WO2018158912A1 - 冷凍サイクル装置及び冷凍サイクルシステム - Google Patents
冷凍サイクル装置及び冷凍サイクルシステム Download PDFInfo
- Publication number
- WO2018158912A1 WO2018158912A1 PCT/JP2017/008318 JP2017008318W WO2018158912A1 WO 2018158912 A1 WO2018158912 A1 WO 2018158912A1 JP 2017008318 W JP2017008318 W JP 2017008318W WO 2018158912 A1 WO2018158912 A1 WO 2018158912A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- blower fan
- unit
- detection means
- leakage
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/36—Responding to malfunctions or emergencies to leakage of heat-exchange fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/89—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a refrigeration cycle apparatus and a refrigeration cycle system that detect refrigerant leakage by means of refrigerant detection means.
- Patent Document 1 describes an air conditioner.
- the air conditioner includes a gas sensor that is provided on the outer surface of the indoor unit and detects the refrigerant, and a control unit that performs control to rotate the indoor fan when the gas sensor detects the refrigerant.
- a gas sensor that detects the refrigerant
- the indoor blower fan is rotated so that the indoor air is sucked from the suction port provided in the housing of the indoor unit, and the air is blown out from the blower outlet to the room. Can be diffused.
- a gas sensor such as a semiconductor gas sensor which is a refrigerant detection means has a characteristic of reacting to hydrogen (H) and carbon (C) contained in the atmosphere.
- a gas sensor having such characteristics contains hydrogen (H) and carbon (C) such as propane (C 3 H 8 ), butane (C 4 H 10 ), or ethanol (C 2 H 6 O). It reacts when a substance is present in the surroundings. Propane (C 3 H 8 ) or butane (C 4 H 10 ) is generally contained in commercially available sprays. Ethanol (C 2 H 6 O) is frequently used as an alcohol for disinfection.
- the gas sensor will leak even though there is no refrigerant. There is a possibility of false detection.
- the air conditioner is often configured to report an abnormality and stop operation. Therefore, there is a problem that the user cannot execute the operation of the air conditioner until the air conditioner is restored by the service person, even though the refrigerant has not leaked.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigeration cycle apparatus and a refrigeration cycle system that can suppress changes in detection characteristics of the refrigerant detection means.
- a refrigeration cycle apparatus includes a refrigerant circuit for circulating a refrigerant, a heat exchanger unit that houses a heat exchanger of the refrigerant circuit, and a control unit that controls the heat exchanger unit,
- the heat exchanger unit includes a blower fan and refrigerant detection means, and the control unit is configured to operate the blower fan, and the rotational speed of the blower fan is equal to or higher than a first threshold value.
- the detection signal from the refrigerant detection means is invalidated even if the leakage of the refrigerant is detected based on the detection signal from the refrigerant detection means.
- a refrigeration cycle system includes a refrigeration cycle apparatus having a refrigerant circuit for circulating refrigerant and a control unit for controlling the refrigerant circuit, a blower fan controlled by the control unit, and a detection signal to the control unit.
- Refrigerant detection means for outputting, and the control unit is configured to operate the blower fan, and the refrigerant detection means when the rotational speed of the blower fan is equal to or higher than a first threshold value. Even if the refrigerant leakage is detected based on the detection signal from the refrigerant, the detection signal from the refrigerant detection means is invalidated.
- the detection signal from the refrigerant detection unit is invalidated, it is possible to prevent erroneous detection of the refrigerant detection unit under conditions where the blower fan is rotating and a combustible region cannot be generated. Can do.
- FIG. 1 A refrigeration cycle apparatus according to Embodiment 1 of the present invention will be described.
- an air conditioner is illustrated as an example of a refrigeration cycle apparatus.
- FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of the air conditioner according to the present embodiment.
- the dimensional relationship and shape of each component may differ from the actual ones.
- the air conditioner has a refrigerant circuit 40 for circulating the refrigerant.
- the refrigerant circuit 40 includes a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 (for example, an outdoor heat exchanger), a decompression device 6, and a load side heat exchanger 7 (for example, an indoor heat exchanger).
- the air conditioner has, for example, an outdoor unit 2 installed outdoors as a heat source unit.
- the air conditioner has, for example, an indoor unit 1 (an example of a heat exchanger unit) installed indoors as a load unit.
- the indoor unit 1 and the outdoor unit 2 are connected via extension pipes 10a and 10b that are part of the refrigerant pipe.
- a slightly flammable refrigerant such as HFO-1234yf or HFO-1234ze, or a strong flammable refrigerant such as R290 or R1270 is used.
- These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
- a refrigerant having a flammability at or above a slight combustion level (for example, 2 L or more in the ASHRAE 34 classification) may be referred to as a “flammable refrigerant”.
- non-flammable refrigerants such as R22 and R410A having nonflammability (for example, 1 in the ASHRAE 34 classification) can be used. These refrigerants have, for example, higher density than air under atmospheric pressure.
- the compressor 3 is a fluid machine that compresses sucked low-pressure refrigerant and discharges it as high-pressure refrigerant.
- the refrigerant flow switching device 4 switches the flow direction of the refrigerant in the refrigerant circuit 40 between the cooling operation and the heating operation.
- a four-way valve is used as the refrigerant flow switching device 4.
- the heat source side heat exchanger 5 is a heat exchanger that functions as a radiator (for example, a condenser) during cooling operation and functions as an evaporator during heating operation. In the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by an outdoor blower fan 5f described later.
