WO2018163362A1 - 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置 - Google Patents

散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置 Download PDF

Info

Publication number
WO2018163362A1
WO2018163362A1 PCT/JP2017/009531 JP2017009531W WO2018163362A1 WO 2018163362 A1 WO2018163362 A1 WO 2018163362A1 JP 2017009531 W JP2017009531 W JP 2017009531W WO 2018163362 A1 WO2018163362 A1 WO 2018163362A1
Authority
WO
WIPO (PCT)
Prior art keywords
tof
projection data
scattering
data
energy window
Prior art date
Application number
PCT/JP2017/009531
Other languages
English (en)
French (fr)
Inventor
哲哉 小林
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019504230A priority Critical patent/JP6711450B2/ja
Priority to EP17899790.4A priority patent/EP3594722A1/en
Priority to US16/492,430 priority patent/US11513243B2/en
Priority to PCT/JP2017/009531 priority patent/WO2018163362A1/ja
Priority to CN201780088220.6A priority patent/CN110446946A/zh
Publication of WO2018163362A1 publication Critical patent/WO2018163362A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1647Processing of scintigraphic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating

Definitions

  • the present invention relates to a scattering estimation method, a scattering estimation program, and a positron CT apparatus equipped with the scattering estimation method, a TOF (Time Of Flight) measurement type PET (Positron Emission Tomography) that measures the difference in detection time between two annihilation radiations that reach the detector. It is related with data correction technology.
  • TOF Time Of Flight
  • PET Pulsitron Emission Tomography
  • a positron CT device or PET (Positron Emission Tomography) device, is effective only when two ⁇ -rays generated by the annihilation of positron (Positron) are detected simultaneously by multiple detectors (that is, only when they are counted simultaneously). It is configured to measure the signal as a simple signal and reconstruct a tomographic image of the subject based on the measurement data.
  • a radiopharmaceutical containing a positron emitting nuclide is administered to a subject, and 511 keV paired annihilation gamma rays released from the administered subject are detected by a group of detector elements (for example, scintillators). Detect with instrument.
  • positron CT various data correction processes are required to quantitatively measure the radioactivity concentration in the subject.
  • Typical correction processes include sensitivity correction, attenuation correction, scattering correction, random correction, attenuation correction, and dead time correction.
  • the present invention relates to scatter correction of PET (hereinafter referred to as “TOF-PET”) for measuring annihilation radiation detection time difference (also referred to as “flight time difference”) (TOF: Time Of Flight) information.
  • TOF-PET annihilation radiation detection time difference
  • TOF Time Of Flight
  • Scattering estimation is to estimate the distribution of scattered radiation mixed in PET measurement data.
  • Scatter correction is to convert the estimated scattered radiation distribution from the measured data and convert it to data that eliminates the influence (bias) of the scattered radiation, or the estimated scattered radiation distribution is a calculation formula for image reconstruction. This means that a reconstructed image in which the influence of scattered radiation is excluded is acquired.
  • the data format of the PET measurement data is one of sinogram, histogram, and list mode.
  • the sinogram data is signal value array data assigned to each element in the projection angle direction and each element in the radial direction.
  • the histogram data is signal value array data assigned to each pair of detectors that have been simultaneously counted.
  • the list mode data is time-series signal value array data allocated to each pair of an event (also referred to as an “event”) in which ⁇ -rays are detected and a coincidence detector.
  • the measurement data of PET that does not measure TOF information (hereinafter referred to as “non-TOF-PET”) is four-dimensional array data.
  • the measurement data of TOF-PET is five-dimensional array data to which the time division of TOF information is added. Scattering estimation when the data format is sinogram or histogram is to estimate the absolute amount of scattered radiation contained in each element of the five-dimensional array data.
  • the TOF-PET measurement data is P [t] [r 0 ] [r 1 ] [ ⁇ ] [s] is five-dimensional array data
  • non-TOF-PET measurement data is four-dimensional array data of P [r 0 ] [r 1 ] [ ⁇ ] [s].
  • t is a time delimiter element of TOF information
  • r 0 and r 1 are individual detector ring numbers
  • is a projection angle direction element
  • s is a radial direction element. Note that in the case of one detector ring, the elements of [r 0 ] [r 1 ] are omitted.
  • Patent Document 1 US Pat. No. 7,129,496 discloses a function (timing response function) that estimates a virtual scattered ray distribution when there is no measurement error of TOF information and represents the measurement error of TOF information. ) Is convoluted with the time division of the TOF information of the estimated scattered radiation distribution to estimate the actual scattered radiation distribution (see the scattering estimation calculation formula in the fifth column, line 60 of Patent Document 1). This is the method described in Non-Patent Document 1.
  • Patent Document 2 US Pat. No. 7,397,035 discloses a single scattering simulation (SSS) algorithm ((1 of Patent Document 2) that estimates the distribution of non-TOF-PET scattered radiation. ) Is extended so that the distribution of scattered radiation of TOF-PET can be estimated. Specifically, the line integral value of the radioactivity distribution ⁇ (•) on the straight line connecting the scattering point S and the detection point A (B) (see FIG. 3 of Patent Document 2) (see FIG. 3 of Patent Document 2) When calculating using the equation (2), the detection efficiency function ⁇ TOF, n (•) of each TOF offset bin (see the equation (3) in Patent Document 2) is taken into consideration. This method is disclosed in Non-Patent Document 2 later. Note that bin here means discretization (separation).
  • SSS single scattering simulation
  • the TOF bin means a temporal separation of TOF information. For example, when the TOF bin is 100 [ps], bins of 100 [ps], 200 [ps], 300 [ps],. Separated in time.
  • Patent Document 4 US Pat. No. 8,265,365
  • the distribution of scattered radiation of TOF-PET is directly based on the mathematical formula as in Patent Document 2: US Pat. No. 7,397,035.
  • the reconstructed image without bias is calculated in advance from the non-TOF projection data.
  • the TOF forward projection data of the image (“TOF truesutdistribution” in Claim ⁇ 1 of Patent Document 4) is converted to prompt coincidence data mixed with scattered radiation (“TOF prompt coincidence events” in Claim 1 of Patent Document 4).
  • the distribution of scattered radiation is indirectly estimated.
  • Patent Document 5 International Publication No. WO2013 / 175352
  • Analytical like Patent Document 2 US Patent No. 7,397,035
  • Patent Document 4 US Patent No. 8,265,365.
  • the distribution of scattered radiation is estimated based on Monte Carlo simulation.
  • the TOF projection data including the scattering component is created, and the TOF projection data is obtained by integrating (that is, adding) the TOF information at the time interval (also referred to as “TOF direction”).
  • the ratio between the signal value in the non-TOF projection data and the signal value in each TOF projection data is calculated as a distribution ratio for distributing the data for each time division (TOF direction) of the TOF information.
  • Non-Patent Document 3 non-TOF scattering projection distribution (non-TOF scattering projection data) is obtained by a known technique such as non-TOF-SSS algorithm, energy window method, and convolution method, and non-TOF scattering projection. By distributing the data to multiple according to the above distribution ratio, each distributed data is converted into TOF scattered projection data (TOF scattered radiation of TOF scattered radiation) for each time division (TOF direction) of TOF information. Distribution).
  • Non-Patent Document 3 Projection data (distribution) obtained by integrating (compressing) unknown TOF scattering projection data (5-dimensional array data) in the sinogram with the time division (TOF direction) of TOF information is non-TOF scattering projection data (4D Array data).
  • TOF time interval
  • TOF direction time interval
  • TOF direction profile a profile showing how the scattered dose changes in the time interval (TOF direction) of the TOF information.
  • TOF direction profile it is easy to extend non-TOF scattered projection data in the TOF direction according to the profile (distributed to the same number of TOF bins).
  • each data expanded in the TOF direction can be estimated as TOF scattered projection data. That is, when non-TOF scattering projection data (non-TOF scattered radiation distribution) is known, performing estimation of TOF scattering projection data is synonymous with “determining the TOF direction profile”.
  • the signal value array data in the TOF projection data including the scattering component is P as shown in the upper part of FIG.
  • each signal value array data P in the TOF projection data is ⁇ 0, 1, 3, 8, 4, 2, 1, 1, 0 ⁇ .
  • the signal value in the non-TOF projection data is “20” (see “Total: 20” in the upper part of FIG. 6).
  • the TOF direction profile is ⁇ 0 / 20,1 / 20,3 / 20,8 / 20,4 / 20,2 / 20,1 / 20,1 / 20,0 / 20 ⁇ .
  • This TOF direction profile can be regarded as a distribution ratio for distributing data for each time division (TOF direction) of TOF information.
  • non-TOF scattered projection data can be obtained by a known technique such as a non-TOF-SSS algorithm, an energy window method, a convolution method, or the like.
  • the signal value in the non-TOF scattering projection data is S NT as shown in the middle part of FIG. Therefore, if the signal value S NT in the non-TOF scattered projection data is distributed in the same number as the number of TOF bins (9 in FIG. 6) according to the distribution ratio corresponding to the TOF direction profile, the distributed individual data is , TOF scattering projection data, which is scattering projection data for each time division (TOF direction) of TOF information.
  • the simplest distribution method multiplies the signal value S NT in the non-TOF scattering projection data by the distribution ratio and obtains each obtained data as TOF scattering projection data (Equation (3) of Non-Patent Document 3) See).
  • the lower part of FIG. 6 shows signal value array data in the TOF scattering projection data obtained by multiplying the signal value S NT in the non-TOF scattering projection data by the distribution ratio.
  • the signal value array data in the TOF scattering projection data is S TOF as shown in the lower part of FIG. TOF scatter projection data signal value sequence data S TOF in the, ⁇ 0/20, S NT / 20,3S NT / 20,8S NT / 20,4S NT / 20,2S NT / 20, S NT / 20, S NT / 20,0 / 20 ⁇ .
  • the signal values in the non-TOF projection data obtained by integrating the TOF projection data at the time interval (TOF direction) of the TOF information and each TOF projection data The ratio with the signal value at can be calculated as a distribution ratio corresponding to the TOF direction profile. Furthermore, if non-TOF scattering projection data is distributed in a plurality according to the distribution ratio, scattering estimation can be easily performed.
  • Non-Patent Document 3 has a problem that the TOF direction profile of scattered radiation cannot be obtained accurately.
  • TOF projection data y p (5-dimensional array data) of prompt coincidence measured in a normal energy window (for example, 400 keV-600 keV) for measurement of data used for image reconstruction is created.
  • the TOF projection data y r of random coincidence measured (or calculated) in the energy window is created.
  • TOF projection data y t + s including only true coincidence and scatter coincidence is obtained.
  • a count value profile in the TOF direction of y t + s that is five-dimensional array data is calculated, and is used as the TOF direction profile.
  • the TOF direction profile is estimated from the TOF projection data y t + s of the sum of the true coincidence and scattering coincidence included in the normal energy window (for example, 400 keV-600 keV).
  • the TOF direction profile of scattered radiation is not strictly determined.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a scattering estimation method, a scattering estimation program, and a positron CT apparatus equipped with the scattering estimation method capable of accurately performing scattering estimation. .
  • the inventor made the following estimations as a result of intensive studies to solve the above problems.
  • the TOF direction profile is estimated from the TOF projection data y t + s including the true coincidence and the scattering coincidence, it is impossible to accurately obtain the TOF direction profile of the scattered radiation.
  • the projection data actually measured in an energy window (for example, 450 keV or less) having a central energy lower than the central energy in the normal energy window includes some true coincidence.
  • the proportion of the scattering coincidence increases as the proportion of the true coincidence included in the projection data decreases.
  • an energy window of 450 keV or less is regarded as an energy window for scattered radiation, and the TOF direction profile of the scattered radiation is estimated from data measured in the energy window for the scattered radiation (hereinafter also referred to as “low energy window”). Furthermore, it was estimated that the scattering estimation can be performed accurately if the distribution ratio is obtained.
  • the scatter estimation method according to the present invention is a scatter estimation method for positron CT measurement data, and is measured with an energy window for reconstruction data set to obtain reconstruction data obtained by positron CT.
  • the first TOF projection data which is projection data for each time interval, is assigned to each time interval of Time Of Flight information, which is the difference in detection time between two annihilation radiations that have reached the detector.
  • a first TOF projection data creation step for creating a detection signal data measured in an energy window for scattered radiation having a center energy lower than a center energy in the energy window for the reconstruction data.
  • the second TOF projection data which is projection data for each time segment, is assigned to each segment.
  • a second TOF projection data creation step to be created, a signal value in non-TOF projection data obtained by integrating the second TOF projection data at the time interval, and each of the second TOF projection data A non-TOF obtained by integrating a distribution ratio calculation step for calculating a ratio with a signal value as a distribution ratio for distributing data at each time interval, and integrating the first TOF projection data at the time interval.
  • a TOF scattering projection data calculation step of calculating a TOF scattering projection data is data.
  • the energy window for reconstruction data is a normal energy window
  • the energy window for reconstruction data (normal energy window)
  • TOF information Time Of Flight information
