WO2018160019A2 - 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법 - Google Patents

양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법 Download PDF

Info

Publication number
WO2018160019A2
WO2018160019A2 PCT/KR2018/002495 KR2018002495W WO2018160019A2 WO 2018160019 A2 WO2018160019 A2 WO 2018160019A2 KR 2018002495 W KR2018002495 W KR 2018002495W WO 2018160019 A2 WO2018160019 A2 WO 2018160019A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
organic light
quantum dot
blue
Prior art date
Application number
PCT/KR2018/002495
Other languages
English (en)
French (fr)
Other versions
WO2018160019A3 (ko
Inventor
강경태
김성진
조관현
임중혁
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170026109A external-priority patent/KR101945514B1/ko
Priority claimed from KR1020170026177A external-priority patent/KR101945499B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2018160019A2 publication Critical patent/WO2018160019A2/ko
Publication of WO2018160019A3 publication Critical patent/WO2018160019A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic light emitting display device and a method of manufacturing the same, and more particularly, to an organic light emitting display device having a structure suitable for large area through quantum dot printing and a method of manufacturing the same.
  • An organic light emitting display device is a display device in which pixels emitting light are collected by an organic light emitting device, which is also referred to as an organic light emitting device (OLED).
  • OLED organic light emitting device
  • the organic light emitting display device has a low driving voltage, high luminance, and a wide viewing angle, and thus the use range of the organic light emitting display device is gradually increasing.
  • white light is formed by stacking an organic light emitting layer of red green blue (RGB) through an open mask having no positional separation.
  • RGB red green blue
  • the technology to realize three colors of RGB through the color filter used in the existing LCD has been developed.
  • a manufacturing process for forming a laminated structure for forming white light is complicated and power efficiency is low.
  • An object of the present invention is to provide an organic light emitting display device having a structure suitable for large area by applying a quantum dot printing method and a manufacturing method thereof to solve the problems of the prior art described above.
  • a quantum dot printed organic light emitting display device for achieving the above object, the substrate; A pixel definition layer formed on the substrate and separating a pixel and a blue, red, and green subpixel area included in the pixel; Reflective anodes spaced apart from each other on the substrate and exposed to the subpixel regions, respectively; A blue organic light emitting diode layer formed on the pixel definition layer; A transparent cathode formed on the blue organic light emitting diode layer; A total protective layer formed on the transparent cathode; And a color conversion layer formed on the pre-protection layer, wherein the color conversion layer includes a red conversion part and a green conversion part respectively formed in the red area and the green area of the subpixel area, and the red conversion part is blue organic.
  • the green conversion unit converts the blue light emitted from the blue organic light emitting diode layer to green It is characterized in that it is configured by printing a curable ink containing a quantum dot material and a curable resin.
  • the organic light emitting display device of the present invention includes a blue organic light emitting diode layer that does not distinguish subpixel regions, thereby forming an organic light emitting diode layer by an open mask process, and thus has a larger organic area than the organic light emitting display device manufactured by the FMM method.
  • a light emitting display can be manufactured easily.
  • a blue organic light emitting diode layer formed by an open mask process and a color conversion layer composed of a quantum dot material, a conventional organic light emitting display device using a white organic light emitting diode layer and a color filter to apply the open mask process In comparison, a high resolution display device can be manufactured at a low process cost.
  • the color conversion layer is preferably formed by an inkjet printing method.
  • the color conversion layer may further include a protective layer to protect from the surrounding environment, such as moisture / oxygen.
  • the protective layer may be a material containing any one of inorganic materials, such as SiNx, SiOx, AlOx.
  • the color conversion layer may further include an organic coating layer composed of an organic material.
  • the organic coating layer may be performed by one of inkjet coating and roll coating.
  • the organic material coating layer may be cured by the organic material photocuring process.
  • the quantum dot material included in the red converting unit and the green converting unit may preferably have a volume range of 50% or less with respect to each of the red converting unit and the green converting unit. If the quantum dot material exceeds 50% by volume, there is a problem in that the printing process is not performed smoothly.
  • the lower limit of the amount in which the quantum dot material is included is not particularly limited, but it is preferable to include at least 0.01% or more by volume ratio for conversion.
  • the curable resin included in the red converting unit and the green converting unit includes a photocurable functional group, since the curable resin can be cured by photocuring, the curing process after printing becomes smoother.
  • the curable resin constituting the curable ink can apply an organic monomer, and in particular, the acrylic monomer has a viscosity of 10 cps or less at a high temperature near 100 ° C. and is cured at 80 ° C. or less, so that the curable resin of the curable ink is suitable.
  • the color filter is a part that converts the light emitted from the back light source to realize color in the liquid crystal display, and may apply commercial particles used in the color filter or particles exhibiting the same characteristics.
  • commercialized colorants used in color filters are pigments, and the term is used herein to include dye particles having the properties of color filters or even nanostructured particles having the properties of color filters.
  • the preprotective layer is preferably formed by one of sputtering, PECVD, evaporation deposition, and ALD processes, and is preferably one of SiOx, SiNx, and AlOx materials.
  • the thickness of the color conversion layer may be 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 30 ⁇ m.
  • the protective layer is preferably formed by a face seal process.
  • the blue organic light emitting diode layer may have a structure in which a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer, and an electron injection layer are stacked.
  • the active matrix circuit layer on which the TFTs are formed may be an active organic light emitting display device positioned below the substrate.
  • CPL capping layer
  • a method of manufacturing an organic light emitting display device including: forming reflective anodes spaced apart from each other on a substrate; Forming a pixel defining layer such that the reflective anode is exposed to the blue, red, and green subpixel regions, respectively; Forming a blue organic light emitting diode layer using an open mask; Forming a transparent cathode on the blue organic light emitting diode layer; Forming a protective layer on the transparent cathode; And forming a color conversion layer on the preliminary protective layer, and the forming of the color conversion layer includes a quantum dot material and a curable resin for converting blue light emitted from the blue organic light emitting diode layer into red.
  • the curable ink including a red sub-region to form a red conversion part, and the curable ink including a quantum dot material and a curable resin to convert blue light emitted from a blue organic light emitting diode layer into green;
  • the printing is performed on the pixel area to form a green conversion unit.
  • the forming of the color conversion layer is preferably performed by an inkjet printing method.
  • an inorganic quantum dot material as the quantum dot material, and both cadmium-based quantum dot materials such as CdS and CdSe and non-cadmium-based quantum dot materials such as InP and GaP may be used.
  • a quantum dot material containing Mn it is preferable to apply a quantum dot material containing Mn.
  • perovskite-based quantum dot material may be used perovskite-based quantum dot material.
  • the quantum dot material included in the curable ink for forming the red conversion unit and the green conversion unit is preferably 50% or less in volume ratio in the ink. If the volume ratio contains more than 50% of the quantum dot material there is a problem that the printing process is not performed smoothly.
  • the lower limit of the amount in which the quantum dot material is included is not particularly limited, but it is preferable to include at least 0.01% or more by volume ratio for conversion.
  • the curable resin included in the curable ink for forming the red converting part and the green converting part includes a photocurable functional group, it is possible to cure by photocuring, so that the curing process after printing becomes smoother.
  • the curable resin constituting the curable ink can apply an organic monomer, and in particular, the acrylic monomer exhibits a viscosity of 10 cps or less at a high temperature near 100 ° C. and is cured at 80 ° C. or less to be suitable as the curable resin of the curable ink.
  • the forming of the protective layer may be performed by one of sputtering, PECVD, evaporation deposition, and ALD processes, and the forming of the protective layer may be performed by a face seal process.
  • the method may further include forming a capping layer (CPL) with an organic material on the transparent cathode, wherein the CPL is transparent from the plasma used in a process step such as PECVD for forming the protective layer.
  • CPL capping layer
  • Forming the blue organic light emitting diode layer may be performed by sequentially stacking a hole injection layer, a hole transport layer, a blue organic light emitting layer, an electron transport layer and an electron injection layer.
  • an active organic light emitting display device By further comprising connecting with the active matrix circuit layer on which the TFT is formed, an active organic light emitting display device can be manufactured.
  • the organic light emitting display device of the present invention configured as described above includes a blue organic light emitting diode layer that does not distinguish subpixel regions, and forms an organic light emitting diode layer by an open mask process, thereby forming an organic light emitting display device manufactured by an FMM method. In comparison, a large-area organic light emitting display can be easily manufactured.
  • a blue organic light emitting diode layer formed by an open mask process and a color conversion layer composed of a quantum dot material, a conventional organic light emitting display device using a white organic light emitting diode layer and a color filter to apply the open mask process In comparison, a high resolution display device can be manufactured at a low process cost.
  • the present invention by forming the pre-protective layer before forming the color conversion layer composed of a quantum dot material, it is possible to protect the organic light emitting diode layer and form the color conversion layer in a relatively low cost printing process.
  • the TFT circuit can be simplified by controlling only the blue light emitting characteristics, and therefore, the quantum dot printed organic light emitting display device can be manufactured at a low process cost.
  • FIG. 1 is a cross-sectional view showing the structure of a quantum dot printed organic light emitting display device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the blue organic light emitting diode layer of this embodiment.
  • 3 is a normalized intensity spectrum of a quantum dot according to the number of QD drop.
  • Figure 4 is a cross-sectional view showing the use of the quantum dot printed organic light emitting display device according to the present invention.
  • organic light emitting display layer 110 substrate
  • PSA layer 182 protective film
  • active matrix circuit layer 210 substrate
  • gate insulating film 230 interlayer insulating film
  • buffer layer 250 passivation layer
  • drain electrode 290 active part
  • FIG. 1 is a cross-sectional view showing the structure of a quantum dot printed organic light emitting display device according to an embodiment of the present invention.
  • each pixel 10 is divided into three sub-pixel areas. Specifically, each pixel 10 is divided into a blue subpixel area 11, a green subpixel area 12, and a red subpixel area 13.
  • the quantum dot printed organic light emitting display device of the present embodiment includes a substrate 110, a reflective anode 120, a pixel definition layer 130, a blue organic light emitting diode layer 140, a transparent cathode 150, and a protective layer 160. And a color conversion layer 170, and may further include a protective layer 180, and are manufactured by sequentially stacking them.
  • a structure together with a manufacturing method will be described.
  • the reflective anodes 120 spaced apart from each other are formed on the substrate 110. Since the organic light emitting display device of the present embodiment emits light upward in the cross-sectional view of the illustrated embodiment, the material of the substrate 110 is not particularly limited, and the reflective anode 120 reflects light emitted downward and reflects upward.
  • a metal material may be used, and a structure in which a metal material and a transparent conductive film are laminated, such as "ITO / Ag / ITO", may be applied.
  • a pixel definded layer is formed on the substrate 110 to expose the reflective anode 120 in each of the subpixel regions 11, 12, and 13.
  • the pixel definition layer 130 divides the pixel 10 and the subpixel regions 11, 12, and 13 included in the pixel as an organic insulating material.