- the decompression device 6 decompresses the high-pressure refrigerant into a low-pressure refrigerant.
- an electronic expansion valve whose opening degree can be adjusted is used.
- the load-side heat exchanger 7 is a heat exchanger that functions as an evaporator during cooling operation and functions as a radiator (for example, a condenser) during heating operation. In the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating in the interior and air blown by an indoor blower fan 7f described later.
- the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the load-side heat exchanger 7
- the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the load-side heat exchanger 7. It is.
- a compressor 3, a refrigerant flow switching device 4, a heat source side heat exchanger 5 and a pressure reducing device 6 are accommodated.
- the outdoor unit 2 accommodates an outdoor blower fan 5 f that supplies outdoor air to the heat source side heat exchanger 5.
- the outdoor fan 5f is installed to face the heat source side heat exchanger 5. By rotating the outdoor fan 5f, an air flow passing through the heat source side heat exchanger 5 is generated.
- a propeller fan is used as the outdoor blower fan 5f.
- the outdoor fan 5f is arranged, for example, on the downstream side of the heat source side heat exchanger 5 in the air flow generated by the outdoor fan 5f.
- the outdoor unit 2 includes a refrigerant pipe connecting the extension pipe connection valve 13a on the gas side during the cooling operation and the refrigerant flow switching device 4 as a refrigerant pipe, a suction pipe 11 connected to the suction side of the compressor 3, A discharge pipe 12 connected to the discharge side of the compressor 3, a refrigerant pipe connecting the refrigerant flow switching device 4 and the heat source side heat exchanger 5, a refrigerant pipe connecting the heat source side heat exchanger 5 and the decompression device 6, And the refrigerant
- the extension pipe connection valve 13a is a two-way valve that can be switched between open and closed, and a flare joint is attached to one end thereof.
- the extension pipe connection valve 13b is a three-way valve that can be switched between open and closed.
- a service port 14a used for evacuation which is a pre-operation for filling the refrigerant into the refrigerant circuit 40, is attached, and a flare joint is attached to the other end.
- the high-temperature and high-pressure gas refrigerant compressed by the compressor 3 flows through the discharge pipe 12 during both the cooling operation and the heating operation.
- a low-temperature and low-pressure gas refrigerant or two-phase refrigerant that has undergone an evaporating action flows through the suction pipe 11 in both the cooling operation and the heating operation.
- a service port 14b with a low-pressure side flare joint is connected to the suction pipe 11, and a service port 14c with a flare joint on the high-pressure side is connected to the discharge pipe 12.
- the service ports 14b and 14c are used for measuring an operating pressure by connecting a pressure gauge at the time of installing or repairing the air conditioner.
- a joint portion 15a for example, a flare joint for connecting the extension piping 10a is provided at a connection portion with the extension piping 10a on the gas side.
- a joint part 15b for example, a flare joint for connecting the extension pipe 10b is provided in the connection part with the liquid side extension pipe 10b. It has been.
- the indoor unit 1 includes the intake air temperature sensor 91 that detects the temperature of the indoor air sucked from the room, and the refrigerant temperature at the inlet portion during the cooling operation of the load side heat exchanger 7 (the outlet portion during the heating operation).
- a heat exchanger inlet temperature sensor 92 to detect, a heat exchanger temperature sensor 93 to detect the refrigerant temperature (evaporation temperature or condensation temperature) of the two-phase part of the load side heat exchanger 7 are provided.
- the indoor unit 1 is provided with a refrigerant detection means 99 (for example, a semiconductor gas sensor) described later. These sensors output a detection signal to the control unit 30 that controls the indoor unit 1 or the entire air conditioner.
- the control unit 30 has a microcomputer (hereinafter sometimes referred to as “microcomputer”) having a CPU, a ROM, a RAM, an I / O port, and the like.
- the control unit 30 can perform data communication with an operation unit (not shown).
- the operation unit accepts an operation by the user and outputs an operation signal based on the operation to the control unit 30.
- the control unit 30 of this example controls the operation of the indoor unit 1 or the entire air conditioner including the operation of the indoor blower fan 7f based on the operation signal from the operation unit, the detection signal from the sensors, and the like. Further, the control unit 30 of this example can switch between energization and de-energization of the refrigerant detection means 99.
- the control unit 30 may be provided in the housing of the indoor unit 1 or may be provided in the housing of the outdoor unit 2. Moreover, the control part 30 may be comprised by the outdoor unit control part provided in the outdoor unit 2, and the indoor unit control part provided in the indoor unit 1 and capable of data communication with the outdoor unit control part.
- a solid line arrow indicates the flow direction of the refrigerant during the cooling operation.
- the refrigerant flow path switching device 4 switches the refrigerant flow path as indicated by a solid line, and the refrigerant circuit 40 is configured so that the low-temperature and low-pressure refrigerant flows through the load-side heat exchanger 7.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 first flows into the heat source side heat exchanger 5 through the refrigerant flow switching device 4.
- the heat source side heat exchanger 5 functions as a condenser. That is, in the heat source side heat exchanger 5, heat exchange is performed between the refrigerant circulating in the interior and the outdoor air blown by the outdoor blower fan 5f, and the condensation heat of the refrigerant is radiated to the outdoor air. Thereby, the refrigerant flowing into the heat source side heat exchanger 5 is condensed and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant flows into the decompression device 6 and is decompressed to become a low-pressure two-phase refrigerant.
