない。電極部の表面処理は、AuとSn以外にも半田、銀、などをメッキまたはスパッタ、蒸着などで形成しても構わない。   In addition to the tape-shaped substrate, the substrate may be transported in a single piece or on a carrier, or may be in the form of a line or imposition in a strip shape. In addition to polyimide, the substrate may be PET, liquid crystal polymer, glass epoxy, ceramic, silicon, aluminum nitride, etc., and may be flexible or rigid. In addition to copper, the wiring may be silver, gold, aluminum, nickel, or the like. The surface treatment of the electrode portion may be formed by plating, sputtering, vapor deposition or the like of solder, silver, etc. in addition to Au and Sn.

ヒートプレートは、セラッミク以外にも、加熱・冷却曲線をコントロールするために任意の材料から最適な熱伝導係数、熱伝達係数を持ったものを選択してもよい。   In addition to ceramic, the heat plate may be selected from any material having an optimum heat conduction coefficient and heat transfer coefficient in order to control the heating / cooling curve.

本発明に係る電子装置の製造方法の実施例1である。1 is Example 1 of an electronic device manufacturing method according to the present invention. 本発明に係る電子装置の製造方法の実施例2である。7 is a second embodiment of a method for manufacturing an electronic device according to the present invention. 本発明に係る電子装置の製造方法の実施例3である。It is Example 3 of the manufacturing method of the electronic device which concerns on this invention. 本発明に係る電子装置の製造方法の実施例4であるIt is Example 4 of the manufacturing method of the electronic device which concerns on this invention. 本発明に係る電子装置の製造方法の実施例5である。9 is a fifth embodiment of the method for manufacturing an electronic device according to the present invention. 本発明に係る電子装置の製造方法の実施例6である。10 is a sixth embodiment of the method for manufacturing an electronic device according to the present invention. 本発明に係る電子装置の製造方法の実施例1、及び従来の電子装置の製造方法、における温度プロファイルを示すグラフである。It is a graph which shows the temperature profile in Example 1 of the manufacturing method of the electronic device which concerns on this invention, and the manufacturing method of the conventional electronic device. 従来の電子装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional electronic device.

符号の説明Explanation of symbols

A 搬送方向
B エスケープ方向
C 搬送順
X 時間
Y 温度
T1 常温
T2 プリヒート温度
T3 本加熱温度
T4 テールヒート温度
T5 バンプ融点
t1 プリヒート開始時間
t2 本加熱開始時間
t3 本加熱終了時間
t4 テールヒート終了時間
1、41 ICチップ
2 バンプ
3 基板
4 エアヒータ
5 熱風
6、11、21、22、23 ヒートプレート
31 赤外線ランプ
32 熱線
33 熱圧着ヘッド
42 突起部
43 切り欠き部
44 面取り部
51 本発明の接合部付近のプロファイル
52 従来の接合部付近のプロファイル
53 本発明の基板周辺部のプロファイル
54 従来の基板周辺部のプロファイル
61 IC電極
62 基板電極
63 ICクラック
64 接合部クラック
65 基板クラック
101 プリヒート部
102 本加熱部
103 テールヒート部
A Transport direction B Escape direction C Transport order X Time Y Temperature T1 Normal temperature T2 Preheating temperature T3 Main heating temperature T4 Tail heat temperature T5 Bump melting point t1 Preheating start time t2 Main heating start time t3 Tail heating end time 1, Tail heat end time 1, 41 IC chip 2 Bump 3 Substrate 4 Air heater 5 Hot air 6, 11, 21, 22, 23 Heat plate 31 Infrared lamp 32 Hot wire 33 Thermocompression bonding head 42 Protrusion 43 Notch 44 Chamfer 51 Profile near the joint of the present invention 52 Profile of the vicinity of the conventional bonding portion 53 Profile of the peripheral portion of the substrate of the present invention 54 Profile of the peripheral portion of the conventional substrate 61 IC electrode 62 Substrate electrode 63 IC crack 64 Bonding crack 65 Substrate crack 101 Preheating portion 102 Heating portion 1 3 tail heat section

Claims (12)