  • the energy window for scattered radiation having a central energy lower than the central energy in the normal energy window is a low energy window.
  • the energy window for scattered radiation (low energy)
  • the detection signal data measured in (window) is allocated for each time interval of TOF information, thereby generating second TOF projection data that is projection data for each time interval.
  • the second TOF projection data measured in the low energy window contains a large percentage of the coincidence of scattering, but contains some of the true coincidence and the TOF scattering projection in the normal energy window. Does not match the data. Therefore, the second TOF projection data is not the TOF scattering projection data in the normal energy window finally obtained.
  • TOF scattering projection data in a normal energy window is obtained by performing the following steps.
  • the distribution ratio calculation step the ratio of the signal value in the non-TOF projection data obtained by integrating the second TOF projection data at time intervals and the signal value in each second TOF projection data is calculated in terms of time. Calculated as a distribution ratio for distributing data for each break.
  • the scattering estimation process is performed on the non-TOF projection data obtained by integrating the first TOF projection data at time intervals, so that the normal energy window is obtained.
  • the normal energy window includes the projection data composed of the signal values obtained by multiplication by multiplying the signal value in the non-TOF scattered projection data by the distribution ratio. Calculated as TOF scattered projection data, which is scattered projection data for each time interval.
  • the scattering estimation can be accurately performed. Furthermore, since the target of distribution is non-TOF scattering projection data in the normal energy window, the TOF scattering projection data after distribution is approximately obtained as TOF scattering projection data in the normal energy window, and scattering estimation is performed. Can be performed more accurately.
  • the first TOF projection data and the second TOF projection data collected directly from the coincidence circuit include an accidental coincidence. Therefore, in order to remove the coincidence coincidence, in the first TOF projection data creation step, the first TOF projection data obtained by subtracting the coincidence coincidence TOF projection data from the prompt coincidence TOF projection data is used as the first TOF projection data. It is preferable to create as TOF projection data. Similarly, in order to remove the coincidence coincidence, in the second TOF projection data creation step, the TOF projection data obtained by subtracting the coincidence coincidence TOF projection data from the immediate coincidence TOF projection data is obtained. It is preferable to create it as 2 TOF projection data. More preferably, the incidental coincidence TOF projection data is subtracted from the immediate coincidence TOF projection data in both the first TOF projection data creation step and the second TOF projection data creation step.
  • the scattering estimation process in the non-TOF scattering projection data creation step described above includes, for example, a scattering estimation process using the following method.
  • An example of the scattering estimation process in the non-TOF scattering projection data creation process is to estimate the scattered radiation distribution using the energy window for reconstruction data (normal energy window) and the energy window for scattered radiation (low energy window). This is a scattering estimation process in the energy window method.
  • Another example of the scattering estimation process in the non-TOF scattering projection data creation step is a scattering estimation process in a single scattering simulation method that estimates a scattered radiation distribution using a radiation distribution image and an absorption coefficient image as input data.
  • the scattering estimation program according to the present invention causes a computer to execute the scattering estimation method according to the present invention.
  • the scattering estimation program by causing the computer to execute the scattering estimation method according to the present invention, the distribution ratio is calculated from the second TOF projection data measured in the energy window for scattered radiation (low energy window). Since the target of distribution is non-TOF scattering projection data in the energy window for reconstruction data (normal energy window), the TOF scattering projection data after distribution is the energy window for reconstruction data ( It is approximately obtained as TOF scattering projection data in a normal energy window), and scattering estimation can be performed accurately.
  • the positron CT apparatus is a positron CT apparatus equipped with the scattering estimation program according to the present invention, and includes a calculation means for executing the scattering estimation program.
  • the positron CT apparatus According to the positron CT apparatus according to the present invention, from the second TOF projection data measured with the energy window (low energy window) for scattered radiation by including the calculation means for executing the scattering estimation program according to the present invention. Since the distribution ratio is calculated and the target of distribution is non-TOF scattering projection data in the energy window for reconstruction data (normal energy window), the TOF scattering projection data after distribution is the energy for reconstruction data. It is approximately obtained as TOF scattering projection data in a window (normal energy window), and scattering estimation can be performed accurately.
  • the distribution ratio is obtained from the second TOF projection data measured in the energy window (low energy window) for scattered radiation, Since the target of distribution is non-TOF scattering projection data in the energy window for reconstruction data (normal energy window), the TOF scattering projection data after distribution is the energy window for reconstruction data (normal energy window). Approximately obtained as TOF scattering projection data in the window), and scattering estimation can be performed accurately.
  • FIG. 1 is a schematic perspective view and a block diagram of a PET apparatus according to each embodiment
  • FIG. 2 is a schematic perspective view of a ⁇ -ray detector. 1 and 2 have the same configuration in each embodiment.
  • the PET apparatus 1 includes a detector ring 2 that surrounds the periphery of the subject in a stacked arrangement in the body axis direction of the subject.
  • a plurality of ⁇ -ray detectors 3 are embedded in the detector ring 2.
  • the PET apparatus 1 corresponds to the positron CT apparatus in the present invention.
  • the ⁇ -ray detector 3 corresponds to the detector in the present invention.
  • the PET apparatus 1 includes a coincidence counting circuit 4 and an arithmetic circuit 5.
  • a coincidence counting circuit 4 includes a coincidence counting circuit 4 and an arithmetic circuit 5.
  • FIG. 1 only two connections from the ⁇ -ray detector 3 to the coincidence counting circuit 4 are shown, but actually, a photomultiplier tube (PMT: Photo Multiplier Tube) 33 of the ⁇ -ray detector 3 ( Are connected to the coincidence counting circuit 4 by the total number of channels (see FIG. 2).
  • the arithmetic circuit 5 executes processing of a scattering estimation method shown in FIG.
  • the arithmetic circuit 5 corresponds to the arithmetic means in the present invention.
  • a ⁇ -ray generated from a subject (not shown) to which a radiopharmaceutical has been administered is converted into light by a scintillator block 31 (see FIG. 2) of the ⁇ -ray detector 3, and the converted light is converted into a ⁇ -ray detector.
  • 3 photomultiplier tube (PMT) 33 (see FIG. 2) is multiplied and converted into an electrical signal. The electrical signal is sent to the coincidence counting circuit 4 to generate count value detection signal data.
  • the coincidence circuit 4 checks the position of the scintillator block 31 (see FIG. 2) and the incident timing of the ⁇ -ray, and sends it only when ⁇ -rays are simultaneously incident on the two scintillator blocks 31 on both sides of the subject. The determined electrical signal is determined as appropriate data.
  • the coincidence counting circuit 4 rejects. That is, the coincidence counting circuit 4 detects that ⁇ rays are simultaneously observed (that is, coincidence counting) by the two ⁇ ray detectors 3 based on the above-described electrical signal.
  • the detection signal data (count value) composed of appropriate data determined to be coincidence by the coincidence circuit 4 is sent to the arithmetic circuit 5.
  • the arithmetic circuit 5 performs steps S1 to S5 (see FIG. 3), which will be described later, and performs scattering estimation from detection signal data (count value) of the subject (not shown) obtained by the PET apparatus 1. Specific functions of the arithmetic circuit 5 will be described later.
  • the scattering estimation program 6 is stored in a storage medium (not shown) represented by ROM (Read-only Memory), and the scattering estimation program 6 is read from the storage medium to the arithmetic circuit 5. Then, the scattering estimation program 6 is executed by the arithmetic circuit 5 to perform the scattering estimation method shown in the flowchart of FIG.
  • the arithmetic circuit 5 is a GPU (Graphics Processing Unit), a central processing unit (CPU), or a programmable device (for example, an FPGA (Field Programmable Gate) that can change a hardware circuit (for example, a logic circuit) used in accordance with program data. Array)).
  • the ⁇ -ray detector 3 includes a scintillator block 31, a light guide 32 optically coupled to the scintillator block 31, and photoelectrons optically coupled to the light guide 32.
  • a multiplier (hereinafter simply abbreviated as “PMT”) 33 is provided.
  • Each scintillator element constituting the scintillator block 31 converts ⁇ rays into light by emitting light with the incidence of ⁇ rays. By this conversion, the scintillator element detects ⁇ rays.
  • Light emitted from the scintillator element is sufficiently diffused by the scintillator block 31 and input to the PMT 33 via the light guide 32.
  • the PMT 33 multiplies the light converted by the scintillator block 31 and converts it into an electric signal.
  • the electric signal is sent to the coincidence counting circuit 4 (see FIG. 1) as a pixel value.
  • the ⁇ -ray detector 3 is a DOI detector composed of scintillator elements arranged three-dimensionally and composed of a plurality of layers in the depth direction.
  • a four-layer DOI detector is illustrated, but the number of layers is not particularly limited as long as it is plural.
  • the DOI detector is constructed by laminating the respective scintillator elements in the radiation depth direction, and the interaction depth (DOI: Depth of Interaction) direction and lateral direction (incident surface). Coordinate information with a direction parallel to the center of gravity).
  • DOI Depth of Interaction
  • lateral direction incident surface
  • FIG. 3 is a flowchart illustrating a processing procedure and a data flow of the scattering estimation method according to the first embodiment.
  • the subject is imaged by the PET apparatus 1 shown in FIG. 1, and list mode data is acquired by the coincidence counting circuit 4 (see FIG. 1).
  • the list mode data energy information of detected photons is recorded.
  • Step S1 First TOF projection data creation
  • a normal energy window for example, 400 keV-600 keV
  • an energy window for reconstruction data and a measurement range and bin width in the TOF direction of the TOF projection data are set.
  • first TOF projection data not including the coincidence coincidence is generated from the list mode data.
  • TOF projection of immediate coincidence is measured by measuring the data counted simultaneously with one of the pair of detectors to be coincidentally delayed by a delay circuit (not shown) as TOF projection data of accidental coincidence.
  • a delay circuit not shown
  • the first TOF projection data is data set with a normal energy window.
  • the signal value array data in the first TOF projection data is P_std [t] [r 0 ] [r 1 ] [ ⁇ ] [s].
  • t is an element of time separation of TOF information
  • r 0 and r 1 are numbers of individual detector rings
  • is an element in a projection angle direction
  • s is a radial direction element. Is an element.
  • Step S1 corresponds to a first TOF projection data creation step in the present invention.
  • Step S2 Creation of Second TOF Projection Data
  • a low energy window for example, 450 keV or less
  • an energy window for scattered radiation for example, 450 keV or less
  • a measurement range in the TOF direction of the TOF projection data for example, 450 keV or less
  • a bin width for example, 450 keV or less
  • the second TOF projection data not including the coincidence coincidence is generated from the list mode data. Since the specific method for removing the coincidence coincidence is the same as that in step S1, the description thereof is omitted.
  • the second TOF projection data is data set with a low energy window.
  • the signal value array data in the second TOF projection data is P_low [t] [r 0 ] [r 1 ] [ ⁇ ] [s].
  • Step S2 corresponds to the second TOF projection data creation step in the present invention.
  • Step S3 Calculation of the distribution ratio in the TOF direction
  • the signal value array data P_low [t] [r 0 ] [r 1 ] [ ⁇ ] [s] in the second TOF projection data created in Step S2 is stored in the TOF information.
  • Step S3 corresponds to a distribution ratio calculation step in the present invention.
  • Step S4 non-TOF scattering estimation algorithm
  • the scattering estimation processing (“non-TOF scattering estimation algorithm”) is performed on the non-TOF projection data obtained by integrating the first TOF projection data created in Step S1 with the time interval of the TOF information. -TOF scattering estimation algorithm).
  • the non-TOF scattering estimation algorithm will be described in the first embodiment with an example of scattering estimation processing in the energy window method.
  • the energy window method is a known technique for estimating the scattered radiation distribution using the energy window for reconstruction data (normal energy window) and the energy window for scattered radiation (low energy window). 1 conceptually explains the energy window method.
  • projection data (sinogram) P_std is created with a normal energy window
  • projection data (sinogram) P_low is created with a low energy window.
  • k is a coefficient obtained in advance.
  • the signal value array data P_low [t] [r 0 ] [r 1 ] [ ⁇ ] [s] in the second TOF projection data created in step S2 is integrated at the time interval of the TOF information, and obtained.
  • the signal value array data ⁇ P_low [t ′] [r 0 ] [r 1 ] [ ⁇ ] [s] in the obtained non-TOF projection data is a constant multiple (k ⁇ ⁇ P_low [t ′] [r 0 ] [r 1 ] [ ⁇ ] [s]) is the signal value array data in the estimated scatter sinogram.
  • the estimated scattering sinogram corresponds to the non-TOF scattering projection data included in the normal energy window
  • the signal value array data in this non-TOF scattering projection data is represented by S NT [r 0 ] [r 1 ] [ ⁇ ] [s]
  • S NT [r 0 ] [r 1 ] [ ⁇ ] [s] k ⁇ ⁇ P_low [t ′] [r 0 ] [r 1 ] [ ⁇ ] [s].
  • the energy window method refer to the reference (Reference: S Grootoonk et al., "Correction for scatter in 3D brain PET using a dual energy window method", Phys. Med. Biol. 41 (1996) 2757-2774.
  • Step S4 corresponds to a non-TOF scattering projection data creation step in the present invention.
  • Step S5 Calculation of TOF scattering projection data
  • [ ⁇ ] [s] k ⁇ ⁇ P_low [t ′] [r 0 ] [r 1 ] [ ⁇ ] [s]) and the distribution ratio P_low [t] [r 0 ] [r 1 obtained in step S3 ] [ ⁇ ] [s] / ⁇ 'P_low [t '] [r 0 ] [r 1 ] [ ⁇ ] [s].
  • This multiplication formula is expressed as the following formula (1).
  • S TOF [t] [r 0 ] [r 1 ] [ ⁇ ] [s] is signal value array data in the TOF scattering projection data.
  • Step S5 corresponds to the TOF scattering projection data calculation step in the present invention.
  • the TOF scattering projection data obtained in step S5 is the distribution of scattered radiation for performing scattering correction.
  • the estimated scattered radiation distribution is converted from the measured data to data that eliminates the influence (bias) of the scattered radiation, or the estimated scattered radiation distribution is an image.
  • Scattering correction is performed by acquiring a reconstructed image that is incorporated in the calculation formula for reconstruction and from which the influence of scattered radiation is eliminated.
  • steps S1, S4 and steps S2, S3 is not particularly limited. Steps S1 and S4 may be performed after steps S2 and S3, or steps S1 and S4 and steps S2 and S3 may be performed in parallel. However, in the case of the present Example 1, in step S4, since the 2nd TOF projection data in the energy window for scattered radiation (low energy window) created in step S2 is used, step S4 is followed by step S4. To do.
  • the energy window for reconstruction data is a normal energy window
  • step S1 first TOF projection data creation
  • the energy window for reconstruction data By allocating the detection signal data measured in the normal energy window for each time interval of Time Of Flight information (TOF information), which is the difference in detection time between the two annihilation radiations that have reached the detector, First TOF projection data (signal value array data P_std [t] [r 0 ] [r 1 ] [ ⁇ ] [s]) is generated.
  • TOF information Time Of Flight information
  • the energy window for scattered radiation having a central energy lower than the central energy in the normal energy window is a low energy window
  • step S2 second TOF projection data creation
  • the second TOF projection data (signal value array data P_low [t]), which is projection data for each time interval, is assigned to the detection signal data measured in the (low energy window) for each time interval of the TOF information. [r 0 ] [r 1 ] [ ⁇ ] [s]).
  • the second TOF projection data measured in the low energy window contains a large proportion of scattered coincidence, but some true coincidence. And does not match the TOF scattering projection data in the normal energy window. Therefore, the second TOF projection data is not the TOF scattering projection data in the normal energy window finally obtained.
  • steps S3 to S5 in FIG. 3 are performed to obtain TOF scattering projection data in a normal energy window.
  • step S3 (calculation of the distribution ratio in the TOF direction), the signal value in the non-TOF projection data and the signal value in each second TOF projection data obtained by integrating the second TOF projection data at time intervals.
  • the ratio (P_low [t] [r 0 ] [r 1 ] [ ⁇ ] [s] / ⁇ 'P_low [t '] [r 0 ] [r 1 ] [ ⁇ ] [s]) It is calculated as a distribution ratio for distributing data every time.
  • step S4 non-TOF scattering estimation algorithm
  • a scattering estimation process is performed on the non-TOF projection data obtained by integrating the first TOF projection data at time intervals (in the first embodiment, the energy window).
  • step S5 calculation of TOF scattering projection data
  • the projection data composed of the signal values obtained by multiplication by multiplying the signal value in the non-TOF scattering projection data by the distribution ratio is converted into normal energy. It is calculated as TOF scattered projection data (signal value array data S TOF [t] [r 0 ] [r 1 ] [ ⁇ ] [s]), which is scattered projection data for each time interval included in the window.
  • the scattering estimation can be accurately performed. Furthermore, since the target of distribution is non-TOF scattering projection data in the normal energy window, the TOF scattering projection data after distribution is approximately obtained as TOF scattering projection data in the normal energy window, and scattering estimation is performed. Can be performed more accurately.
  • the first TOF projection data and the second TOF projection data collected directly from the coincidence counting circuit 4 include an accidental coincidence count. Therefore, in order to remove the coincidence coincidence, in step S1 (first TOF projection data creation), the TOF projection data obtained by subtracting the coincidence coincidence TOF projection data from the immediate coincidence TOF projection data. Is created as the first TOF projection data. Similarly, in order to remove the coincidence coincidence, in step S2 (second TOF projection data creation), the TOF projection obtained by subtracting the coincidence coincidence TOF projection data from the immediate coincidence TOF projection data. Data is created as second TOF projection data. Therefore, in the first embodiment, the incidental coincidence TOF projection from the immediate coincidence TOF projection data in both step S1 (first TOF projection data creation) and step S2 (second TOF projection data creation). Each data is subtracted.
  • the scattering estimation process in step S4 includes an energy window for reconstructed data (normal energy window) and an energy window for scattered radiation (low energy window). This is a scattering estimation process in the energy window method for estimating the scattered radiation distribution.
  • the scattering estimation method according to the first embodiment is performed by a computer (in each embodiment, a GPU, a CPU, or a CPU constituting the arithmetic circuit 5 shown in FIG. 1).
  • the distribution ratio is calculated from the second TOF projection data measured in the energy window for scattered radiation (low energy window) by executing the program on the programmable device.
  • Non-TOF scattering projection data in the energy window) the distributed TOF scattering projection data is approximately obtained as TOF scattering projection data in the energy window for reconstruction data (normal energy window), Scattering estimation can be performed accurately.
  • arithmetic means for executing the scattering estimation program 6 according to the first embodiment in each embodiment, a GPU that constitutes the arithmetic circuit 5 shown in FIG. 1). , CPU or programmable device
  • the distribution ratio is obtained from the second TOF projection data measured in the energy window for scattered radiation (low energy window)
  • the distribution target is the energy window for reconstruction data. Since it is non-TOF scattering projection data in (normal energy window), TOF scattering projection data after distribution is approximately obtained as TOF scattering projection data in the energy window for reconstruction data (normal energy window) Scattering estimation can be performed accurately.
  • FIG. 4 is a flowchart illustrating a processing procedure and a data flow of the scattering estimation method according to the second embodiment.
  • FIG. 5 illustrates a single scattering in the non-TOF scattering estimation algorithm of the scattering estimation method according to the second embodiment. It is a flowchart of the scattering estimation process in a simulation method.
  • Example 1 scattering estimation processing by the energy window method was performed as a non-TOF scattering estimation algorithm.
  • a scattering estimation process in a single scattering simulation (SSS) method is performed as a non-TOF scattering estimation algorithm.
  • Step S11 First TOF Projection Data Creation Since step S11 in FIG. 4 is the same as step S1 in the first embodiment described above, description thereof is omitted. Step S11 corresponds to the first TOF projection data creation step in the present invention.
  • Step S12 Generation of Second TOF Projection Data Step S12 in FIG. 4 is the same as step S2 in the first embodiment described above, and therefore description thereof is omitted. Step S12 corresponds to a second TOF projection data creation step in the present invention.
  • Step S13 Calculation of Distribution Ratio in TOF Direction Step S13 in FIG. 4 is the same as step S3 in the first embodiment described above, and a description thereof will be omitted. Step S13 corresponds to a distribution ratio calculation step in the present invention.
  • Step S14 non-TOF scattering estimation algorithm
  • the scattering estimation process non-TOF projection data obtained by integrating the first TOF projection data created in step S11 with the time interval of the TOF information is integrated (non- TOF scattering estimation algorithm).
  • the non-TOF scattering estimation algorithm will be described by taking the scattering estimation process in the single scattering simulation method as an example in the second embodiment.
  • the single scattering simulation method is a known method for estimating the scattered radiation distribution using the radioactivity distribution image and the absorption coefficient image as input data.
  • the single scattering simulation method will be conceptually described.
  • the radiation distribution image and the absorption coefficient image are used as input data, and the scattered radiation distribution is estimated based on the Compton scattering theoretical formula (Klein-Nishina formula).
  • Klein-Nishina formula Compton scattering theoretical formula
  • step S14 non-TOF scattering estimation algorithm
  • step S14 non-TOF scattering estimation algorithm
  • the operator manually operates the end of the repetition in real time, as shown in FIG.
  • Step S14 non-TOF scattering estimation algorithm
  • Step T1 Reconstruction without scattering correction Reconstruction is performed on the non-TOF projection data obtained by integrating the first TOF projection data created in step S11 of FIG. Do.
  • the processing in step T1 is reconstruction without scattering correction.
  • Step T2 Scattering estimation by the SSS method
  • the scattered radiation distribution is estimated by the single scattering simulation (SSS) method using the radioactivity distribution image and the absorption coefficient image reconstructed in the step T1 as input data.
  • the specific method of the single scattering simulation (SSS) method is described in Patent Document 2: US Pat. No. 7,397,035 and Non-Patent Document 3 (X. Jin et al., “List-mode reconstruction”. for the Biograph mCT with physics modeling and event-by-event motion correction ", Phys. Med. Biol. 58 (2013) 5567-5591).
  • Step T3 Reconstruction with Scattering Correction Reconstruction is performed on the scattered radiation distribution (scattering sinogram) estimated at step T2.
  • the processing at step T3 is reconstruction with scattering correction.
  • Steps T2 to T3 in FIG. 5 are repeated, and step S14 (non-TOF scattering estimation algorithm) in FIG. 4 is completed by repeating the repetition.
  • the estimated scattering sinogram obtained by the single scattering simulation (SSS) method corresponds to the non-TOF scattering projection data included in the normal energy window, as in the first embodiment, and this non-TOF scattering projection data.
  • S NT [r 0 ] [r 1 ] [ ⁇ ] [s] be the signal value array data at.
  • the second TOF projection data (data set in the low energy window) is used.
  • the scattering simulation (SSS) method does not use the second TOF projection data (data set in the low energy window).
  • SSS single scattering simulation
  • only the first TOF projection data (data set in the normal energy window) is used, and non-TOF scattering projection data (estimation) included in the normal energy window. Scattering sinogram) can be estimated.
  • Step S14 corresponds to a non-TOF scattering projection data creation step in the present invention.
  • Step S15 Calculation of TOF scattered projection data
  • Step S15 in FIG. 4 is the same as step S5 in the first embodiment described above, and thus the description thereof is omitted.
  • Step S15 corresponds to the TOF scattering projection data calculation step in the present invention.
  • steps S11 and S14 and steps S12 and S13 are not particularly limited. Steps S11 and S14 may be performed after steps S12 and S13, or steps S11 and S14 and steps S12 and S13 may be performed in parallel.
  • step S14 the second TOF projection data in the energy window for scattered radiation (low energy window) created in step S12 is not used, and the data is created in step S11. Since only the first TOF projection data in the same reconstruction data energy window (normal energy window) is used, steps S12 and S13 may be performed after steps S11 and S14.
  • the distribution ratio is obtained from the second TOF projection data measured in the energy window for scattered radiation (low energy window), and the distribution is performed. Since the target is non-TOF scattering projection data in the energy window for reconstruction data (normal energy window), the distributed TOF scattering projection data is the energy window for reconstruction data (normal energy window) ) Can be approximated as TOF scattering projection data and can accurately estimate scattering.
  • the scattering estimation process in step S14 is a scattering estimation process in the energy window method for estimating the scattered radiation distribution using the radiation distribution image and the absorption coefficient image as input data. is there.
  • the second TOF projection data measured with the energy window for scattered radiation (low energy window) is used.
  • the energy window for the same reconstruction data (normally)
  • the non-TOF scattering projection data (estimated scattering sinogram) included in the normal energy window is estimated using only the first TOF projection data measured in the energy window. Therefore, as compared with the first embodiment described above, there is also an effect that the scattering estimation can be performed more accurately.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the subject to be photographed in each of the embodiments described above is not particularly limited. You may apply to the apparatus which image
  • the DOI detector is used, but it may be applied to a detector that does not distinguish the depth direction.
  • the detector rings are stacked in the body axis direction of the subject.
  • the detector ring may have only one configuration.
  • the data format is sinogram, but is not limited to sinogram. If it is projection data, for example, the data format may be a histogram.
  • the non-TOF scattering projection data is generated using the energy window method
  • the non-TOF scattering projection data is generated using the single scattering simulation method.
  • Scattering estimation processing for non-TOF projection data is not limited to these methods.
  • non-TOF scattering projection data may be created using a convolution method.
  • the present invention is suitable for scattering estimation for a TOF measurement type PET apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine (AREA)