- the low-pressure two-phase refrigerant flows into the load side heat exchanger 7 of the indoor unit 1 via the extension pipe 10b.
- the load side heat exchanger 7 functions as an evaporator. That is, in the load-side heat exchanger 7, heat exchange is performed between the refrigerant circulating inside and the air (for example, indoor air) blown by the indoor blower fan 7f, and the evaporation heat of the refrigerant is absorbed from the blown air.
- the refrigerant flowing into the load-side heat exchanger 7 evaporates to become a low-pressure gas refrigerant or a two-phase refrigerant. Further, the air blown by the indoor blower fan 7f is cooled by the endothermic action of the refrigerant.
- the low-pressure gas refrigerant or two-phase refrigerant evaporated in the load side heat exchanger 7 is sucked into the compressor 3 via the extension pipe 10 a and the refrigerant flow switching device 4.
- the refrigerant sucked into the compressor 3 is compressed into a high-temperature and high-pressure gas refrigerant. In the cooling operation, the above cycle is repeated.
- the refrigerant flow path switching device 4 switches the refrigerant flow paths as indicated by dotted lines, and the refrigerant circuit 40 is configured so that the high-temperature and high-pressure refrigerant flows through the load-side heat exchanger 7.
- the refrigerant flows in the opposite direction to that during the cooling operation, and the load side heat exchanger 7 functions as a condenser.
- FIG. 2 is a front view schematically showing the internal structure of the indoor unit 1 of the air conditioner according to the present embodiment.
- FIG. 3 is a side view schematically showing the internal structure of the indoor unit 1 of the air conditioner according to the present embodiment.
- the left side in FIG. 3 shows the front side of the indoor unit 1 (that is, the indoor space side).
- the indoor unit 1 is exemplified by a floor-standing indoor unit 1 installed on the floor surface of the indoor space serving as the air-conditioning target space.
- the positional relationship (for example, vertical relationship etc.) between each structural member in the following description is a thing when installing the indoor unit 1 in the state which can be used in principle.
- the indoor unit 1 includes a casing 111 having a vertically long rectangular parallelepiped shape.
- a suction port 112 for sucking air in the indoor space is formed in the lower front portion of the housing 111.
- the suction port 112 of this example is provided below the center portion in the vertical direction of the casing 111 and at a position near the floor surface.
- the air sucked from the suction port 112 is blown out into the room.
- An outlet 113 is formed.
- An operation unit (not shown) is provided on the front surface of the housing 111 above the inlet 112 and below the outlet 113.
- the operation start operation, the operation end operation, the operation mode switching, the set temperature, the set air volume, and the like of the air conditioner are performed by a user operation.
- the operation unit may be provided with a display unit, an audio output unit, and the like that notify the user of information.
- the housing 111 is a hollow box, and a front opening is formed on the front surface of the housing 111.
- the casing 111 includes a first front panel 114a, a second front panel 114b, and a third front panel 114c that are detachably attached to the front opening.
- the first front panel 114a, the second front panel 114b, and the third front panel 114c all have a substantially rectangular flat plate-like outer shape.
- the first front panel 114a is detachably attached to the lower portion of the front opening of the casing 111.
- the suction port 112 is formed in the first front panel 114a.
- the second front panel 114b is disposed adjacent to and above the first front panel 114a, and is detachably attached to the central portion of the front opening of the housing 111 in the vertical direction.
- the operation unit is provided on the second front panel 114b.
- the third front panel 114c is disposed adjacent to and above the second front panel 114b, and is detachably attached to the upper portion of the front opening of the housing 111.
- the above-described air outlet 113 is formed in the third front panel 114c.
- the internal space of the housing 111 is roughly divided into a space 115a serving as a blower section and a space 115b positioned above the space 115a and serving as a heat exchange section.
- the space 115a and the space 115b are partitioned by the partition portion 20.
- the partition part 20 has a flat plate shape, for example, and is arranged substantially horizontally.
- the partition portion 20 is formed with at least an air passage opening 20a serving as an air passage between the space 115a and the space 115b.
- the space 115a is exposed to the front side by removing the first front panel 114a from the housing 111, and the space 115b is obtained by removing the second front panel 114b and the third front panel 114c from the housing 111. Is exposed on the front side.
- the height at which the partition portion 20 is installed generally matches the height of the upper end of the first front panel 114a or the lower end of the second front panel 114b.
- the partition portion 20 may be formed integrally with a fan casing 108 described later, or may be formed integrally with a drain pan described later, or as a separate body from the fan casing 108 and the drain pan. It may be formed.
- an indoor blower fan 7f that causes an air flow from the inlet 112 to the outlet 113 to be generated in the air passage 81 in the housing 111 is disposed.
- the indoor blower fan 7f of this example is a sirocco fan that includes a motor (not shown) and an impeller 107 that is connected to an output shaft of the motor and in which a plurality of blades are arranged, for example, at equal intervals in the circumferential direction.
- the rotating shaft of the impeller 107 is disposed so as to be substantially parallel to the depth direction of the casing 111.
- the rotational speed of the indoor blower fan 7f is set to be variable in multiple stages (for example, two or more stages) or continuously by control of the control unit 30 based on the set air volume set by the user.
- the impeller 107 of the indoor fan 7f is covered with a spiral fan casing 108.
- the fan casing 108 is formed separately from the casing 111, for example.