本加熱部で加熱され、一方の面に複数の電極をもつ電子部品と、前記電子部品の電極に対応する電極を有する基板とを接合する本加熱工程と、
前記本加熱工程の後に、テールヒート部から熱が供給され、前記電子部品及び前記基板の接合部を溶融する温度または反応する温度より低く常温より高い温度で一定時間維持するテールヒート工程と、
を有する電子装置の製造方法であって、
前記本加熱工程の前に、電極に半田バンプが形成された前記電子部品と前記基板とを仮固定するフラックス供給工程、アライメント工程、マウント工程を有し、
前記マウント工程の後、かつ本加熱工程の前に、プリヒート部から熱が供給され、前記電子部品および前記基板の仮固定された部分を溶融または反応する温度より低く常温より高い温度で予熱するプリヒート工程を有し、
前記基板は、連続したテープ状に形成され、工程ごとに所定長さ分移動しながら搬送され、
前記テールヒート部は、前記基板の前記接合部側と反対側に設置されたヒートプレートで構成されるとともに、前記基板と近接する部分又は接触する部分が突起部で構成され、当該突起部が前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有し、
前記本加熱部は、前記ヒートプレートで構成され、当該ヒートプレートは、前記本加熱部及び前記テールヒート部の前記基板と近接する部分又は接触する部分が突起部で構成されるとともに、前記本加熱部及び前記テールヒート部の間に切り欠き部を有し、
前記プリヒート部は、前記ヒートプレートで構成され、当該ヒートプレートは、前記プリヒート部及び前記本加熱部の前記基板と近接する部分又は接触する部分が突起部で構成されるとともに、前記プリヒート部及び前記本加熱部の間に切り欠き部を有することを特徴とする電子装置の製造方法。
A main heating step of joining an electronic component heated by the main heating unit and having a plurality of electrodes on one surface and a substrate having an electrode corresponding to the electrode of the electronic component;
After the main heating step, heat is supplied from the tail heat portion, and the tail heat step is maintained for a certain time at a temperature lower than a temperature at which the electronic component and the bonded portion of the substrate are melted or reacted at a temperature higher than room temperature, and
A method of manufacturing an electronic device having
Before the main heating step, a flux supply step for temporarily fixing the electronic component and the substrate on which solder bumps are formed on the electrodes, an alignment step, and a mounting step,
Preheating after the mounting step and before the main heating step, heat is supplied from a preheating portion, and the electronic component and the temporarily fixed portion of the substrate are preheated at a temperature lower than the temperature at which the electronic component and the temporarily fixed portion are melted or reacted. Having a process,
The substrate is formed in a continuous tape shape and conveyed while moving by a predetermined length for each process,
The tail heat part is composed of a heat plate installed on the opposite side of the substrate from the bonding part side, a part close to or in contact with the substrate is composed of a protrusion part, and the protrusion part is have a chamfer for chamfering the corners on the side of the side or contact proximate to the substrate and previously by the movement of the substrate,
The main heating unit is configured by the heat plate, and the heat plate is configured such that a portion adjacent to or in contact with the substrate of the main heating unit and the tail heat unit is configured by a protrusion, and the main heating unit A notch between the portion and the tail heat portion,
The preheating portion is configured by the heat plate, and the heat plate is configured such that a portion adjacent to or in contact with the substrate of the preheating portion and the main heating portion is configured by a protrusion, and the preheating portion and the method of manufacturing an electronic device, characterized by chromatic notches between the heating unit.
前記本加熱部の前記突起部は、前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有することを特徴とする請求項1に記載の電子装置の製造方法。 2. The electronic device according to claim 1, wherein the protrusion of the main heating unit includes a chamfered portion that chamfers a corner on a side that comes close to or comes into contact with the substrate in advance by movement of the substrate. Production method. 前記プリヒート部の前記突起部は、前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有することを特徴とする請求項1又は2に記載の電子装置の製造方法。 3. The electronic device according to claim 1 , wherein the protrusion of the preheating unit includes a chamfered portion that chamfers a corner on a side that comes close to or comes into contact with the substrate in advance by movement of the substrate. Manufacturing method. 前記プリヒート工程及び前記テールヒート工程において、前記仮固定された部分及び前記接合部の温度は、前記半田バンプの融点より低いことを特徴とする請求項1から3のいずれか一項に記載の電子装置の製造方法。 4. The electron according to claim 1, wherein, in the preheating step and the tail heating step, temperatures of the temporarily fixed portion and the joint portion are lower than a melting point of the solder bump. 5. Device manufacturing method. 前記プリヒート工程は、フラックス活性温度近傍の温度で予熱することを特徴とする請求項1から4のいずれか一項に記載の電子装置の製造方法。 5. The method of manufacturing an electronic device according to claim 1 , wherein the preheating step includes preheating at a temperature near a flux activation temperature. 前記ヒートプレートは、セラミックで形成されていることを特徴とする請求項1から5のいずれか一項に記載の電子装置の製造方法。 The method for manufacturing an electronic device according to claim 1 , wherein the heat plate is made of ceramic. 前記本加熱部は、エアヒータを用いることを特徴とする請求項1から6のいずれか一項に記載の電子装置の製造方法。 The method of manufacturing an electronic device according to claim 1 , wherein the main heating unit uses an air heater. 一方の面に複数の電極をもつ電子部品と、前記電子部品に対応する電極を有し、連続したテープ状に形成され、移動により搬送される基板とを加熱により接合する本加熱部と、