Abstract

本発明の散乱推定方法では、ステップS1(第1のTOF投影データ作成),ステップS4(non-TOF散乱推定アルゴルズム)を行うとともに、ステップS2(第2のTOF投影データ作成),ステップS3(TOF方向の分配比率の算出)を行い、ステップS5(TOF散乱投影データの算出)を行う。散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。

Description

散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンCT装置
 本発明は、散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンCT装置における、検出器に到達した2つの消滅放射線の検出時間差を計測するTOF(Time Of Flight)計測型PET(Positron Emission Tomography)のデータ補正技術に関する。
 ポジトロンCT装置、すなわちPET(Positron Emission Tomography)装置は、陽電子(Positron)の消滅によって発生する2本のγ線を、複数個の検出器で同時に検出したときのみ(つまり同時計数したときのみ)有効な信号と見なして計測し、計測データに基づいて被検体の断層画像を再構成するように構成されている。具体的には、陽電子放出核種を含んだ放射性薬剤を被検体に投与して、投与された被検体から放出される511keVの対消滅γ線を多数の検出器素子(例えばシンチレータ)群からなる検出器で検出する。そして、2つの検出器で一定時間内にγ線を検出した場合に“同時”に検出したとして、それを一対の対消滅γ線として計数し、さらに対消滅発生位置を検出した2つの検出器を結ぶ直線(LOR: Line Of Response)を特定する。このように検出された同時計数情報を蓄積して再構成処理を行って、陽電子放出核種画像(すなわち断層画像)を得る。
 ポジトロンCT(PET)において、被検体内の放射能濃度を定量計測するためには、様々なデータ補正処理が必要である。代表的な補正処理には、感度補正,減弱補正,散乱補正,ランダム補正,減衰補正,デッドタイム補正がある。本発明は、消滅放射線の検出時間差(「飛行時間差」とも呼ばれる)(TOF: Time Of Flight)情報を計測するPET(以下、「TOF-PET」と表記する)の散乱補正に関する。散乱補正を行うためには散乱線の分布を推定する散乱推定を行う必要がある。
 散乱推定とは、PETの計測データに混入する散乱線の分布を推定することである。散乱補正とは、推定した散乱線の分布を計測データから差分して散乱線の影響(バイアス)が排除されたデータに変換すること、もしくは、推定した散乱線の分布を画像再構成の計算式に組み込んで散乱線の影響が排除された再構成画像を取得することを指す。
 ここで、PETの計測データのデータ形式としては、サイノグラム,ヒストグラム,リストモードのいずれかである。サイノグラムデータは、投影角度方向の要素および半径方向の要素毎に割り振られた信号値配列データである。ヒストグラムデータは、同時計数した検出器の対毎に割り振られた信号値配列データである。リストモードデータは、γ線を検出した事象(「イベント」とも呼ばれる)および同時計数した検出器の対毎に割り振られた時系列の信号値配列データである。
 データ形式がサイノグラムまたはヒストグラムの場合、TOF情報を計測しないPET(以下、「non-TOF-PET」と表記する)の計測データは4次元配列データである。それに対して、TOF-PETの計測データは、TOF情報の時間的区切りを加えた5次元配列データである。データ形式がサイノグラムまたはヒストグラムの場合での散乱推定とは、この5次元配列データの各要素に含まれる散乱線の絶対量を推定することである。
 被検体の周囲を取り囲む検出器リングを被検体の体軸方向に積層配置する場合、データ形式がサイノグラムのときには、TOF-PETの計測データはP[t][r0][r1][θ][s]の5次元配列データとなり、non-TOF-PETの計測データはP[r0][r1][θ][s]の4次元配列データとなる。ここで、tはTOF情報の時間的区切りの要素、r0およびr1は個々の検出器リングの番号、θは投影角度方向の要素、sは半径方向の要素である。なお、検出器リングが1つの場合には、[r0][r1]の要素が省略されることに留意されたい。
 TOF-PETの計測データに対する散乱推定方法として、様々な手法が提案されている(例えば、特許文献1~5,非特許文献1~3参照)。
 例えば、特許文献1:米国特許第7,129,496号公報では、TOF情報の計測誤差がない場合の仮想的な散乱線の分布を推定し、TOF情報の計測誤差を表す関数(タイミング応答関数)を、推定した散乱線の分布のTOF情報の時間的区切りで畳み込むことで、実際の散乱線の分布を推定する(特許文献1の第5欄第60行の散乱推定計算式を参照)。これは非特許文献1に記載されている方法である。
 また、特許文献2:米国特許第7,397,035号公報では、non-TOF-PETの散乱線の分布を推定する単一散乱シミュレーション(SSS: Single Scatter Simulation)アルゴリズム(特許文献2の(1)式を参照)を、TOF-PETの散乱線の分布が推定できるように拡張している。具体的には、散乱点Sと検出点A(B)とを結ぶ直線上(特許文献2のFIG.3を参照)の放射能分布λ(・)の線積分値を、特許文献2の(2)式を用いて計算する際に、それぞれのTOF offset binの検出効率関数εTOF,n(・)(特許文献2の(3)式を参照)を考慮している。この方法は、後に非特許文献2で公開されている。なお、ここでビン(bin)とは、離散化すること(区切ること)を意味する。画像の場合には画素がビンに対応する。TOFビンはTOF情報の時間的区切りを意味し、例えばTOFビンが100[ps]の場合には、100[ps],200[ps],300[ps],…と100[ps]毎のビンに時間的に区切られる。
 また、特許文献4:米国特許第8,265,365号公報では、特許文献2:米国特許第7,397,035号公報のように数式に基づいてTOF-PETの散乱線の分布を直接的に計算するのではなく、バイアスを含まない再構成画像をnon-TOF投影データから事前に計算する。そして、その画像のTOF順投影データ(特許文献4のClaim 1における”TOF trues distribution”)を、散乱線が混入している即発同時計数データ(特許文献4のClaim 1における”TOF prompt coincidence events”)から差分することで、散乱線の分布を間接的に推定している。
 また、特許文献5:国際公開第WO2013/175352号では、特許文献2:米国特許第7,397,035号公報や特許文献4:米国特許第8,265,365号公報のように解析的な計算に基づいて散乱線の分布を推定するのではなく、モンテカルロシミュレーションに基づいて散乱線の分布を推定する。
 また、非特許文献3では、散乱成分を含んだTOF投影データを作成し、当該TOF投影データをTOF情報の時間的区切り(「TOF方向」とも呼ばれる)で積分(すなわち加算)して得られたnon-TOF投影データにおける信号値と各々のTOF投影データにおける信号値との比率を、TOF情報の時間的区切り(TOF方向)毎にデータを分配する分配比率として算出する。
 一方、非特許文献3では、non-TOF-SSSアルゴリズム,エネルギーウィンドウ法,コンボリューション法などの公知技術によってnon-TOF散乱線の分布(non-TOF散乱投影データ)を求め、non-TOF散乱投影データを上記の分配比率に応じて複数に分配することで、分配された各々のデータを、TOF情報の時間的区切り(TOF方向)毎の散乱投影データであるTOF散乱投影データ(TOF散乱線の分布)として算出する。
 非特許文献3の手法について詳しく説明する。データ形式がサイノグラムにおける未知のTOF散乱投影データ(5次元配列データ)をTOF情報の時間的区切り(TOF方向)で積分(圧縮)した投影データ(分布)は、non-TOF散乱投影データ(4次元配列データ)となる。
 したがって、4次元配列データの各要素(各検出器のペアに相当)において、散乱線量がTOF情報の時間的区切り(TOF方向)にどのように変化しているかを示したプロファイル(以下、「TOF方向プロファイル」とも呼ぶ)が解れば、そのプロファイルにしたがってnon-TOF散乱投影データをTOF方向に拡張(TOFビンの個数と同数に分配)することは容易である。その結果、TOF方向に拡張された各々のデータをTOF散乱投影データとして推定することができたことになる。つまり、non-TOF散乱投影データ(non-TOF散乱線の分布)が既知の場合、TOF散乱投影データの推定を実施することは「TOF方向プロファイルを決定する」ことと同義である。
 非特許文献3における図6の概念図を参照して具体的に説明する。散乱成分を含んだTOF投影データにおける信号値配列データを、図6の上段に示すようにPとする。TOFビンの個数を9個とし、TOF方向に並べると、TOF投影データにおける各々の信号値配列データPを、{0,1,3,8,4,2,1,1,0}とする。TOF投影データPをTOF情報の時間的区切り(TOF方向)で積分(すなわち加算)すると、non-TOF投影データにおける信号値は”20”( 図6の上段の「合計:20」を参照)となる。
 図6の中段に示すように、図6の上段に示すTOF投影データにおける各々の信号値配列データP{0,1,3,8,4,2,1,1,0}をそれぞれ分子とし、non-TOF投影データにおける信号値”20”を分母とすると、TOF方向プロファイルは{0/20,1/20,3/20,8/20,4/20,2/20,1/20,1/20,0/20}となる。このTOF方向プロファイルを、TOF情報の時間的区切り(TOF方向)毎にデータを分配する分配比率とみなすことができる。
 一方、上述したように、non-TOF-SSSアルゴリズム,エネルギーウィンドウ法,コンボリューション法などの公知技術によってnon-TOF散乱投影データを求めることができる。non-TOF散乱投影データにおける信号値を、図6の中段に示すようにSNTとする。したがって、TOF方向プロファイルに相当する分配比率に応じてnon-TOF散乱投影データにおける信号値SNTを、TOFビンの個数と同数(図6では9)に分配すれば、分配された個々のデータを、TOF情報の時間的区切り(TOF方向)毎の散乱投影データであるTOF散乱投影データとして求めることができる。最も簡単な分配方法は、non-TOF散乱投影データにおける信号値SNTと分配比率とを乗算して、得られた各々のデータをTOF散乱投影データとして求める(非特許文献3の(3)式を参照)。
 図6の下段には、non-TOF散乱投影データにおける信号値SNTと分配比率とを乗算して、得られたTOF散乱投影データにおける信号値配列データを示す。TOF散乱投影データにおける信号値配列データを、図6の下段に示すようにSTOFとする。TOF散乱投影データにおける信号値配列データSTOFは、{0/20, SNT/20,3SNT/20,8SNT/20,4SNT/20,2SNT/20, SNT/20, SNT/20,0/20}となる。このように、non-TOF散乱投影データが既知の場合、TOF投影データをTOF情報の時間的区切り(TOF方向)で積分して得られたnon-TOF投影データにおける信号値と各々のTOF投影データにおける信号値との比率をTOF方向プロファイルに相当する分配比率として算出することができる。さらに、non-TOF散乱投影データを分配比率に応じて複数に分配すれば、散乱推定を簡易に行うことができる。
米国特許第7,129,496号公報 米国特許第7,397,035号公報 米国特許第8,809,791号公報 米国特許第8,265,365号公報 国際公開第WO2013/175352号
M. Iatrou et al., "Comparison of two 3D implementations of TOF scatter estimation in 3D PET", Nuclear Science Symposium Conference Record, 2007. NSS’07. IEEE (Volume:5), 3474-3477. C. Watson, "Extension of Single Scatter Simulation to Scatter Correction of Time-of-Flight PET", IEEE Transactions on Nuclear Science (Volume:54, Issue:5), pp.1679-1686, 2007. X. Jin et al., "List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction", Phys. Med. Biol. 58 (2013) 5567-5591
 しかしながら、非特許文献3における散乱推定方法では、散乱線のTOF方向プロファイルを正確に求めることができないという問題点がある。
 先ず、画像再構成に用いるデータの計測を目的とした通常のエネルギーウィンドウ(例えば400keV-600keV)において実測された即発同時計数(prompt coincidence)のTOF投影データyp(5次元配列データ)を作成する。上記のエネルギーウィンドウで実測(または計算)された偶発同時計数(random coincidence)のTOF投影データyrを作成する。ypからyrを減算すると、真の同時計数(true coincidence)および散乱同時計数(scatter coincidence)のみを含んだTOF投影データyt+sが得られる。5次元配列データであるyt+sのTOF方向の計数値プロファイルを算出し、それをTOF方向プロファイルとする。
 この方法では、通常のエネルギーウィンドウ(例えば400keV-600keV)に含まれる真の同時計数および散乱同時計数の和のTOF投影データyt+sからTOF方向プロファイルを推定しているので、関心領域である散乱線のTOF方向プロファイルは厳密には求まらない。
 本発明は、このような事情に鑑みてなされたものであって、散乱推定を正確に行うことができる散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンCT装置を提供することを目的とする。
 発明者は、上記の問題を解決するために鋭意研究した結果、次のように推定した。
 すなわち、上述したように、真の同時計数および散乱同時計数を含むTOF投影データyt+sからTOF方向プロファイルを推定しているので、散乱線のTOF方向プロファイルを正確に求めることができない。一方、通常のエネルギーウィンドウにおける中心エネルギーよりも低い中心エネルギーを有したエネルギーウィンドウ(例えば450keV以下)において実測された投影データは真の同時計数を多少含むが、非特許文献3で通常のエネルギーウィンドウにおいて実測された投影データと比較すると、投影データに含まれる真の同時計数の割合が少なくなった分、散乱同時計数の割合が多くなる。
 したがって、450keV以下のエネルギーウィンドウは散乱線用のエネルギーウィンドウと見なされ、当該散乱線用のエネルギーウィンドウ(以下、「低エネルギーウィンドウ」とも呼ぶ)で計測されたデータから散乱線のTOF方向プロファイルを推定し、さらに分配比率を求めれば、散乱推定を正確に行うことができると推定した。
 このような推定に基づく本発明は、次のような構成をとる。
 すなわち、本発明に係る散乱推定方法は、ポジトロンCTの測定データに対する散乱推定方法であって、ポジトロンCTで得られる再構成データを取得するために設定される再構成データ用のエネルギーウィンドウで計測された検出信号データを、検出器に到達した2つの消滅放射線の検出時間差であるTime Of Flight情報の時間的区切り毎に割り振ることにより、前記時間的区切り毎の投影データである第1のTOF投影データを作成する第1のTOF投影データ作成工程と、前記再構成データ用のエネルギーウィンドウにおける中心エネルギーよりも低い中心エネルギーを有した散乱線用のエネルギーウィンドウで計測された検出信号データを、前記時間的区切り毎に割り振ることにより、前記時間的区切り毎の投影データである第2のTOF投影データを作成する第2のTOF投影データ作成工程と、前記第2のTOF投影データを前記時間的区切りで積分して得られたnon-TOF投影データにおける信号値と各々の前記第2のTOF投影データにおける信号値との比率を、前記時間的区切り毎にデータを分配する分配比率として算出する分配比率算出工程と、前記第1のTOF投影データを前記時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理を行うことで、前記再構成データ用のエネルギーウィンドウに含まれるnon-TOF散乱投影データを作成するnon-TOF散乱投影データ作成工程と、前記non-TOF散乱投影データにおける信号値と前記分配比率とを乗算することで、乗算して得られた信号値からなる投影データを、前記再構成データ用のエネルギーウィンドウに含まれる前記時間的区切り毎の散乱投影データであるTOF散乱投影データとして算出するTOF散乱投影データ算出工程とを備えるものである。