- a suction opening 108 b that sucks room air into the fan casing 108 through the suction port 112 is formed.
- the suction opening 108 b is disposed so as to face the suction port 112.
- a blowout opening 108a for blowing out the blown air is formed.
- the blowout opening 108 a is disposed so as to face upward, and is connected to the space 115 b through the air passage opening 20 a of the partition part 20.
- the outlet opening 108a communicates with the space 115b via the air passage opening 20a.
- the opening end of the outlet opening 108a and the opening end of the air passage opening 20a may be directly connected or indirectly connected via a duct member or the like.
- an electrical component box 25 in which a microcomputer, various electrical components, a substrate, and the like constituting the control unit 30 are accommodated is provided.
- the load side heat exchanger 7 is arranged in the air passage 81 in the space 115b.
- a drain pan (not shown) that receives condensed water condensed on the surface of the load side heat exchanger 7 is provided below the load side heat exchanger 7.
- the drain pan may be formed as a part of the partition part 20, or may be formed separately from the partition part 20 and disposed on the partition part 20.
- a refrigerant detection means 99 is provided at a position near the lower side of the space 115a.
- an energization type refrigerant detection means including an energization type gas sensor such as a semiconductor gas sensor or a hot wire type semiconductor gas sensor is used.
- the refrigerant detection unit 99 detects, for example, the refrigerant concentration in the air around the refrigerant detection unit 99 and outputs a detection signal to the control unit 30. In the control unit 30, the presence or absence of refrigerant leakage is determined based on the detection signal from the refrigerant detection means 99.
- the refrigerant detection means 99 of the present embodiment is provided in a position lower in the casing 111 than the load-side heat exchanger 7 and the joint portions 15a and 15b. Thereby, at least when the indoor blower fan 7f is stopped, the refrigerant detection means 99 can reliably detect the leaked refrigerant.
- the refrigerant detection means 99 is provided at a position closer to the lower side of the space 115a, but the installation position of the refrigerant detection means 99 may be another position.
- FIG. 4 is a flowchart showing an example of the refrigerant leakage detection process executed by the control unit 30 of the air conditioner according to the present embodiment.
- This refrigerant leakage detection process is repeatedly executed at predetermined time intervals at all times including during operation and stop of the air conditioner, only when the air conditioner is stopped, or only in a normal state A described later. .
- control unit 30 acquires information on the refrigerant concentration around the refrigerant detection means 99 based on the detection signal from the refrigerant detection means 99.
- step S3 the operation of the indoor fan 7f is started.
- the rotational speed of the indoor blower fan 7f is set to a rotational speed at which the refrigerant can be sufficiently diffused (for example, a rotational speed equal to or higher than a threshold value R1 described later) even when the refrigerant leakage amount is maximum. Also good.
- This rotational speed is not limited to the rotational speed used during normal operation.
- step S ⁇ b> 3 the user may be notified that the refrigerant has leaked using a display unit, an audio output unit, or the like provided in the operation unit. The notification will be described in detail with reference to FIG.
- a flammable refrigerant such as HFO-1234yf, HFO-1234ze, R290, R1270, or the like is used as the refrigerant circulating in the refrigerant circuit 40.
- a flammable concentration range for example, a region where the refrigerant concentration is equal to or higher than the lower combustion limit concentration (LFL)
- the indoor blower fan 7f whose operation has been started in step S3 of FIG. 4 may be stopped after a predetermined time has elapsed.
- FIG. 5 is a state transition diagram showing an example of state transition of the air conditioner according to the present embodiment.
- the air conditioner has at least a normal state A and a normal state B.
- the normal state A and the normal state B in this example are states in which no refrigerant leaks.
- a normal driving operation and a stopping operation are performed based on a user operation or the like by the operation unit.
- the state of the air conditioner transitions between the normal state A and the normal state B under the control of the control unit 30 based on the rotational speed of the indoor blower fan 7f.
- the threshold value of the rotational speed used for the determination of the state transition is stored in advance in the ROM of the control unit 30.
- the stopped air conditioner is in the normal state A.
- the refrigerant detection means 99 is energized under the control of the control unit 30.
- coolant detection means 99 will be in the operation state which can detect a refrigerant
- the control part 30 will drive the indoor ventilation fan 7f, and will alert
- the notification may be performed by display using at least one of characters and images, and notification using at least one of sound and buzzer.
- the notification can be performed using at least one of an operation unit and a remote controller (a remote controller 27 described in Embodiment 4). Note that the same applies to the following embodiments.
- the indoor blower fan 7f is controlled to a predetermined rotation speed by the control unit 30.
- the controller 30 causes the state of the air conditioner to transition from the normal state A to the normal state B when the rotational speed of the indoor blower fan 7f is equal to or higher than a preset threshold value R1.
- the refrigerant detection means 99 can detect the leakage of the refrigerant.
- the control unit 30 invalidates the detection signal from the refrigerant detection unit 99. That is, in the normal state B, the control unit 30 does not notify that the refrigerant has leaked.
- control unit 30 changes the state of the air conditioner from the normal state B to the normal state A again.
- the threshold R1 is within a rotation speed range of, for example, 0 to Rmax (0 ⁇ R1 ⁇ Rmax), preferably from 0 Is set within a rotational speed range of greater than or equal to Rmax (0 ⁇ R1 ⁇ Rmax), more preferably within a rotational speed range of greater than Rmin and less than or equal to Rmax (Rmin ⁇ R1 ⁇ Rmax).
- the threshold value R1 is set to be equal to or higher than a rotation speed at which a flammable concentration area is not formed in the room even if the amount of refrigerant leakage into the room is maximum.
- the threshold value R1 is set in consideration of the control tolerance.
- the threshold value R1 is set in consideration of the maximum load.
- the refrigerant detection means 99 is a gas sensor such as a semiconductor gas sensor, and has a characteristic of reacting to hydrogen, carbon, etc. contained in the atmosphere.
- the detection signal from the refrigerant detection means 99 is invalidated in the normal state B where the rotational speed of the indoor fan 7f is equal to or higher than the threshold value R1. That is, in the normal state B, since the rotational speed of the indoor blower fan 7f rotates at the threshold value R1 or more, a combustible region cannot be generated. Therefore, in the present embodiment, the detection signal from the refrigerant detection means 99 is invalidated under the condition of the normal state B, and erroneous detection of the refrigerant detection means 99 is prevented.
- the detection signal from the refrigerant detection means 99 is invalidated.
- the indoor fan 7f is rotating at a rotational speed equal to or higher than the threshold value R1. Therefore, the leaked refrigerant can be diffused into the room.
- the refrigerant leakage is detected and the indoor fan 7f is operated.
- the indoor blower fan 7f can be reliably operated. Therefore, according to this Embodiment, even if a refrigerant
- FIG. 6 is a diagram showing the relationship between the rotational speed of the indoor fan 7f and the state of the air conditioner in the air conditioner according to the present embodiment.
- the horizontal axis of FIG. 6 represents the rotational speed of the indoor air blowing fan 7f, and the vertical axis represents the state of the air conditioner. As shown in FIG.
- a differential which becomes a control dead band between a threshold R1 when transitioning from the normal state B to the normal state A and a threshold R2 when transitioning from the normal state A to the normal state B is shown.
- the threshold value R2 is larger than the threshold value R1 (R2> R1).
- the threshold value R1 and the threshold value R2 are, for example, within a rotation speed range of 0 or more and Rmax or less (0 ⁇ R1 ⁇ R2 ⁇ Rmax), preferably within a rotation speed range greater than 0 and less than or equal to Rmax (0 ⁇ R1 ⁇ R2 ⁇ Rmax), More preferably, it is set within a rotational speed range greater than Rmin and less than or equal to Rmax (Rmin ⁇ R1 ⁇ R2 ⁇ Rmax).
- the air conditioner transitions from the normal state A to the normal state B when the rotational speed of the indoor fan 7f is equal to or higher than the threshold value R2.
- the air conditioner transitions from the normal state B to the normal state A when the rotational speed of the indoor fan 7f becomes smaller than the threshold value R1.
- the refrigerant leakage is notified, and in the normal state B, the refrigerant leakage is not notified, as in the first embodiment.
- the normal state A and the normal state B may be frequently switched.
- a differential is set between the threshold value R2 when transitioning from the normal state A to the normal state B and the threshold value R1 when transitioning from the normal state B to the normal state A. . For this reason, according to this Embodiment, it can prevent that the normal state A and the normal state B are switched frequently.
- the air conditioners according to Embodiments 1 and 2 include the refrigerant circuit 40 that circulates the refrigerant and the load-side heat exchanger 7 of the refrigerant circuit 40 and is installed indoors. 1 and a control unit 30 that controls the indoor unit 1.
- the indoor unit 1 includes an indoor blower fan 7 f and a refrigerant detection unit 99.
- the control unit 30 includes a refrigerant detection unit 99.
- the indoor blower fan 7f When the leakage of the refrigerant is detected based on the detection signal, the indoor blower fan 7f is configured to operate, and the control unit 30 has a rotational speed of the indoor blower fan 7f equal to or higher than a first threshold (for example, implementation) Even if the refrigerant leakage is detected based on the detection signal from the refrigerant detection means 99 when the threshold value R1 of the first embodiment or the threshold value R2 of the second embodiment is detected, the detection signal from the refrigerant detection means 99 is invalidated. What is configured to A.
- the control unit 30 causes the rotation speed of the indoor fan 7f in the normal state B to be smaller than the second threshold (for example, the threshold R1 in the first and second embodiments).
- the second threshold for example, the threshold R1 in the first and second embodiments.
- FIG. 7 is a diagram schematically showing a configuration of the outdoor unit 2 (an example of a heat exchanger unit) of the air conditioner according to the present embodiment.
- the outdoor unit 2 houses, for example, the compressor 3, the refrigerant flow switching device 4, the heat source side heat exchanger 5, the decompression device 6, the outdoor blower fan 5f, and the like.
- the compressor 3 and the outdoor ventilation fan 5f are illustrated among these.
- the rotational speed of the outdoor blowing fan 5f is set to be variable in multiple stages (for example, two stages or more) or continuously under the control of the control unit 30.
- extension pipes 10 a and 10 b are connected to the outdoor unit 2.
- the extension pipes 10a and 10b and the refrigerant pipe in the outdoor unit 2 are connected via joint parts 16a and 16b (for example, flare joints).
- the joint portions 16 a and 16 b are disposed inside the outdoor unit 2.
- the joint portions 16 a and 16 b may be disposed outside the outdoor unit 2.
- the outdoor unit 2 (an example of a heat exchanger unit) of the present embodiment includes a refrigerant detection means 98.
- the refrigerant detection means 98 is disposed, for example, inside the outdoor unit 2 and below the joint portions 16a and 16b.
- the refrigerant detection means 98 may be disposed below the brazing part of the heat source side heat exchanger 5.
- a current-carrying gas sensor such as a semiconductor gas sensor or a hot wire semiconductor gas sensor is used.
- the refrigerant detection unit 98 detects a refrigerant concentration in the air around the refrigerant detection unit 98 and outputs a detection signal to the control unit 30. In the control unit 30, the presence or absence of refrigerant leakage is determined based on the detection signal from the refrigerant detection means 98.
- the refrigerant leakage detection process of the present embodiment executed by the control unit 30 is, for example, “refrigerant detection” in the refrigerant leakage detection process of any of the first or second embodiment described with reference to FIGS.
- the “means 99” and the “indoor blower fan 7f” are replaced with “refrigerant detection means 98” and “outdoor blower fan 5f”, respectively. That is, in the refrigerant leakage detection process of the present embodiment, when refrigerant leakage is detected by the detection signal from the refrigerant detection means 98, the operation of the outdoor fan 5f is started. For this reason, the leaked refrigerant can be diffused in the installation space (for example, outdoor space or machine room space) of the outdoor unit 2. Therefore, according to this Embodiment, even if a refrigerant
- the refrigerant detection means 98 in the normal state B in which the rotational speed of the outdoor blower fan 5f is equal to or higher than the threshold value R1, the refrigerant detection means 98 is detected even if refrigerant leakage is detected based on the detection signal from the refrigerant detection means 98. Disable the detection signal from. Thereby, under the condition of the normal state B, erroneous detection of the refrigerant detection means 98 can be prevented. Even if the refrigerant leaks in the normal state B, the detection signal from the refrigerant detection means 98 is invalidated. However, in the normal state B, the outdoor fan 5f is rotating at a rotational speed equal to or higher than the threshold value R1. Therefore, the leaked refrigerant can be diffused in the installation space of the outdoor unit 2.
- FIG. 8 is a diagram showing a schematic overall configuration of the refrigeration cycle system according to the present embodiment.
- a separate type showcase is illustrated as the refrigeration cycle apparatus included in the refrigeration cycle system.
- the showcase is installed in an indoor unit 601 (an example of a load unit and an example of a heat exchanger unit) installed in an indoor space such as a store, and in a machine room space, for example.
- an outdoor unit 602 (an example of a heat source unit and an example of a heat exchanger unit).
- the indoor unit 601 and the outdoor unit 602 are connected via extension pipes 10a and 10b.
- the indoor unit 601 of this example is not provided with a blower fan that stirs the air in the installation space.
- the outdoor unit 602 is provided with an outdoor fan 5f.
- control unit 30 includes an indoor unit control unit provided in the indoor unit 601 and an outdoor unit control unit provided in the outdoor unit 602 and capable of communicating with the indoor unit control unit. Have.
- the indoor unit control unit and the outdoor unit control unit are connected via a control line 603.
- a blower fan 604 that stirs the air in the indoor space is provided separately from the showcase.
- the blower fan 604 is provided outside the casing of the indoor unit 601 of the showcase.
- the blower fan 604 can operate independently of, for example, a showcase.
- the blower fan 604 is connected to the control unit 30 (for example, an indoor unit control unit) via a control line (not shown).
- the rotation speed of the blower fan 604 is set to be variable in multiple stages (for example, two stages or more) or continuously under the control of the control unit 30.
- the blower fan 604 functions as a leakage refrigerant diluting unit that dilutes the refrigerant that has leaked into the indoor space.
- a refrigerant detection means 605 for detecting the refrigerant is provided separately from the showcase.
- the refrigerant detection means 605 is provided outside the housing of the showcase indoor unit 601. Since the refrigerant has a density higher than that of air under atmospheric pressure, the refrigerant detection means 605 is provided, for example, near the floor surface of the indoor space.
- the refrigerant detection unit 605 is connected to the control unit 30 (for example, an indoor unit control unit) via the communication line 606.
- a current-carrying gas sensor such as a semiconductor gas sensor or a hot wire semiconductor gas sensor is used.
- the refrigerant detection unit 605 detects the refrigerant concentration in the air around the refrigerant detection unit 605 and outputs a detection signal to the control unit 30. In the control unit 30, the presence or absence of refrigerant leakage is determined based on the detection signal from the refrigerant detection means 605.
- the control unit 30 in the normal state A, when the refrigerant leakage is detected based on the detection signal from the refrigerant detection means 605, the control unit 30 operates the blower fan 604 to notify the refrigerant leakage. It is configured. Further, in the normal state B, the control unit 30 is configured to invalidate the detection signal from the refrigerant detection unit 605 even if the leakage of the refrigerant is detected based on the detection signal from the refrigerant detection unit 605.
- the threshold value R1 is set to be equal to or higher than a rotational speed at which a flammable concentration area is not formed in the indoor space even if the refrigerant leakage amount to the indoor space is maximum.
- a differential is set between the threshold value R1 when transitioning from the normal state B to the normal state A and the threshold value R2 when transitioning from the normal state A to the normal state B. May be.
- a ventilation fan 607 for ventilation that discharges air in the machine room space to the outdoor space is provided separately from the showcase.
- the blower fan 607 is provided outside the casing of the outdoor unit 602 of the showcase (for example, a wall portion facing the outdoor space in the machine room space).
- the blower fan 607 can operate independently of, for example, a showcase.
- the blower fan 607 is connected to the control unit 30 (for example, an outdoor unit control unit) via a control line (not shown).
- the rotational speed of the blower fan 607 is set to be variable in multiple stages (for example, two stages or more) or continuously under the control of the control unit 30.
- the blower fan 607 When the refrigerant leaks into the machine room space and the blower fan 607 operates, the air in the machine room space is discharged to the outdoor space together with the leaked refrigerant. Thereby, since the leaked refrigerant is discharged to the outdoor space, the refrigerant concentration is suppressed from being locally increased in the machine room space. That is, the blower fan 607 functions as a leaked refrigerant diluting unit that dilutes the refrigerant leaked into the machine room space.
- a coolant detection means 608 for detecting the coolant is provided separately from the showcase.
- the refrigerant detection means 608 is provided outside the casing of the outdoor unit 602 of the showcase, for example. Since the refrigerant has a density higher than that of air under atmospheric pressure, the refrigerant detection means 608 is provided near the floor surface of the machine room space.
- the refrigerant detection unit 608 is connected to the control unit 30 (for example, an outdoor unit control unit) via the communication line 609.
- a current-carrying gas sensor such as a semiconductor gas sensor or a hot wire semiconductor gas sensor is used.
- the refrigerant detection unit 608 detects the refrigerant concentration in the air around the refrigerant detection unit 608 and outputs a detection signal to the control unit 30. In the control unit 30, the presence or absence of refrigerant leakage is determined based on the detection signal from the refrigerant detection means 608.
- the control unit 30 when detecting the leakage of the refrigerant based on the detection signal from the refrigerant detection means 608, the control unit 30 operates the blower fan 607 to notify the refrigerant leakage. It is configured.
- the control unit 30 in the normal state B, the control unit 30 is configured to invalidate the detection signal from the refrigerant detection unit 608 even if the leakage of the refrigerant is detected based on the detection signal from the refrigerant detection unit 608.
- the threshold value R1 is set to be equal to or higher than a rotation speed at which no flammable concentration region is formed in the machine room space even if the refrigerant leakage amount to the machine room space is maximum. desirable.
- a differential is set between the threshold value R1 when transitioning from the normal state B to the normal state A and the threshold value R2 when transitioning from the normal state A to the normal state B. May be.
- FIG. 9 is a block diagram showing a configuration of the control unit 30 of the refrigeration cycle system according to the present embodiment.
- the control unit 30 includes an indoor unit control unit 610 that is mounted on the indoor unit 601 and controls the indoor unit 601, and an outdoor unit control unit 611 that is mounted on the outdoor unit 602 and controls the outdoor unit 602. And a remote controller control unit 612 that is mounted on the remote controller 27 (for example, an operation unit provided in the indoor unit 601) and controls the remote controller 27.
- the indoor unit control unit 610 is communicably connected to the outdoor unit control unit 611 and the remote control unit 612 via each control line.
- the indoor unit control unit 610 has a control board 610a.
- a microcomputer 620 is mounted on the control board 610a.
- the outdoor unit controller 611 has a control board 611a.
- a microcomputer 621 is mounted on the control board 611a.
- the remote controller 612 has a control board 612a.
- a microcomputer 622 is mounted on the control board 612a.
- the blower fan control unit 614 is communicably connected to the outdoor unit control unit 611 via a control line.
- the blower fan control unit 614 includes a control board 614a.
- a microcomputer 624 is mounted on the control board 614a.
- the control unit 30 includes a sensor control unit 615 that controls the refrigerant detection unit 605 and a sensor control unit 616 that controls the refrigerant detection unit 608.
- the sensor control unit 616 is communicably connected to the outdoor unit control unit 611.
- the sensor control unit 616 has a control board 616a.
- the microcomputer 626 and the refrigerant detection means 608 are mounted in a non-detachable manner.
- the refrigerant detection means 608 of this example is directly mounted on the control board 616a, the refrigerant detection means 608 only needs to be detachably connected to the control board 616a.
- the refrigerant detection means 608 may be provided at a position away from the control board 616a, and the wiring from the refrigerant detection means 608 may be connected to the control board 616a by soldering or the like.
- the control board 616a is provided separately from the control board 611a. However, the control board 616a may be omitted and the refrigerant detection means 608 may be detachably connected to the control board 611a.
- the microcomputers 625 and 626 of the sensor control units 615 and 616 have rewritable nonvolatile memories, respectively.
- Each nonvolatile memory is provided with a leakage history bit (an example of a leakage history storage area) that stores a history of refrigerant leakage.
- the leakage history bit can be set to “0” or “1”.
- the leakage history bit “0” represents a state without a refrigerant leakage history
- “1” represents a state with a refrigerant leakage history.
- the initial value of the leakage history bit is “0”.
- the leakage history bit is set to “0”.
- the leakage history bit of the microcomputer 625 is rewritten from “0” to “1” when the refrigerant detection unit 605 detects the leakage of the refrigerant.
- the leakage history bit of the microcomputer 626 is rewritten from “0” to “1” when the refrigerant detection unit 608 detects leakage of the refrigerant.
- the leakage history bits of the microcomputers 625 and 626 can be irreversibly rewritten only in one direction from “0” to “1”. Further, the leakage history bits of the microcomputers 625 and 626 are maintained regardless of whether or not power is supplied to the microcomputers 625 and 626.