前記電子部品及び前記基板の接合部を溶融する温度または反応する温度より低く常温より高い温度で一定時間維持するテールヒート部と、
を有する電子装置の製造装置であって、
前記電子部品および前記基板の予め仮固定された部分を溶融または反応する温度より低く常温より高い温度で予熱するプリヒート部を備え、
前記本加熱部は、前記仮固定された前記電子部品と前記基板とを接合し、
前記テールヒート部は、前記基板の前記接合部側と反対側に設置されたヒートプレートで構成されるとともに、前記基板と近接する部分又は接触する部分が突起部で構成され、当該突起部が前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有し、
前記本加熱部は、前記ヒートプレートで構成され、当該ヒートプレートは、前記本加熱部及び前記テールヒート部の前記基板と近接する部分又は接触する部分が突起部で構成されるとともに、前記本加熱部及び前記テールヒート部の間に切り欠き部を有し、
前記プリヒート部は、前記ヒートプレートで構成され、当該ヒートプレートは、前記プリヒート部及び前記本加熱部の前記基板と近接する部分又は接触する部分が突起部で構成されるとともに、前記プリヒート部及び前記本加熱部の間に切り欠き部を有することを特徴とする電子装置の製造装置。
An electronic component having a plurality of electrodes on one surface, and a main heating unit that has an electrode corresponding to the electronic component, is formed in a continuous tape shape, and is joined by heating to a substrate conveyed by movement;
A tail heat portion that maintains a temperature lower than a temperature at which the electronic component and the bonding portion of the substrate are melted or reacted at a temperature higher than room temperature for a certain period of time;
An apparatus for manufacturing an electronic device having
A preheating part for preheating at a temperature lower than the temperature at which the electronic component and the temporarily fixed portion of the substrate are temporarily fixed and melted or reacted, and higher than room temperature;
The main heating unit joins the temporarily fixed electronic component and the substrate,
The tail heat part is composed of a heat plate installed on the opposite side of the substrate from the bonding part side, a part close to or in contact with the substrate is composed of a protrusion part, and the protrusion part is have a chamfer for chamfering the corners on the side of the side or contact proximate to the substrate and previously by the movement of the substrate,
The main heating unit is configured by the heat plate, and the heat plate is configured such that a portion adjacent to or in contact with the substrate of the main heating unit and the tail heat unit is configured by a protrusion, and the main heating unit A notch between the portion and the tail heat portion,
The preheating portion is configured by the heat plate, and the heat plate is configured such that a portion adjacent to or in contact with the substrate of the preheating portion and the main heating portion is configured by a protrusion, and the preheating portion and the An apparatus for manufacturing an electronic device, comprising a notch portion between the main heating portions .
前記本加熱部の前記突起部は、前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有することを特徴とする請求項8に記載の電子装置の製造装置。 9. The electronic device according to claim 8 , wherein the protrusion of the main heating unit includes a chamfered portion that chamfers a corner on a side adjacent to or in contact with the substrate as the substrate moves. Manufacturing equipment. 前記プリヒート部の前記突起部は、前記基板の移動により前記基板と先に近接する側又は接触する側の角を面取りする面取り部を有することを特徴とする請求項8又9に記載の電子装置の製造装置。 10. The electronic device according to claim 8 , wherein the protrusion of the preheating portion includes a chamfered portion that chamfers a corner on a side that comes close to or comes into contact with the substrate as the substrate moves. Manufacturing equipment. 前記ヒートプレートは、セラミックで形成されていることを特徴とする請求項8から10のいずれか一項に記載の電子装置の製造装置。 11. The apparatus for manufacturing an electronic device according to claim 8 , wherein the heat plate is made of ceramic. 前記本加熱部は、エアヒータを用いることを特徴とする請求項8から11のいずれか一項に記載の電子装置の製造装置。 The apparatus for manufacturing an electronic device according to claim 8 , wherein the main heating unit uses an air heater.
JP2005290641A 2005-10-04 2005-10-04 Electronic device manufacturing method and manufacturing apparatus Expired - Fee Related JP4785486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290641A JP4785486B2 (en) 2005-10-04 2005-10-04 Electronic device manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290641A JP4785486B2 (en) 2005-10-04 2005-10-04 Electronic device manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007103618A JP2007103618A (en) 2007-04-19
JP4785486B2 true JP4785486B2 (en) 2011-10-05