  • the reflective anode 120 is spaced apart from the pixel definition layer 130. Are insulated from one another to prevent shorts between the anodes.
  • a blue organic light emitting diode layer 140 is formed.
  • three subpixel regions 11, 12, and 13 are separated from each other.
  • an open mask is not distinguished from the subpixel regions. It is formed on the whole surface by the process.
  • FIG. 2 is a cross-sectional view showing the structure of the blue organic light emitting diode layer of this embodiment.
  • the blue organic light emitting diode layer 140 of the present embodiment is configured by sequentially stacking a hole injection layer 141, a hole transport layer 142, a blue organic light emitting layer 143, an electron transport layer 144, and an electron injection layer 145. do.
  • the blue organic light emitting diode layer 140 is a structure of a general organic light emitting diode, and is not limited thereto. Any structure that may be applied to an organic light emitting diode emitting blue single color may be applied.
  • the organic light emitting diode layer is formed on the entire surface by an open mask process, an organic light emitting display having a higher resolution in a larger area than in the case of using an FMM to form a different organic light emitting diode layer in each subpixel area. There is an advantage to manufacture the device.
  • the present embodiment forms an organic light emitting diode layer on the entire surface by an open mask process, but unlike the conventional organic light emitting display device laminated an organic light emitting diode layer emitting three colors for white light emission, blue
  • the process is very simple in that only the light emitting organic light emitting diode layer is formed, and there is an advantage that the power efficiency reduction problem does not occur due to the lamination of the organic light emitting layer.
  • the transparent cathode 150 is formed on the blue organic light emitting diode layer 140. In the present embodiment, since the cathode is positioned above the light, the transparent material is formed, and the transparent cathode 150 is also formed on the entire surface of the subpixel area without being divided.
  • a pre-barrier 160 is formed on the transparent cathode 150.
  • the organic light emitting display device of the present embodiment includes only a single blue organic light emitting diode layer 140, and implements green and red colors by the color conversion layer 170, which will be described in detail later.
  • the preliminary protective layer 160 is formed on the transparent cathode 150 to facilitate formation.
  • the preliminary protective layer 160 may form an SiNx layer by PECVD or an AlOx layer (eg, an Al2O3 layer) by an ALD process.
  • a CPL capping layer
  • a CPL capping layer
  • damage to the transparent cathode 150 by plasma used in a process step such as PECVD for forming the protective layer 160 may be prevented.
  • the color conversion layer 170 includes a green conversion unit 172 and a red conversion unit 173 for converting blue light emitted from the blue organic light emitting diode layer 140 into green and red.
  • the green converter 172 and the red converter 173 are formed in the green subpixel area 12 and the red subpixel area 13 respectively separated by the pixel definition layer 130. Blue light emitted from the blue organic light emitting diode layer 140 passes through the blue subpixel area 11 as it is.
  • the green converting unit 172 is composed of a quantum dot material converting blue light emitted from the blue organic light emitting diode layer 140 to green, and the red converting unit 173 is emitted from the blue organic light emitting diode layer 140. Consists of a quantum dot material that converts blue light into red. Since the color conversion layer 170 of the present embodiment is made of a quantum dot material, the green conversion unit 172 and the red conversion unit 173 are formed by a printing method such as inkjet printing without applying an expensive lithography process necessary for forming a color filter. ) May be separately formed in the green subpixel area 12 and the red subpixel area 13.
  • the present invention is characterized by applying a curable ink using a curable resin without using a solvent (solvent) as the ink for printing, such as inkjet printing.
  • Curable ink is a solid resin that is a solid resin at room temperature and low viscosity at high temperature, unlike a general liquid ink that is liquid at room temperature using a solvent.
  • the solvent contained in the ink manufacturing process reacts with the upper portion of the light emitting layer, resulting in deterioration of quality, and unevenness in the process of drying the liquid ink.
  • the present invention has the advantage that the problem caused by the solvent does not occur because it uses a curable ink.
  • Curable resins used in the present invention are those which are cured without a solvent drying process.
  • the curable resins are heat cured at 80 ° C. or lower in acryl base monomers having a viscosity of 10 cps or less at a high temperature of about 100 ° C.
  • Materials may be used or materials capable of UV curing.
  • specific examples of such a curable resin include urethane acrylate (Urethane Acrylate).
  • Epoxy and silicone resins may also be used.
  • a polyimide resin or a resin containing polyimide may be used.
  • the glass transition temperature after curing be 100 ° C. or more after curing as a material having a low viscosity.
  • the present invention is not limited to these conditions, and the temperature at which the viscosity of the curable resin is lowered, the viscosity, the curing temperature, and the like can be adjusted according to the specific form of applying the curable ink without using a solvent.
  • the temperature of the printhead is raised to lower the viscosity of the monomer included in the curable ink, thereby performing inkjet printing, and lowering the temperature or irradiating UV to harden the monomer to form the color conversion layer 170.
  • the curable ink is not limited to not using a solvent at all, and a small amount of solvent may be added, and unlike the conventional liquid ink in which various problems occur in the process of drying the solvent, The present invention does not cause a problem of deterioration in the quality of the drying process by including the solvent only to the extent that a minimum drying process that does not occur the problem of the drying process is required.
  • the blue subpixel region 11 may be inkjet printed with a curable ink that does not disperse the quantum dot material so that blue light emitted from the blue organic light emitting diode layer 140 may pass through, thereby forming a transparent resin layer.
  • Such a printing process is suitable for manufacturing a large area organic light emitting display device, and in particular, the present embodiment performs the inkjet printing process using the curable ink on the front protective layer 160, and therefore, the blue organic light emitting device located at the bottom thereof.
  • the color conversion layer 170 may be easily formed without affecting the diode layer 140 and the transparent cathode 150.
  • the present embodiment uses an inorganic quantum dot material having high reliability and stability as the quantum dot material constituting the green converting unit 172 and the red converting unit 173, thereby providing excellent quality despite the relatively low cost inkjet printing process.
  • the color conversion layer 170 may be formed.
  • color purity may be increased by mixing particles showing color filter characteristics together with quantum dot materials.
  • commercialized colorants used in color filters are pigments, and in the present invention, the term includes both dye particles having the characteristics of the color filter or nanoparticles having the characteristics of the color filter.
  • Particles exhibiting color filter properties that can be applied to the green conversion part include metallophthalocyanine.
  • Particles showing color filter properties that can be applied to the red conversion part include diketopyrrolopyrrole and Pigment Red 254. There is this.
  • the blue light generated from the blue organic light emitting diode layer 140 should not be emitted through the green converter 172 and the red converter 173, particles absorbing blue light or particles controlling blue light absorption. May be included.
  • the color conversion layer 170 may be formed to have a thickness in the range of 1 ⁇ m to 50 ⁇ m, preferably 2 ⁇ m to 30 ⁇ m.
  • the thickness of the color conversion layer 170 is preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the quantum dots mixed with the quantum dot material are semiconductor nanoparticles, and electrons in unstable state are emitted from the conduction band to the valence band, and light is emitted as the particles of the quantum dots are shorter, and the light of longer wavelengths as the particles are larger. This happens. Therefore, controlling the size of the quantum dot can implement a variety of colors.
  • the color conversion layer 170 including the quantum dots does not absorb light as in the conventional color filter, but converts and emits the wavelength of light, so the light efficiency is high.
  • Quantum dots may be applied to the quantum dots of inorganic components, cadmium-based quantum dots such as CdS, CdSe and non-cadmium-based quantum dots such as InP, GaP, etc. may be applied, but the quantum dot component is not limited thereto.
  • perovskite-based quantum dot materials may be used in addition to cadmium-based / indium-based quantum dot materials.
  • 3 is a normalized intensity spectrum of a quantum dot according to the number of QD drop.
  • the emission intensity of the blue wavelength portion which is a wavelength portion in the range of 450 to 500 nm and the red wavelength portion which is the wavelength portion in the range of 620 to 670 nm shows similar levels.
  • the number of quantum dot drops is 3 or more, the light emission intensity of the red wavelength portion increases significantly compared to the light emission intensity of the blue wavelength portion.
  • the thickness of the quantum dot layer formed is only a few ⁇ m. As such, even if the quantum dot is formed only of a layer having a thickness of several ⁇ m, the wavelength of blue light may be converted into the wavelength of red light or green light.
  • the protective layer 180 may be further formed on the color conversion layer 170 to protect the surface of the organic light emitting display device including the color conversion layer 170 and the blue organic light emitting diode layer 140.
  • the protective layer 180 is formed by a face seal process. Specifically, Pressure Sensitive Adhesives (PSA) are applied to the entire surface to form a protective PSA layer 181, and a protective film 182 is attached thereon to form a protective layer 180.
  • PSA Pressure Sensitive Adhesives
  • the protective layer 180 may be a material including any one of SiNx, SiOx, and AlOx.
  • the protective layer 180 may protect the display device by preventing oxygen and moisture from penetrating into the color conversion layer 170 and the blue organic light emitting diode 140 from the outside. In addition, since the quantum dot material is prevented from oxidizing, durability can be improved.
  • an organic coating layer made of an organic material may be formed on the color conversion layer 170. Damage to the color conversion layer 170 due to plasma used in a process step such as PECVD to form the protective layer 180 may be prevented by forming the organic coating layer.
  • the organic coating layer may be formed to have a thickness of 5 ⁇ m or less.
  • the organic coating layer may be formed by applying a method such as inkjet coating, roll coating.
  • the organic material formed on the color conversion layer 170 may be cured by a photocuring process.
  • Figure 4 is a cross-sectional view showing the use of the quantum dot printed organic light emitting display device according to the present invention.
  • the active matrix circuit layer 200 is connected to the lower portion of the organic light emitting display layer 100 having the same structure as described above.
  • the active matrix circuit layer 200 has a thin film transistor (TFT) corresponding to each subpixel, and each TFT is connected to the reflective anode of the subpixel.
  • the TFT includes a source electrode 260, a gate electrode 270, a drain electrode 280, and an active part 290, and the drain electrode 280 is connected to the reflective anode 120.
  • the active matrix circuit layer 200 includes a substrate 210, a gate insulating film 220, an interlayer insulating film 230, a buffer layer 240, and a passivation layer 250 for driving a TFT.
  • the active matrix circuit layer is a structure of a general active matrix circuit, but is not limited thereto, and any structure applicable to an active organic light emitting display may be applied.
  • a thin film transistor layer TFT may be formed on the substrate 110.
  • the thin film transistor layer includes a gate wiring, a data wiring, a power wiring, a switching thin film transistor, and a driving thin film transistor formed for each pixel.
  • the switching thin film transistor and the driving thin film transistor of the thin film transistor layer may be formed in a bottom gate structure in which a gate electrode is formed under the semiconductor layer, or in a top gate structure in which the gate electrode is formed on the semiconductor layer.
  • Such a thin film transistor layer may be formed in various forms known in the art.
  • the transistor circuit may include only the blue pixel region, and thus may include a simplified transistor circuit.
  • the active layer of the thin film transistor layer may be an oxide semiconductor containing zinc oxide or a material containing silicon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 대면적화에 적합한 구조의 양자점 인쇄 유기발광 디스플레이 소자에 관한 것으로, 기판; 상기 기판에 형성되어 화소 및 상기 화소에 포함된 청색과 적색 및 녹색 부화소 영역을 구분하는 화소정의막; 상기 부화소 영역에 각각 노출된 반사형 애노드; 상기 화소정의막 위에 형성된 청색 유기발광다이오드층; 상기 청색 유기발광다이오드층 위에 형성된 투명 캐소드; 상기 투명 캐소드 위에 형성된 전보호층; 및 상기 전보호층 위에 형성된 색변환층을 포함하여 구성되며, 상기 색변환층은 적색 및 녹색 변환부로 구성되고, 상기 적색 및 녹색 변환부는 청색 유기발광다이오드층에서 방출된 청색의 빛을 적색 및 녹색으로 각각 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 프린팅하여 구성된 것을 특징으로 한다.

