JP2006100492A - Fixing method of electronic component onto support plate - Google Patents

Fixing method of electronic component onto support plate Download PDF

Info

Publication number
JP2006100492A
JP2006100492A JP2004283442A JP2004283442A JP2006100492A JP 2006100492 A JP2006100492 A JP 2006100492A JP 2004283442 A JP2004283442 A JP 2004283442A JP 2004283442 A JP2004283442 A JP 2004283442A JP 2006100492 A JP2006100492 A JP 2006100492A
Authority
JP
Japan
Prior art keywords
support plate
feeder
brazing material
temperature
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004283442A
Other languages
Japanese (ja)
Inventor
Koichi Shimizu
幸一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2004283442A priority Critical patent/JP2006100492A/en
Publication of JP2006100492A publication Critical patent/JP2006100492A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors

Abstract

<P>PROBLEM TO BE SOLVED: To prevent air bubbles from being formed in a brazing material for fixing a support plate and an electronic component. <P>SOLUTION: A linear brazing material 3 is heated in a feeder 4 to a temperature lower than the melting temperature of the brazing material 3 but higher than ordinary temperature, and is further heated to a temperature higher than the melting temperature of the brazing material 3 and is brought into contact with the support plate 1 disposed below the feeder 4. Then, the lower end of the brazing material 3 is melted with heat of the support plate 1 and is dropped with its self weight, and further the electronic component 2 is made to adhere onto the brazing material 3. Thereafter, the support plate 1 is cooled to fix the electronic component 2 onto the support plate 1. The solder material 3 has been heated beforehand and is prevented from being melted in the feeder 4 until it makes contact with the support plate 1, so that the molten solder of a predetermined amount can be securely supplied and air bubbles can be prevented from being entrained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ろう材内の気泡形成を防止して電子部品を支持板に確実に固着する支持板上への電子部品の固着法に関する。   The present invention relates to a method of fixing an electronic component on a support plate that prevents bubbles from forming in the brazing material and securely fixes the electronic component to the support plate.

複数の支持板及びリード端子をタイバー(連結細条)によって相互に連結するリードフレームを用意し、ダイボンダを使用して支持板の主面に半導体チップを固着するトランジスタ又はIC等の半導体装置の製法は公知である。図2に示すように、半導体チップを支持板(1)上に固着する際に、搬送装置(10)、フィーダ(半田供給装置)(14)及びダイボンダ(電子部品実装装置)を備えた半田付け装置が使用される。搬送装置(10)は、リードフレーム(11)の長手方向に延伸する金属製のレール(6)と、レール(6)を半田材(3)の溶融温度以上に加熱する図示しないヒータと、レール(6)上に配置されたリードフレーム(11)をレール(6)に沿ってリードフレーム(11)の長手方向に搬送する図示しない駆動装置とを備える。搬送装置(10)の周囲を包囲するカバー(5)内には、リードフレーム(11)又はその上に供給される半田材(3)の酸化を防止する窒素等のフォーミングガスが充填されるため、カバー(5)内でフォーミングガス雰囲気に暴露されるレール(6)及びリードフレーム(11)は、半田付け工程中に外気に触れず、酸化されない。   A method of manufacturing a semiconductor device such as a transistor or an IC, in which a lead frame for connecting a plurality of support plates and lead terminals to each other by a tie bar (connection strip) is prepared and a semiconductor chip is fixed to the main surface of the support plate using a die bonder Is known. As shown in FIG. 2, when the semiconductor chip is fixed on the support plate (1), soldering including a transfer device (10), a feeder (solder supply device) (14), and a die bonder (electronic component mounting device) is provided. The device is used. The transport device (10) includes a metal rail (6) extending in the longitudinal direction of the lead frame (11), a heater (not shown) that heats the rail (6) to a melting temperature of the solder material (3), a rail (6) A driving device (not shown) that conveys the lead frame (11) disposed on the lead frame (11) in the longitudinal direction of the lead frame (11) along the rail (6). The cover (5) surrounding the transport device (10) is filled with a forming gas such as nitrogen that prevents oxidation of the lead frame (11) or the solder material (3) supplied thereon. The rail (6) and the lead frame (11) exposed to the forming gas atmosphere in the cover (5) do not touch the outside air during the soldering process and are not oxidized.

線状又は糸状に形成された半田材(3)をリードフレーム(11)上に供給するフィーダ(14)は、搬送装置(10)の上方に設置される。フィーダ(14)は、ローラ送り又はクランク送りにより線状の半田材(3)をフィーダ(14)の先端のノズル(19)から繰り出す図示しない繰り出し装置と、搬送装置(10)のカバー(5)に形成された開孔(16)を通じて、レール(6)に対して進退自在にフィーダ(14)を垂直方向に移動する図示しないフィーダ駆動装置とを備えている。図示しないダイボンダは、半導体チップを保持し且つ半導体チップをリードフレーム(11)の支持板(1)上に配置するコレットと、搬送装置(10)のカバー(5)に形成された開孔(16)を通じてレール(6)に対してコレットを進退自在に垂直方向に移動するコレット駆動装置と、半導体チップをコレットに真空吸引して保持する真空吸引装置とを備えている。   The feeder (14) for supplying the solder material (3) formed in a linear or thread shape onto the lead frame (11) is installed above the conveying device (10). The feeder (14) includes a feeding device (not shown) that feeds the linear solder material (3) from the nozzle (19) at the tip of the feeder (14) by roller feeding or crank feeding, and a cover (5) of the conveying device (10). And a feeder driving device (not shown) that moves the feeder (14) in the vertical direction so as to be able to advance and retreat with respect to the rail (6) through the opening (16) formed in the inner surface. A die bonder (not shown) includes a collet that holds the semiconductor chip and places the semiconductor chip on the support plate (1) of the lead frame (11), and an opening (16) formed in the cover (5) of the transfer device (10). ) Through which the collet is moved vertically with respect to the rail (6), and a vacuum suction device that holds the semiconductor chip by vacuum suction to the collet.

図2の半田付け装置を使用して半導体チップの半田付けを行う際に、まず、レール(6)をヒータにより半田材(3)の溶融温度以上に加熱し、加熱されたレール(6)上にリードフレーム(11)を配置する。次に、搬送装置(10)のレール(6)に沿って所定のピッチ間隔でリードフレーム(11)の長手方向にリードフレーム(11)を搬送し、半田材(3)を供給すべき支持板(1)をフィーダ(14)の下方に配置して停止させる。続いて、図2に示すように、繰り出し装置によりフィーダ(14)内の線状の半田材(3)をノズル(19)から所定量繰り出した状態で、フィーダ駆動装置によりフィーダ(14)を下降させる。線状の半田材(3)の先端がリードフレーム(11)の上面に対して進退自在に移動するフィーダ(14)をリードフレーム(11)に向かって下降させると、フィーダ(14)から繰り出された線状の半田材(3)がリードフレーム(11)に接触する。リードフレーム(11)に接触した半田材(3)は、レール(6)を介してヒータによって半田材(3)の溶融温度以上の温度にリードフレーム(11)が既に加熱されているため、図2に示すように、支持板(1)上で溶融する。この際、ノズル(19)から繰り出された所定量の半田材(3)が溶融されて自重により滴下し、支持板(1)上に付着する。この後、フィーダ(14)は、上方の初期位置に上昇し、次の支持板(1)が下方に搬送されるまで、初期位置に保持される。   When soldering a semiconductor chip using the soldering apparatus shown in FIG. 2, the rail (6) is first heated to a temperature equal to or higher than the melting temperature of the solder material (3) with a heater, and the rail (6) is heated. The lead frame (11) is placed on. Next, the support plate to which the lead frame (11) is transported in the longitudinal direction of the lead frame (11) at a predetermined pitch interval along the rail (6) of the transport device (10) and the solder material (3) is supplied. (1) is placed below the feeder (14) and stopped. Subsequently, as shown in FIG. 2, the feeder (14) is lowered by the feeder driving device while a predetermined amount of the linear solder material (3) in the feeder (14) is fed from the nozzle (19) by the feeding device. Let When the feeder (14) in which the tip of the linear solder material (3) moves so as to be movable forward and backward with respect to the upper surface of the lead frame (11) is lowered toward the lead frame (11), it is fed out from the feeder (14). The linear solder material (3) contacts the lead frame (11). The solder material (3) in contact with the lead frame (11) is already heated to a temperature equal to or higher than the melting temperature of the solder material (3) by the heater via the rail (6). As shown in FIG. 2, it melts on the support plate (1). At this time, a predetermined amount of the solder material (3) fed out from the nozzle (19) is melted and dropped by its own weight and adheres to the support plate (1). Thereafter, the feeder (14) rises to the initial position above and is held at the initial position until the next support plate (1) is conveyed downward.

次に、リードフレーム(11)を再び所定のピッチ間隔でリードフレーム(11)の長手方向に搬送し、溶融半田が付着した支持板(1)をダイボンダの下方に配置して停止する。続いて、半導体チップを真空吸着したコレットを下降させて、溶融半田上に半導体チップを配置する。コレットに保持された半導体チップの下面が溶融半田を介して支持板(1)の上面に付着した状態で、コレットを支持板(1)に対して平行に反復移動させると、溶融半田を半導体チップの下面全体に広げることができる。この後、半田材(3)を冷却硬化すれば、半導体チップを支持板(1)上に固着できる。この固着法では、線状の半田材(3)を加熱した支持板(1)に接触させて溶融するため、フィーダ(14)から繰り出す半田材(3)の量を調整して、支持板(1)上に供給される半田材(3)の量を比較的良好に制御できる利点がある。   Next, the lead frame (11) is conveyed again in the longitudinal direction of the lead frame (11) at a predetermined pitch interval, and the support plate (1) to which the molten solder is attached is disposed below the die bonder and stopped. Subsequently, the collet that vacuum-sucks the semiconductor chip is lowered, and the semiconductor chip is placed on the molten solder. With the lower surface of the semiconductor chip held by the collet attached to the upper surface of the support plate (1) via the molten solder, when the collet is repeatedly moved parallel to the support plate (1), the molten solder is moved to the semiconductor chip. Can be spread over the entire lower surface of the. Thereafter, if the solder material (3) is cooled and hardened, the semiconductor chip can be fixed on the support plate (1). In this fixing method, since the linear solder material (3) is brought into contact with the heated support plate (1) and melted, the amount of the solder material (3) fed out from the feeder (14) is adjusted, and the support plate ( 1) There is an advantage that the amount of the solder material (3) supplied on the top can be controlled relatively well.

しかしながら、従来の固着法では、支持板(1)上に供給された溶融半田内に気泡(ボイド)が封入され易い欠点があった。溶融半田内に気泡が包含されると、半導体チップと支持板(1)との間の気泡により半田層の熱伝導性が損なわれ、また、半導体チップの支持板(1)に対する機械的接着強度も低下する。特にヒートサイクル試験を行うと、気泡の膨張と収縮が反復され、支持板(1)と半導体チップとの電気的接続不良が発生する危険がある。溶融半田内に気泡が発生する理由は必ずしも明確ではないが、半田材(3)の不十分な加熱によるものと考えられる。即ち、十分に加熱されない線状の半田材(3)がフィーダ(14)から供給されて支持板(1)に接触すると、図3に示すように、半田材(3)が接触した支持板(1)の中央面(18)は、中央面(18)の周囲の外側面(20)よりも部分的に且つ顕著に温度が低下する。中央面(18)よりも表面温度の高い外側面(20)に向かって、溶融半田(13)は、中央面(18)から急激に広がる。溶融半田(13)が周囲の高温領域に急激に広がる際に、周囲の気体を巻き込んで溶融半田(13)内に気泡を封入する。また、溶融半田(13)の外側面(20)への移動により、中央面(18)での半田材(3)の量が相対的に少なくなって、溶融半田(13)の表面に凹凸を発生させ、半導体チップを配置する際にも、溶融半田(13)と半導体チップとの界面に気泡が形成される。   However, the conventional fixing method has a drawback that bubbles are easily enclosed in the molten solder supplied on the support plate (1). When bubbles are included in the molten solder, the thermal conductivity of the solder layer is impaired by the bubbles between the semiconductor chip and the support plate (1), and the mechanical adhesion strength of the semiconductor chip to the support plate (1) Also decreases. In particular, when a heat cycle test is performed, there is a risk that the expansion and contraction of the bubbles are repeated, resulting in poor electrical connection between the support plate (1) and the semiconductor chip. The reason why bubbles are generated in the molten solder is not necessarily clear, but is considered to be due to insufficient heating of the solder material (3). That is, when a linear solder material (3) that is not sufficiently heated is supplied from the feeder (14) and comes into contact with the support plate (1), as shown in FIG. The temperature of the central surface (18) of 1) is partially and significantly lower than the outer surface (20) around the central surface (18). The molten solder (13) spreads rapidly from the central surface (18) toward the outer surface (20) having a higher surface temperature than the central surface (18). When the molten solder (13) spreads rapidly to the surrounding high temperature region, surrounding gas is entrained to enclose bubbles in the molten solder (13). Further, due to the movement of the molten solder (13) to the outer surface (20), the amount of the solder material (3) at the central surface (18) is relatively reduced, and the surface of the molten solder (13) is uneven. Even when the semiconductor chip is disposed, bubbles are formed at the interface between the molten solder (13) and the semiconductor chip.