Family

ID=38030270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290641A Expired - Fee Related JP4785486B2 (en) 2005-10-04 2005-10-04 Electronic device manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4785486B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5428225B2 (en) * 2008-07-10 2014-02-26 パナソニック株式会社 Substrate transfer method
KR102117766B1 (en) * 2018-09-28 2020-06-02 한국광기술원 Improved reflow device and method for bonding the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275396B2 (en) * 1992-10-12 2002-04-15 カシオ計算機株式会社 IC chip bonding method and bonding head
JP2002217232A (en) * 2001-01-15 2002-08-02 Hitachi Ltd Method for manufacturing semiconductor drive
JP2002368038A (en) * 2001-06-07 2002-12-20 Fuji Electric Co Ltd Flip-chip mounting method
JP3857949B2 (en) * 2002-04-22 2006-12-13 松下電器産業株式会社 Electronic component mounting equipment
JP2005223241A (en) * 2004-02-09 2005-08-18 Matsushita Electric Ind Co Ltd Apparatus and method for bonding electronic component, and apparatus for mounting the electronic component
JP2005159139A (en) * 2003-11-27 2005-06-16 Renesas Technology Corp Manufacturing method for semiconductor device

Also Published As

Publication number Publication date
JP2007103618A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US5878942A (en) Soldering method and soldering apparatus
JP4308161B2 (en) Die mounting method
TWI240336B (en) Manufacturing apparatus of electronic device, manufacturing method of electronic device, and manufacturing program of electronic device
JP5582040B2 (en) Semiconductor device manufacturing method, semiconductor device, and igniter device
TWI608550B (en) Viscous crystal device and method
JP4785486B2 (en) Electronic device manufacturing method and manufacturing apparatus
WO2017163593A1 (en) Semiconductor module and method for manufacturing same
KR100574077B1 (en) Apparatus, method and program recording device for manufacturing electronic device
US7670877B2 (en) Reliability enhancement process
CN101193498B (en) Printed circuit board, printed circuit board assembly manufacturing method, warpage correcting method
US7199329B2 (en) Method of soldering semiconductor part and mounted structure of semiconductor part
JP2003110154A (en) Electronic device with peltier module, optical module and manufacturing method for them
US20050011068A1 (en) Semiconductor manufacturing apparatus, and method for manufacturing semiconductor device
JPH11121921A (en) Method and device for soldering electronic components
JP2006100492A (en) Fixing method of electronic component onto support plate
JP2008132508A (en) Soldering device
KR100226716B1 (en) Semiconductor parts and method for manufacturing the same
JP2007059712A (en) Packaging method
KR100658901B1 (en) Mounting device of semiconductor package and mounting method by the same
KR100741834B1 (en) Reflow soldering apparatus for flexible printed circuit board
WO2019171835A1 (en) Semiconductor device production method
TW201349361A (en) Substrate joining method and substrate reflow processing device
JP2006147880A (en) Method and device for bonding semiconductor with solder bump
JP2005039108A (en) Component jointing apparatus and method therefor, and component mounting apparatus
JP2005203664A (en) Mounting method for semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees