WO2018163840A1 - 信号処理装置および方法 - Google Patents

信号処理装置および方法 Download PDF

Info

Publication number
WO2018163840A1
WO2018163840A1 PCT/JP2018/006417 JP2018006417W WO2018163840A1 WO 2018163840 A1 WO2018163840 A1 WO 2018163840A1 JP 2018006417 W JP2018006417 W JP 2018006417W WO 2018163840 A1 WO2018163840 A1 WO 2018163840A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
reception
received signal
replica
Prior art date
Application number
PCT/JP2018/006417
Other languages
English (en)
French (fr)
Inventor
小林 誠司
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to EP18764590.8A priority Critical patent/EP3595182B1/en
Priority to US16/488,695 priority patent/US11212702B2/en
Publication of WO2018163840A1 publication Critical patent/WO2018163840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0029Gold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/7097Direct sequence modulation interference
    • H04B2201/709718Determine interference

Abstract

本技術は、受信感度の低減を抑制することができるようにする信号処理装置および方法に関する。 受信信号を所定の信号レベル以下に圧縮し、その信号レベル以下に圧縮された受信信号に含まれる、送信側から送信された送信データを復号する。例えば、受信信号の大きな振幅変化を再現した概略レプリカ信号を生成し、受信信号からその概略レプリカ信号を減算することにより、受信信号をその信号レベル以下に圧縮する。本開示は、例えば、信号処理装置、受信装置、送受信装置、通信装置、情報処理装置、電子機器、コンピュータ、プログラム、記憶媒体、システム等に適用することができる。

Description

信号処理装置および方法
 本技術は、信号処理装置および方法に関し、特に、受信感度の低減を抑制することができるようにした信号処理装置および方法に関する。
 従来、長距離の無線通信を実現する技術として、例えば920Mz帯の無線電波を使って、センサなどの情報を伝送するシステムが考えられた(例えば、特許文献1参照)。この特許文献1に記載のシステムを用いることにより、最大連続送信時間短く設定することができ、沢山の周波数チャネルから選択して送信することができるので、混信に対してより強い送受信システムを構築することができる。また、短い時間のフレームを多数積算することにより、電波法に定められた最大送信時間の制限を超えずに、実効的なSNRを向上させることができる。このとき、同期信号がフレーム全体に分散されているので、フレーム中に位相揺らぎがあった場合においても、より適切に位相と周波数の補正を行うことができる。これらの結果、例えば、ノイズに埋もれてしまい従来の方法では復号することが困難な程微弱な受信信号であっても、より正しく復号することができるようになる。つまり、受信感度が向上し、より長距離の無線通信を実現することができる。
 しかしながら、受信感度が向上し、より長距離の無線通信が可能になると、より多くの信号の中から本システムの信号を検出しなければならない。そのため、受信信号に極端に強い妨害波が含まれることもあり得るようになり、その場合、本システムの信号を検出することが困難になるおそれがあった。つまり、受信感度が低減するおそれがあった。複数の信号を分離して干渉を抑圧する方法として受信信号のレプリカを生成する方法が考えられた(例えば特許文献2参照)。
特開2016-46618号公報 特許第4443991号
 しかしながら、この方法の場合、干渉波となる信号が既知でなければレプリカを生成することはできない。ところが920MHz帯は免許不用の周波数帯域なので、干渉波としても多種多様な変調方式や周波数帯域が使われ、受信側で特定することはできない。このため未知の干渉波に対して正しくレプリカを作成して干渉を抑圧することは困難であった。このため干渉を受けた場合に受信感度が低減するおそれがあった。
 本開示は、このような状況に鑑みてなされたものであり、受信感度の低減を抑制することができるようにするものである。
 本技術の一側面の信号処理装置は、受信信号を所定の信号レベル以下に圧縮する信号圧縮部と、前記信号圧縮部により前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する復号部とを備える信号処理装置である。
 前記信号圧縮部は、前記受信信号の大きな振幅変化を再現した概略レプリカ信号を生成する概略レプリカ生成部と、前記受信信号から前記概略レプリカ生成部により生成された前記概略レプリカ信号を減算する減算部とを備えることができる。
 前記概略レプリカ生成部は、前記受信信号を疎に量子化する量子化部を備え、前記減算部は、前記量子化部により得られる前記受信信号の量子化結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成されるようにすることができる。
 前記量子化部は、ビット深度16ビットの前記受信信号を4ビットに量子化することができる。
 前記概略レプリカ生成部は、前記受信信号の、前記信号レベルを超えている部分の概略レプリカ信号を生成することができる。
 前記概略レプリカ生成部は、前記受信信号の位相を検出する位相検出部と、前記受信信号のエンベロープを検出するエンベロープ検出部と、前記位相検出部により得られる前記受信信号の位相検出結果と、前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果とを複素合成する複素合成部と、前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果が前記信号レベルを超えているか否かを判定する判定部とを備え、前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記複素合成部により得られる前記位相検出結果と前記エンベロープ検出結果との複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成されるようにすることができる。
 前記概略レプリカ生成部は、前記複素合成結果の振幅を所定の減衰率で減衰させる減衰部をさらに備え、前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記減衰部により振幅が前記減衰率で減衰された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成されるようにすることができる。
 前記概略レプリカ生成部は、前記複素合成結果の振幅を疎に量子化する量子化部をさらに備え、前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記量子化部により量子化された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成されるようにすることができる。
 前記信号圧縮部は、前記減算部により得られる前記受信信号と前記概略レプリカ信号との差分の波形を整形する波形整形部をさらに備えるようにすることができる。
 前記波形整形部は、前記差分の振幅を、所定の信号レベル以下に制限する制限部を有することができる。
 前記波形整形部は、前記差分の高域成分を制限するローパスフィルタを有するようにすることができる。
 前記信号圧縮部は、前記受信信号の高域成分を制限するローパスフィルタを備えるようにすることができる。
 前記信号レベルは、熱雑音レベルであるようにすることができる。
 本技術の一側面の信号処理方法は、受信信号を所定の信号レベル以下に圧縮し、前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する信号処理方法である。
 本技術の一側面の信号処理装置および方法においては、受信信号が所定の信号レベル以下に圧縮され、その信号レベル以下に圧縮された受信信号に含まれる、送信側から送信された送信データが復号される。
 本技術によれば、信号を処理することが出来る。また本技術によれば、受信感度の低減を抑制することができる。
送信装置の主な構成例を示すブロック図である。 スーパーフレームの主な構成例を示す図である。 各部における信号の例を説明する図である。 送信処理の流れの例を説明するフローチャートである。 受信装置の主な構成例を示すブロック図である。 CPUが有する主な機能の例を示す機能ブロック図である。 干渉抑圧処理部が有する主な機能の例を等価回路で示す図である。 受信処理の流れの例を説明するフローチャートである。 干渉抑圧処理の流れの例を説明するフローチャートである。 概略レプリカ生成処理の流れの例を説明するフローチャートである。 復号演算処理の流れの例を説明するフローチャートである。 フレーム先頭位置検出処理の流れの例を説明するフローチャートである。 相互相関値α(t)のプロット例を示す図である。 相互相関値β(n)図である。 ピーク検出処理の流れの例を説明するフローチャートである。 ピーク検出の様子の例を説明する図である。 ピーク検出の様子の例を説明する図である。 ピーク検出の様子の例を説明する図である。 ピーク検出の様子の例を説明する図である。 ピーク検出の様子の例を説明する図である。 ピーク検出の様子の例を説明する図である。 パラメータ算出処理の流れの例を説明するフローチャートである。 位相揺らぎの近似の様子の例を説明する図である。 復号結果を示す図である。 干渉抑圧処理部が有する主な機能の例を等価回路で示す図である。 干渉抑圧処理の流れの例を説明するフローチャートである。 概略レプリカ生成処理の流れの例を説明するフローチャートである。 干渉抑圧処理部が有する主な機能の例を等価回路で示す図である。 概略レプリカ生成処理の流れの例を説明するフローチャートである。 干渉抑圧処理部が有する主な機能の例を等価回路で示す図である。 概略レプリカ生成処理の流れの例を説明するフローチャートである。 コンピュータの主な構成例を示すブロック図である。
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。なお、説明は以下の順序で行う。
 1.干渉抑圧
 2.送信装置
 3.第1の実施の形態(受信装置)
 4.第2の実施の形態(干渉抑圧処理部)
 5.第3の実施の形態(干渉抑圧処理部)
 6.第4の実施の形態(干渉抑圧処理部)
 7.その他
 <1.干渉抑圧>
  <長距離無線通信>
 デジタルデータを送受信する無線通信では、電波の送信電力、及び送受信で使う空中線の性能、そして転送レートにより、無線通信距離の限界が定まる。送信電力の増大は、送信機の消費電力に直結することから、自ずと限界がある。空中線の性能は、八木宇田アンテナなどを使用することにより性能向上を実現できるが、性能の高いアンテナほど構造が大きく複雑になり、使うことのできる空中線の性能は限られている。
 また、送信電力は電波法により制約が設けられている。さらに、電波の周波数帯によっては、空中線の性能を含めて送信電力が電波法で規制されている。これらの結果、現実的に使うことのできる送信電力や空中線の性能には限界がある。
 このような制約条件から逃れて、長距離の無線通信を実現する技術として、例えばDSSS(Direct Sequence Spread Spectrum)が知られている。DSSSは、受信した信号に拡散符号を乗算しながら積算することにより、雑音の影響を排除して高感度の受信が可能とする技術である。感度は積算時間を伸ばすこと、(即ち転送レートを低下させること)により直線的に増加し、例えばDSSSを採用したGPS(Global  Positioning System)では -150dBm以下の電界強度でも信号を安定して受信することが可能となっている。
 GPSでは、送信電波が安定した位相で連続送信されている。従って低帯域のPLL(Phase Locked Loop)、あるいはDLL(Delayed Locked Loop)を採用することにより、低SNR(Signal to Noise ratio)の状態でも安定した位相同期が確立される。位相が正しければ、信号を積算検出することで微弱信号を検出することが可能となる。GPSのように専用無線周波数帯が割り当てられている場合、このように長時間の連続送信が可能となり、微弱信号であっても安定した受信が可能となる。
 例えば920Mz帯の無線電波を使って、センサなどの情報を伝送するシステムがある。920MHz帯は、総務省により2011年7月から解禁された周波数帯であり、免許不要で誰でも使うことができる。但し、規定(ARIB(Association of Radio Industries and Businesses) STD T-108)により、最大連続送信時間が4秒間に制限されている。さらに連続送信時間を短くして、例えば0.2秒にすれば、より多くのチャネルが割り当てられ、混信が少ない状態で送受信を行うことができる。
 このように連続送信時間に制約があるため、920MHz帯では、受信側で低帯域のPLLやDLLを実装することができない。このため、転送レートの下限が定まり、その結果として受信感度の上限が制約されるおそれがあった。つまり、このような制約が無い場合に比べて、受信感度が低減するおそれがあった。例えば920MHz帯で市販されている無線通信デバイスでは、受信感度-100dBm乃至-120dBm程度が限界となり、GPSと比較すると数十dBもの感度差が生じるおそれがあった。
 そこで、特許文献1に記載のように、長距離の無線通信を実現する技術として、例えば920Mz帯の無線電波を使って、センサなどの情報を伝送するシステムが考えられた。この特許文献1に記載のシステムを用いることにより、最大連続送信時間短く設定することができ、沢山の周波数チャネルから選択して送信することができるので、混信に対してより強い送受信システムを構築することができる。また、短い時間のフレームを多数積算することにより、電波法に定められた最大送信時間の制限を超えずに、実効的なSNRを向上させることができる。このとき、同期信号がフレーム全体に分散されているので、フレーム中に位相揺らぎがあった場合においても、より適切に位相と周波数の補正を行うことができる。これらの結果、例えば、ノイズに埋もれてしまい従来の方法では復号することが困難な程微弱な受信信号であっても、より正しく復号することができるようになる。つまり、受信感度が向上し、より長距離の無線通信を実現することができる。
 しかしながら、受信感度が向上し、より長距離の無線通信が可能になると、より多くの信号の中から本システムの信号を検出しなければならない。そのため、受信信号に極端に強い妨害波が含まれることもあり得るようになり、その場合、本システムの信号を検出することが困難になるおそれがあった。つまり、受信感度が低減するおそれがあった。複数の信号を分離して干渉を抑圧する方法としては、例えば特許文献2に記載のように、受信信号のレプリカを生成する方法が考えられた。
 しかしながら、この方法の場合、干渉波となる信号が既知でなければレプリカを生成することはできない。ところが920MHz帯は免許不用の周波数帯域なので、干渉波としても多種多様な変調方式や周波数帯域が使われ、受信側で特定することはできない。このため未知の干渉波に対して正しくレプリカを作成して干渉を抑圧することは困難であった。このため干渉を受けた場合に受信感度が低減するおそれがあった。
 そこで、受信信号を所定の信号レベル以下に圧縮し、その信号レベル以下に圧縮された受信信号に含まれる、送信側から送信された送信データを復号するようにする。特許文献1に記載の方法であれば、例えばサーマルノイズ(熱雑音)に埋もれた状態であっても本システムの受信信号を検出することができる。つまり、全ての信号のレベルをサーマルノイズのレベルまで低減させることにより、強い妨害波による影響が抑制され、特許文献1に記載の方法により本システムの受信信号を検出することができるようになる。すなわち、受信感度の低減を抑制することができる。
 なお、上述の所定の信号レベルは、本システムの受信信号を検出することができるレベルであればよく、サーマルノイズのレベル(熱雑音レベル)と同一であってもよいし、大きくても小さくてもよい。
 <2.送信装置>
  <送信装置の構成>
 図1は、本技術を適用した信号処理装置において処理される信号を送信する送信装置の主な構成例を示す図である。図1に示される送信装置100は、気象観測装置31から供給される気象観測データTMを電波(無線信号)としてアンテナ123から送信する装置である。
 気象観測装置31は、例えば、気温、日照、雨量、風向、風速などの気象データを観測する装置である。気象観測装置31には、これらの気象データを観測するために必要な各種センサと、それらのセンサを制御する制御部とが設けられている。気象観測装置31は、観測された気象データ(気象観測データ)を送信装置100に供給する。例えば、気温、雨量、風向、風速をそれぞれ1オクテット(8ビット)の情報量とすると、気象観測データTMは、4オクテット(32ビット)の情報量である。
 気象観測装置31は、例えば山岳地帯等、気象データを人力で観測することが困難な場所、例えば、人の立ち入りが困難な場所等に設置される。送信装置100は、気象観測装置31の近傍に設置される。つまり、気象観測装置31や送信装置100は、大規模な外部電源の用意が困難な場所に設置される。したがって、これらの装置は、電池や太陽光発電器等の小規模の電源により駆動する必要がある。つまり、これらの装置は、より低消費電力に駆動することが求められる。
 また、気象観測装置31から供給される気象観測データは、例えば麓の市街地等(大学等の研究施設やデータセンタ等の施設内等)に設置された受信装置に送信される。その受信装置は、受信した気象観測データをサーバ等に供給する。つまり、送信装置100は、無線信号を遠距離まで送信する必要がある。なお、麓に設置される受信装置では電灯線電源を使うことができる。従って、受信装置では高性能CPU(Central Processing Unit)を搭載して高度な演算を実行することも可能である。
 以上をまとめると、送信装置100には電池駆動可能な低消費電力が要求される。受信装置には、長距離通信を可能とする高感度の受信性能が要求される。また通信路としては、連続送信可能な時間が制限されている。このように要求条件は厳しいが、伝送情報量は少ないので高転送レートは必要ない。また受信局の消費電力は大きくても問題にならない。
 この送信装置100が送信する送信信号のフレーム構造の全体図を図2に示す。図2に示されるように、1回の連続送信時間が0.192秒とされている。すなわち、連続送信時間0.2秒を下回っているので、この送信に多くの送信チャネルを割り当てることができる。この結果、比較的空いているチャネルを選択して送信することが可能となり、より混信に強いシステムを構築することができる。本技術を適用することにより、このような短いフレーム長を使っても、高感度の送受信システムを構築することができる。
 フレームの送信は、1回のデータ送信が30秒間のスーパーフレーム(Super Frame)の単位で行われる。この30秒間に、0.192秒のフレームが最大で100回繰り返される。ここでフレーム間のギャップxは、少なくとも2ms以上の時間である。ギャップxは、キャリアセンスの結果(即ちチャネルの混み具合)により毎回異なっている。30秒間を平均すると、およそ0.3秒に1回の割合でフレームが送信されるように構成されている。この結果、30秒間に100フレームが送信される。送信できるフレーム数は、チャネルの混雑度合いにより若干変動する。100回のフレームで送信される信号は、任意であるが、以下においては、全て同一であるものとして説明する。
 図1に示されるように、送信装置100は、CRC(Cyclic Redundancy Check)付加部111、同期信号(SYNC)発生部112、選択部113、フレームカウンタ114、レジスタ115、インタリーブ部116、Gold符号発生部117、乗算部118、キャリア発振部119、乗算部120、バンドパスフィルタ121、増幅部122、およびアンテナ123を有する。
 CRC付加部111は、気象観測装置31から供給される気象観測データTMに、誤り検出用の巡回冗長検査符号(CRC)を付加し、それを選択部113に供給する。この巡回冗長検査符号は、どのようなものであってもよく、そのデータ長も任意である。
 同期信号発生部112は、所定の同期パタンを発生し、それを選択部113に供給する。この同期パタンは、どのようなものであってもよく、そのデータ長も任意である。
 選択部113は、適宜入力を選択することにより、CRC付加部111から供給される巡回冗長検査符号が付加された気象観測データTMに、同期信号発生部112から供給される同期パタンを付加し、送信データQDを生成する。
 選択部113は、このように、巡回冗長検査符号および同期パタンが付加された気象観測データTMである送信データQDを、レジスタ115に供給する。
 図3は、送信パケットのフレーム構成(Frame format)を示す模式図である。図3の上から1段目に示されるように、送信パケットは、2オクテットのプリアンブル(Preamble)、1オクテットのSFD(start-of-frame delimiter)、そして16オクテットのPSDU(PHY Service Data Unit)から構成される。ここでプリアンブルとSFDは固定のデータである。プリアンブルは、例えば、「0011111101011001」というビット列としてもよい。またSFDは、例えば「00011100」というビット列としてもよい。
 図3の上から2段目に示されるように、16オクテットのPSDUは、フレームコントロール(FC)、シーケンス番号(SN)、送受信機アドレス(ADR)、ペイロード(PAYLOAD)、およびフレームチェックシーケンス(FCS)により構成されている。
 フレームコントロール(FC)は2オクテットのディジタル情報であり、フレームコントロールに続く情報の構成やビット数などを表す情報である。フレームコントロールは、固定のビット列であり、例えば「0010000000100110」というビット列としてもよい。シーケンス番号(SN)は1オクテットのディジタル情報であり、新しいデータが伝送される度にカウントアップされる。このシーケンス番号をチェックすることにより、受信機側では新しいデータであるか否かを判断することができる。送受信機アドレス(ADR)は、4オクテットの情報であり、送信機を区別する送信機アドレス番号と、受信機を区別する受信機アドレス番号の情報である。ペイロード(PAYLOAD)は、4オクテットのディジタル情報であり、気象観測データTMがそのままセットされる。フレームチェックシーケンス(FCS)は、2オクテットの巡回冗長検査符号であり、通信データに誤りが発生したか否かをチェックするための情報である。
 CRC付加部111は、気象観測装置31から供給された気象観測データTMをコピーしたペイロード(PAYLOAD)に、そのペイロードに対して演算したフレームチェックシーケンス(FCS)を付加し、それを選択部113に供給する。このペイロード(PAYLOAD)として伝送される気象観測データTMおよびフレームチェックシーケンス(FCS)は、受信側にとって予め推測することができない情報である。このように受信側にとって「知らない」情報をUND(UNknown Data)と称する。図3の例の場合、このUNDは、6オクテット(6octets)の情報により構成されるが、その内容およびデータ量は任意である。
 同期信号発生部112は、プリアンブル、SFD、フレームコントロール、シーケンス番号、および送受信機アドレス等の情報を同期パタン(SYNC)として生成し、それを選択部113に供給する。この同期パタン(SYNC)は、気象観測データTMに依存しない情報であり、受信装置にとって既知の情報である。図3の例の場合、同期パタンは、13オクテット(13octets)の情報により構成されるが、その内容およびデータ量は任意である。例えば、同期パタン(SYNC)に上述した以外の情報が含まれるようにしてもよいし、上述した情報の一部または全部が同期パタン(SYNC)に含まれていなくてもよい。
 選択部113は、CRC付加部111より供給されるフレームチェックシーケンスが付加されたペイロードに、同期信号発生部112より供給される同期パタンを付加し、送信データQDを生成する。
 図1のフレームカウンタ114は、送信したフレーム数をカウントするカウンタであり、0から99までをカウントし、そのカウント値をレジスタ115に供給する。
 レジスタ115は、19オクテット(152ビット)のレジスタである。フレームカウンタ114から供給されるカウント値が「0」であるときに、レジスタ115は、選択部113の出力(1フレーム分の送信データQD)を取り込んで内部に保持する。レジスタ115は、次に、フレームカウンタ114から供給されるカウント値が「0」になるまで、その1フレーム分の送信データQDを保持する。レジスタ115は、保持している値を、適宜、インタリーブ部116に供給する。つまり、スーパーフレーム(Super Frame)期間中は同一の送信データQDがレジスタ115から出力される。次に、フレームカウンタ114から供給されるカウント値が「0」になると、レジスタ115は、新たに、選択部113の出力(1フレーム分の送信データQD)を取り込んで内部に保持する。
 インタリーブ部116は、図3の上から4段目に示されるように、同期パタン(SYNC)を分解し、UNDの間に分散させる。この分散は、同期パタン(SYNC)が、ほぼ均等にばらまかれるようになされる。つまり、インタリーブ部116は、送信データQDの、受信側にとって既知の部分が、その送信データ内により均一に分散するように、その送信データを並び替える。
 図3の例の場合、同期パタン(SYNC)が13オクテットの情報であり、UNDが6オクテットの情報である。13オクテットの同期パタン(SYNC)を1オクテットずつ分解し、SYNC0乃至SYNC12とし、6オクテットのUNDを1オクテットずつ分解し、UND0乃至UND5とすると、インタリーブ部116は、これらを例えば次のような順に並び替える。
 SYNC0,SYNC1,UND0、SYNC2、SYNC3,UND1,・・・,UND5,SYNC12
 このように受信装置にとって既知の同期パタンを、フレーム全体にばらまいて(分散させて)送信することにより、その信号を受信する受信装置において、送信キャリアの周波数と初期位相推定を、短いフレーム毎に正確に行うことができるようになる。この結果、短い連続送信時間であっても、受信装置が高感度に受信することができるようになる。
 図3の上から5段目にその並び替えられた送信データQDの例を示す。インタリーブ部116は、以上のように並び替えられた送信データQDを、乗算部118に供給する。
 Gold符号発生部117は、2つのM系列 (Maximum Sequence)発生器で構成され、長さ256ビット(256chips)の擬似乱数列を発生する。例えば、Gold符号発生部117は、その擬似乱数列として、長さ256ビットの所定のパターンのビット列を生成する。この擬似乱数列は、どのようなものであってもよく、そのデータ長も任意である。Gold符号発生部117は、それを乗算部118に供給する。
 乗算部118は、インタリーブ部116から供給される、並び替えられた送信データQDと、Gold符号発生部117から供給される擬似乱数列とを乗算することにより擬似乱数列PNを生成する。つまり、乗算部118は、送信データQDの各ビットに対して擬似乱数列を割り当て、各送信パケットから、38400ビット(152bit x 256chips)の擬似乱数列PNを生成する。
 その際、送信データQDの値が「0」のビット(QD=0)に対して割り当てられる擬似乱数列と、送信データQDの値が「1」のビット(QD=1)に対して割り当てられる擬似乱数列とは、各ビットの値が互いに反転している。つまり、例えば、乗算部118は、送信データQDの値が「0」のビット(QD=0)に対して擬似乱数列を割り当て、送信データQDの値が「1」のビット(QD=1)に対して各ビットの値を反転させた擬似乱数列を割り当てる。より具体的には、例えば、乗算部118は、図3の最下段に示されるように、送信データQDの値が「1」のビット(QD=1)に対して擬似乱数列「1101000110100......1001」を割り当て、送信データQDの値が「0」のビット(QD=0)に対して擬似乱数列「0010111001011......0110」を割り当てる。
 この擬似乱数列PNにおいて、拡散係数は256であり、チップ間隔Δは5μsである。乗算部118は、以上のように生成した擬似乱数列PNを乗算部120に供給する。
 キャリア発振部119は、無線伝送に用いるキャリア周波数を発振して乗算部120に供給する。乗算部120は、擬似乱数列PNに応じてキャリア周波数の極性を変調することにより、DSSS方式としてBPSK変調を行う。
 すなわち、擬似乱数列PNが「1」の場合、キャリアの位相がπとなるように変調され、擬似乱数列PNが「0」の場合、キャリアの位相が-π(極性反転)となるように変調される。
 乗算部120は、その変調結果を変調信号CMとしてバンドパスフィルタ(BPF)121に供給する。
 このようにして極性反転された変調信号CMは、切り替え点の部分で急激に変化することから、幅広い周波数成分に広がっている。このまま無線伝送すると類似する帯域の無線通信に影響を与えてしまうおそれがある。
 そこでバンドパスフィルタ121は、変調信号CMの周波数成分をキャリア周波数付近に制限する。バンドパスフィルタ121は、このように帯域制限した変調信号CMを送信信号TXとして増幅部122に供給する。
 増幅部122は、供給された送信信号TXを増幅し、アンテナ123から電波(無線信号)として輻射させる。つまり、増幅部122は、増幅した送信信号TXを、無線信号として、アンテナ123を介して送信する。
 以上のようにすることにより、送信フレームは、受信装置が既知である同期パタン(SYNC)が、ほぼ均等にばらまかれた状態で、0.2秒以下のフレームとしてアンテナ123より送信される。したがって、送信装置100は、受信感度の低減を抑制することができる。
 換言するに、送信装置100は、装置全体の消費電力の増大を抑制しながら、より遠距離への無線信号の送信を実現することができる。したがって、この送信装置100を適用することにより、例えば、山岳地帯等のような気象データを人力で観測することが困難な場所であり、かつ、大規模な外部電源の確保が困難な場所に設置される気象観測装置31において得られる気象観測データを、例えば麓の市街地等(大学等の研究施設やデータセンタ等の施設内等)に送信するシステムを、より容易に実現することができる。
  <送信処理の流れ>
 次に、以上のような送信装置100において実行される送信処理の流れの例を、図4のフローチャートを参照して説明する。送信するデータ(例えば気象観測データ)が入力されると、送信装置100は、送信処理を開始する。
 送信処理が開始されると、CRC付加部111は、ステップS101において、その送信するデータ(ペイロード)に巡回冗長検査符号(CRC)を付加する。
 ステップS102において、同期信号発生部112は、所定の同期パタン(受信装置にとって既知の)を生成し、選択部113は、その同期パタンを送信するデータに付加し、1フレーム分の送信データQDを生成する。
 ステップS103において、レジスタ115は、フレームカウンタ114のカウント値が「0」のタイミングで、ステップS102において生成された、1フレーム分の送信データQDを記憶する。
 ステップS104において、フレームカウンタ114は、レジスタ115に保持されている1フレーム分の送信データQDの送信回数をカウントする。
 ステップS105において、インタリーブ部116は、レジスタ115に保持されている1フレーム分の送信データQDを読み出す。
 ステップS106において、インタリーブ部116は、その送信データQDの同期パタンとUNDをそれぞれ分割し、同期パタンがより均一に分散するように、並べ替える。
 ステップS107において、Gold符号発生部117は、所定の擬似乱数列を生成する。
 ステップS108において、乗算部118は、その擬似乱数列を、並べ替えられた送信データQDに乗算し、擬似乱数列PNを生成する。
 ステップS109において、キャリア発振部119は、キャリア信号を生成する。
 ステップS110において、乗算部120は、擬似乱数列PNに応じてキャリア信号の極性を変調し、変調信号を生成する。
 ステップS111において、バンドパスフィルタ121は、変調信号の周波数をキャリア周波数付近に制限し、送信信号TXを生成する。
 ステップS112において、増幅部122は、その送信信号TXを増幅し、アンテナ123を介して、無線信号として送信する。
 上述した各ステップの処理は、任意の順序で実行することができ、並列的に実行することもでき、また、必要に応じて繰り返し実行される。そして、送信処理の各処理は、送信するデータの入力が続く間、フレーム毎に繰り返し実行される。
 以上のように送信処理を実行することにより、送信装置100は、送信フレームにおいて、受信装置が既知である同期パタン(SYNC)をほぼ均等に分散させて、0.2秒以下のフレームとして送信することができ、受信感度の低減を抑制することができる。
 なお、以上においては、送信装置100が、BPSK変調を行うように説明したが、位相変位量は任意であり、これに限らない。例えば、QPSK変調(4位相偏移変調)を行うようにしてもよい。QPSK変調の場合、位相変位量はπ/2であり、搬送波の位相は、0、π/2、π、3π/2の4通りである。この場合、送信装置100のGold符号発生部117が、送信データ列QDを4位相に変位させるような擬似乱数列を生成し、乗算部118がその擬似乱数列を送信データ列QDに乗算することにより、キャリア周波数をQPSK変調(4位相偏移変調)させる擬似乱数列PNを生成するようにすればよい。
 <3.第1の実施の形態>
  <受信装置>
 図5は、本技術を適用した信号処理装置の一実施の形態である受信装置の主な構成例を示す図である。図5に示される受信装置200は、図1の送信装置100から送信される送信信号TXを受信し、復調し、例えば、気象観測データ(例えば、気温、日照、雨量、風向、風速等の観測データ)等を得る装置である。受信装置200は、例えば、麓の市街地等大学等の研究施設やデータセンタ等の施設内等)に設置され、山岳地帯等に設置された送信装置100から送信される無線信号(すなわち、遠距離から送信された無線信号)を受信する。
 図5に示されるように、受信装置200は、アンテナ211、低ノイズ増幅部212、バンドパスフィルタ(BPF)213、キャリア発振部214、乗算部215、90度シフタ216、乗算部217、A/D変換部218、メモリ219、およびCPU220を有する。
 低ノイズ増幅部212は、アンテナ211を介して無線信号(送信信号TX)を受信し、その受信信号を増幅し、バンドパスフィルタ213に供給する。
 バンドパスフィルタ213は、受信信号から不要な周波数成分を除去し、それを乗算部215および乗算部217に供給する。
 キャリア発振部214は、送受信で用いる所定の周波数のキャリア周波数の信号を発生させる。例えば920MHz帯で送られた信号を受信する場合、キャリア発振部214は920MHzを発振する。キャリア発振部214は、その発振信号(キャリア信号)を乗算部215および90度シフタ216に供給する。
 乗算部215は、バンドパスフィルタ213から供給される受信信号と、キャリア発振部214から供給されるキャリア信号とを乗算し、ベースバンドのInPhase信号(I信号)を生成する。乗算部215は、そのI信号をA/D変換部218に供給する。
 90度シフタ216は、キャリア発振部214から供給されるキャリア信号の位相を90度シフトする。90度シフタ216は、その位相シフトされたキャリア信号を乗算部217に供給する。
 乗算部217は、バンドパスフィルタ213から供給される受信信号と、90度シフタ216から供給される、90度位相シフトされたキャリア信号とを乗算し、ベースバンドのQuadrature信号(Q信号)を生成する。乗算部215は、そのQ信号をA/D変換部218に供給する。
 A/D変換部218は、供給されるI信号とQ信号をそれぞれA/D変換し、それらのデジタルデータをメモリ219に供給して記憶させる。A/D変換部218の変換レートは、送信に用いたチップレートの2倍を超えるレートが必要である。例えば、Δ=5μsとしてチップレート200K/sの送信が行われた場合、A/D変換部218は、少なくとも400KHz以上の変換レートでA/D変換を行う必要がある。
 メモリ219は、所定の記憶媒体を有し、A/D変換部218から供給されるI信号およびQ信号のデジタルデータを取得し、その記憶媒体に記憶する。この記憶媒体はどのようなものであってもよく、例えば、半導体メモリであってもよいし、ハードディスク等の磁気記録媒体であってもよいし、それら以外の記憶媒体であってもよい。A/D変換部218において、16ビット精度、2倍の変換レート(400KHz)で、30秒間A/D変換が行われた場合、メモリ219には48メガバイト(48Mbyte)のI信号およびQ信号のデジタルデータが蓄積される。
 CPU220は、メモリ219に蓄積されたI信号およびQ信号のデジタルデータを読み出し、復号処理を行い、気象観測データTMを復元する。CPU220は、復元した気象観測データTMを出力する。
 このようにすることにより、受信装置200は、送信装置100が送信した送信信号を受信して復号することができる。つまり、受信装置200は、既知である同期パタン(SYNC)が、ほぼ均等にばらまかれた状態の、0.2秒以下のフレームとして送信された送信フレームを受信して正しく復号し、気象観測データTMを得ることができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 換言するに、受信装置200は、装置全体の消費電力の増大を抑制しながら、より遠距離への無線信号の送信を実現することができる。したがって、この受信装置200を適用することにより、例えば、山岳地帯等のような気象データを人力で観測することが困難な場所であり、かつ、大規模な外部電源の確保が困難な場所に設置される気象観測装置31において得られる気象観測データを、例えば麓の市街地等(大学等の研究施設やデータセンタ等の施設内等)に送信するシステムを、より容易に実現することができる。
  <CPU>
 CPU220が処理を実行することにより有する主な機能の例を機能ブロックとして図6に示す。図6に示されるように、CPU220は、機能ブロックとして、干渉抑圧処理部221および復号処理部222を有する。干渉抑圧処理部221は、妨害波等による影響(干渉)を抑制するための処理を行う。より具体的には、干渉抑圧処理部221は、受信信号(メモリ219から読み出されたI信号およびQ信号)を所定の信号レベル以下に圧縮する。復号処理部222は、干渉抑圧処理部221により所定の信号レベル以下に圧縮された受信信号に含まれる、送信側から送信された送信データの復号(気象観測データTMの復元)に関する処理を行う。
  <干渉抑圧処理部>
 干渉抑圧処理部221が実行する処理を等価回路として図7に示す。図7に示されるように、干渉抑圧処理部221は、概略レプリカ生成部231および演算部232を備える。概略レプリカ生成部231は、受信信号の大きな振幅変化を再現した概略レプリカ信号を生成する。演算部232は、概略レプリカ生成部231により生成された前記概略レプリカ信号を、受信信号から減算する。概略レプリカ信号の成分が除去されることにより、受信信号は、その大きな振幅変化が除去され、小さな振幅変化のみとなる。つまり、信号レベルが圧縮される。
 概略レプリカ生成部231は、量子化部241を有する。量子化部241は、受信信号を疎に量子化する。例えば、量子化部241は、ビット深度が16ビットの受信信号(I信号およびQ信号)を4ビットに量子化する。つまり、この場合、受信信号から下位12ビットの変化が省略された概略レプリカ信号が生成される。したがって、演算部232が、16ビットの受信信号からこの4ビットの量子化結果を減算することにより、下位12ビットの変化が抽出される。つまり、大きな妨害波の信号レベルも所定の信号レベル以下に圧縮され、熱雑音レベルと略同等となる。
 したがって、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 なお、量子化部241により行われる量子化の量子化ステップサイズは任意であり、受信信号および概略レプリカ信号のビット深度もそれぞれ任意である。受信信号の信号レベルが所定の信号レベル以下に圧縮されればよい。なお、この所定の信号レベルは任意であり、熱雑音レベルであってもよいし、それ以外であってもよい。
  <受信処理の流れ>
 次に、以上のような受信装置200において実行される受信処理の流れの例を、図8のフローチャートを参照して説明する。
 受信処理が開始されると、受信装置200の低ノイズ増幅部212は、ステップS201において、アンテナ211を介して無線信号(送信信号TX)を受信する。
 ステップS202において、低ノイズ増幅部212は、ステップS201において受信された無線信号である受信信号を増幅する。
 ステップS203において、バンドパスフィルタ213は、ステップS202において増幅された受信信号から、不要な周波数成分を除去する。
 ステップS204において、キャリア発振部214は、所定の周波数で発振し、キャリア信号を生成する。
 ステップS205において、乗算部215は、受信信号に対して、そのキャリア信号を乗算することにより、I信号を生成する。
 ステップS206において、90度シフタ216は、キャリア信号の位相を90度シフトする。そして、乗算部217は、受信信号に対して、その90度位相シフトされたキャリア信号を乗算することにより、Q信号を生成する。
 ステップS207において、A/D変換部218は、ステップS205において生成されたI信号と、ステップS206において生成されたQ信号とをそれぞれA/D変換する。
 ステップS208において、メモリ219は、ステップS207において生成された、I信号のデジタルデータとQ信号のデジタルデータをそれぞれ記憶する。
 ステップS209において、CPU220は、そのI信号のデジタルデータとQ信号のデジタルデータをメモリ219から読み出して、それらに対して干渉抑圧処理を行い、信号レベルを圧縮する。
 ステップS210において、CPU220は、ステップS209において信号レベルが圧縮されたI信号のデジタルデータとQ信号のデジタルデータに対して、復号演算処理を行い、それらを復号する。
 全てのフレームについて受信処理が行われると、受信処理が終了する。
  <干渉抑圧処理の流れ>
 次に、図8のステップS209において実行される干渉抑圧処理の流れの例を、図9のフローチャートを参照して説明する。干渉抑圧処理が開始されると、概略レプリカ生成部231は、ステップS231において、概略レプリカ生成処理を行い、受信信号(I信号およびQ信号)の大きな振幅変化を再現した概略レプリカ信号を生成する。ステップS232において、演算部232は、受信信号(I信号およびQ信号)から、ステップS231において生成された概略レプリカ信号を減算する。ステップS232の処理が終了すると、干渉抑圧処理が終了し、処理は図8に戻る。
  <概略レプリカ生成処理の流れ>
 次に、図10のフローチャートを参照して、図9のステップS231において実行される概略レプリカ生成処理の流れの例を説明する。概略レプリカ生成処理が開始されると、量子化部241は、ステップS241において、受信信号(I信号およびQ信号)を疎に量子化する。例えば、量子化部241は、16ビットの受信信号を4ビットに量子化し、その量子化結果(4ビットの信号)を概略レプリカ信号とする。ステップS241の処理が終了すると、概略レプリカ生成処理が終了し、処理は図9に戻る。
 以上のように干渉抑圧処理や概略レプリカ生成処理を実行することにより、受信信号の信号レベルが所定の信号レベル以下に圧縮される。
  <復号演算処理の流れ>
 次に、図8のステップS210において実行される復号演算処理の流れの例を、図11のフローチャートを参照して説明する。
 復号演算処理が開始されると、CPU220の復号処理部222は、ステップS251において、キャリア周波数補正を行う。キャリア発振部214の発振周波数は、環境温度により若干の周波数ずれが生じている可能性がある。そこで復号処理部222は、環境温度を測定し、キャリア周波数の微妙な偏差を推測し、その補正を行う。
 例えば、環境温度から推定される周波数偏差をεとすると、復号処理部222は、以下の式(1)および式(2)の演算を行い、I信号およびQ信号の周波数ずれを補正する。
Figure JPOXMLDOC01-appb-M000001

 ・・・(1)
Figure JPOXMLDOC01-appb-M000002

 ・・・(2)
 式(1)において、I'(t)は、補正後のI信号の時刻tにおけるサンプル値である。また、式(2)において、Q'(t)は、補正後のQ信号の時刻tにおけるサンプル値である。
 ステップS252において、復号処理部222は、フレーム先頭位置検出処理を実行し、100箇所のフレーム先頭位置検出を行う。
 ステップS253において、復号処理部222は、ステップS252において検出されたフレーム先頭位置から1フレーム分の受信信号(I信号とQ信号と)を切り出す。なお、検出されたフレームの番号をnとする。
 ステップS254において、復号処理部222は、パラメータ算出処理を実行し、ステップS253において切り出されたI信号およびQ信号と、同期信号(SYNC)との相関値を演算して求め、β(n)とする。また、復号処理部222は、その相関値β(n)を最大とする周波数補正値γ(n)、初期位相θ(n)をそれぞれ求める。
 ステップS255において、復号処理部222は、ステップS254において算出した周波数補正値γ(n)および初期位相θ(n)を用いて、受信信号に対して、周波数補正と初期位相の補正を行う。
 ステップS256において、復号処理部222は、ステップS255において補正された受信信号をフレームデータに加算する。このとき、復号処理部222は、相関値β(n)を重み係数として、加算する受信信号に対して重み付けを行う。
 ステップS257において、復号処理部222は、以上の処理が100フレームの全てを処理したか否かを判定する。未処理のフレームが存在すると判定された場合、処理はステップS252に戻り、それ以降の処理を繰り返す。各フレームに対して、ステップS252乃至ステップS257の各処理が実行され、ステップS257において、全てのフレームが処理されたと判定された場合、処理はステップS258に進む。
 ステップS258において、復号処理部222は、加算されたフレームデータに対してGold符号を乗算した後に積算することにより、逆拡散して復号処理を行い、気象観測データTMを復元する。
 ステップS259において、復号処理部222は、CRC演算を行うことにより誤り判定を行う。
 ステップS260において、復号処理部222は、ステップS259の誤り判定において誤りが検出され無ければ、復号データとして気象観測データTMを出力する。
 ステップS260の処理が終了すると、復号演算処理が終了し、処理は図8に戻る。
  <フレーム先頭位置検出処理の流れ>
 次に、図11のステップS252において実行されるフレーム位置検出処理の流れの例を、図12のフローチャートを参照して説明する。
 ここで受信信号のレベルが低い場合においては、送信された信号がノイズに埋もれていて、従来手法ではフレームの先頭位置を見つけることができない。そこで復号処理部222は、フレーム全体に分散された既知の同期パタン(SYNC)を用いてフレーム先頭位置検出を行う。
 フレーム位置検出処理が開始されると、復号処理部222は、ステップS271において、同期パタン(SYNC)を抜き出した既知同期波形を作成する。すなわち、復号処理部222は、送信データQDにおいて、同期パタン(SYNC)に相当するビットの「0」を「+1」に置き換え、「1」を「-1」に置き換える。また、復号処理部222は、送信データQDにおいて、UNDに相当するビットを全てゼロとする。
 ステップS272において、復号処理部222は、Gold符号を乗算し、既知拡散符号ref(t,n)を作成する。
 ステップS273において、復号処理部222は、この既知拡散符号ref(t,n)を高速フーリエ変換(FFT(Fast Fourier Transform))することにより、R(k、n)を求める。
 ステップS274において、復号処理部222は、I信号およびQ信号(I'(t)、Q'(t))を高速フーリエ変換することにより、複素受信信号スペクトルS(k) を求める。ここで、R(k)およびS(k)は、共に複素スペクトラムである。
 ステップS275において、復号処理部222は、周波数の微小シフトζを設定し、複素スペクトルの乗算として相互相関値c(t、ζ)を求める。この総合相関値は、以下の式(3)のように高速フーリエ逆変換(IFFT(Inverse Fast Fourier Transform))を用いて求める。
Figure JPOXMLDOC01-appb-M000003

 ・・・(3)
 なお、S*(k)はS(k)の複素共役成分である。
 ここで周波数シフトζの演算は、上述した式(1)と式(2)で説明した演算を行わねばならず、演算に非常に長い時間を必要とする。しかしながら、FFTとIFFTを使うことにより、周波数シフトの演算が配列の読み出し位置シフトで置き換えられている。従って式(3)の演算は高速である。またS(k)は、バンドパスフィルタを通過した信号である。したがって、式(3)での乗算演算(R(k-ζ)とS*(k))は、あらかじめ限られた周波数領域の範囲外であれば、結果がゼロになっている。したがって、式(3)の演算は高速実行することができる。
 このように高速フーリエ変換(FFT)と、高速フーリエ逆変換(IFFT)を使うことにより、復号処理部222は、相関演算をより高速に行うことができる。
 周波数の微少シフトζは、フレーム先頭位置によって変化している可能性がある。そこで、復号処理部222は、ステップS276において、以下の式(4)のように、微少シフトζの値を順次シフトしながら c(t, ζ)の絶対値を加算していくことにより、時間tにおける相互相関値α(t)を求める。
Figure JPOXMLDOC01-appb-M000004

 ・・・(4)
 図13は、このように演算することにより求めたα(t)のプロットの例を示す図である。プロットした12秒間に、ほぼ周期的(0.3秒おき)にピークが立っていることが解る。これらのピーク位置が、すなわちフレームの先頭位置である。またピークの値が一定で無くて、時間によって大きく変動していることが解る。このような変動の原因は、フェージングや送受信機のキャリア発振器の位相回転など、様々な理由が考えられる。
 図13のプロット例は、比較的SNRが良好な状態におけるプロット例を示しており、α(t)のピーク位置を容易に判別することができる。しかしながら、例えば、通信における電界強度が低下した状態では、α(t)の振幅が低下してノイズに埋もれていくので、図13の例のように明快にピーク位置を見つけ出すことが困難になるおそれがある。
 ステップS277において、復号処理部222は、ピーク検出処理を実行して、相互相関値α(t)のピークを見つけ出すことにより、フレーム先頭位置を検出する。ここでn番目のフレームにおける相互相関値をβ(n)とする。α(t)がピークとなる時間をtnとすると、α(t)とβ(n)との関係は、以下の式(5)のように表すことができる。
Figure JPOXMLDOC01-appb-M000005

 ・・・(5)
 図14は、このように演算することにより求めたβ(n)のプロット例を示す図である。図14の例の場合、約0.3秒おきにフレーム先頭位置が見つかっている。また電波状況により、ところどころピークが立ってない(つまりフレーム先頭位置が見つからない)。
 ステップS277の処理が終了すると、フレーム先頭位置検出処理が終了し、処理は図11に戻る。
  <ピーク検出処理の流れ>
 次に、図15のフローチャートを参照して、図12のステップS277において実行されるピーク検出処理の流れの例を説明する。
 ピーク検出処理が開始されると、復号処理部222は、ステップS291において、フレームカウンタnの値をゼロに初期化する。
 ステップS292において、復号処理部222は、30秒間の全領域においてマスクを解除する。マスクは、後述するピーク検出を除外する時間領域である。
 ステップS293において、復号処理部222は、マスクが設定されていない全時間領域において、相互相関値α(t)の最大値を検出する。図16にその検出の様子の例を示す。相互相関値α(t)が最大になる時間は、フレームの先頭と考えられる時間である。
 そこで、ステップS294において、復号処理部222は、この時間をtnとして格納する。また、復号処理部222は、β(n)=α(tn)として、相関値のピークを格納する。つまり、復号処理部222は、相互相関値β(n)とピーク時刻tnを設定する。
 検出されたピーク位置がフレームの先頭であるとすると、この前後0.2秒間には別のフレームが存在しない。
 そこでステップS295において、復号処理部222は、ステップS293において検出されたピークの前後0.2秒間にマスクを設定する。マスク設定の様子の例を図17に示す。
 次に、ステップS296において、復号処理部222は、フレームカウンタnの値に「1」を加えて更新する。
 ステップS297において、復号処理部222は、フレームカウンタの値が「100」に達したか否かを判定する。つまり、復号処理部222は、想定している全フレームの検出が終了したか否かを判定する。
 カウント値が100に達しておらず、想定している全フレームの検出が終了していないと判定された場合、処理はステップS293に戻り、それ以降の処理を繰り返す。つまり、再度、上述したような最大値検出が行われる。なお、この場合、既にフレーム先頭が見つけられている時間には、ステップS295の処理によってマスクが設定されている。したがって、復号処理部222は、図18乃至図21に示されるように、その設定済みのマスクを避けながら最大値検出を行う。
 以上のようにして最大値検出が繰り返し行われ、ステップS297において、所定の数(100箇所)のピークが見つかったと判定された場合、処理はステップS298に進む。
 以上の処理により、β(n)に格納されている順番は、α(tn)のピークが大きい順番に並んでいる。そこでステップS298において、復号処理部222は、そのβ(n)の順番をピークが発生した時間順に並べ替える。
 ステップS298の処理が終了すると、ピーク検出処理が終了し、処理は図12に戻る。
 以上のように、ピークが高い順番にフレーム先頭位置を見つけていくことにより、復号処理部222は、SNRが低い場合においても、より正確にフレーム先頭位置を見つけることができる。
  <パラメータ算出処理の流れ>
 次に、図22のフローチャートを参照して、図11のステップS254において実行されるパラメータ算出処理の流れの例を説明する。
 パラメータ算出処理が開始されると、復号処理部222は、ステップS311において、フレーム毎に切り出されたI信号およびQ信号に対して、周波数変移γ(n)の値を仮設定する。例えば、復号処理部222は、仮設定されたγの値として、-50Hzから+50Hzまでを5Hzステップで設定する。
 ステップS312において、復号処理部222は、初期位相θ(n)の値を仮設定する。例えば、復号処理部222は、仮設定されたθの値として、-180度から+160度までの値を20度刻みで設定する。
 ステップS313において、復号処理部222は、ステップS311において設定された仮周波数変移γと、ステップS312において設定された仮初期位相θに基づいて、切り出されたI信号およびQ信号と同期部分だけの既知拡散符号ref(t,n)との相関値ε(γ、θ)を演算する。
 ステップS314において、復号処理部222は、その相関値ε(γ、θ)のピーク値を求め、β2(n)とする。また、復号処理部222は、相関値ε(γ、θ)のピークを与えるγとθの値を、それぞれ、周波数補正値γ(n)と初期位相θ(n)として求める。
 ステップS315において、復号処理部222は、初期位相θの全ての領域について処理を行ったか否かを判定する。未処理の領域が存在すると判定された場合、処理はステップS312に戻り、それ以降の処理が繰り返される。ステップS312乃至ステップS315の各処理が繰り返し実行され、ステップS315において、初期位相θの全ての領域について処理を行ったと判定された場合、処理はステップS316に進む。
 ステップS316において、復号処理部222は、周波数変移γの全ての領域について処理を行ったか否かを判定する。未処理の領域が存在すると判定された場合、処理はステップS311に戻り、それ以降の処理が繰り返される。ステップS311乃至ステップS316の各処理が繰り返し実行され、ステップS316において、周波数変移γの全ての領域について処理を行ったと判定された場合、処理はステップS317に進む。
 ステップS317において、復号処理部222は、相関値εのピークを与える各パラメータの値を相関値β(n)、周波数補正値γ(n)、初期位相θ(n)として決定する。
 ステップS317の処理が終了すると、パラメータ算出処理が終了し、処理は図11に戻る。
 以上の処理により得られる3つの値、β2(n)、γ(n)、θ(n)は、既知拡散符号ref(t,n)との相関値が最も大きくなっている値である。
 図23の上段は、実験観測された0.2秒のフレーム中での位相変化の例を示している。図23においては、フレーム5(Frame5)乃至フレーム8(Frame8)を抽出して表示しているが、それぞれ微妙に位相と周波数が変化している。CPU220は、上述したようにパラメータ算出処理を実行することにより、このように揺らいでいる位相に対して、図23の下段に示されるように、位相変化を最もよく近似する直線を求めることができる。
 図23の下段において、それぞれの直線の傾きがγ(n)に相当し、初期位相がθ(n)に相当している。また相関値β2(n)は、位相揺らぎと近似直線との相関に応じて変化している。
 上述した各ステップの処理は、任意の順序で実行することができ、並列的に実行することもでき、また、必要に応じて繰り返し実行することができる。
 以上に説明したように、送信装置100や受信装置200を適用することにより、最大連続送信時間短く設定することができる。例えば920MHz帯で0.2秒と設定することにより、沢山の周波数チャネルから選択して送信することができるので、混信に対してより強い送受信システムを構築することができる。また、短い時間のフレームを多数積算することにより、電波法に定められた最大送信時間の制限を超えずに、実効的なSNRを向上させることができる。このとき、同期信号がフレーム全体に分散されているので、フレーム中に位相揺らぎがあった場合においても、より適切に位相と周波数の補正を行うことができる。これらの結果、例えば、ノイズに埋もれてしまい従来の方法では復号することが困難な程微弱な受信信号であっても、受信装置200は、より正しく復号することができる。
 また、複数のフレームを積算する際に、相関係数β(n)を重みとして乗算しながら積算するので、受信装置200は、一部のフレームが欠落した場合、一部のフレームに大きな位相揺らぎがあった場合、または、一部のフレームを誤検出した場合等においても、相関係数β(n)の値が小さくなるので、その影響を緩和して、より正しいデータを復号することができる。
 本技術を適用した送信装置100および受信装置200により送受信を行い復号した結果のコンスタレーションを図24に示す。図24に示されるように、BPSK変調として、2つの点が分離されていることから、この場合、正しくデータが復号されている。
 以上のように各処理を実行することにより復号処理部222は、ノイズに埋もれてしまい従来の方法では復号することが困難な程微弱な受信信号であっても、より正確に検出し、より正しく復号することができる。したがって、受信感度を向上させ、より長距離の無線通信を可能にする。その際、上述のように、干渉抑圧処理部221が干渉抑圧処理や概略レプリカ生成処理を実行して、受信信号の信号レベルが所定の信号レベル以下に圧縮されているため、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 <4.第2の実施の形態>
  <干渉抑圧処理部>
 なお、干渉抑圧処理部221の構成は任意であり、図7の例に限定されない。干渉抑圧処理部221が実行する処理の等価回路の他の例を図25に示す。図25に示される例の場合、干渉抑圧処理部221は、概略レプリカ生成部231および演算部232の他に、さらに、複素ローパスフィルタ(複素LPF 116KHz)311、リミッタ(±1.5TL)312、および複素ローパスフィルタ(複素LPF 50.8KHz)313を備える。
 複素ローパスフィルタ311は、受信チャネル以外の妨害波を除去するように、受信信号に対して帯域制限をかけるフィルタである。この複素ローパスフィルタ311は、明らかに送信装置100から送信された信号と関係のない成分の除去を目的としているため、ある程度広い帯域を通過させるように帯域制限をかける。複素ローパスフィルタ311の出力は、概略レプリカ生成部231と演算部232とに供給される。
 この場合、概略レプリカ生成部231は、複素ローパスフィルタ311を通過した受信信号(ある程度帯域制限がかけられた受信信号)の概略レプリカ信号を生成する。また、この場合の概略レプリカ生成部231は、受信信号の所定の信号レベルを超えている部分の概略レプリカ信号を生成する。
 図25に示されるように、この概略レプリカ生成部231は、振幅検出部321、ローパスフィルタ(LPF)322、位相検出部323、複素合成部324、コンパレータ325、およびスイッチ326を有する。
 振幅検出部321は、受信信号の振幅を検出する。より具体的には、振幅検出部321は、I信号とQ信号とをそれぞれ2乗して加算し、その平方根(Sqrt(I2+Q2))を算出する。ローパスフィルタ322は、振幅検出部321による振幅検出結果に対して、高域成分を除去して受信信号のエンベロープ(包絡線)が得られるように帯域制限をかける。つまり、振幅検出部321およびローパスフィルタ322は、受信信号のエンベロープ(r(t))を検出する。
 位相検出部323は、受信信号の位相Φ(t)を検出する。より具体的には、位相検出部323は、I信号およびQ信号のアークタンジェント(arctan(I,Q))を求める。複素合成部324は、ローパスフィルタ322の出力(つまり、受信信号のエンベロープ検出結果r(t))と、位相検出部323の出力(つまり、受信信号の位相検出結果Φ(t))とを以下の式(6)および式(7)のように複素合成する。これにより、受信信号の概略レプリカ信号が生成される。
 Q'(t) = r(t)sin(Φ(t)) ・・・(6)
 I'(t) = r(t)cos(Φ(t)) ・・・(7)
 コンパレータ325は、ローパスフィルタ322の出力(つまり、受信信号のエンベロープ検出結果r(t))と、所定の信号レベルTLとを比較し、その比較結果を示す信号を出力する。この信号レベルTLは、閾値であり、その値は任意である。例えば、この信号レベルTLを熱雑音レベルの2倍程度に設定するようにしてもよい。例えば、コンパレータ325は、受信信号のエンベロープ検出結果r(t)が信号レベルTL以下の場合、値「0」(偽)を出力し、受信信号のエンベロープ検出結果r(t)が信号レベルTLを超えた場合、値「1」(真)を出力する。つまり、コンパレータ325は、受信信号のエンベロープ検出結果が熱雑音を超えた大きなレベルであるか否かを判定する。
 スイッチ326は、コンパレータ325の出力に従って、複素合成部324の出力(複素合成結果Q'(t),I'(t))の演算部232への供給を制御する。より具体的には、スイッチ326は、コンパレータ325の出力が「1」(真)の場合、複素合成結果Q'(t),I'(t)を演算部232に供給し、コンパレータ325の出力が「0」(偽)の場合、複素合成結果Q'(t),I'(t)の供給を停止する。このようにすることにより、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が生成される。つまり、演算部232には、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が供給される。
 つまり、この場合、演算部232は、コンパレータ325によりエンベロープ検出結果が所定の信号レベルTLを超えていると判定された部分について、複素合成部324により得られる位相検出結果とエンベロープ検出結果との複素合成結果を、受信信号の概略レプリカ信号とし、その受信信号から減算する。
 なお、受信信号が所定の信号レベルTLを超えるタイミングの付近や、受信信号が所定の信号レベルTL以下になるタイミングの付近において、受信信号の振幅が瞬時的に大きく変動する可能性がある。また、概略レプリカ信号が開始されるタイミングの付近や、概略レプリカ信号が終了するタイミングの付近において、概略レプリカ信号の振幅が瞬時的に大きく変動する可能性がある。そのため、演算部232の出力には、それらの区間においてスパイクが発生する可能性がある。
 リミッタ312は、このようなスパイクを除去するように、演算部232の出力に対して、振幅が所定の信号レベル以下になるように振幅制限をかける。例えば、リミッタ312は、所定の信号レベルTLの1.5倍で制限する。リミッタ312が制限をかける振幅の大きさは任意である。ただし、干渉抑圧の目的から、熱雑音レベルと略同程度とすることが望ましい。複素ローパスフィルタ313は、リミッタ312の出力に対して帯域制限をかけるフィルタである。つまり、リミッタ312および複素ローパスフィルタ313は、演算部232により得られる受信信号と概略レプリカ信号との差分の波形を整形する波形整形部として機能する。
 図25の場合も、概略レプリカ信号によって受信信号の大きな振幅変化が除去される。つまり、大きな妨害波の信号レベルも所定の信号レベル以下に圧縮され、熱雑音レベルと略同等となる。
 したがって、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
  <干渉抑圧処理の流れ>
 次に、この場合の干渉抑圧処理の流れの例を、図26のフローチャートを参照して説明する。干渉抑圧処理が開始されると、複素ローパスフィルタ311は、ステップS331において、受信信号に対して複素ローパスフィルタをかける。ステップS332において、概略レプリカ生成部231は、概略レプリカ生成処理を行い、ステップS331において複素ローパスフィルタがかけられた受信信号から概略レプリカ信号を生成する。ステップS333において、演算部232は、ステップS331において複素ローパスフィルタがかけられた受信信号から、ステップS332において生成された概略レプリカ信号を減算する。
 ステップS334において、リミッタ312は、ステップS333の処理により得られた、複素ローパスフィルタがかけられた受信信号と概略レプリカ信号との残差信号にリミッタ(振幅制限)をかける。ステップS335において、複素ローパスフィルタ313は、リミッタがかけられた残差信号に対して複素ローパスフィルタをかける。ステップS335の処理が終了すると、干渉抑圧処理が終了し、処理は図8に戻る。
  <概略レプリカ生成処理の流れ>
 次に、図27のフローチャートを参照して、図26のステップS332において実行される概略レプリカ生成処理の流れの例を説明する。この場合、概略レプリカ生成処理が開始されると、振幅検出部321は、ステップS351において、複素ローパスフィルタがかけられた受信信号の振幅を検出する。ステップS352において、ローパスフィルタ322は、ステップS351の処理により得られた振幅検出結果(振幅検出信号)にローパスフィルタをかける。ステップS353において、位相検出部323は、複素ローパスフィルタがかけられた受信信号の位相を検出する。ステップS354において、複素合成部324は、ステップS352の処理により得られたエンベロープと、ステップS353の処理により得られた位相検出結果とを複素合成する。
 ステップS355において、コンパレータ325は、ステップS352の処理により得られたエンベロープが所定の閾値TLを超えたか否かを判定する。超えたと判定された場合、処理はステップS356に進む。ステップS356において、スイッチ326は、ステップS354の処理により得られた複素合成結果を、概略レプリカ信号として、演算部232に出力する。ステップS356の処理が終了すると概略レプリカ生成処理が終了し、処理は図26に戻る。
 また、ステップS355において、ステップS352の処理により得られたエンベロープが所定の閾値TLを超えていないと判定された場合、ステップS356の処理が省略される。つまり、概略レプリカ信号の演算部232への出力が省略される。そして、概略レプリカ生成処理が終了し、処理は図26に戻る。
 以上のように干渉抑圧処理や概略レプリカ生成処理を実行することにより、受信信号の信号レベルが所定の信号レベル以下に圧縮される。したがって、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 <5.第3の実施の形態>
  <干渉抑圧処理部>
 干渉抑圧処理部221が実行する処理の等価回路のさらに他の例を図28に示す。図28に示される例の場合、干渉抑圧処理部221の概略レプリカ生成部231は、図25に示される構成に加え、増幅部341をさらに備える。
 増幅部341は、複素合成部324の出力、すなわち、位相検出結果と前記エンベロープ検出結果との複素合成結果(複素合成結果Q'(t),I'(t))の振幅を所定の増幅率で増幅する。この場合、増幅率は1未満の値をとる。図28の例の場合、増幅率は0.98である。つまり、概略レプリカ信号の信号レベルが小さくなる。したがって、この増幅部341は、複素合成結果の振幅を所定の減衰率で減衰させる減衰部として機能するとも言える。
 スイッチ326は、コンパレータ325の出力に従って、増幅部341の出力(減衰された複素合成結果Q'(t),I'(t))の演算部232への供給を制御する。より具体的には、スイッチ326は、コンパレータ325の出力が「1」(真)の場合、減衰された複素合成結果Q'(t),I'(t)を演算部232に供給し、コンパレータ325の出力が「0」(偽)の場合、減衰された複素合成結果Q'(t),I'(t)の供給を停止する。このようにすることにより、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が生成される。つまり、演算部232には、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が供給される。
 また、このようにすることにより、概略レプリカ信号の成分を少し受信信号に残すことができるので、誤って送信装置100から送信された送信データを除去してしまう可能性を低減させることができる。
  <概略レプリカ生成処理の流れ>
 図29のフローチャートを参照して、図26のステップS332において実行される概略レプリカ生成処理の流れの例を説明する。この場合、概略レプリカ生成処理が開始されると、ステップS371乃至ステップS374の各処理は、図27のステップS351乃至ステップS354の各処理と同様に実行される。
 ステップS375において、増幅部341は、ステップS374の処理により得られる複素合成結果に所定の増幅率でゲインをかける。
 ステップS376およびステップS377の各処理は、図27のステップS355およびステップS356の各処理と同様に実行される。
 ステップS376またはステップS377の処理が終了すると、概略レプリカ生成処理が終了し、処理は図26に戻る。
 以上のように干渉抑圧処理や概略レプリカ生成処理を実行することにより、受信信号の信号レベルが所定の信号レベル以下に圧縮される。したがって、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 <6.第4の実施の形態>
  <干渉抑圧処理部>
 干渉抑圧処理部221が実行する処理の等価回路のさらに他の例を図30に示す。図30に示される例の場合、干渉抑圧処理部221の概略レプリカ生成部231は、図28の増幅部341の代わりに、量子化部361をさらに備える。
 量子化部361は、複素合成部324の出力、すなわち、位相検出結果とエンベロープ検出結果との複素合成結果(複素合成結果Q'(t),I'(t))を疎に量子化する。つまり、概略レプリカ信号のビット深度を低減させ、より概略化する。
 スイッチ326は、コンパレータ325の出力に従って、量子化部361の出力(量子化された複素合成結果Q'(t),I'(t))の演算部232への供給を制御する。より具体的には、スイッチ326は、コンパレータ325の出力が「1」(真)の場合、量子化された複素合成結果Q'(t),I'(t)を演算部232に供給し、コンパレータ325の出力が「0」(偽)の場合、量子化された複素合成結果Q'(t),I'(t)の供給を停止する。このようにすることにより、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が生成される。つまり、演算部232には、受信信号(のエンベロープ)が信号レベルTLを超えている部分の概略レプリカ信号が供給される。
 また、このようにすることにより、量子化される前の概略レプリカ信号の成分を少し受信信号に残すことができるので、誤って送信装置100から送信された送信データを除去してしまう可能性を低減させることができる。
  <概略レプリカ生成処理の流れ>
 図31のフローチャートを参照して、図26のステップS332において実行される概略レプリカ生成処理の流れの例を説明する。この場合、概略レプリカ生成処理が開始されると、ステップS391乃至ステップS394の各処理は、図27のステップS351乃至ステップS354の各処理と同様に実行される。
 ステップS395において、量子化部361は、ステップS394の処理により得られる複素合成結果に所定の増幅率でゲインをかける。
 ステップS396およびステップS397の各処理は、図27のステップS355およびステップS356の各処理と同様に実行される。
 ステップS396またはステップS397の処理が終了すると、概略レプリカ生成処理が終了し、処理は図26に戻る。
 以上のように干渉抑圧処理や概略レプリカ生成処理を実行することにより、受信信号の信号レベルが所定の信号レベル以下に圧縮される。したがって、復号処理部222は、大きな妨害波の影響(干渉)を受けずに送信装置100から送信された信号(送信データ)を検出し、抽出することができる。したがって、受信装置200は、受信感度の低減を抑制することができる。
 <7.その他>
  <干渉抑圧処理部>
 上述の干渉抑圧処理はCPU220以外において行われるようにしてもよい。例えば、A/D変換部218とメモリ219との間に、干渉抑圧処理部221を設け、そこで干渉抑圧処理を行うようにしてもよい。その場合、干渉抑圧処理部221は、図7、図25、図28、または図30に示した等価回路の機能を有していればよく、これをハードウエアにより実現するようにしてもよいし、ソフトウエアにより実現するようにしてもよい。また、例えば、乗算部215および乗算部217とA/D変換部218との間に、図7、図25、図28、または図30に示される等価回路と同等のアナログ回路(干渉抑圧回路)を設け、そこで干渉抑圧処理を行うようにしてもよい。
  <装置への適用>
 本技術は、送信装置100より送信される信号を受信した受信信号に対して処理を行うことができる装置であれば、上述の受信装置200に限らず、任意の装置に適用することができる。例えば、本技術は、他の装置により受信された受信信号を処理する信号処理装置や情報処理装置に適用することができる。また、本技術は、例えば、上述の受信装置200の受信機能を備え、さらに信号を送信する送信機能も備える送受信装置や通信装置にも適用することができる。もちろん、本技術は、例えば撮像機能や画像表示機能等といった、信号処理以外のその他の任意の機能も備える装置にも適用することができる。
  <通信の仕様>
 また、以上において説明した通信の仕様は一例であり、上述の例に限定されない。例えば熱雑音レベル等の所定の信号レベル以下の受信信号の中から送信データを復号することができるものであれば、通信の仕様は任意である。
 例えば、以上の説明では0.2秒のフレームを30秒間に渡って100回送信する例を説明したが、これらの数値は一例であり、この例に限定されない。例えば、送信するフレーム数を必要に応じて変化させるようにしてもよい。また受信装置200がACK情報(受信確認情報)を送信装置100に返すようにし、ACK情報が返された時点でフレーム送信を打ち切るようにしてもよい。
 また、以上においては、100回のフレームで送信される送信信号が全て同一であるとして説明したが、この例に限定されない。例えば、送受信でフレーム番号を特定することができる場合等において、フレーム番号毎にゴールド系列(拡散系列)を変えるように構成するようにしてもよい。
 また、以上においては、送信した100回のフレームの全てを検出するとして説明したが、この例に限定されない。例えば雑音などの影響を考慮して、100回中の98回を検出するように構成してもよい。
 また、以上においては、受信装置200が受信する無線信号(送信信号TX)がBPSK変調されているように説明したが、位相変位量は任意であり、これに限らない。例えば、QPSK変調(4位相偏移変調)されているようにしてもよい。この場合も、受信装置200は、送信装置100と同様の擬似乱数列を生成し、その擬似乱数列を用いて復号するようにすればよい。
 また、以上においては、受信装置200が、送信信号TXを無線信号として受信するように説明したが、受信装置200が任意の有線の通信媒体を介して送信される送信信号TXを受信するようにしてもよい。
  <システムへの適用>
 なお、以上に説明した送信装置100と受信装置200との間で送受信される情報は任意である。例えば、画像、音声、測定データ、機器等の識別情報、パラメータの設定情報、または指令等の制御情報等が送受信されるようにしてもよい。また、この送受信される情報には、例えば、画像と音声、識別情報と設定情報と制御情報等のように、複数種類の情報が含まれるようにしてもよい。
 また、以上においては送信装置100が気象観測データを送信するように説明したが、送受信される情報の内容は任意であり、気象観測データに限定されない。例えば、送信装置100が、画像、光、明度、彩度、電気、音、振動、加速度、速度、角速度、力、温度(温度分布ではない)、湿度、距離、面積、体積、形状、流量、時刻、時間、磁気、化学物質、または匂い等、任意の変数について、またはその変化量について、検出または計測等を行う各種センサから出力される情報(センサ出力)を含む送信情報を生成し、送信するようにしてもよい。
 つまり、本技術を適用した装置は、例えば、立体形状計測、空間計測、物体観測、移動変形観測、生体観測、認証処理、監視、オートフォーカス、撮像制御、照明制御、追尾処理、入出力制御、電子機器制御、アクチュエータ制御等、任意の用途に用いられるシステムに利用することができる。つまり、本技術は任意のシステムに適用することができる。
 例えば、本技術は、交通、医療、防犯、農業、畜産業、鉱業、美容、工場、家電、気象、自然監視等、任意の分野のシステムに適用することができる。例えば、本技術は、ディジタルカメラや、カメラ機能付きの携帯機器等を用いる、鑑賞の用に供される画像を撮影するシステムにも適用することができる。また、例えば、本技術は、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用システム、走行車両や道路を監視する監視カメラシステム、車両間等の測距を行う測距システム等の、交通の用に供されるシステムにも適用することができる。さらに、例えば、本技術は、防犯用途の監視カメラや、人物認証用途のカメラ等を用いる、セキュリティの用に供されるシステムにも適用することができる。また、例えば、本技術は、ウェアラブルカメラ等のようなスポーツ用途等向けに利用可能な各種センサ等を用いる、スポーツの用に供されるシステムにも適用することができる。さらに、例えば、本技術は、畑や作物の状態を監視するためのカメラ等の各種センサを用いる、農業の用に供されるシステムにも適用することができる。また、例えば、本技術は、豚や牛等の家畜の状態を監視するための各種センサを用いる、畜産業の用に供されるシステムにも適用することができる。さらに、本技術は、例えば火山、森林、海洋等の自然の状態を監視するシステムや、例えば天気、気温、湿度、風速、日照時間等を観測する気象観測システムや、例えば鳥類、魚類、ハ虫類、両生類、哺乳類、昆虫、植物等の野生生物の生態を観測するシステム等にも適用することができる。
 例えば、本技術は、送信装置100が自身の位置を示す位置情報を通知し、サーバが受信装置200を介してその位置情報を取得し、送信装置100の位置を管理する位置管理システムにも適用することができる。このシステムは、例えば、送信装置100を高齢者等の位置監視対象に携帯させることにより、安全等を目的として、その位置監視対象の位置を管理するシステムとして利用することができる。また、このシステムは、例えば、自動車やバイク等に送信装置100を設置し、盗難防止等を目的として、その位置を監視する盗難防止システムとして利用することもできる。
  <コンピュータ>
 上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。また、一部の処理をハードウエアにより実行させ、他の処理をソフトウエアにより実行させることもできる。一連の処理をソフトウエアにより実行する場合には、そのソフトウエアを構成するプログラムが、コンピュータにインストールされる。ここでコンピュータには、専用のハードウエアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
 図32は、上述した一連の処理をプログラムにより実行するコンピュータのハードウエアの構成例を示すブロック図である。
 図32に示されるコンピュータ600において、CPU611、ROM(Read Only Memory)612、RAM(Random Access Memory)613は、バス614を介して相互に接続されている。バス614にはまた、入出力インタフェース620も接続されている。入出力インタフェース620には、入力部621、出力部622、記憶部623、通信部624、およびドライブ625が接続されている。
 入力部621は、例えば、キーボード、マウス、マイクロホン、タッチパネル、入力端子などよりなる。出力部622は、例えば、ディスプレイ、スピーカ、出力端子などよりなる。記憶部623は、例えば、ハードディスク、RAMディスク、不揮発性のメモリなどよりなる。通信部624は、例えば、ネットワークインタフェースよりなる。ドライブ625は、磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリなどのリムーバブルメディア631を駆動する。
 以上のように構成されるコンピュータ600では、CPU611が、例えば、記憶部623に記憶されているプログラムを、入出力インタフェース620およびバス614を介して、RAM613にロードして実行することにより、上述した一連の処理が行われる。RAM613にはまた、CPU611が各種の処理を実行する上において必要なデータなども適宜記憶される。
 コンピュータ600(CPU611)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア631に記録して適用することができる。その場合、プログラムは、リムーバブルメディア631をドライブ625に装着することにより、入出力インタフェース620を介して、記憶部623にインストールすることができる。また、このプログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することもできる。その場合、プログラムは、通信部624で受信し、記憶部623にインストールすることができる。その他、このプログラムは、ROM612や記憶部623に、あらかじめインストールしておくこともできる。
  <補足>
 本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、装置またはシステムを構成するあらゆる構成、例えば、システムLSI(Large Scale Integration)等としてのプロセッサ、複数のプロセッサ等を用いるモジュール、複数のモジュール等を用いるユニット、ユニットにさらにその他の機能を付加したセット等(すなわち、装置の一部の構成)として実施することもできる。
 なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、全ての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
 また、例えば、本技術は、1つの機能を、ネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、例えば、上述したプログラムは、任意の装置において実行することができる。その場合、その装置が、必要な機能(機能ブロック等)を有し、必要な情報を得ることができるようにすればよい。
 また、例えば、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。換言するに、1つのステップに含まれる複数の処理を、複数のステップの処理として実行することもできる。逆に、複数のステップとして説明した処理を1つのステップとしてまとめて実行することもできる。
 コンピュータが実行するプログラムは、プログラムを記述するステップの処理が、本明細書で説明する順序に沿って時系列に実行されるようにしても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで個別に実行されるようにしても良い。つまり、矛盾が生じない限り、各ステップの処理が上述した順序と異なる順序で実行されるようにしてもよい。さらに、このプログラムを記述するステップの処理が、他のプログラムの処理と並列に実行されるようにしても良いし、他のプログラムの処理と組み合わせて実行されるようにしても良い。
 本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
 本技術は以下のような構成も取ることができる。
 (1) 受信信号を所定の信号レベル以下に圧縮する信号圧縮部と、
 前記信号圧縮部により前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する復号部と
 を備える信号処理装置。
 (2) 前記信号圧縮部は、
  前記受信信号の大きな振幅変化を再現した概略レプリカ信号を生成する概略レプリカ生成部と、
  前記受信信号から前記概略レプリカ生成部により生成された前記概略レプリカ信号を減算する減算部と
 を備える(1)に記載の信号処理装置。
 (3)  前記概略レプリカ生成部は、前記受信信号を疎に量子化する量子化部を備え、
  前記減算部は、前記量子化部により得られる前記受信信号の量子化結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
 (2)に記載の信号処理装置。
 (4)   前記量子化部は、ビット深度16ビットの前記受信信号を4ビットに量子化する
 (3)に記載の信号処理装置。
 (5)  前記概略レプリカ生成部は、前記受信信号の、前記信号レベルを超えている部分の概略レプリカ信号を生成する
 (2)に記載の信号処理装置。
 (6)  前記概略レプリカ生成部は、
   前記受信信号の位相を検出する位相検出部と、
   前記受信信号のエンベロープを検出するエンベロープ検出部と、
   前記位相検出部により得られる前記受信信号の位相検出結果と、前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果とを複素合成する複素合成部と、
   前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果が前記信号レベルを超えているか否かを判定する判定部と
 を備え、
  前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記複素合成部により得られる前記位相検出結果と前記エンベロープ検出結果との複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
 (5)に記載の信号処理装置。
 (7)  前記概略レプリカ生成部は、
   前記複素合成結果の振幅を所定の減衰率で減衰させる減衰部をさらに備え、
  前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記減衰部により振幅が前記減衰率で減衰された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
 (6)に記載の信号処理装置。
 (8)  前記概略レプリカ生成部は、
   前記複素合成結果の振幅を疎に量子化する量子化部をさらに備え、
  前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記量子化部により量子化された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
 (6)に記載の信号処理装置。
 (9) 前記信号圧縮部は、前記減算部により得られる前記受信信号と前記概略レプリカ信号との差分の波形を整形する波形整形部をさらに備える
 (2)乃至(8)のいずれかに記載の信号処理装置。
 (10)  前記波形整形部は、前記差分の振幅を、所定の信号レベル以下に制限する制限部を有する
 (9)に記載の信号処理装置。
 (11)  前記波形整形部は、前記差分の高域成分を制限するローパスフィルタを有する
 (9)または(10)に記載の信号処理装置。
 (12) 前記信号圧縮部は、前記受信信号の高域成分を制限するローパスフィルタを備える
 (2)乃至(11)のいずれかに記載の信号処理装置。
 (13) 前記信号レベルは、熱雑音レベルである
 (1)乃至(12)のいずれかに記載の信号処理装置。
 (14) 受信信号を所定の信号レベル以下に圧縮し、
 前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する
 信号処理方法。
 200 受信装置, 220 CPU, 221 干渉抑圧処理部, 222 復号処理部, 231 概略レプリカ生成部, 232 演算部, 241 量子化部, 311 複素ローパスフィルタ, 312 リミッタ, 313 複素ローパスフィルタ, 321 振幅検出部, 322 ローパスフィルタ, 323 位相検出部, 324 複素合成部, 325 コンパレータ, 326 スイッチ, 341 増幅部, 361 量子化部, 600 コンピュータ

Claims (14)

  1.  受信信号を所定の信号レベル以下に圧縮する信号圧縮部と、
     前記信号圧縮部により前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する復号部と
     を備える信号処理装置。
  2.  前記信号圧縮部は、
      前記受信信号の大きな振幅変化を再現した概略レプリカ信号を生成する概略レプリカ生成部と、
      前記受信信号から前記概略レプリカ生成部により生成された前記概略レプリカ信号を減算する減算部と
     を備える請求項1に記載の信号処理装置。
  3.   前記概略レプリカ生成部は、前記受信信号を疎に量子化する量子化部を備え、
      前記減算部は、前記量子化部により得られる前記受信信号の量子化結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
     請求項2に記載の信号処理装置。
  4.    前記量子化部は、ビット深度16ビットの前記受信信号を4ビットに量子化する
     請求項3に記載の信号処理装置。
  5.   前記概略レプリカ生成部は、前記受信信号の、前記信号レベルを超えている部分の概略レプリカ信号を生成する
     請求項2に記載の信号処理装置。
  6.   前記概略レプリカ生成部は、
       前記受信信号の位相を検出する位相検出部と、
       前記受信信号のエンベロープを検出するエンベロープ検出部と、
       前記位相検出部により得られる前記受信信号の位相検出結果と、前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果とを複素合成する複素合成部と、
       前記エンベロープ検出部により得られる前記受信信号のエンベロープ検出結果が前記信号レベルを超えているか否かを判定する判定部と
     を備え、
      前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記複素合成部により得られる前記位相検出結果と前記エンベロープ検出結果との複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
     請求項5に記載の信号処理装置。
  7.   前記概略レプリカ生成部は、
       前記複素合成結果の振幅を所定の減衰率で減衰させる減衰部をさらに備え、
      前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記減衰部により振幅が前記減衰率で減衰された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
     請求項6に記載の信号処理装置。
  8.   前記概略レプリカ生成部は、
       前記複素合成結果の振幅を疎に量子化する量子化部をさらに備え、
      前記減算部は、前記判定部により前記エンベロープ検出結果が前記信号レベルを超えていると判定された部分について、前記量子化部により量子化された前記複素合成結果を、前記概略レプリカ信号とし、前記受信信号から減算するように構成される
     請求項6に記載の信号処理装置。
  9.  前記信号圧縮部は、前記減算部により得られる前記受信信号と前記概略レプリカ信号との差分の波形を整形する波形整形部をさらに備える
     請求項2に記載の信号処理装置。
  10.   前記波形整形部は、前記差分の振幅を、所定の信号レベル以下に制限する制限部を有する
     請求項9に記載の信号処理装置。
  11.   前記波形整形部は、前記差分の高域成分を制限するローパスフィルタを有する
     請求項9に記載の信号処理装置。
  12.  前記信号圧縮部は、前記受信信号の高域成分を制限するローパスフィルタを備える
     請求項2に記載の信号処理装置。
  13.  前記信号レベルは、熱雑音レベルである
     請求項1に記載の信号処理装置。
  14.  受信信号を所定の信号レベル以下に圧縮し、
     前記信号レベル以下に圧縮された前記受信信号に含まれる、送信側から送信された送信データを復号する
     信号処理方法。
PCT/JP2018/006417 2017-03-08 2018-02-22 信号処理装置および方法 WO2018163840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18764590.8A EP3595182B1 (en) 2017-03-08 2018-02-22 Signal processing device and method
US16/488,695 US11212702B2 (en) 2017-03-08 2018-02-22 Signal processing apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017043812A JP2018148488A (ja) 2017-03-08 2017-03-08 信号処理装置および方法
JP2017-043812 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018163840A1 true WO2018163840A1 (ja) 2018-09-13

Family

ID=63447730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006417 WO2018163840A1 (ja) 2017-03-08 2018-02-22 信号処理装置および方法

Country Status (4)

Country Link
US (1) US11212702B2 (ja)
EP (1) EP3595182B1 (ja)
JP (1) JP2018148488A (ja)
WO (1) WO2018163840A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106033A1 (ja) * 2019-11-25 2021-06-03 三菱電機株式会社 歪み補償装置及び歪み補償方法
WO2022051404A1 (en) * 2020-09-01 2022-03-10 Kumu Networks, Inc. System and method for repeater tdd synchronization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214397A (ja) * 1995-11-30 1997-08-15 Murata Mfg Co Ltd スペクトル拡散通信装置
JP4443991B2 (ja) 2004-04-23 2010-03-31 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、受信装置及び受信方法
JP2010252249A (ja) * 2009-04-20 2010-11-04 Fujitsu Ten Ltd 受信装置及びノイズ除去方法
JP2016046618A (ja) 2014-08-21 2016-04-04 ソニー株式会社 信号処理装置および方法、並びに、プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266379B1 (en) * 1997-06-20 2001-07-24 Massachusetts Institute Of Technology Digital transmitter with equalization
US8175041B2 (en) * 2006-12-14 2012-05-08 Samsung Electronics Co., Ltd. System and method for wireless communication of audiovisual data having data size adaptation
US9641813B2 (en) * 2013-03-15 2017-05-02 Arris Enterprises, Inc. CATV video and data transmission system with RF and digital combining network
US9350404B2 (en) * 2013-06-21 2016-05-24 Thinkrf Corporation Dual mode radio frequency receivers for wideband signal processing
JP5988527B2 (ja) * 2013-12-10 2016-09-07 株式会社日立国際電気 受信装置
TWI631835B (zh) * 2014-11-12 2018-08-01 弗勞恩霍夫爾協會 用以解碼媒體信號之解碼器、及用以編碼包含用於主要媒體資料之元資料或控制資料的次要媒體資料之編碼器
US9503154B2 (en) * 2015-01-30 2016-11-22 Trellisware Technologies, Inc. Methods and systems for interference estimation via quantization in spread-spectrum systems
US10298279B2 (en) * 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214397A (ja) * 1995-11-30 1997-08-15 Murata Mfg Co Ltd スペクトル拡散通信装置
JP4443991B2 (ja) 2004-04-23 2010-03-31 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、受信装置及び受信方法
JP2010252249A (ja) * 2009-04-20 2010-11-04 Fujitsu Ten Ltd 受信装置及びノイズ除去方法
JP2016046618A (ja) 2014-08-21 2016-04-04 ソニー株式会社 信号処理装置および方法、並びに、プログラム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3595182A4
TADA, YASUTAKA ET AL.: "High anti-interference performance of 802.15.4k DSSS systems to coexist with others in 920 MHz band", IEICE TECHNICAL REPORT, vol. 114, no. 84, 9 June 2014 (2014-06-09), pages 35 - 39, XP055605204 *

Also Published As

Publication number Publication date
US20210219172A1 (en) 2021-07-15
US11212702B2 (en) 2021-12-28
JP2018148488A (ja) 2018-09-20
EP3595182B1 (en) 2022-07-13
EP3595182A4 (en) 2020-03-25
EP3595182A1 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
US11296747B2 (en) Information processing device and method, transmitting device and method, and receiving device and method
Kuhn An asymmetric security mechanism for navigation signals
US20070008108A1 (en) Unsynchronized beacon location system and method
RU2673843C2 (ru) Обработка сигналов
US10797747B2 (en) Signal processing device and method and program
JP6918427B2 (ja) 信号処理装置および方法、情報処理装置および方法、並びに、プログラム
WO2018163840A1 (ja) 信号処理装置および方法
WO2016194719A1 (ja) 信号処理装置および方法、並びに、プログラム
JP7214627B2 (ja) 信号処理装置および方法
US10892853B2 (en) Transmission apparatus and method, and reception apparatus and method
Scott Interference: Origins, Effects, and Mitigation
WO2017130726A1 (ja) 情報処理装置および方法
JP2019146260A (ja) 信号処理装置および方法、並びに、プログラム
JP6819591B2 (ja) 情報処理装置および方法、並びに、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764590

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018764590

Country of ref document: EP

Effective date: 20191008