これに対し、下記特許文献1は、フィーダから繰り出された溶融半田材を下方の支持板へ滑り落とす傾斜部材を有する半導体チップの固着装置を開示する。傾斜部材上を滑り落ちる半田材は、表面の酸化膜が撹拌されて濡れ性が改善されるため、支持板との密着が良好となり、溶融半田と半導体チップとの界面での気泡形成を抑制できる。   On the other hand, Patent Document 1 below discloses a semiconductor chip fixing device having an inclined member that slides a molten solder material fed from a feeder onto a lower support plate. The solder material that slides down on the inclined member improves the wettability by stirring the oxide film on the surface, so that the contact with the support plate is good, and the formation of bubbles at the interface between the molten solder and the semiconductor chip can be suppressed.

特開2001−176893公報JP 2001-176893 A

しかしながら、特許文献1の半導体チップの固着装置では、溶融半田内及び溶融半田と半導体チップとの界面での気泡の形成を抑制できるが、溶融半田を傾斜部材により斜めに滑り落とすため、支持板上で半田材を所定の位置に付着できない欠点があった。また、傾斜面表面の摩耗又は半田の付着が生じる傾斜部材は、生産性を低下させる要因となり、好ましくない。
よって、本発明は、生産性を低下させずに、半田材内及び半田材と半導体チップ等の電子部品との界面での気泡形成を防止する支持板上への電子部品の固着法を提供することを目的とする。
However, in the semiconductor chip fixing device of Patent Document 1, formation of bubbles in the molten solder and at the interface between the molten solder and the semiconductor chip can be suppressed. However, since the molten solder is slid down obliquely by the inclined member, Thus, there is a defect that the solder material cannot be attached to a predetermined position. In addition, an inclined member in which wear on the inclined surface or adhesion of solder occurs is a factor that reduces productivity, which is not preferable.
Therefore, the present invention provides a method for fixing an electronic component on a support plate that prevents bubbles from forming in the solder material and at the interface between the solder material and the electronic component such as a semiconductor chip without reducing productivity. For the purpose.

本発明の支持板上への電子部品の固着法は、ろう材(3)の溶融温度より低いが常温よりも高い温度に線状のろう材(3)をフィーダ(4)内で加熱する過程と、ろう材(3)の溶融温度より高い温度に加熱されてフィーダ(4)の下方に配置された支持板(1)に向かいろう材(3)を移動させて、フィーダ(4)から繰り出したろう材(3)の下端部を支持板(1)に接触させる過程と、支持板(1)の熱によりろう材(3)の下端部を溶融させて、支持板(1)上に溶融した所定量のろう材(3)を自重により滴下する過程と、支持板(1)上に付着したろう材(3)上に電子部品(2)を付着させる過程と、支持板(1)を冷却してろう材(3)により電子部品(2)を支持板(1)上に固着する過程とを含む。   The fixing method of the electronic component on the support plate of the present invention is a process of heating the linear brazing material (3) in the feeder (4) to a temperature lower than the melting temperature of the brazing material (3) but higher than room temperature. Then, the brazing filler metal (3) is heated to a temperature higher than the melting temperature of the brazing filler metal (3) and moved to the support plate (1) disposed below the feeder (4), and is fed from the feeder (4). The process of bringing the lower end portion of the brazing material (3) into contact with the support plate (1) and the lower end portion of the brazing material (3) were melted by the heat of the support plate (1) to be melted on the support plate (1). A process of dripping a predetermined amount of brazing material (3) by its own weight, a process of attaching an electronic component (2) onto the brazing material (3) adhering to the support plate (1), and a cooling of the support plate (1). And a process of fixing the electronic component (2) on the support plate (1) with the brazing material (3).

溶融温度より低いが常温より高い温度に予め加熱したろう材(3)を支持板(1)に接触させて、支持板(1)の熱によりろう材(3)の下端部を所定量だけ溶融させるので、下端部のろう材(3)は、支持板(3)上で放射状に面積を拡大させながら迅速且つ均一に溶融する。フィーダ(4)内で溶融温度よりも低い温度に保持されるろう材(3)は、支持板(1)に接触するまでフィーダ(4)内で溶融しないため、支持板(1)上の所定の位置に所定量の溶融半田を確実に供給できる。その後、支持板(1)に付着した溶融半田の表面張力が重力より大きくなると、溶融半田は、面積拡大を停止するが、予め加熱されたろう材(3)を支持板(1)に接触させるため、ろう材(3)が接触した支持板(1)の表面温度のみが部分的に低下させない。このため、支持板(1)に付着した溶融半田が急激に周囲の高温領域に広がり、溶融半田内への気泡封入又は溶融半田表面での凹凸面発生を防止することができる。従って、溶融半田上に電子部品(2)を付着したときに、溶融半田内への気泡の封入又は溶融半田と電子部品(2)との界面での気泡形成を防止できる。   A brazing material (3) that has been heated to a temperature lower than the melting temperature but higher than room temperature is brought into contact with the support plate (1), and the lower end of the brazing material (3) is melted by a predetermined amount by the heat of the support plate (1). Therefore, the brazing material (3) at the lower end melts rapidly and uniformly while radially expanding the area on the support plate (3). The brazing material (3) held at a temperature lower than the melting temperature in the feeder (4) does not melt in the feeder (4) until it contacts the support plate (1). A predetermined amount of molten solder can be reliably supplied to the position. After that, when the surface tension of the molten solder adhering to the support plate (1) becomes larger than gravity, the molten solder stops the area expansion, but the preheated brazing material (3) is brought into contact with the support plate (1). Only the surface temperature of the support plate (1) in contact with the brazing material (3) does not partially decrease. For this reason, the molten solder adhering to the support plate (1) spreads rapidly to the surrounding high temperature region, and it is possible to prevent bubbles from being encapsulated in the molten solder or the occurrence of uneven surfaces on the surface of the molten solder. Therefore, when the electronic component (2) is attached onto the molten solder, it is possible to prevent bubbles from being enclosed in the molten solder or formation of bubbles at the interface between the molten solder and the electronic component (2).