 本発明に係る散乱推定方法によれば、再構成データ用のエネルギーウィンドウは通常のエネルギーウィンドウであって、第1のTOF投影データ作成工程では、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)で計測された検出信号データを、検出器に到達した2つの消滅放射線の検出時間差であるTime Of Flight情報(TOF情報)の時間的区切り毎に割り振ることにより、時間的区切り毎の投影データである第1のTOF投影データを作成する。
 一方、通常のエネルギーウィンドウにおける中心エネルギーよりも低い中心エネルギーを有した散乱線用のエネルギーウィンドウは低エネルギーウィンドウであって、第2のTOF投影データ作成工程では、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された検出信号データを、TOF情報の時間的区切り毎に割り振ることにより、時間的区切り毎の投影データである第2のTOF投影データを作成する。上述したように、低エネルギーウィンドウにおいて実測された第2のTOF投影データには散乱同時計数の割合が多く含まれるが、真の同時計数を多少含んでおり、かつ通常のエネルギーウィンドウにおけるTOF散乱投影データとは一致しない。したがって、第2のTOF投影データは最終的に求められる通常のエネルギーウィンドウにおけるTOF散乱投影データではない。
 そこで、下記のような工程を行うことで、通常のエネルギーウィンドウにおけるTOF散乱投影データを求める。分配比率算出工程では、第2のTOF投影データを時間的区切りで積分して得られたnon-TOF投影データにおける信号値と各々の第2のTOF投影データにおける信号値との比率を、時間的区切り毎にデータを分配する分配比率として算出する。
 一方、non-TOF散乱投影データ作成工程では、第1のTOF投影データを時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理を行うことで、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データを作成する。そして、TOF散乱投影データ算出工程では、non-TOF散乱投影データにおける信号値と分配比率とを乗算することで、乗算して得られた信号値からなる投影データを、通常のエネルギーウィンドウに含まれる時間的区切り毎の散乱投影データであるTOF散乱投影データとして算出する。
 上述したように、低エネルギーウィンドウで計測されたデータ(第2のTOF投影データ)から分配比率を求めれば、散乱推定を正確に行うことができる。さらに、分配の対象は、通常のエネルギーウィンドウでのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、通常のエネルギーウィンドウにおけるTOF散乱投影データとして近似的に求められ、散乱推定をより正確に行うことができる。
 なお、同時計数回路から直接的に収集された第1のTOF投影データおよび第2のTOF投影データには、偶発同時計数が含まれている。そこで、偶発同時計数を除去するために、第1のTOF投影データ作成工程では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを第1のTOF投影データとして作成するのが好ましい。同様に、偶発同時計数を除去するために、第2のTOF投影データ作成工程では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを第2のTOF投影データとして作成するのが好ましい。上述した第1のTOF投影データ作成工程および第2のTOF投影データ作成工程の両方の工程で即発同時計数のTOF投影データから偶発同時計数のTOF投影データをそれぞれ減算するのがより好ましい。
 また、上述したnon-TOF散乱投影データ作成工程における散乱推定処理は、例えば下記のような手法における散乱推定処理がある。
 non-TOF散乱投影データ作成工程における散乱推定処理の一例は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)および散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)を用いて散乱線分布を推定するエネルギーウィンドウ法における散乱推定処理である。また、non-TOF散乱投影データ作成工程における散乱推定処理の他の一例は、放射能分布画像および吸収係数画像を入力データとして散乱線分布を推定する単一散乱シミュレーション法における散乱推定処理である。
 また、本発明に係る散乱推定プログラムは、本発明に係る散乱推定方法をコンピュータに実行させるものである。
 本発明に係る散乱推定プログラムによれば、本発明に係る散乱推定方法をコンピュータに実行させることによって、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
 また、本発明に係るポジトロンCT装置は、本発明に係る散乱推定プログラムを搭載したポジトロンCT装置において、当該散乱推定プログラムを実行する演算手段を備えるものである。
 本発明に係るポジトロンCT装置によれば、本発明に係る散乱推定プログラムを実行する演算手段を備えることによって、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
 本発明に係る散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンCT装置によれば、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
各実施例に係るPET装置の概略斜視図およびブロック図である。 γ線検出器の概略斜視図である。 実施例1に係る散乱推定方法の処理手順およびデータの流れを示したフローチャートである。 実施例2に係る散乱推定方法の処理手順およびデータの流れを示したフローチャートである。 実施例2に係る散乱推定方法のnon-TOF散乱推定アルゴルズムでの単一散乱シミュレーション法における散乱推定処理のフローチャートである。 非特許文献3における概念図である。
 以下、図面を参照して本発明の実施例1を説明する。図1は、各実施例に係るPET装置の概略斜視図およびブロック図であり、図2は、γ線検出器の概略斜視図である。また、図1および図2は各実施例とも共通の構成である。
 図1に示すように、PET装置1は、被検体の周囲を取り囲む検出器リング2を被検体の体軸方向に積層配置して備えている。検出器リング2内には複数のγ線検出器3が埋設されている。PET装置1は、本発明におけるポジトロンCT装置に相当する。また、γ線検出器3は、本発明における検出器に相当する。
 その他にも、PET装置1は、同時計数回路4と演算回路5とを備えている。図1では、γ線検出器3から同時計数回路4への結線を2つのみ図示しているが、実際には、γ線検出器3の光電子増倍管(PMT: Photo Multiplier Tube)33(図2を参照)の総チャンネル数分、同時計数回路4に接続されている。演算回路5は、散乱推定プログラム6による、後述する図3に示す散乱推定方法の処理を実行する。演算回路5は、本発明における演算手段に相当する。
 放射性薬剤が投与された被検体(図示省略)から発生したγ線をγ線検出器3のシンチレータブロック31(図2を参照)が光に変換して、変換されたその光をγ線検出器3の光電子増倍管(PMT)33(図2を参照)は増倍させて電気信号に変換する。その電気信号を同時計数回路4に送り込み、カウント値の検出信号データを生成する。
 具体的には、被検体(図示省略)に放射性薬剤を投与すると、ポジトロン放出型のRIのポジトロンが消滅することにより、2本のγ線が発生する。同時計数回路4は、シンチレータブロック31(図2を参照)の位置とγ線の入射タイミングとをチェックし、被検体の両側にある2つのシンチレータブロック31でγ線が同時に入射したときのみ、送り込まれた電気信号を適正なデータと判定する。一方のシンチレータブロック31のみにγ線が入射したときには、同時計数回路4は棄却する。つまり、同時計数回路4は、上述した電気信号に基づいて、2つのγ線検出器3においてγ線が同時観測(すなわち同時計数)されたことを検出する。
 同時計数回路4により同時計数と判定された適正なデータにより構成された検出信号データ(カウント値)を、演算回路5に送り込む。演算回路5は、後述するステップS1~S5(図3を参照)を行って、PET装置1によって得られた被検体(図示省略)の検出信号データ(カウント値)から散乱推定を行う。演算回路5の具体的な機能については後述する。
 なお、ROM(Read-only Memory)などに代表される記憶媒体(図示省略)に散乱推定プログラム6が記憶されており、当該散乱推定プログラム6を記憶媒体から散乱推定プログラム6を演算回路5に読み出して、散乱推定プログラム6を演算回路5が実行することで、図3のフローチャートに示す散乱推定方法の処理を行う。演算回路5は、GPU(Graphics Processing Unit),中央演算処理装置(CPU)あるいはプログラムデータに応じて内部の使用するハードウェア回路(例えば論理回路)が変更可能なプログラマブルデバイス(例えばFPGA(Field Programmable Gate Array))などで構成されている。
 γ線検出器3は、図2に示すようにシンチレータブロック31と、そのシンチレータブロック31に対して光学的に結合されたライトガイド32と、そのライトガイド32に対して光学的に結合された光電子増倍管(以下、単に「PMT」と略記する)33とを備えている。シンチレータブロック31を構成する各シンチレータ素子は、γ線の入射に伴って発光することでγ線から光に変換する。この変換によってシンチレータ素子はγ線を検出する。シンチレータ素子において発光した光がシンチレータブロック31で十分に拡散されて、ライトガイド32を介してPMT33に入力される。PMT33は、シンチレータブロック31で変換された光を増倍させて電気信号に変換する。その電気信号は画素値として同時計数回路4(図1を参照)に送り込まれる。
 また、γ線検出器3は、図2に示すように、3次元的に配置されたシンチレータ素子からなり、深さ方向に複数の層からなるDOI検出器である。図2では、4層のDOI検出器を図示しているが、層の数については、複数であれば特に限定されない。
 ここで、DOI検出器は、各々のシンチレータ素子を放射線の深さ方向に積層して構成されたものであり、相互作用を起こした深さ(DOI: Depth of Interaction)方向と横方向(入射面に平行な方向)との座標情報を重心演算により求める。DOI検出器を用いることにより深さ方向の空間分解能をより一層向上させることができる。よって、DOI検出器の層の数は、深さ方向に積層されたシンチレータ素子の層の数である。
 次に、演算回路5の具体的な機能について、図3を参照して説明する。図3は、実施例1に係る散乱推定方法の処理手順およびデータの流れを示したフローチャートである。
 先ず、図1に示すPET装置1によって被検体の撮影を行い、同時計数回路4(図1を参照)によってリストモードデータを取得する。リストモードデータには、検出した光子のエネルギー情報が記録されている。
 (ステップS1)第1のTOF投影データ作成
 通常のエネルギーウィンドウ(例えば400keV-600keV)、すなわち再構成データ用のエネルギーウィンドウ、およびTOF投影データのTOF方向の計測範囲とビン幅とをそれぞれ設定する。その設定にしたがって、リストモードデータから、偶発同時計数を含まない第1のTOF投影データを作成する。具体的には、同時計数する対の検出器の一方を遅延回路(図示省略)によって遅らせた状態で同時計数されたデータを偶発同時計数のTOF投影データとして計測して、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで、偶発同時計数を除去した第1のTOF投影データを作成する。
 この第1のTOF投影データは、通常のエネルギーウィンドウで設定されたデータである。データ形式がサイノグラムのときには、第1のTOF投影データにおける信号値配列データを、P_std[t][r0][r1][θ][s]とする。「背景技術」の欄でも述べたように、tはTOF情報の時間的区切りの要素、r0およびr1は個々の検出器リングの番号、θは投影角度方向の要素、sは半径方向の要素である。ステップS1は、本発明における第1のTOF投影データ作成工程に相当する。
 (ステップS2)第2のTOF投影データ作成
 一方、低エネルギーウィンドウ(例えば450keV以下)、すなわち散乱線用のエネルギーウィンドウ、およびTOF投影データのTOF方向の計測範囲とビン幅とをそれぞれ設定する。その設定にしたがって、リストモードデータから、偶発同時計数を含まない第2のTOF投影データを作成する。偶発同時計数を除去する具体的な手法については、ステップS1と同様であるので、その説明を省略する。
 この第2のTOF投影データは、低エネルギーウィンドウで設定されたデータである。データ形式がサイノグラムのときには、第2のTOF投影データにおける信号値配列データを、P_low[t][r0][r1][θ][s]とする。ステップS2は、本発明における第2のTOF投影データ作成工程に相当する。
 (ステップS3)TOF方向の分配比率の算出
 ステップS2で作成された第2のTOF投影データにおける信号値配列データP_low[t][r0][r1][θ][s]をTOF情報の時間的区切りで積分して、non-TOF投影データにおける信号値配列データΣP_low[t’][r0][r1][θ][s](ただし、Σは要素t’のTOF方向の計測範囲でのP_low[t’][r0][r1][θ][s]の総和)を取得する。このnon-TOF投影データにおける信号値配列データΣP_low[t’][r0][r1][θ][s]と各々の第2のTOF投影データにおける信号値配列データP_low[t][r0][r1][θ][s]との比率、すなわちP_low[t][r0][r1][θ][s]/Σ’P_low[t’][r0][r1][θ][s]をTOF情報の時間的区切り毎にデータを分配する分配比率(TOF方向の分配比率)として算出する。ステップS3は、本発明における分配比率算出工程に相当する。
 (ステップS4)non-TOF散乱推定アルゴルズム
 ステップS1で作成された第1のTOF投影データをTOF情報の時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理(「non-TOF散乱推定アルゴルズム」と称す)を行う。non-TOF散乱推定アルゴルズムについては、本実施例1ではエネルギーウィンドウ法における散乱推定処理を例に採って説明する。
 エネルギーウィンドウ法は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)および散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)を用い用いて散乱線分布を推定する公知の手法であるが、本実施例1ではエネルギーウィンドウ法について概念的に説明する。
 エネルギーウィンドウ法では、通常のエネルギーウィンドウで投影データ(サイノグラム)P_stdを作成するとともに、低エネルギーウィンドウで投影データ(サイノグラム)P_lowを作成する。P_lowの定数倍をP_stdから差分することで、真の同時計数サイノグラムTを求める。つまり、T=P_std-k×P_lowの式によって、真の同時計数サイノグラムTを求める。ここで、kは事前に求められた係数である。
 したがって、ステップS2で作成された第2のTOF投影データにおける信号値配列データP_low[t][r0][r1][θ][s]をTOF情報の時間的区切りで積分して、得られたnon-TOF投影データにおける信号値配列データΣP_low[t’][r0][r1][θ][s]を定数倍した値(k×ΣP_low[t’][r0][r1][θ][s])が推定散乱サイノグラムにおける信号値配列データになる。ここで、推定散乱サイノグラムは、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データに相当し、このnon-TOF散乱投影データにおける信号値配列データをSNT[r0][r1][θ][s]とすると、SNT[r0][r1][θ][s]=k×ΣP_low[t’][r0][r1][θ][s]で表される。
 なお、事前に、線源を用いた撮影を行って、あるいは撮影対象をファントム(例えば被検体と同等サイズのファントム)とした撮影を行って、得られた通常のエネルギーウィンドウでの投影データP_std,低エネルギーウィンドウでの投影データP_lowから求められた真の同時計数サイノグラムTが散乱線を含まないようにkを調整して、調整されたkを事前に求められた係数として用いる。エネルギーウィンドウ法の具体的な手法については、参考文献を参照されたい(参考文献:S Grootoonk et al., "Correction for scatter in 3D brain PET using a dual energy window method", Phys. Med. Biol. 41 (1996) 2757-2774.)。ステップS4は、本発明におけるnon-TOF散乱投影データ作成工程に相当する。
 (ステップS5)TOF散乱投影データの算出
 ステップS4で作成された通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データ(推定散乱サイノグラム)における信号値配列データ(SNT[r0][r1][θ][s]=k×ΣP_low[t’][r0][r1][θ][s])と、ステップS3で求められた分配比率P_low[t][r0][r1][θ][s]/Σ’P_low[t’][r0][r1][θ][s]とを乗算する。この乗算式は下記(1)式のように表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、STOF[t][r0][r1][θ][s]はTOF散乱投影データにおける信号値配列データである。上記(1)式のように乗算することで、通常のエネルギーウィンドウに含まれるTOF散乱投影データが最終的に求められる。なお、ステップS4でのエネルギーウィンドウ法においてΣP_low[t’][r0][r1][θ][s]をk倍しているので、ステップS5でP_low[t][r0][r1][θ][s]/Σ’P_low[t’][r0][r1][θ][s]を乗算しても、乗算によって最終的に求められるTOF散乱投影データにおける信号値配列データが、元のP_low[t’][r0][r1][θ][s]に戻ることはない。ステップS5は、本発明におけるTOF散乱投影データ算出工程に相当する。
 ステップS5で求められたTOF散乱投影データが、散乱補正を行うための散乱線の分布となる。「背景技術」の欄でも述べたように、推定した散乱線の分布を計測データから差分して散乱線の影響(バイアス)が排除されたデータに変換する、あるいは推定した散乱線の分布を画像再構成の計算式に組み込んで散乱線の影響が排除された再構成画像を取得することによって、散乱補正を行う。
 なお、ステップS1,S4と、ステップS2,S3との順番については、特に限定されない。ステップS2,S3の後にステップS1,S4を行ってもよいし、ステップS1,S4と、ステップS2,S3とを並列的に行ってもよい。ただし、本実施例1の場合には、ステップS4では、ステップS2で作成された散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)での第2のTOF投影データを用いるので、ステップS2の後にステップS4を行うようにする。
 本実施例1に係る散乱推定方法によれば、再構成データ用のエネルギーウィンドウは通常のエネルギーウィンドウであって、ステップS1(第1のTOF投影データ作成)では、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)で計測された検出信号データを、検出器に到達した2つの消滅放射線の検出時間差であるTime Of Flight情報(TOF情報)の時間的区切り毎に割り振ることにより、時間的区切り毎の投影データである第1のTOF投影データ(信号値配列データP_std[t][r0][r1][θ][s])を作成する。
 一方、通常のエネルギーウィンドウにおける中心エネルギーよりも低い中心エネルギーを有した散乱線用のエネルギーウィンドウは低エネルギーウィンドウであって、ステップS2(第2のTOF投影データ作成)では、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された検出信号データを、TOF情報の時間的区切り毎に割り振ることにより、時間的区切り毎の投影データである第2のTOF投影データ(信号値配列データP_low[t][r0][r1][θ][s])を作成する。「課題を解決するための手段」の欄でも述べたように、低エネルギーウィンドウにおいて実測された第2のTOF投影データには散乱同時計数の割合が多く含まれるが、真の同時計数を多少含んでおり、かつ通常のエネルギーウィンドウにおけるTOF散乱投影データとは一致しない。したがって、第2のTOF投影データは最終的に求められる通常のエネルギーウィンドウにおけるTOF散乱投影データではない。
 そこで、図3のステップS3~S5を行うことで、通常のエネルギーウィンドウにおけるTOF散乱投影データを求める。ステップS3(TOF方向の分配比率の算出)では、第2のTOF投影データを時間的区切りで積分して得られたnon-TOF投影データにおける信号値と各々の第2のTOF投影データにおける信号値との比率(P_low[t][r0][r1][θ][s]/Σ’P_low[t’][r0][r1][θ][s])を、時間的区切り毎にデータを分配する分配比率として算出する。
 一方、ステップS4(non-TOF散乱推定アルゴルズム)では、第1のTOF投影データを時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理(本実施例1ではエネルギーウィンドウ法における散乱推定処理)を行うことで、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データ(信号値配列データSNT[r0][r1][θ][s]=k×ΣP_low[t’][r0][r1][θ][s])を作成する。そして、ステップS5(TOF散乱投影データの算出)では、non-TOF散乱投影データにおける信号値と分配比率とを乗算することで、乗算して得られた信号値からなる投影データを、通常のエネルギーウィンドウに含まれる時間的区切り毎の散乱投影データであるTOF散乱投影データ(信号値配列データSTOF[t][r0][r1][θ][s])として算出する。
 「課題を解決するための手段」の欄でも述べたように、低エネルギーウィンドウで計測されたデータ(第2のTOF投影データ)から分配比率を求めれば、散乱推定を正確に行うことができる。さらに、分配の対象は、通常のエネルギーウィンドウでのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、通常のエネルギーウィンドウにおけるTOF散乱投影データとして近似的に求められ、散乱推定をより正確に行うことができる。
 なお、同時計数回路4から直接的に収集された第1のTOF投影データおよび第2のTOF投影データには、偶発同時計数が含まれている。そこで、偶発同時計数を除去するために、ステップS1(第1のTOF投影データ作成)では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを第1のTOF投影データとして作成している。同様に、偶発同時計数を除去するために、ステップS2(第2のTOF投影データ作成)では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを第2のTOF投影データとして作成している。したがって、本実施例1では、ステップS1(第1のTOF投影データ作成)およびステップS2(第2のTOF投影データ作成)の両方のステップで即発同時計数のTOF投影データから偶発同時計数のTOF投影データをそれぞれ減算している。
 また、本実施例1では、ステップS4(non-TOF散乱推定アルゴルズム)における散乱推定処理は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)および散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)を用いて散乱線分布を推定するエネルギーウィンドウ法における散乱推定処理である。
 本実施例1に係る散乱推定プログラム6(図1を参照)によれば、本実施例1に係る散乱推定方法をコンピュータ(各実施例では図1に示す演算回路5を構成するGPU,CPUまたはプログラマブルデバイス)に実行させることによって、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
 本実施例1に係るPET装置1(図1を参照)によれば、本実施例1に係る散乱推定プログラム6を実行する演算手段(各実施例では図1に示す演算回路5を構成するGPU,CPUまたはプログラマブルデバイス)を備えることによって、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
 次に、図面を参照して本発明の実施例2を説明する。図4は、実施例2に係る散乱推定方法の処理手順およびデータの流れを示したフローチャートであり、図5は、実施例2に係る散乱推定方法のnon-TOF散乱推定アルゴルズムでの単一散乱シミュレーション法における散乱推定処理のフローチャートである。
 上述した実施例1では、non-TOF散乱推定アルゴルズムとして、エネルギーウィンドウ法における散乱推定処理を行った。これに対して、本実施例2では、non-TOF散乱推定アルゴルズムとして、単一散乱シミュレーション(SSS: Single Scatter Simulation)法における散乱推定処理を行う。
 (ステップS11)第1のTOF投影データ作成
 図4のステップS11は、上述した実施例1のステップS1と同じであるので、その説明については省略する。ステップS11は、本発明における第1のTOF投影データ作成工程に相当する。
 (ステップS12)第2のTOF投影データ作成
 図4のステップS12は、上述した実施例1のステップS2と同じであるので、その説明については省略する。ステップS12は、本発明における第2のTOF投影データ作成工程に相当する。
 (ステップS13)TOF方向の分配比率の算出
 図4のステップS13は、上述した実施例1のステップS3と同じであるので、その説明については省略する。ステップS13は、本発明における分配比率算出工程に相当する。
 (ステップS14)non-TOF散乱推定アルゴルズム
 ステップS11で作成された第1のTOF投影データをTOF情報の時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理(non-TOF散乱推定アルゴルズム)を行う。上述したように、non-TOF散乱推定アルゴルズムについては、本実施例2では単一散乱シミュレーション法における散乱推定処理を例に採って説明する。
 単一散乱シミュレーション法は、放射能分布画像および吸収係数画像を入力データとして散乱線分布を推定する公知の手法であるが、本実施例2では単一散乱シミュレーション法について概念的に説明する。
 単一散乱シミュレーション(SSS)法では、放射能分布画像および吸収係数画像を入力データとして、コンプトン散乱の理論式(クライン-仁科の公式)に基づいて、散乱線分布を推定する。ここで、上記の放射能分布画像は散乱補正済みであることが前提であるが、SSS法で散乱分布を求めたいのに、散乱補正済みの画像が必要であるというのは矛盾する。そこで、実際にSSS法で散乱分布を求める場合には、図5のステップT2~T3を繰り返し行う。
 繰り返し回数については、特に限定されない。予め設定された繰り返し回数に達したら、図4のステップS14(non-TOF散乱推定アルゴルズム)を終了してもよいし、術者がリアルタイムに繰り返しの終了を手動で操作することによって、図4のステップS14(non-TOF散乱推定アルゴルズム)を手動で終了してもよい。
 (ステップT1)散乱補正なしの再構成
 図4のステップS11で作成された第1のTOF投影データをTOF情報の時間的区切りで積分して得られたnon-TOF投影データに対して再構成を行う。ステップT1での処理は、散乱補正なしの再構成である。
 (ステップT2)SSS法で散乱推定
 単一散乱シミュレーション(SSS)法で、ステップT1で再構成された放射能分布画像、および吸収係数画像を入力データとして、散乱線分布を推定する。単一散乱シミュレーション(SSS)法の具体的な手法については、上述した特許文献2:米国特許第7,397,035号公報や非特許文献3(X. Jin et al., "List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction", Phys. Med. Biol. 58 (2013) 5567-5591)を参照されたい。
 (ステップT3)散乱補正ありの再構成
 ステップT2で推定された散乱線分布(散乱サイノグラム)に対して再構成を行う。ステップT3での処理は、散乱補正ありの再構成である。
 図5のステップT2~T3を繰り返し行い、繰り返しを終了することで図4のステップS14(non-TOF散乱推定アルゴルズム)を終了する。図4のフローチャートに戻って以下を説明する。単一散乱シミュレーション(SSS)法で得られた推定散乱サイノグラムは、上述した実施例1と同様に、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データに相当し、このnon-TOF散乱投影データにおける信号値配列データをSNT[r0][r1][θ][s]とする。
 なお、上述した実施例1のエネルギーウィンドウ法では、第2のTOF投影データ(低エネルギーウィンドウで設定されたデータ)を用いたが、図4のフローチャートから明らかなように本実施例2の単一散乱シミュレーション(SSS)法では第2のTOF投影データ(低エネルギーウィンドウで設定されたデータ)を用いない。本実施例2の単一散乱シミュレーション(SSS)法では、第1のTOF投影データ(通常のエネルギーウィンドウで設定されたデータ)のみで、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データ(推定散乱サイノグラム)を推定することができる。ステップS14は、本発明におけるnon-TOF散乱投影データ作成工程に相当する。
 (ステップS15)TOF散乱投影データの算出
 図4のステップS15は、上述した実施例1のステップS5と同じであるので、その説明については省略する。ステップS15は、本発明におけるTOF散乱投影データ算出工程に相当する。
 上述した実施例1と同様に、ステップS11,S14と、ステップS12,S13との順番については、特に限定されない。ステップS12,S13の後にステップS11,S14を行ってもよいし、ステップS11,S14と、ステップS12,S13とを並列的に行ってもよい。なお、本実施例2の場合には、ステップS14では、ステップS12で作成された散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)での第2のTOF投影データを用いずに、ステップS11で作成された同一の再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)での第1のTOF投影データのみを用いるので、ステップS11,S14の後にステップS12,S13を行ってもよい。
 本実施例2に係る散乱推定方法によれば、上述した実施例1と同様に、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データから分配比率を求め、分配の対象は、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)でのnon-TOF散乱投影データであるので、分配後のTOF散乱投影データは、再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)におけるTOF散乱投影データとして近似的に求められ、散乱推定を正確に行うことができる。
 また、本実施例2では、ステップS14(non-TOF散乱推定アルゴルズム)における散乱推定処理は、放射能分布画像および吸収係数画像を入力データとして散乱線分布を推定するエネルギーウィンドウ法における散乱推定処理である。上述した実施例1では、散乱線用のエネルギーウィンドウ(低エネルギーウィンドウ)で計測された第2のTOF投影データを用いたが、本実施例2では、同一の再構成データ用のエネルギーウィンドウ(通常のエネルギーウィンドウ)で計測された第1のTOF投影データのみで、通常のエネルギーウィンドウに含まれるnon-TOF散乱投影データ(推定散乱サイノグラム)を推定する。したがって、上述した実施例1と比較して、散乱推定をより一層正確に行うことができるという効果をも奏する。
 本実施例2に係る散乱推定プログラム6(図1を参照)や本実施例2に係るPET装置1(図1を参照)の作用・効果については、上述した実施例1と同じであるので、その説明については省略する。
 本発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した各実施例において撮影対象については、特に限定されない。被検体の全身を撮影する装置や、被検体の頭部を撮影する装置や、被検体の乳房を撮影する装置に適用してもよい。
 (2)上述した各実施例では、DOI検出器であったが、深さ方向を弁別しない検出器に適用してもよい。
 (3)上述した各実施例では、検出器リングを被検体の体軸方向に積層配置する構成であったが、検出器リングが1つのみの構成であってもよい。
 (4)上述した各実施例では、データ形式がサイノグラムのときであったが、サイノグラムに限定されない。投影データであれば、例えばデータ形式がヒストグラムであってもよい。
 (5)上述した実施例1ではエネルギーウィンドウ法を用いてnon-TOF散乱投影データを作成し、上述した実施例2では単一散乱シミュレーション法を用いてnon-TOF散乱投影データを作成したが、non-TOF投影データに対する散乱推定処理については、これらの方法に限定されない。例えばコンボリューション法を用いてnon-TOF散乱投影データを作成してもよい。
 以上のように、本発明は、TOF計測型PET装置のための散乱推定に適している。
 1 … PET装置
 3 … γ線検出器
 5 … 演算回路
 6 … 散乱推定プログラム
 P_std[t][r0][r1][θ][s] … 第1のTOF投影データ
 P_low[t][r0][r1][θ][s] … 第2のTOF投影データ
 SNT[r0][r1][θ][s] … non-TOF散乱投影データ
 STOF[t][r0][r1][θ][s] … TOF散乱投影データ

Claims (7)

  1.  ポジトロンCTの測定データに対する散乱推定方法であって、
     ポジトロンCTで得られる再構成データを取得するために設定される再構成データ用のエネルギーウィンドウで計測された検出信号データを、検出器に到達した2つの消滅放射線の検出時間差であるTime Of Flight情報の時間的区切り毎に割り振ることにより、前記時間的区切り毎の投影データである第1のTOF投影データを作成する第1のTOF投影データ作成工程と、
     前記再構成データ用のエネルギーウィンドウにおける中心エネルギーよりも低い中心エネルギーを有した散乱線用のエネルギーウィンドウで計測された検出信号データを、前記時間的区切り毎に割り振ることにより、前記時間的区切り毎の投影データである第2のTOF投影データを作成する第2のTOF投影データ作成工程と、
     前記第2のTOF投影データを前記時間的区切りで積分して得られたnon-TOF投影データにおける信号値と各々の前記第2のTOF投影データにおける信号値との比率を、前記時間的区切り毎にデータを分配する分配比率として算出する分配比率算出工程と、
     前記第1のTOF投影データを前記時間的区切りで積分して得られたnon-TOF投影データに対して散乱推定処理を行うことで、前記再構成データ用のエネルギーウィンドウに含まれるnon-TOF散乱投影データを作成するnon-TOF散乱投影データ作成工程と、
     前記non-TOF散乱投影データにおける信号値と前記分配比率とを乗算することで、乗算して得られた信号値からなる投影データを、前記再構成データ用のエネルギーウィンドウに含まれる前記時間的区切り毎の散乱投影データであるTOF散乱投影データとして算出するTOF散乱投影データ算出工程と
     を備える、散乱推定方法。
  2.  請求項1に記載の散乱推定方法において、
     前記第1のTOF投影データ作成工程では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを前記第1のTOF投影データとして作成する、散乱推定方法。
  3.  請求項1または請求項2に記載の散乱推定方法において、
     前記第2のTOF投影データ作成工程では、即発同時計数のTOF投影データから偶発同時計数のTOF投影データを減算することで得られたTOF投影データを前記第2のTOF投影データとして作成する、散乱推定方法。
  4.  請求項1から請求項3のいずれかに記載の散乱推定方法において、
     前記non-TOF散乱投影データ作成工程における前記散乱推定処理は、前記再構成データ用のエネルギーウィンドウおよび前記散乱線用のエネルギーウィンドウを用いて散乱線分布を推定するエネルギーウィンドウ法における前記散乱推定処理である、散乱推定方法。
  5.  請求項1から請求項3のいずれかに記載の散乱推定方法において、
     前記non-TOF散乱投影データ作成工程における前記散乱推定処理は、放射能分布画像および吸収係数画像を入力データとして散乱線分布を推定する単一散乱シミュレーション法における前記散乱推定処理である、散乱推定方法。
  6.  請求項1から請求項5のいずれかに記載の散乱推定方法をコンピュータに実行させる、散乱推定プログラム。
  7.  請求項6に記載の散乱推定プログラムを搭載したポジトロンCT装置において、
     当該散乱推定プログラムを実行する演算手段を備える、ポジトロンCT装置。
PCT/JP2017/009531 2017-03-09 2017-03-09 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置 WO2018163362A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019504230A JP6711450B2 (ja) 2017-03-09 2017-03-09 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置
EP17899790.4A EP3594722A1 (en) 2017-03-09 2017-03-09 Scattering estimation method, scattering estimation program, and positron ct device having same installed thereon
US16/492,430 US11513243B2 (en) 2017-03-09 2017-03-09 Scatter estimation method, scatter estimation program, and positron CT device having same installed thereon
PCT/JP2017/009531 WO2018163362A1 (ja) 2017-03-09 2017-03-09 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置
CN201780088220.6A CN110446946A (zh) 2017-03-09 2017-03-09 散射估计方法、散射估计程序以及搭载有该散射估计程序的正电子ct装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009531 WO2018163362A1 (ja) 2017-03-09 2017-03-09 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置

Publications (1)

Publication Number Publication Date
WO2018163362A1 true WO2018163362A1 (ja) 2018-09-13

Family

ID=63449068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009531 WO2018163362A1 (ja) 2017-03-09 2017-03-09 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置

Country Status (5)

Country Link
US (1) US11513243B2 (ja)
EP (1) EP3594722A1 (ja)
JP (1) JP6711450B2 (ja)
CN (1) CN110446946A (ja)
WO (1) WO2018163362A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018220686A1 (ja) * 2017-05-29 2019-11-07 株式会社島津製作所 吸収係数画像推定方法、吸収係数画像推定プログラム並びにそれを搭載したポジトロンct装置
WO2020059135A1 (ja) * 2018-09-21 2020-03-26 株式会社島津製作所 データ処理方法、プログラム、データ処理装置および陽電子放出断層撮像装置
JP2020529616A (ja) * 2017-09-14 2020-10-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 陽電子放出断層撮影における狭いエネルギー窓カウントから再構成された放出画像推定を使用した散乱補正
WO2022202727A1 (ja) * 2021-03-22 2022-09-29 国立研究開発法人量子科学技術研究開発機構 画像処理装置、画像処理システム、および画像処理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11241211B2 (en) * 2020-03-12 2022-02-08 Canon Medical Systems Corporation Method and apparatus for singles spectrum estimation and for dead-time correction in positron emission tomography (PET)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249806A (ja) * 2005-05-23 2005-09-15 Hitachi Ltd γ線の同時計数方法、及び核医学診断装置
US7129496B2 (en) 2005-01-21 2006-10-31 General Electric Company Method and system for scattered coincidence estimation in a time-of-flight positron emission tomography system
US7397035B2 (en) 2005-10-14 2008-07-08 Siemens Medical Solutions Usa, Inc. Scatter correction for time-of-flight positron emission tomography data
US8265365B2 (en) 2010-09-20 2012-09-11 Siemens Medical Solutions Usa, Inc. Time of flight scatter distribution estimation in positron emission tomography
JP2013234995A (ja) * 2012-05-09 2013-11-21 Toshiba Corp 偶発同時計数推定方法及び偶発同時計数推定装置
WO2013175352A1 (en) 2012-05-21 2013-11-28 Koninklijke Philips N.V. Fast scatter estimation in pet reconstruction.
US8809791B2 (en) 2009-05-20 2014-08-19 Koninklijke Philips N.V. Continuous time-of-flight scatter simulation method
JP2015145828A (ja) * 2014-02-03 2015-08-13 株式会社東芝 画像処理装置及び画像処理プログラム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7869860B2 (en) * 2005-11-14 2011-01-11 University Of Washington Method for enhancing the accuracy of PET/CT images
RU2437120C2 (ru) * 2006-07-21 2011-12-20 Конинклейке Филипс Электроникс Н.В. Способ и система для усовершенствованной реконструкции tof pet
US7737405B2 (en) * 2007-09-17 2010-06-15 Siemens Medical Solutions Usa, Inc. Time-of-flight (TOF) positron emission tomography (PET) reconstruction from time-truncated projection data
WO2010048325A2 (en) * 2008-10-21 2010-04-29 University Of Southern California Exact and approximate rebinning of time-of-flight pet positron emission tomography data
WO2010143082A1 (en) * 2009-06-08 2010-12-16 Koninklijke Philips Electronics N.V. Time-of-flight positron emission tomography reconstruction using image content generated event-by-event based on time-of-flight information
US8913810B2 (en) * 2011-07-26 2014-12-16 Siemens Medical Solutions Usa, Inc. Simultaneous reconstruction of emission activity and attenuation coefficient distribution from TOF data, acquired with external shell source
US20150065854A1 (en) * 2012-10-31 2015-03-05 General Electric Company Joint estimation of attenuation and activity information using emission data
CN103908280B (zh) * 2013-01-08 2017-07-28 上海联影医疗科技有限公司 Pet散射校正的方法
US9788809B2 (en) * 2013-03-06 2017-10-17 Canon Kabushiki Kaisha Apparatus, method and computer-readable medium storing program for radiographic imaging with elapsed time control of radiation sensor apparatus
US9155514B2 (en) * 2013-08-01 2015-10-13 Siemens Medical Solutions Usa, Inc. Reconstruction with partially known attenuation information in time of flight positron emission tomography
US10354417B2 (en) * 2016-09-13 2019-07-16 Toshiba Medical Systems Corporation Medical image processing apparatus and medical image diagnosis apparatus and medical image processing method
US9706972B1 (en) * 2016-09-28 2017-07-18 General Electric Company Systems and methods for reconstruction of emission activity image
EP3549104B1 (en) * 2016-11-29 2020-09-09 Koninklijke Philips N.V. Interactive targeted ultrafast reconstruction in emission and transmission tomography
US11061151B2 (en) * 2016-12-06 2021-07-13 Koninklijke Philips N.V. Hybrid TOF and non-TOF PET systems with joint TOF and non-TOF image reconstruction
US11288847B2 (en) * 2018-11-09 2022-03-29 Siemens Medical Solutions Usa, Inc. Double scatter simulation for improved reconstruction of positron emission tomography data
WO2020123846A1 (en) * 2018-12-13 2020-06-18 Cornell University A positron emission tomography system with adaptive field of view
US11300695B2 (en) * 2020-04-24 2022-04-12 Ronald Nutt Time-resolved positron emission tomography encoder system for producing event-by-event, real-time, high resolution, three-dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11054534B1 (en) * 2020-04-24 2021-07-06 Ronald Nutt Time-resolved positron emission tomography encoder system for producing real-time, high resolution, three dimensional positron emission tomographic image without the necessity of performing image reconstruction
US11696733B2 (en) * 2020-06-08 2023-07-11 GE Precision Healthcare LLC Systems and methods for a stationary CT imaging system
US11874411B2 (en) * 2020-09-23 2024-01-16 Siemens Medical Solutions Usa, Inc. Estimation of partially missing attenuation in time-of-flight positron emission tomography
US11623661B2 (en) * 2020-10-12 2023-04-11 Zoox, Inc. Estimating ground height based on lidar data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129496B2 (en) 2005-01-21 2006-10-31 General Electric Company Method and system for scattered coincidence estimation in a time-of-flight positron emission tomography system
JP2005249806A (ja) * 2005-05-23 2005-09-15 Hitachi Ltd γ線の同時計数方法、及び核医学診断装置
US7397035B2 (en) 2005-10-14 2008-07-08 Siemens Medical Solutions Usa, Inc. Scatter correction for time-of-flight positron emission tomography data
US8809791B2 (en) 2009-05-20 2014-08-19 Koninklijke Philips N.V. Continuous time-of-flight scatter simulation method
US8265365B2 (en) 2010-09-20 2012-09-11 Siemens Medical Solutions Usa, Inc. Time of flight scatter distribution estimation in positron emission tomography
JP2013234995A (ja) * 2012-05-09 2013-11-21 Toshiba Corp 偶発同時計数推定方法及び偶発同時計数推定装置
WO2013175352A1 (en) 2012-05-21 2013-11-28 Koninklijke Philips N.V. Fast scatter estimation in pet reconstruction.
JP2015145828A (ja) * 2014-02-03 2015-08-13 株式会社東芝 画像処理装置及び画像処理プログラム

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
C. WATSON: "Extension of Single Scatter Simulation to Scatter Correction of Time-of-Flight PET", IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 54, no. 5, 2007, pages 1679 - 1686, XP011194173, doi:10.1109/TNS.2007.901227
M. IATROU ET AL.: "Nuclear Science Symposium Conference Record", vol. 5, 2007, IEEE, article "Comparison of two 3D implementations of TOF scatter estimation in 3D PET", pages: 3474 - 3477
S GROOTOONK ET AL.: "Correction for scatter in scatter 3D brain PET using a dual energy window method", PHYS. MED. BIOL., vol. 41, 1996, pages 2757 - 2774
X JIN ET AL.: "List-mode reconstruction for the biograph mCT with physics modeling and event-by-event motion correction", PHYS. MED. BIOL., vol. 58, 2013, pages 5567 - 5591, XP020249102, doi:10.1088/0031-9155/58/16/5567
X. JIN ET AL.: "List-mode reconstruction for the Biograph mCT with physics modeling and event- by-event motion correction", PHYS. MED. BIOL., vol. 8, no. 16, 5 August 2013 (2013-08-05), pages 5567 - 5591, XP020249102 *
X. JIN ET AL.: "List-mode reconstruction for the Biograph mCT with physics modeling and event-by-event motion correction", PHYS. MED. BIOL., vol. 58, 2013, pages 5567 - 5591, XP020249102, doi:10.1088/0031-9155/58/16/5567

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018220686A1 (ja) * 2017-05-29 2019-11-07 株式会社島津製作所 吸収係数画像推定方法、吸収係数画像推定プログラム並びにそれを搭載したポジトロンct装置
JP2020529616A (ja) * 2017-09-14 2020-10-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 陽電子放出断層撮影における狭いエネルギー窓カウントから再構成された放出画像推定を使用した散乱補正
WO2020059135A1 (ja) * 2018-09-21 2020-03-26 株式会社島津製作所 データ処理方法、プログラム、データ処理装置および陽電子放出断層撮像装置
JPWO2020059135A1 (ja) * 2018-09-21 2021-06-03 株式会社島津製作所 データ処理方法、プログラム、データ処理装置および陽電子放出断層撮像装置
JP7001176B2 (ja) 2018-09-21 2022-01-19 株式会社島津製作所 データ処理方法、プログラム、データ処理装置および陽電子放出断層撮像装置
WO2022202727A1 (ja) * 2021-03-22 2022-09-29 国立研究開発法人量子科学技術研究開発機構 画像処理装置、画像処理システム、および画像処理方法

Also Published As

Publication number Publication date
US20200012002A1 (en) 2020-01-09
EP3594722A1 (en) 2020-01-15
CN110446946A (zh) 2019-11-12
US11513243B2 (en) 2022-11-29
JPWO2018163362A1 (ja) 2019-12-26
JP6711450B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
Sarrut et al. Advanced Monte Carlo simulations of emission tomography imaging systems with GATE
JP6711450B2 (ja) 散乱推定方法、散乱推定プログラム並びにそれを搭載したポジトロンct装置
EP3153889B1 (en) Radiation detection device and radiation detection method for nuclear medical diagnosis apparatus
JP4208284B2 (ja) 核像形成方法及び装置
Turecek et al. Compton camera based on Timepix3 technology
JP7317586B2 (ja) 医用画像処理装置、方法及びプログラム
JP7286383B2 (ja) 陽電子放出撮像装置及び方法
CN108474862A (zh) 具有lu谱减除的能量校准
CN106415317A (zh) 单光子发射计算机化断层摄影术中的多个发射能量
JP2013234995A (ja) 偶発同時計数推定方法及び偶発同時計数推定装置
WO2016002084A1 (ja) 画像再構成処理方法
JP2021173755A (ja) 医用画像処理装置、医用画像処理方法及びプログラム
Nuyts Nuclear medicine technology and techniques
Bouwens et al. Image-correction techniques in SPECT
JP6761610B2 (ja) 吸収係数画像推定方法、吸収係数画像推定プログラム並びにそれを搭載したポジトロンct装置
JP4984963B2 (ja) 核医学診断装置
JPH11511551A (ja) イメージング装置
JP7001176B2 (ja) データ処理方法、プログラム、データ処理装置および陽電子放出断層撮像装置
Bentourkia et al. Simultaneous attenuation and scatter corrections in small animal PET imaging
US20230206516A1 (en) Scatter estimation for pet from image-based convolutional neural network
Brard et al. Axially oriented crystal geometry applied to small-animal PET system: A proof of concept
Ljungberg Instrumentation, Calibration, Quantitative Imaging, and Quality Control
Kalaitzidis From Monte Carlo PET Simulations to Reconstructed Images: Modelling and Optimisation for 68Ga Theragnostics
Hunter et al. Cardiac Positron Emission Tomography Basics
Vicente Torrico Caracterización, mejora y diseño de escáneres PET preclínicos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899790

Country of ref document: EP

Effective date: 20191009