Description

양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
본 발명은 유기발광 디스플레이 소자 및 그 제조방법에 관한 것으로, 더욱 자세하게는 양자점 인쇄를 통해 대면적화에 적합한 구조의 유기발광 디스플레이 소자 및 그 제조방법에 관한 것이다.
본 출원은 2017년 2월 28일에 출원된 한국특허출원 제10-2017-0026109호 및 제10-2017-0026177호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
유기발광 디스플레이 소자는 OLED(Organic Light-Emitting Device)로도 표현되는 유기발광소자에 의해서 빛을 발광하는 화소들이 집합된 디스플레이 장치이다.
이러한 유기발광 디스플레이 소자는 구동 전압이 낮고 휘도가 높으며 시인각이 넓기 때문에 풀 컬러의 평판 디스플레이용으로서 사용 범위가 점차 증가하고 있다.
종래에는 유기발광 디스플레이의 적록청(RGB) 화소를 구성하는 3개 색상을 구현하기 위해 FMM(fine metal mask)를 사용하여 위치가 구분된 3종류의 유기발광층을 각각 형성하여, 품질이 뛰어난 유기발광 디스플레이를 제작할 수 있었으나, 대면적 FMM 마스크 제작의 어려움과 FMM 자체의 무게로 인하여 휘어짐이 발생하기 때문에 대면적의 유기발광 디스플레이를 제작하기 어려운 단점이 있다.
이러한 FMM 방식의 단점을 보완하여 대면적의 유기발광 디스플레이를 제조하기 위하여, 위치의 구분이 없는 오픈 마스크(open mask)를 통해 적록청(RGB)의 유기발광층을 적층하여 백색광을 구성하고, 백색광은 기존의 LCD에서 사용되던 컬러필터를 통해서 RGB의 3색을 구현하는 기술이 개발되었다. 하지만, 백색광 형성을 위한 적층 구조 형성을 위한 제조공정이 복잡하고 전력효율이 떨어지는 단점이 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서 양자점 인쇄방식을 적용하여 대면적화에 적합한 구조의 유기발광 디스플레이 소자 및 그 제조방법을 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위한 본 발명에 의한 양자점 인쇄 유기발광 디스플레이 소자는, 기판; 상기 기판에 형성되어 화소 및 상기 화소에 포함된 청색과 적색 및 녹색 부화소 영역을 구분하는 화소정의막; 상기 기판에 서로 이격되어 형성되며, 상기 부화소 영역에 각각 노출된 반사형 애노드; 상기 화소정의막 위에 형성된 청색 유기발광다이오드층; 상기 청색 유기발광다이오드층 위에 형성된 투명 캐소드; 상기 투명 캐소드 위에 형성된 전보호층; 및 상기 전보호층 위에 형성된 색변환층을 포함하여 구성되며, 상기 색변환층은 상기 부화소 영역 중에서 적색 영역과 녹색 영역에 각각 형성된 적색 변환부와 녹색 변환부로 구성되고, 상기 적색 변환부는 청색 유기발광다이오드층에서 방출된 청색의 빛을 적색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 프린팅하여 구성되고, 상기 녹색 변환부는 청색 유기발광다이오드층에서 방출된 청색의 빛을 녹색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 프린팅하여 구성된 것을 특징으로 한다.
본 발명의 유기발광 디스플레이 소자는 부화소 영역을 구분하지 않는 청색 유기발광다이오드층을 구비하여 오픈 마스크 공정으로 유기발광다이오드층을 형성함으로써, FMM 방식으로 제조된 유기발광 디스플레이 소자에 비하여 대면적의 유기발광 디스플레이를 용이하게 제조할 수 있다.
또한, 오픈 마스크 공정으로 형성된 청색 유기발광다이오드층과 양자점물질로 구성된 색변환층을 구비함으로써, 오픈 마스크 공정을 적용하기 위하여 백색의 유기발광다이오드층과 컬러 필터를 사용하여 구성된 종래의 유기발광 디스플레이 소자에 비하여 고해상도의 디스플레이 소자를 낮은 공정비용으로 제조할 수 있다.
특히, 용매를 사용하여 상온에서 액체 상태인 일반적인 액체형 잉크가 아닌, 경화성 레진을 포함하여 상온에서 고체상태인 경화형 잉크를 사용하여 프린팅함으로써, 용매의 반응에 의한 문제와 건조과정에서 시인성이 악화되는 문제를 해결할 수 있는 장점이 있다.
이때, 색변환층은 잉크젯 프린팅 방법으로 형성된 것이 바람직하다.
한편, 상기 색변환층 위에, 수분/산소 등의 주변환경으로부터 보호하기 위해 보호층을 더 포함할 수 있다.
이때, 상기 보호층은 SiNx, SiOx, AlOx 등의 무기물질 중 어느 하나를 포함하는 재질일 수 있다.
또한 상기 색변환층 및 상기 보호층 사이에 개재되고, 유기물질로 구성된 유기물 코팅층을 더 포함할 수 있다.
이때, 상기 유기물 코팅층은 잉크젯 코팅, 롤 코팅 중 하나의 방법으로 수행될 수 있다.
또한, 상기 유기물 코팅층은 상기 유기물질이 광경화 공정으로 경화될 수 있다.
그리고 적색 변환부와 녹색 변환부에 포함된 양자점물질은 적색 변환부와 녹색 변환부 각각의 부피에 대하여 50% 이하의 부피범위인 것이 바람직하다. 양자점 물질이 부피비율로 50%를 넘는 경우에는 프린팅 공정이 원활하게 수행되지 않는 문제가 있다. 양자점 물질이 포함되는 양의 하한 값은 특별히 제한되는 것은 아니지만, 변환을 위하여 부피비율로 적어도 0.01% 이상 포함되는 것이 바람직하다.
적색 변환부와 녹색 변환부에 포함된 경화성 레진이 광경화성 관능기를 포함하는 경우 광경화에 의해서 경화시키는 것이 가능하기 때문에 프린팅 이후의 경화공정이 더욱 원활해진다.
경화형 잉크를 구성하는 경화성 레진은 유기 모노머를 적용할 수 있고, 특히 아크릴계 모노머는 100℃ 근처의 고온에서 10cp 이하 수준의 점도를 나타내고 80℃이하에서 경화되기 때문에 경화형 잉크의 경화성 레진으로 적합하다.
적색 변환부와 녹색 변환부가 컬러필터 특성을 나타내는 입자를 더 포함하는 경우에 색순도가 높아진다. 컬러필터는 액정 디스플레이에서 컬러를 구현할 수 있도록 배면광원에서 나오는 빛을 변환하는 부분이며, 컬러필터에 사용되는 상용의 입자를 적용할 수도 있고 동일한 특성을 나타내는 입자를 적용할 수도 있다. 일반적으로 컬러 필터에 사용되는 상업화된 착색제는 안료인데, 본 명세서에서는 컬러 필터의 특성을 갖는 염료 입자 또는 컬러 필터의 특성을 지니는 나노구조의 입자까지 모두 포함하는 용어로서 사용하였다.
전보호층은 스퍼터링, PECVD, 증발증착법 및 ALD 공정 중 하나의 방법으로 형성된 것이 좋고, SiOx, SiNx 및 AlOx 재질 중에 하나인 것이 바람직하다.
한편, 상기 색변환층의 두께는 1 ㎛ 내지 50 ㎛, 바람직하게는 2 ㎛ 내지 30 ㎛일 수 있다.
보호층은 페이스 씰 공정으로 형성된 것이 바람직하다.
청색 유기발광다이오드층은 정공주입층, 정공수송층, 청색 유기발광층, 전자수송층 및 전자주입층이 적층된 구조일 수 있다.
TFT가 형성된 능동 매트릭스 회로층이 상기 기판의 하부에 위치하는 능동형 유기발광 디스플레이 소자일 수 있다.
투명캐소드와 전보호층의 사이에 유기물질로 형성된 CPL(capping layer)을 더 포함할 수 있다.
본 발명의 다른 형태에 의한 유기발광 디스플레이 소자의 제조방법은, 기판 위에 서로 이격된 반사형 애노드를 형성하는 단계; 상기 반사형 애노드가 청색과 적색 및 녹색 부화소 영역에 각각 노출되도록 화소정의막을 형성하는 단계; 오픈 마스크를 사용하여 청색 유기발광다이오드층을 형성하는 단계; 상기 청색 유기발광다이오드층의 위에 투명 캐소드를 형성하는 단계; 상기 투명 캐소드 위에 전보호층을 형성하는 단계; 및 상기 전보호층 위에 색변환층을 형성하는 단계를 포함하여 구성되며, 상기 색변환층을 형성하는 단계는, 청색 유기발광다이오드층에서 방출된 청색의 빛을 적색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 상기 적색 부화소 영역에 프린팅하여 적색 변환부를 형성하고, 청색 유기발광다이오드층에서 방출된 청색의 빛을 녹색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 상기 녹색 부화소 영역에 프린팅하여 녹색 변환부를 형성하여 수행되는 것을 특징으로 한다.
이때, 색변환층을 형성하는 단계는 잉크젯 프린팅 방법으로 수행되는 것이 바람직하다.
양자점물질로서 무기 양자점물질을 사용하는 것이 바람직하고, CdS, CdSe 등의 카드뮴 기반 양자점 물질 및 InP, GaP 등과 같은 비카드뮴 기반 양자점 물질들을 모두 적용할 수 있다. 특히 Mn을 포함하는 양자점물질을 적용하는 것이 바람직하다. 또한 카드뮴 기반/인듐 기반 양자점 물질 외에 페로브스카이트계 양자점 물질도 사용할 수 있다.
그리고 적색 변환부와 녹색 변환부를 형성하기 위한 경화형 잉크에 포함된 양자점물질은 잉크 내에서 부피비율로 50% 이하인 것이 바람직하다. 부피비율로 50%보다 많은 양자점물질을 포함하는 경우에는 프린팅 공정이 원활하게 수행되지 않는 문제가 있다. 양자점 물질이 포함되는 양의 하한 값은 특별히 제한되는 것은 아니지만, 변환을 위하여 부피비율로 적어도 0.01% 이상 포함되는 것이 바람직하다.
적색 변환부와 녹색 변환부를 형성하기 위한 경화형 잉크에 포함된 경화성 레진이 광경화성 관능기를 포함하는 경우 광경화에 의해서 경화시키는 것이 가능하기 때문에 프린팅 이후의 경화공정이 더욱 원활해진다.
경화형 잉크를 구성하는 경화성 레진은 유기 모노머를 적용할 수 있고, 특히 아크릴계 모노머는 100℃ 근처의 고온에서 10cp 이하 수준의 점도를 나타내고 80℃이하에서 경화되어 경화형 잉크의 경화성 레진으로 적합하다.
적색 변환부와 녹색 변환부를 형성하는 과정에서 양자점물질 이외에 컬러필터 입자를 더 혼합하는 것이 좋다.
전보호층을 형성하는 단계는 스퍼터링, PECVD, 증발증착법 및 ALD 공정 중 하나의 방법으로 수행되는 것이 좋고, 보호층을 형성하는 단계는 페이스 씰 공정으로 수행되는 것이 바람직하다.
전보호층을 형성하는 단계 전에, 투명 캐소드 위에 유기물질로 CPL(capping layer)을 형성하는 단계를 더 포함할 수 있으며, 전보호층 형성을 위한 PECVD 등의 공정 단계에서 사용되는 플라즈마로부터 CPL이 투명 캐소드를 보호한다.
청색 유기발광다이오드층을 형성하는 단계가 정공주입층, 정공수송층, 청색 유기발광층, 전자수송층 및 전자주입층을 순차적으로 적층하여 수행될 수 있다.
TFT가 형성된 능동 매트릭스 회로층과 연결하는 단계를 더 포함함으로써, 능동형 유기발광 디스플레이 소자를 제조할 수 있다.
상술한 바와 같이 구성된 본 발명의 유기발광 디스플레이 소자는 부화소 영역을 구분하지 않는 청색 유기발광다이오드층을 구비하여 오픈 마스크 공정으로 유기발광다이오드층을 형성함으로써, FMM 방식으로 제조된 유기발광 디스플레이 소자에 비하여 대면적의 유기발광 디스플레이를 용이하게 제조할 수 있다.
또한, 오픈 마스크 공정으로 형성된 청색 유기발광다이오드층과 양자점물질로 구성된 색변환층을 구비함으로써, 오픈 마스크 공정을 적용하기 위하여 백색의 유기발광다이오드층과 컬러 필터를 사용하여 구성된 종래의 유기발광 디스플레이 소자에 비하여 고해상도의 디스플레이 소자를 낮은 공정비용으로 제조할 수 있다.
나아가 본 발명은, 양자점물질로 구성된 색변환층을 형성하기 전에 전보호층을 형성함으로써, 유기발광다이오드층을 보호하고 색변환층을 상대적으로 저렴한 프린팅 공정으로 형성할 수 있다.
그리고, 광원으로 청색 유기발광다이오드층을 사용하기 때문에, 청색 발광 특성만 제어하도록 하여, TFT 회로를 단순화할 수 있으므로 양자점 인쇄 유기발광 디스플레이 소자를 낮은 공정 비용으로 제조할 수 있다.
도 1은 본 발명의 실시예에 따른 양자점 인쇄 유기발광 디스플레이 소자의 구조를 나타낸 단면도이다.
도 2는 본 실시예의 청색 유기발광다이오층의 구조를 나타낸 단면도이다.
도 3은 양자점 드롭(QD drop) 수에 따른 양자점의 세기(Normalized intensity) 스펙트럼이다.
도 4는 본 발명에 따른 양자점 인쇄 유기발광 디스플레이 소자의 사용 형태를 나타낸 단면도이다.
[부호의 설명]
10: 화소 11: 청색 부화소 영역
12: 녹색 부화소 영역 13: 적색 부화소 영역
100: 유기발광 디스플레이층 110: 기판
120: 반사형 애노드 130: 화소정의막
140: 청색 유기발광 다이오드층 141: 정공주입층
142: 정공수송층 143: 청색 유기발광층
144: 전자수송층 145: 전자주입층
150: 투명 캐소드 160: 전보호층
170: 색변환층 172: 녹색 변환부
173: 적색 변환부 180: 보호층
181: PSA층 182: 보호필름
200: 능동 매트릭스 회로층 210: 기판
220: 게이트 절연막 230: 층간절연막
240: 버퍼층 250: 패시베이션층
260: 소스전극 270: 게이트전극
280: 드레인전극 290: 활성부
첨부된 도면을 참조하여 본 발명에 따른 실시예를 상세히 설명한다.
도 1은 본 발명의 실시예에 따른 양자점 인쇄 유기발광 디스플레이 소자의 구조를 나타낸 단면도이다.
도 1은 본 발명의 실시예에 따른 양자점 인쇄 유기발광 디스플레이 소자에 포함되는 1개의 화소(pixel)(10)를 도시한 것이며, 유기발광 디스플레이 소자는 복수의 화소들을 포함하여 구성된다. 각 화소(10)는 3개의 부화소(sub-pixel) 영역으로 구분되며, 구체적으로 청색 부화소 영역(11)과 녹색 부화소 영역(12) 및 적색 부화소 영역(13)으로 구분된다.
본 실시예의 양자점 인쇄 유기발광 디스플레이 소자는 기판(110), 반사형 애노드(120), 화소정의막(130), 청색 유기발광다이오드층(140), 투명 캐소드(150), 전보호층(160) 및 색변환층(170)을 포함하여 구성되며, 추가적으로 보호층(180)을 더 포함하여 구성될 수 있으며, 이들을 순차적으로 적층하여 제조되며, 이하에서는 제조방법과 함께 구조를 설명한다.
먼저, 기판(110) 위에 서로 이격된 반사형 애노드(120)를 형성한다. 본 실시예의 유기발광 디스플레이 소자는 도시된 단면도의 위쪽으로 빛이 발광되기 때문에 기판(110)의 재질은 특별히 제한되지 않으며, 반사형 애노드(120)는 아래쪽으로 발산된 빛을 반사하여 위쪽으로 반사하는 금속 재질이 사용 가능하고, "ITO/Ag/ITO"와 같이 금속 재질과 투명 전도성막을 적층한 구조를 적용할 수 있다.
그리고 각각의 부화소 영역(11, 12, 13)에 반사형 애노드(120)가 노출되도록 기판(110) 위에 화소정의막(PDL, pixel definded layer)을 형성한다. 화소정의막(130)은 유기 절연막 소재로서 화소(10) 및 화소에 포함된 부화소 영역(11, 12, 13)들을 구분하며, 이격된 반사형 애노드(120)는 화소정의막(130)에 의해서 서로 절연되어 애노드 사이의 단락을 방지한다.
다음으로 청색 유기발광다이오드층(140)을 형성한다. 본 실시예의 유기발광 디스플레이 소자는 3개의 부화소 영역(11, 12, 13)이 분리되어 있지만, 청색 유기발광다이오드층(140)을 형성하는 과정에서는 부화소 영역을 구분하지 않고 오픈 마스크(open mask)공정으로 전체 표면에 형성한다.
도 2는 본 실시예의 청색 유기발광다이오층의 구조를 나타낸 단면도이다.
본 실시예의 청색 유기발광다이오드층(140)은 정공주입층(141), 정공수송층(142), 청색 유기발광층(143), 전자수송층(144) 및 전자주입층(145)을 순차적으로 적층하여 구성된다. 이러한 청색 유기발광다이오드층(140)은 일반적인 유기발광다이오드의 구조이며, 이에 한정되는 것은 아니고 청색의 단일색을 발광하는 유기발광다이오드에 적용될 수 있는 구조는 모두 적용될 수 있다.
본 실시예는 오픈 마스크 공정으로 표면 전체에 유기발광다이오드층을 형성하기 때문에 각각의 부화소 영역에 서로 다른 유기발광다이오드층을 형성하기 위하여 FMM을 사용하는 경우에 비하여 넓은 면적에 고해상도의 유기발광 디스플레이 소자를 제조할 수 있는 장점이 있다.
또한, 본 실시예는 오픈 마스크 공정으로 표면 전체에 유기발광다이오드층을 형성하지만, 종래의 유기발광 디스플레이 소자가 백색 발광을 위하여 3가지 색을 발광하는 유기발광다이오드층을 적층한 것과는 달리, 청색을 발광하는 유기발광다이오드층만을 형성하는 점에서 공정이 매우 간단하며, 유기발광층의 적층에 따른 전력 효율 감소 문제가 발생하지 않는 장점이 있다.
청색 유기발광다이오드층(140)의 위에 투명 캐소드(150)를 형성한다. 본 실시예는 캐소드가 빛이 발산되는 위쪽에 위치하기 때문에 투명한 재질로 구성하며, 투명 캐소드(150)의 경우도 부화소 영역의 구분 없이 전체 표면에 형성된다.
투명 캐소드(150)의 위에 전보호층(pre-barrier, 160)을 형성한다. 본 실시예의 유기발광 디스플레이 소자는 단일의 청색 유기발광다이오드층(140)만을 구비하고, 추후에 구체적으로 설명할 색변환층(170)에 의해서 녹색과 적색을 구현하기 때문에 색변환층(170)의 형성이 용이하도록 투명 캐소드(150)의 위에 전보호층(160)을 형성하였다. 전보호층(160)은 PECVD 공정으로 SiNx층을 형성하거나 ALD 공정으로 AlOx층(일예로 Al2O3층)을 형성할 수 있다.
이때, 투명 캐소드(150)를 형성한 다음 전보호층(160)을 형성하기 전에 유기 물질로 CPL(capping layer)를 형성할 수 있다. CPL 형성을 통해서 전보호층(160) 형성을 위한 PECVD 등의 공정 단계에서 사용되는 플라즈마에 의한 투명 캐소드(150)의 손상을 방지할 수 있다.
색변환층(170)은 청색 유기발광다이오드층(140)에서 발산되는 청색의 빛을 녹색과 적색으로 변환하는 녹색 변환부(172)와 적색 변환부(173)로 구성된다. 녹색 변환부(172)와 적색 변환부(173)는 각각 화소정의막(130)에 의해 구분된 녹색 부화소 영역(12)과 적색 부화소 영역(13)에 형성된다. 청색 부화소 영역(11)은 청색 유기발광다이오드층(140)에서 발산되는 청색의 빛이 그대로 통과한다.
녹색 변환부(172)는 청색 유기발광다이오드층(140)에서 발산되는 청색의 빛을 녹색으로 변환하는 양자점물질로 구성되고, 적색 변환부(173)는 청색 유기발광다이오드층(140)에서 발산되는 청색의 빛을 적색으로 변환하는 양자점물질로 구성된다. 본 실시예의 색변환층(170)은, 양자점물질로 구성되기 때문에 컬러 필터 형성에 필요한 고가의 리소그래피 공정을 적용하지 않고 잉크젯 프린팅 등의 프린팅 방식에 의해서 녹색 변환부(172)와 적색 변환부(173) 각각을 녹색 부화소 영역(12)과 적색 부화소 영역(13)에 구분하여 형성할 수 있다.
이때, 본 발명은 잉크젯 프린팅 등의 프린팅을 위한 잉크로서 용매(solvent)를 사용하지 않고 경화성 레진을 사용하는 경화형 잉크를 적용하는 것을 특징으로 한다. 경화형 잉크는 용매를 사용하여 상온에서 액체 상태인 일반적인 액체형 잉크와 달리, 경화성 레진으로서 상온에서는 고체 상태이고 고온에서는 점도가 낮아지는 모노머(monomer)를 사용한 잉크로서, 고체형 잉크(solid like ink)로 표현되기도 한다. 일반적인 잉크젯 프린팅에 사용되는 액체형 잉크를 사용하는 경우, 잉크를 제조하는 과정에서 포함된 용매가 발광층의 상부와 반응하여 품질의 열화를 가져오는 문제가 있고, 액체상태의 잉크를 건조하는 과정에서 불균일한 표면을 형성하여 시인성을 악화(coffee ring 현상)시키는 문제가 있다. 반면에, 본 발명은 경화형 잉크를 사용하기 때문에 용매에 의한 문제가 발생하지 않는 장점이 있다. 본 발명에서 사용된 경화성 레진은 용매 건조과정 없이 경화되는 것들이며, 예를 들면, 약 100℃의 고온에서 10cp 이하 수준의 점도를 나타내는 아크릴계 모노머(Acryl Base Monomer)들 중에서 80℃이하에서 열경화되는 물질을 사용하거나 UV 경화가 가능한 물질을 사용할 수 있다. 또한, 이러한 경화성 레진의 구체적인 예로는 우레탄 아크릴레이트(Urethane Acrylate) 등이 있다. 에폭시(Epoxy) 계열 그리고 실리콘 계열의 수지도 사용될 수 있다. 내열성을 개선하기 위해 폴리 이미드(Polyimide) 수지 또는 폴리 이미드(Polyimide)가 포함된 수지를 사용할 수 있다. 점성이 낯은 재료로서 경화 이후 유리 전이온도가 100℃ 이상이 되는 경우가 바람직하다. 물론, 이러한 조건에 한정되는 것은 아니며, 경화성 레진의 점도가 낮아지는 온도와 점도 및 경화온도 등은 용매를 사용하지 않는 경화형 잉크를 적용하는 구체적 형태에 따라서 조절될 수 있다. 잉크젯 프린팅 과정에서 프린터헤드의 온도를 올려서 경화형 잉크에 포함된 모노머의 점도를 낮추어 잉크젯 프린팅을 수행하고, 온도를 낮추거나 UV를 조사하여 모노머를 경화시킴으로써 색변환층(170)을 형성한다. 또한, 본 발명에서 경화형 잉크의 경우, 용매를 전혀 사용하지 않는 것으로 한정되는 것은 아니고, 소량의 용매가 첨가될 수 있으며, 이때 용매를 건조하는 과정에서 다양한 문제가 발생하는 종래의 액체형 잉크와 달리 본 발명은 상기한 건조공정의 문제가 발생하지 않는 최소한의 건조공정이 필요한 정도로만 용매를 포함함으로써 건조 과정에서 품질이 저하되는 문제가 발생하지 않는다.
그리고 청색 부화소 영역(11)은 청색 유기발광다이오드층(140)에서 발산되는 청색의 빛이 그대로 통과하도록 양자점 물질을 분산시키지 않은 경화형 잉크로 잉크젯 프린팅하여 투명한 레진층을 형성할 수도 있다.
이러한 프린팅 공정은 대면적의 유기발광 디스플레이 소자를 제조하기에 적합하며, 특히 본 실시예는 전보호층(160)의 위에 경화형 잉크를 사용한 잉크젯 프린팅 공정을 수행하기 때문에, 아래쪽에 위치하는 청색 유기발광다이오드층(140)과 투명 캐소드(150)에 영향을 주지 않고 용이하게 색변환층(170)을 형성할 수 있다.
또한, 본 실시예는 녹색 변환부(172)와 적색 변환부(173)를 구성하는 양자점물질로서 신뢰성과 안정성이 높은 무기 양자점물질을 사용함으로써, 상대적으로 저렴한 잉크젯 프린팅 공정을 적용함에도 불구하고 뛰어난 품질의 색변환층(170)을 형성할 수 있다.
나아가 본 실시예는 녹색 변환부(172)와 적색 변환부(173)를 구성함에 있어서, 양자점물질과 함께 컬러필터 특성을 나타내는 입자를 혼합하여 사용함으로써 색순도를 높일 수 있다. 일반적으로 컬러 필터에 사용되는 상업화된 착색제는 안료(pigment)인데, 본 발명에서는 컬러 필터의 특성을 갖는 염료(dye) 입자 또는 컬러 필터의 특성을 지니는 나노구조의 입자까지 모두 포함하는 용어로서 사용하였다. 녹색 변환부에 적용될 수 있는 컬러필터 특성을 나타내는 입자는 메탈로프탈로시아닌 등이 있으며, 적색 변환부에 적용될 수 잇는 컬러필터 특성을 나타내는 입자는 다이케토피롤로피롤과 피그먼트 레드(Pigment Red) 254 등이 있다.
또한 녹색 변환부(172)와 적색 변환부(173)를 통해서는 청색 유기발광다이오드층(140)에서 발생된 청색 빛이 나오지 않아야 하므로, 청색 빛을 흡수하는 입자 또는 청색 빛의 흡수를 조절하는 입자가 포함될 수 있다.
한편, 상기 색변환층(170)은 1 ㎛ 내지 50 ㎛, 바람직하게는 2 ㎛ 내지 30 ㎛의 범위인 두께를 갖도록 형성될 수 있다.
이때, 색변환층(170)의 두께가 1 ㎛ 미만인 경우, 색변환층(170)에서 일부분만 색변환되어 방출되는 문제점이 있다. 반대로, 색변환층(170)의 두께가 50 ㎛를 초과한 경우, 색변환층(170)은 청색광의 흡수가 과도하게 진행되는 문제점이 있다. 따라서, 색변환층(170)의 두께는 1 ㎛ 내지 50 ㎛의 범위인 것이 바람직하다.
한편, 양자점물질에 혼합된 양자점은 반도체 나노입자로서, 불안정한 상태의 전자가 전도대에서 가전자대로 내려오면서 발광하는데, 양자점의 입자가 작을수록 짧은 파장의 빛이 발생하고, 입자가 클수록 긴 파장의 빛이 발생한다. 따라서 양자점의 크기를 제어하면 다양한 색을 구현할 수 있다. 또한, 양자점을 포함한 색변환층(170)은 종래의 컬러 필터와 같이 광을 흡수하는 것이 아니라 광의 파장을 변환시켜 방출하기 때문에 광 효율이 높다. 양자점은 무기 성분의 양자점을 적용할 수 있으며, CdS, CdSe 등의 카드뮴 기반 양자점 및 InP, GaP 등과 같은 비카드뮴 기반 양자점들이 적용될 수 있으나, 양자점 성분은 이에 한정되지는 않는다. 또한, 카드뮴 기반/인듐 기반 양자점물질 외에 페로브스카이트계 양자점 물질도 사용할 수 있다.
도 3은 양자점 드롭(QD drop) 수에 따른 양자점의 세기(Normalized intensity) 스펙트럼이다. 도 3에 도시된 바와 같이, 양자점 드롭 수가 2 이하일 때, 450 내지 500nm 범위의 파장 부분인 청색 파장 부분과 620 내지 670nm 범위의 파장 부분인 적색 파장 부분의 발광 세기는 비슷한 수준을 보인다. 반면, 양자점 드롭 수가 3 이상이면, 적색 파장 부분의 발광 세기가 청색 파장 부분의 발광 세기에 비해 큰 폭으로 증가한다. 이때, 1드롭 당 5μL의 양자점이 포함되므로 드롭 수가 3 이상이더라도 형성되는 양자점 층의 두께는 수 ㎛에 불과하다. 이와 같이, 양자점은 수 ㎛의 두께를 가진 층으로만 형성되더라도 청색광의 파장을 적색광 또는 녹색광의 파장으로 변환시킬 수 있다.
그리고 색변환층(170) 위에는 보호층(180)을 더 형성하여, 색변환층(170)과 청색 유기발광다이오드층(140)을 포함한 유기발광 디스플레이스 소자의 표면을 보호할 수 있다. 보호층(180)은 페이스 씰(face seal) 공정으로 형성된다. 구체적으로 압력감응식 접착제(PSA: Pressure Sensitive Adhesives)를 전체면에 도포하여 보호 PSA층(181)을 형성하고, 그 위에 보호필름(182)을 부착하여 보호층(180)을 형성한다.
이러한 보호층(180)은 SiNx, SiOx, AlOx 중 어느 하나를 포함하는 재질일 수 있다. 보호층(180)은 외부로부터 색변환층(170) 및 청색 유기발광다이오드(140)로 산소 및 수분이 침투하는 것을 방지하여 디스플레이 소자를 보호할 수 있다. 또한 양자점 물질이 산화하는 현상을 방지하기 때문에 내구성을 개선할 수 있다.
한편, 색변환층(170)을 형성한 다음 보호층(180)을 형성하기 전에, 색변환층(170) 위에 유기물질로 구성된 유기물 코팅층을 형성할 수 있다. 유기물 코팅층 형성을 통해서 보호층(180)을 형성하기 위한 PECVD 등의 공정 단계에서 사용되는 플라즈마에 의한 색변환층(170)의 손상을 방지할 수 있다. 유기물 코팅층은 두께가 5㎛ 이하가 되도록 형성될 수 있다.
또한, 유기물 코팅층은 잉크젯 코팅, 롤 코팅 등의 방법을 적용하여 형성할 수 있다. 이때, 색변환층(170) 위에 형성된 유기물질은 광경화 공정으로 경화될 수 있다.
도 4는 본 발명에 따른 양자점 인쇄 유기발광 디스플레이 소자의 사용 형태를 나타낸 단면도이다.
본 실시예의 양자점 인쇄 유기발광 디스플레이 소자는, 앞서 설명한 것과 같은 구조의 유기발광 디스플레이층(100)의 하부에 능동 매트릭스 회로층(200)이 연결된다.
능동 매트릭스 회로층(200)은 각 부화소에 대응되는 TFT(thin film transistor)을 구비하며, 각각의 TFT는 부화소의 반사형 애노드와 연결된다. TFT는 소스전극(260), 게이트전극(270), 드레인전극(280) 및 활성부(290)를 포함하며, 드레인전극(280)이 반사형 애노드(120)와 연결된다. 능동 매트릭스 회로층(200)은 TFT 구동을 위하여 기판(210), 게이트 절연막(220), 층간절연막(230), 버퍼층(240) 및 패시베이션층(250)을 포함하여 구성된다. 이러한 능동 매트릭스 회로층은 일반적인 능동 매트릭스 회로의 구조이며, 이에 한정되는 것은 아니고 능동형 유기발광디스플레이에 적용될 수 있는 구조는 모두 적용될 수 있다.
한편, 전술한 바와 같이 유기발광 디스플레이층(100)의 하부에 능동 매트릭스 회로층(200)이 연결되는 구조 대신, 박막 트랜지스층(TFT)이 기판(110) 위에 형성될 수도 있다.
이때, 박막 트랜지스터층은 각각의 화소 별로 형성된 게이트 배선, 데이터 배선, 전원 배선, 스위칭 박막 트랜지스터 및 구동 박막 트랜지스터를 포함하여 이루어진다. 박막 트랜지스터층의 스위칭 박막 트랜지스터 및 구동 박막 트랜지스터는 게이트 전극이 반도체층 아래에 형성되는 바텀 게이트(bottom gate) 구조 또는 게이트 전극이 반도체층 위에 형성되는 탑 게이트(top gate) 구조로 형성될 수 있다. 이와 같은 박막 트랜지스터층은 당업계에 공지된 다양한 형태로 형성될 수 있다.
본 실시예의 양자점 디스플레이 장치는 박막 트랜지스터층이 청색의 유기발광다이오드층에 대해서만 발광 특성을 제어하기 때문에 트랜지스터 회로는 Blue Pixel 영역으로만 구성될 수 있으며, 이로 인해 단순화된 트랜지스터 회로를 포함할 수 있다. 또한, 박막 트랜지스터층의 활성층은 산화 아연을 포함하는 산화물 반도체 또는 실리콘을 포함하는 재질일 수 있다.
이상 본 발명을 바람직한 실시예를 통하여 설명하였는데, 상술한 실시예는 본 발명의 기술적 사상을 예시적으로 설명한 것에 불과하며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변화가 가능함은 이 분야에서 통상의 지식을 가진 자라면 이해할 수 있을 것이다. 따라서 본 발명의 보호범위는 특정 실시예가 아니라 특허청구범위에 기재된 사항에 의해 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상도 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (14)

  1. 기판;
    상기 기판에 형성되어 화소 및 상기 화소에 포함된 청색과 적색 및 녹색 부화소 영역을 구분하는 화소정의막;
    상기 기판에 서로 이격되어 형성되며, 상기 부화소 영역에 각각 노출된 반사형 애노드;
    상기 화소정의막 위에 형성된 청색 유기발광다이오드층;
    상기 청색 유기발광다이오드층 위에 형성된 투명 캐소드;
    상기 투명 캐소드 위에 형성된 전보호층; 및
    상기 전보호층 위에 형성된 색변환층을 포함하여 구성되며,
    상기 색변환층은 상기 부화소 영역 중에서 적색 영역과 녹색 영역에 각각 형성된 적색 변환부와 녹색 변환부로 구성되고,
    상기 적색 변환부는 청색 유기발광다이오드층에서 방출된 청색의 빛을 적색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 프린팅하여 구성되고, 상기 녹색 변환부는 청색 유기발광다이오드층에서 방출된 청색의 빛을 녹색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 프린팅하여 구성된 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  2. 청구항 1에 있어서,
    상기 색변환층 위에 형성된 보호층을 더 포함하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  3. 청구항 2에 있어서,
    상기 보호층은 SiNx, SiOx, AlOx 중 어느 하나를 포함하는 재질인 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  4. 청구항 2에 있어서,
    상기 색변환층 및 상기 보호층 사이에 개재되고, 유기물질로 구성된 유기물 코팅층을 더 포함하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  5. 청구항 1에 있어서,
    상기 적색 변환부와 상기 녹색 변환부에 포함된 경화성 레진이 광경화성 관능기를 포함하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  6. 청구항 1에 있어서,
    상기 적색 변환부와 상기 녹색 변환부에 포함된 경화성 레진이 유기 모노머인 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  7. 청구항 6에 있어서,
    상기 유기 모노머가 아크릴계 모노머인 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  8. 청구항 1에 있어서,
    상기 전보호층은 SiOx, SiNx 및 AlOx 재질 중에 하나인 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  9. 청구항 1에 있어서,
    상기 색변환층의 두께는 1 ㎛ 내지 50 ㎛인 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  10. 청구항 1에 있어서,
    상기 반사형 애노드에 연결된 TFT가 형성된 능동 매트릭스 회로층이 상기 기판의 하부에 위치하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  11. 청구항 1에 있어서,
    상기 투명 캐소드와 상기 전보호층의 사이에 유기물질로 구성된 CPL(capping layer)을 더 포함하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자.
  12. 기판 위에 서로 이격된 반사형 애노드를 형성하는 단계;
    상기 반사형 애노드가 청색과 적색 및 녹색 부화소 영역에 각각 노출되도록 화소정의막을 형성하는 단계;
    오픈 마스크를 사용하여 청색 유기발광다이오드층을 형성하는 단계;
    상기 청색 유기발광다이오드층의 위에 투명 캐소드를 형성하는 단계;
    상기 투명 캐소드 위에 전보호층을 형성하는 단계; 및
    상기 전보호층 위에 색변환층을 형성하는 단계를 포함하여 구성되며,
    상기 색변환층을 형성하는 단계는, 청색 유기발광다이오드층에서 방출된 청색의 빛을 적색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 상기 적색 부화소 영역에 프린팅하여 적색 변환부를 형성하고, 청색 유기발광다이오드층에서 방출된 청색의 빛을 녹색으로 변환하는 양자점물질과 경화성 레진을 포함하는 경화형 잉크를 상기 녹색 부화소 영역에 프린팅하여 녹색 변환부를 형성하여 수행되는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자의 제조방법.
  13. 청구항 12에 있어서,
    상기 색변환층을 형성하는 단계는 잉크젯 프린팅 방법으로 수행되는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자의 제조방법.
  14. 청구항 12에 있어서,
    상기 색변환층 위에 페이스 씰 공정으로 보호층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 양자점 인쇄 유기발광 디스플레이 소자의 제조방법.
PCT/KR2018/002495 2017-02-28 2018-02-28 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법 WO2018160019A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170026109A KR101945514B1 (ko) 2017-02-28 2017-02-28 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
KR10-2017-0026177 2017-02-28
KR10-2017-0026109 2017-02-28
KR1020170026177A KR101945499B1 (ko) 2017-02-28 2017-02-28 양자점 디스플레이 장치 및 그 제조 방법

Publications (2)

Publication Number Publication Date
WO2018160019A2 true WO2018160019A2 (ko) 2018-09-07
WO2018160019A3 WO2018160019A3 (ko) 2018-10-25

Family

ID=63370744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002495 WO2018160019A2 (ko) 2017-02-28 2018-02-28 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2018160019A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492013A (zh) * 2019-08-27 2019-11-22 深圳市思坦科技有限公司 一种量子点显示屏的制作方法
CN112164709A (zh) * 2020-09-24 2021-01-01 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制备方法、显示装置
CN112802976A (zh) * 2021-01-05 2021-05-14 京东方科技集团股份有限公司 一种量子点发光器件、其制作方法及显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692257B2 (ja) * 2005-12-06 2011-06-01 富士電機ホールディングス株式会社 色変換膜およびそれを用いた多色発光有機elデバイス
KR100754396B1 (ko) * 2006-02-16 2007-08-31 삼성전자주식회사 양자점 발광소자 및 그 제조방법
KR20120111912A (ko) * 2009-06-23 2012-10-11 후지 덴키 가부시키가이샤 플랫 패널 디스플레이, 그 제조 중간체 및 제조 방법
KR101649237B1 (ko) * 2010-03-31 2016-08-19 엘지디스플레이 주식회사 양자점 발광 소자 및 이를 이용한 조명 장치
JP6299546B2 (ja) * 2014-09-25 2018-03-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492013A (zh) * 2019-08-27 2019-11-22 深圳市思坦科技有限公司 一种量子点显示屏的制作方法
CN110492013B (zh) * 2019-08-27 2022-03-15 深圳市思坦科技有限公司 一种量子点显示屏的制作方法
CN112164709A (zh) * 2020-09-24 2021-01-01 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板及其制备方法、显示装置
CN112802976A (zh) * 2021-01-05 2021-05-14 京东方科技集团股份有限公司 一种量子点发光器件、其制作方法及显示装置

Also Published As

Publication number Publication date
WO2018160019A3 (ko) 2018-10-25

Similar Documents

Publication Publication Date Title
KR101945514B1 (ko) 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
TWI524516B (zh) 有機電致發光顯示裝置用彩色濾光片及有機電致發光顯示裝置
WO2018160018A2 (ko) 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법
TWI396464B (zh) 有機電致發光顯示裝置及其製作方法
US11362148B2 (en) Quantum dot display panel and manufacturing method thereof
CN105514138B (zh) 显示装置及其制造方法
KR20180092326A (ko) 표시 장치
CN1722925A (zh) 有机el显示装置
WO2018160019A2 (ko) 양자점 인쇄 유기발광 디스플레이 소자 및 그 제조방법
CN106876424A (zh) 一种有机发光显示器及其制备方法
KR20180101302A (ko) 유기발광 디스플레이 소자 및 그 제조방법
WO2016032160A1 (ko) 디스플레이 패널 및 이의 제조 방법
KR20180014334A (ko) 유기발광 디스플레이 소자 및 그 제조방법
KR20070049638A (ko) 발광 디바이스 및 그 제조 방법
WO2017111223A1 (en) Organic light emitting display apparatus
CN101256980B (zh) 有机电致发光显示装置及其制作方法
WO2014175681A1 (en) Organic light-emitting display apparatus and method for manufacturing the same
WO2019051968A1 (zh) 彩膜基板的制作方法
WO2017073915A1 (ko) Pn 접합 소자 및 이를 이용한 전자장치
KR20210138842A (ko) 디스플레이 장치
CN109786431A (zh) 显示基板及其制备方法、和显示装置
US20190086799A1 (en) Method for manufacturing color filter substrate
JP2004103519A (ja) 色変換カラーフィルタ基板およびこれを用いた有機カラーディスプレイ
CN109935623A (zh) 显示装置
JP2011165422A (ja) トップエミッション型有機elディスプレイ及びその製造方法並びにそれに用いる色フィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761050

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761050

Country of ref document: EP

Kind code of ref document: A2