電子部品と支持板とを固着するろう材内の気泡形成を防止して、電子部品と支持板とを機械的接着強度の低下、ろう材の熱伝導性の低下を防止し、電気的特性不良の発生を回避して、信頼性の高い電子部品を提供できる。   Prevents the formation of bubbles in the brazing material that fixes the electronic component and the support plate, prevents the electronic component and the support plate from lowering the mechanical adhesive strength, and lowering the thermal conductivity of the brazing material, resulting in poor electrical characteristics Therefore, it is possible to provide a highly reliable electronic component.

以下、ろう材として半田材を使用して、半導体チップを支持板に固着する本発明による支持板上への電子部品の固着法の一実施の形態を図1について説明する。図1では、図2に示す箇所と実質的に同一の部分には同一の符号を付し、その説明を省略する。   An embodiment of a method for fixing an electronic component on a support plate according to the present invention using a solder material as a brazing material and fixing the semiconductor chip to the support plate will be described below with reference to FIG. In FIG. 1, parts that are substantially the same as those shown in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.

図1に示すように、本実施の形態の支持板上への電子部品の固着法には、搬送装置(10)、フィーダ(4)及びダイボンダ(7)を備えた半田付け装置が使用される。搬送装置(10)は、従来と同様に、リードフレーム(11)を搬送するレール(6)と、レール(6)を半田材(3)の溶融温度以上に加熱する図示しないヒータと、レール(6)上に配置されたリードフレーム(11)をレール(6)に沿って搬送する図示しない駆動装置とを備える。図2を参照するが、レール(6)は、その両縁に対向する一対の突起部(6a)を有し、突起部(6a)の間隔はリードフレーム(11)の幅にほぼ等しい。レール(6)上に配置されたリードフレーム(11)は、一対の突起部(6a)間に挟持されて搬送されるため、レール(6)上から脱落しない。搬送装置(10)の周囲は、カバー(5)により包囲され、従来と同様に、窒素等のフォーミングガスがカバー(5)内に充填される。搬送装置(10)は、フォーミングガスを充填したカバー(5)のトンネル内に配置され、レール(6)上を搬送されるリードフレーム(11)は、トンネル内のフォーミングガス中を移動する。   As shown in FIG. 1, the soldering apparatus provided with the conveying apparatus (10), the feeder (4), and the die bonder (7) is used for the fixing method of the electronic component on the support plate of this Embodiment. . The transport device (10) includes a rail (6) that transports the lead frame (11), a heater (not shown) that heats the rail (6) to a temperature higher than the melting temperature of the solder material (3), and a rail ( 6) A driving device (not shown) that conveys the lead frame (11) arranged on the rail along the rail (6). Referring to FIG. 2, the rail (6) has a pair of protrusions (6a) facing both edges thereof, and the interval between the protrusions (6a) is substantially equal to the width of the lead frame (11). The lead frame (11) disposed on the rail (6) is sandwiched between the pair of protrusions (6a) and transported, and thus does not fall off from the rail (6). The periphery of the transfer device (10) is surrounded by a cover (5), and a forming gas such as nitrogen is filled in the cover (5) as in the conventional case. The transfer device (10) is disposed in the tunnel of the cover (5) filled with forming gas, and the lead frame (11) transferred on the rail (6) moves in the forming gas in the tunnel.

本実施の形態のフィーダ(4)は、ローラ送り又はクランク送りにより線状又は糸状に形成された半田材(3)をフィーダ(4)の先端のノズル(9)から繰り出す図示しない繰り出し装置と、フィーダ(4)を搬送装置(10)のカバー(5)に形成された開孔(16)を通じてレール(6)上面に対して進退自在に垂直方向に移動する図示しないフィーダ駆動装置を備え、フィーダ(4)内の線状の半田材(3)を加熱する加熱装置(15)を有する点で従来のフィーダ(14)と異なる。半田材(3)には、鉛(Pb)を含まない錫(Sn)、銀(Ag)、銅(Cu)若しくはアルミニウム(Al)等の材料からなる鉛フリー半田が使用されるが、錫(Sn)及び鉛(Pb)からなる一般半田又は他の周知の半田を使用してもよい。フィーダ(4)は、リードフレーム(11)上に線状の半田材(3)を供給する搬送装置(10)の上方に設置される。図1に示すように、加熱装置(15)は、例えば、フィーダ(4)の周囲に配置された加熱コイル(12)と、加熱コイル(12)に高周波交流電流を流す図示しない電源装置と、加熱コイル(12)又はフィーダ(4)内の温度に基づいて高周波交流電流値を制御する制御装置(15)とにより構成され、フィーダ(4)内で搬送される半田材(3)を所定の温度にまで加熱する。   The feeder (4) of the present embodiment includes a feeding device (not shown) that feeds the solder material (3) formed in a linear or thread shape by roller feeding or crank feeding from the nozzle (9) at the tip of the feeder (4), A feeder drive device (not shown) is provided for moving the feeder (4) in a vertical direction so as to be movable back and forth with respect to the upper surface of the rail (6) through an opening (16) formed in the cover (5) of the transport device (10). (4) It differs from the conventional feeder (14) in that it has a heating device (15) for heating the linear solder material (3) inside. For the solder material (3), lead-free solder made of a material such as tin (Sn), silver (Ag), copper (Cu) or aluminum (Al) which does not contain lead (Pb) is used. A general solder composed of Sn) and lead (Pb) or other well-known solder may be used. The feeder (4) is installed above the conveying device (10) for supplying the linear solder material (3) onto the lead frame (11). As shown in FIG. 1, the heating device (15) includes, for example, a heating coil (12) disposed around the feeder (4), a power supply device (not shown) that causes a high-frequency alternating current to flow through the heating coil (12), And a control device (15) that controls the high-frequency alternating current value based on the temperature in the heating coil (12) or feeder (4), and the solder material (3) conveyed in the feeder (4) Heat to temperature.

加熱装置(15)による半田材(3)の加熱温度は、非常に重要である。前記特許文献1に示すように、加熱温度は、半田材(3)が溶融する高温であってはならず、加熱装置(15)は、線状を維持する程度に半田材(3)を加熱する。線状の半田材(3)の溶融温度以上に加熱すると、溶融半田(13)の支持板(1)上での供給位置及び供給量を制御することが難しい。また、溶融半田(13)がフィーダ(4)内に付着する不具合が生じる。逆に、線状の半田材(3)の加熱温度が低すぎると、従来技術のように溶融半田(13)内に気泡が発生する。従って、加熱装置(15)による線状の半田材(3)の加熱温度は、半田材(3)の溶融温度よりも20℃〜80℃低い温度範囲に設定するのが好ましく、更には30℃〜60℃低い温度範囲が望ましい。また、加熱装置(15)による線状の半田材(3)の加熱温度は、常温より高い温度が選択されるが、70℃以上に設定するのが好ましく、更には90℃以上が望ましい。加熱温度が70℃に満たないと本発明の効果は著しく低下する。具体的には、溶融温度210℃〜230℃の錫(Sn)、銀(Ag)及び銅(Cu)の合金により線状の半田材(3)を形成するとき、溶融温度より低く且つ130℃〜210℃の温度に半田材(3)をフィーダ(4)内で加熱する。   The heating temperature of the solder material (3) by the heating device (15) is very important. As shown in Patent Document 1, the heating temperature should not be a high temperature at which the solder material (3) melts, and the heating device (15) heats the solder material (3) to such an extent that the linear shape is maintained. To do. When the heating temperature is higher than the melting temperature of the linear solder material (3), it is difficult to control the supply position and supply amount of the molten solder (13) on the support plate (1). In addition, there is a problem that the molten solder (13) adheres to the feeder (4). In contrast, if the heating temperature of the linear solder material (3) is too low, bubbles are generated in the molten solder (13) as in the prior art. Therefore, the heating temperature of the linear solder material (3) by the heating device (15) is preferably set to a temperature range 20 ° C. to 80 ° C. lower than the melting temperature of the solder material (3), and more preferably 30 ° C. A temperature range as low as ˜60 ° C. is desirable. The heating temperature of the linear solder material (3) by the heating device (15) is selected to be higher than room temperature, but is preferably set to 70 ° C or higher, and more preferably 90 ° C or higher. If the heating temperature is less than 70 ° C., the effect of the present invention is significantly reduced. Specifically, when the linear solder material (3) is formed from an alloy of tin (Sn), silver (Ag) and copper (Cu) having a melting temperature of 210 ° C. to 230 ° C., the melting temperature is lower than the melting temperature and 130 ° C. The solder material (3) is heated in the feeder (4) to a temperature of ˜210 ° C.

図1に示すように、ダイボンダ(7)は、従来と同様に、コレット(17)と、搬送装置(10)のカバー(5)に形成された開孔(16)を通じてレール(6)の上面に対して進退自在にコレット(17)を垂直方向に移動する図示しないコレット駆動装置と、半導体チップ(2)をコレット(17)に真空吸引して保持する図示しない真空吸引装置とを備える。   As shown in FIG. 1, the die bonder (7) has an upper surface of the rail (6) through a collet (17) and an opening (16) formed in the cover (5) of the transfer device (10) as in the conventional case. And a collet driving device (not shown) that moves the collet (17) in the vertical direction so as to be movable forward and backward, and a vacuum suction device (not shown) that holds the semiconductor chip (2) by vacuum suction on the collet (17).

図1の半田付け装置を使用して半導体チップ(2)の半田付けを行う際に、まず、レール(6)をヒータによって半田材(3)の溶融温度以上に加熱し、加熱したレール(6)上にリードフレーム(11)を配置する。次に、半田材(3)の溶融温度より高い温度に加熱されたリードフレーム(11)の支持板(1)をフィーダ(4)の下方に配置する。続いて、レール(6)に沿って所定のピッチ間隔で搬送装置(10)によりリードフレーム(11)を搬送し、半田材(3)を供給すべき支持板(1)をフィーダ(4)の下方に配置して停止する。その後、フィーダ(4)内に供給した線状の半田材(3)を加熱装置(15)により半田材(3)の溶融温度より低いが常温よりも高い温度に加熱する。   When soldering the semiconductor chip (2) using the soldering apparatus of FIG. 1, the rail (6) is first heated to a temperature higher than the melting temperature of the solder material (3) by a heater, and the heated rail (6 ) Place the lead frame (11) on top. Next, the support plate (1) of the lead frame (11) heated to a temperature higher than the melting temperature of the solder material (3) is disposed below the feeder (4). Subsequently, the lead frame (11) is transported by the transport device (10) at a predetermined pitch interval along the rail (6), and the support plate (1) to which the solder material (3) is to be supplied is attached to the feeder (4). Place it below and stop. Thereafter, the linear solder material (3) supplied into the feeder (4) is heated by the heating device (15) to a temperature lower than the melting temperature of the solder material (3) but higher than room temperature.

繰り出し装置によってノズル(9)から所定量だけ線状の半田材(3)をフィーダ(4)内から繰り出す。フィーダ駆動装置によりフィーダ(4)と共に半田材(3)を垂直下方に移動させて、フィーダ(4)から所定量繰り出された半田材(3)の下端部を支持板(1)に接触させる。加熱された支持板(1)の熱が線状の半田材(3)に伝わり、半田材(3)の下端部を所定量だけ溶融させて、支持板(1)上に溶融した所定量の半田材(3)を線状の半田材(3)から分離させて自重により滴下する。図1に示すように、支持板(1)の上面に溶融半田(13)が供給される。   A linear solder material (3) is fed out from the feeder (4) by a predetermined amount from the nozzle (9) by the feeding device. The feeder (4) and the solder (3) are moved vertically downward by the feeder driving device, and the lower end of the solder (3) fed out from the feeder (4) by a predetermined amount is brought into contact with the support plate (1). The heat of the heated support plate (1) is transmitted to the linear solder material (3), the lower end of the solder material (3) is melted by a predetermined amount, and a predetermined amount of the molten material on the support plate (1) is melted. The solder material (3) is separated from the linear solder material (3) and dropped by its own weight. As shown in FIG. 1, molten solder (13) is supplied to the upper surface of the support plate (1).

溶融温度より低いが常温より高い温度に予め加熱した半田材(3)を支持板(1)に接触させて、支持板(1)の熱により半田材(3)の下端部を所定量だけ溶融させるので、下端部の半田材(3)は、支持板(3)上で放射状に面積を拡大させながら迅速且つ均一に溶融する。フィーダ(4)内で溶融温度よりも低い温度に保持される半田材(3)は、支持板(1)に接触するまでフィーダ(4)内で溶融しないので、支持板(1)上の所定の位置に所定量の溶融半田(13)を確実に供給できる。本実施の形態では、支持板(1)上に供給される半田材(3)の量を良好に制御でき、半田材(3)の供給量が少ないため、接触不良が発生したり、供給量が多いため、半田材(3)が半導体チップ(2)の側面に付着して発生する電気的短絡を防止できる。   Solder material (3) preheated to a temperature lower than the melting temperature but higher than normal temperature is brought into contact with the support plate (1), and the lower end of the solder material (3) is melted by a predetermined amount by the heat of the support plate (1). Therefore, the solder material (3) at the lower end is rapidly and uniformly melted while radially expanding the area on the support plate (3). The solder material (3) held at a temperature lower than the melting temperature in the feeder (4) does not melt in the feeder (4) until it contacts the support plate (1). A predetermined amount of molten solder (13) can be reliably supplied to the position. In the present embodiment, the amount of the solder material (3) supplied onto the support plate (1) can be well controlled, and the supply amount of the solder material (3) is small. Therefore, it is possible to prevent an electrical short circuit caused by the solder material (3) adhering to the side surface of the semiconductor chip (2).

その後、支持板(1)に付着した溶融半田(13)の表面張力が重力より大きくなると、溶融半田(13)は、面積拡大を停止するが、予め加熱された半田材(3)が支持板(1)に接触するため、半田材(3)が接触した支持板(1)の表面温度のみを部分的に大幅に低下させない。よって、支持板(1)に付着した溶融半田(13)が急激に周囲の高温領域に広がって、溶融半田(13)内の気泡形成又は溶融半田(13)の表面上での凹凸発生が阻止され、溶融半田(13)上に半導体チップ(2)を付着したときに、溶融半田(13)内又は溶融半田(13)と半導体チップ(2)との界面での気泡形成を防止できる。本実施の形態では、実測した結果、支持板(1)の表面温度は、半田材(3)が接触した領域とその外周側領域とでほぼ等しい。   After that, when the surface tension of the molten solder (13) adhering to the support plate (1) becomes larger than gravity, the molten solder (13) stops the area expansion, but the preheated solder material (3) is supported by the support plate (1). Since it is in contact with (1), only the surface temperature of the support plate (1) in contact with the solder material (3) is not significantly reduced. Therefore, the molten solder (13) adhering to the support plate (1) spreads rapidly to the surrounding high temperature region, preventing the formation of bubbles in the molten solder (13) or the occurrence of irregularities on the surface of the molten solder (13). Then, when the semiconductor chip (2) is attached onto the molten solder (13), it is possible to prevent bubbles from forming in the molten solder (13) or at the interface between the molten solder (13) and the semiconductor chip (2). In the present embodiment, as a result of actual measurement, the surface temperature of the support plate (1) is substantially equal in the region where the solder material (3) is in contact with the outer peripheral region.

続いて、図1に示すように、再び所定のピッチ間隔でリードフレーム(11)を搬送し、溶融半田(13)を供給した支持板(1)をダイボンダ(7)の下方に配置する。半導体チップ(2)を真空吸着したコレット(17)を下降させて、支持板(1)上に付着した溶融半田(13)上に半導体チップ(2)を配置し、半導体チップ(2)を支持板(1)に付着させる。この際、従来と同様に、コレット(17)に保持された半導体チップ(2)の下面を溶融半田(13)を介して支持板(1)の上面に付着させた状態で、コレット(17)を支持板(1)に対して平行に反復移動させると、半導体チップ(2)の下面全体に溶融半田(13)を敷衍可能であるが、敷衍工程を省略してもよい。支持板(1)を冷却して半田材(3)により半導体チップ(2)が支持板(1)上に固着される。   Subsequently, as shown in FIG. 1, the lead frame (11) is conveyed again at a predetermined pitch interval, and the support plate (1) supplied with the molten solder (13) is disposed below the die bonder (7). The collet (17) that has vacuum-sucked the semiconductor chip (2) is lowered, and the semiconductor chip (2) is placed on the molten solder (13) attached on the support plate (1) to support the semiconductor chip (2). Adhere to the plate (1). At this time, as in the prior art, the collet (17) with the lower surface of the semiconductor chip (2) held by the collet (17) attached to the upper surface of the support plate (1) via the molten solder (13). Is repeatedly moved in parallel with respect to the support plate (1), the molten solder (13) can be spread over the entire lower surface of the semiconductor chip (2), but the spreading step may be omitted. The support plate (1) is cooled and the semiconductor chip (2) is fixed onto the support plate (1) by the solder material (3).

本発明の実施態様は前記の実施の形態に限定されず、更に種々の変更が可能である。例えば、本発明による支持板上への電子部品の固着法は、半導体チップ(2)を支持板(1)に固着する半導体装置の製造のみならず、チップコンデンサ等の他の電子部品(2)の固着工程に適用できる。本発明で述べるろう材(3)は、溶融温度の低いろう材を示す半田材を包含する。   The embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the method for fixing an electronic component on a support plate according to the present invention is not only for manufacturing a semiconductor device for fixing a semiconductor chip (2) to a support plate (1), but also for other electronic components (2) such as a chip capacitor. It can be applied to the fixing process. The brazing material (3) described in the present invention includes a solder material indicating a brazing material having a low melting temperature.

本発明者による実施例の一部を下記に示す。
実施例1は、溶融温度217℃の錫(Sn)、銀(Ag)及び銅(Cu)の合金からなる半田材(3)をフィーダ(4)内で溶融温度より低いが常温よりも高い温度に加熱し、半田材(3)の溶融温度より高い温度に加熱した支持板(1)上で溶融させた。フィーダ(4)内での半田材(3)の加熱温度を140℃〜200℃の範囲内で変動させ、実験を複数回行った。
Some of the examples by the inventors are shown below.
In Example 1, a solder material (3) made of an alloy of tin (Sn), silver (Ag), and copper (Cu) having a melting temperature of 217 ° C. is lower than the melting temperature but higher than room temperature in the feeder (4). To the support plate (1) heated to a temperature higher than the melting temperature of the solder material (3). The experiment was performed a plurality of times by changing the heating temperature of the solder material (3) in the feeder (4) within a range of 140 ° C to 200 ° C.

実施例2は、溶融温度227℃の錫(Sn)、銅(Cu)及びニッケル(Ni)の合金からなる半田材(3)を使用し、フィーダ(4)内での半田材(3)を150℃〜205℃の温度範囲で加熱する実施例1と同様の実験を行った。実施例3では、溶融温度221℃の錫(Sn)及び銀(Ag)の合金からなる半田材(3)を使用し、フィーダ(4)内での半田材(3)を145℃〜200℃の温度範囲で加熱して実施例1と同様の実験を行った。実施例4では、溶融温度202℃の錫(Sn)、銀(Ag)、インジウム(In)及びビスマス(蒼鉛)(Bi)の合金からなる半田材(3)を使用し、フィーダ(4)内での半田材(3)を125℃〜180℃の温度範囲で加熱して実施例1と同様の実験を行った。実施例5では、溶融温度139℃の錫(Sn)及びビスマス(Bi)の合金からなる半田材(3)を使用し、フィーダ(4)内で70℃〜115℃の範囲内として実施例1と同様の実験を行った。実施例6では、溶融温度208℃の錫(Sn)、銀(Ag)、銅(Cu)及びビスマス(Bi)の合金からなる半田材(3)を使用し、フィーダ(4)内で130℃〜185℃の範囲内として実施例1と同様の実験を行った。実施例7では、溶融温度236℃の錫(Sn)及びアンチモン(Sb)の合金からなる半田材(3)を使用し、フィーダ(4)内で160℃〜215℃の範囲内として実施例1と同様の実験を行った。   In Example 2, a solder material (3) made of an alloy of tin (Sn), copper (Cu) and nickel (Ni) having a melting temperature of 227 ° C. is used, and the solder material (3) in the feeder (4) is used. The same experiment as in Example 1 was performed in which heating was performed in a temperature range of 150 ° C to 205 ° C. In Example 3, a solder material (3) made of an alloy of tin (Sn) and silver (Ag) having a melting temperature of 221 ° C. is used, and the solder material (3) in the feeder (4) is 145 ° C. to 200 ° C. The same experiment as in Example 1 was performed by heating in the above temperature range. In Example 4, a solder material (3) made of an alloy of tin (Sn), silver (Ag), indium (In), and bismuth (lead) (Bi) having a melting temperature of 202 ° C. is used. The solder material (3) was heated in the temperature range of 125 ° C. to 180 ° C., and the same experiment as in Example 1 was performed. In Example 5, a solder material (3) made of an alloy of tin (Sn) and bismuth (Bi) having a melting temperature of 139 ° C. is used, and the range of 70 ° C. to 115 ° C. is set in the feeder (4). The same experiment was conducted. In Example 6, a solder material (3) made of an alloy of tin (Sn), silver (Ag), copper (Cu) and bismuth (Bi) having a melting temperature of 208 ° C. is used, and 130 ° C. in the feeder (4). The same experiment as in Example 1 was performed within the range of ˜185 ° C. In Example 7, the solder material (3) made of an alloy of tin (Sn) and antimony (Sb) having a melting temperature of 236 ° C. is used, and the temperature in the range of 160 ° C. to 215 ° C. is set in the feeder (4). The same experiment was conducted.

実施例1〜実施例7の溶融半田(13)により、支持板(1)と半導体チップ(2)とを接着させたところ、フィーダ(4)内で半田材(3)を加熱しない従来の固着法と比較して、良好に半田材(3)内及び半田材(3)と半導体チップ(2)との間に気泡が発生するのを抑制できた。詳述しない他の実施例では、鉛(Pb)を含む一般半田又は低融点半田若しくは高温半田も実験されたが、同様の結果が得られた。   When the support plate (1) and the semiconductor chip (2) are bonded by the molten solder (13) of the first to seventh embodiments, the conventional fixing without heating the solder material (3) in the feeder (4) Compared with the method, it was possible to suppress the generation of bubbles in the solder material (3) and between the solder material (3) and the semiconductor chip (2). In other examples not described in detail, a general solder containing lead (Pb), a low melting point solder or a high temperature solder was also tested, and similar results were obtained.

本発明は、半導体チップをろう材層で確実に接着する半導体装置等の精密装置の製造に適する。   The present invention is suitable for manufacturing a precision device such as a semiconductor device that securely bonds a semiconductor chip with a brazing material layer.

本発明による支持板上への電子部品の固着法を実施する半田付け装置の断面図Sectional drawing of the soldering apparatus which implements the fixing method of the electronic component on the support plate by this invention 従来の半田付け装置の断面図Sectional view of conventional soldering equipment 支持板上の温度差により気泡が形成された半田材を示す断面図Sectional view showing solder material with bubbles formed due to temperature difference on support plate

符号の説明Explanation of symbols

(1)・・支持板、 (2)・・電子部品(半導体チップ)、 (3)・・ろう材(半田材)、 (4)・・フィーダ、   (1) ... Support plate, (2) ... Electronic parts (semiconductor chip), (3) ... Brazing material (solder material), (4) ... Feeder,

Claims (3)

ろう材の溶融温度より低いが常温よりも高い温度に線状の前記ろう材をフィーダ内で加熱する過程と、
ろう材の溶融温度より高い温度に加熱されて前記フィーダの下方に配置された支持板に向かい前記ろう材を移動させて、前記フィーダから繰り出した前記ろう材の下端部を前記支持板に接触させる過程と、
前記支持板の熱により前記ろう材の下端部を溶融させて、前記支持板上に溶融した所定量の前記ろう材を自重により滴下する過程と、
前記支持板上に付着した前記ろう材上に電子部品を付着させる過程と、
前記支持板を冷却して前記ろう材により電子部品を支持板上に固着する過程とを含む支持板上への電子部品の固着法。
Heating the linear brazing material in a feeder to a temperature lower than the melting temperature of the brazing material but higher than room temperature;
The brazing material is heated to a temperature higher than the melting temperature of the brazing material and moved toward the support plate disposed below the feeder, and the lower end portion of the brazing material fed from the feeder is brought into contact with the support plate. Process,
Melting the lower end of the brazing material by the heat of the support plate, and dropping a predetermined amount of the brazing material melted on the support plate by its own weight;
Attaching an electronic component on the brazing material attached on the support plate;
A method for fixing an electronic component on a support plate, comprising cooling the support plate and fixing the electronic component on the support plate with the brazing material.
前記ろう材の溶融温度より20℃〜80℃低い温度で前記ろう材を前記フィーダ内に保持する過程を含む請求項1に記載の支持板上への電子部品の固着法。   The method for fixing an electronic component on a support plate according to claim 1, comprising a step of holding the brazing material in the feeder at a temperature lower by 20 to 80 ° C. than the melting temperature of the brazing material. 210℃〜230℃の溶融温度にある錫(Sn)、銀(Ag)及び銅(Cu)の合金により線状の前記ろう材を形成する過程と、
前記溶融温度よりも低い130℃〜210℃の温度に前記ろう材を前記フィーダ内で加熱する過程とを含む請求項1又は2に記載の支持板上への電子部品の固着法。
Forming a linear brazing material from an alloy of tin (Sn), silver (Ag) and copper (Cu) at a melting temperature of 210 ° C. to 230 ° C .;
The method for fixing an electronic component on a support plate according to claim 1, further comprising a step of heating the brazing material in the feeder to a temperature of 130 ° C. to 210 ° C. lower than the melting temperature.
JP2004283442A 2004-09-29 2004-09-29 Fixing method of electronic component onto support plate Pending JP2006100492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283442A JP2006100492A (en) 2004-09-29 2004-09-29 Fixing method of electronic component onto support plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283442A JP2006100492A (en) 2004-09-29 2004-09-29 Fixing method of electronic component onto support plate

Publications (1)

Publication Number Publication Date
JP2006100492A true JP2006100492A (en) 2006-04-13

Family

ID=36240025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283442A Pending JP2006100492A (en) 2004-09-29 2004-09-29 Fixing method of electronic component onto support plate

Country Status (1)

Country Link
JP (1) JP2006100492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840101A2 (en) 2006-03-31 2007-10-03 Nichias Corporation Fused siliceous refractory and production method thereof
JP4457369B1 (en) * 2009-06-05 2010-04-28 メジェップ株式会社 Soldering apparatus, soldering method, and method of manufacturing soldered product
CN108856940A (en) * 2018-07-30 2018-11-23 福建闽航电子有限公司 A kind of method of nickel wire soldering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840101A2 (en) 2006-03-31 2007-10-03 Nichias Corporation Fused siliceous refractory and production method thereof
JP4457369B1 (en) * 2009-06-05 2010-04-28 メジェップ株式会社 Soldering apparatus, soldering method, and method of manufacturing soldered product
JP2010283315A (en) * 2009-06-05 2010-12-16 Mejep Kk Soldering device, soldering method, and method for manufacturing soldered product
CN108856940A (en) * 2018-07-30 2018-11-23 福建闽航电子有限公司 A kind of method of nickel wire soldering

Similar Documents

Publication Publication Date Title
JP2793528B2 (en) Soldering method and soldering device
US6288376B1 (en) Method and apparatus for melting a bump by induction heating
JP4308161B2 (en) Die mounting method
US8012866B2 (en) Method of bonding semiconductor devices utilizing solder balls
US7690551B2 (en) Die attach by temperature gradient lead free soft solder metal sheet or film
JP2006261186A (en) Bonding method and bonding equipment
KR100574077B1 (en) Apparatus, method and program recording device for manufacturing electronic device
JP2006100492A (en) Fixing method of electronic component onto support plate
CN110085543A (en) A kind of automatic bonder of power semiconductor and its die bond technique
JP2007109859A (en) Method for manufacturing electronic parts
CN209785891U (en) Automatic die bonder for power semiconductor
JP2583142B2 (en) Manufacturing method of thermoelectric module
CN109152237B (en) Ball planting method and device
JP4785486B2 (en) Electronic device manufacturing method and manufacturing apparatus
JPH11121921A (en) Method and device for soldering electronic components
JP2012049182A (en) Method of manufacturing semiconductor device
JP2016203215A (en) Joint method
JP3336999B2 (en) Bump sheet, bump forming apparatus and bump forming method using the same
JPH10175064A (en) Soldering method and solder used therefor
CN214624980U (en) Production line for semiconductor devices
KR100479243B1 (en) Method for manufacturing a semiconductor device having an electroplated lead
WO2019171835A1 (en) Semiconductor device production method
CN112687555A (en) Low-vacuum alloy welding method for nickel-plated pipe-based chip
JP2004281646A (en) Fixing method and equipment of electronic component
JP2003209347A (en) Method and apparatus for reflow soldering