- the first leak history bit corresponding to the leak history bit of the microcomputer 625 and the second leak corresponding to the leak history bit of the microcomputer 626 are stored in the memories of the indoor units 601, the outdoor unit 602, and the microcomputers 620, 621, and 622 of the remote controller 27.
- a history bit is provided. These leakage history bits can be set to “0” or “1”, and can be rewritten bidirectionally between “0” and “1”.
- the value of the first leakage history bit of each of the microcomputers 620, 621, and 622 is set to the same value as the leakage history bit of the microcomputer 625 acquired by communication.
- the outdoor unit control unit 611 performs normal control of the outdoor unit 602 when both the first leakage history bit and the second leakage history bit of the microcomputer 621 are set to “0”.
- the outdoor unit control unit 611 performs control to stop the compressor 3, for example.
- the stop of the compressor 3 is continued as long as the first leakage history bit or the second leakage history bit of the microcomputer 621 continues to be set to “1”.
- the outdoor unit control unit 611 performs control for forcibly operating the blower fan 607 via the blower fan control unit 614, for example. At this time, the outdoor unit control unit 611 may also perform control for forcibly operating the outdoor fan 5f.
- the remote controller 612 performs normal control of the remote controller 27 when both the first leakage history bit and the second leakage history bit of the microcomputer 622 are set to “0”.
- the remote control unit 612 includes information including an abnormality type or a treatment method on a display unit provided in the remote controller 27, for example. Is displayed.
- the remote controller control unit 612 may display information on the refrigerant leakage location on the display unit based on which of the first leakage history bit and the second leakage history bit is set to “1”.
- the remote controller control unit 612 may cause the audio output unit provided in the remote controller 27 to notify the information of the abnormality type, the treatment method, or the refrigerant leak location by voice.
- the refrigerant leakage history is irreversibly written in the nonvolatile memory of the control boards 615a and 616a.
- the refrigerant detection means 605 and 608 that are detachably connected are also exchanged. Therefore, it is possible to prevent the refrigerant detection means 605 and 608 whose detection characteristics are changed by being exposed to the refrigerant atmosphere from being continuously used.
- the operation of the showcase cannot be resumed unless the control boards 615a and 616a are replaced, the operation of the showcase in which the refrigerant leakage point is not repaired is resumed due to human error or intentionally. Can be prevented.
- the refrigerant detection unit 605 in the normal state B in which the rotation speed of the blower fan 604 is equal to or higher than the threshold value R1, the refrigerant detection unit 605 can detect the leakage of the refrigerant based on the detection signal from the refrigerant detection unit 605. The detection signal is disabled. Thereby, under the condition of the normal state B, erroneous detection of the refrigerant detection means 605 can be prevented. Even if the refrigerant leaks in the normal state B, the detection signal from the refrigerant detecting means 605 is invalidated. However, in the normal state B, the blower fan 604 rotates at a rotational speed equal to or higher than the threshold value R1. The leaked refrigerant can be diffused into the indoor space.
- the operation and stop of the blower fan 604 are controlled by relay control in the control board 610a of the indoor unit control unit 610, and the operation and stop of the blower fan 607 are controlled by the control board 611a of the outdoor unit control unit 611. This is performed by relay control.
- the leakage history bit for storing the presence / absence of the leakage history in one bit is exemplified as the leakage history storage area provided in the nonvolatile memory.
- the present invention is not limited to this.
- a leakage history storage area of 2 bits or more may be provided.
- the leakage history storage area selectively stores one of first information representing a state without a refrigerant leakage history and second information representing a state with a refrigerant leakage history.
- the information stored in the leakage history storage area can be changed only in one direction from the first information to the second information.
- the control unit 30 (for example, the sensor control units 615 and 616) is configured to change the information stored in the leakage history storage area from the first information to the second information when the refrigerant leakage is detected.
- the refrigerant detection means and the blower fan do not necessarily have to be built in the housing of the indoor unit or the outdoor unit of the refrigeration cycle apparatus.
- the refrigerant detecting means and the blower fan are connected to the refrigeration cycle apparatus via a control line or the like so as to be communicable with each other, or connected to the refrigeration cycle apparatus via a power line so as to be remotely operable. May be provided separately.
- a blower fan 604 that stirs the air in the indoor space is provided in the indoor space
- a ventilation fan 607 that exhausts the air in the machine room space to the outdoor space is provided in the machine room space.
- a ventilation fan for exhausting the air in the indoor space to the outdoor space may be provided in the indoor space
- a blower fan for agitating the air in the machine room space may be provided in the machine room space.
- the refrigeration cycle apparatus includes the refrigerant circuit 40 that circulates the refrigerant and the heat exchanger of the refrigerant circuit 40 (for example, the load-side heat exchanger 7 and the heat source-side heat exchanger 5).
- a heat exchanger unit for example, indoor unit 1, outdoor unit 2 and a control unit 30 for controlling the heat exchanger unit, and the heat exchanger unit is a blower fan (for example, an indoor blower fan). 7f, outdoor blower fan 5f) and refrigerant detection means (for example, refrigerant detection means 98, 99), and the control unit 30 detects the leakage of the refrigerant based on the detection signal from the refrigerant detection means.
- the controller 30 is configured to operate the blower fan, and the controller 30 has a rotation speed of the blower fan equal to or higher than the first threshold (for example, the threshold value R1 of the first embodiment or the threshold value R2 of the second embodiment). When it is cold Also it detects the refrigerant leakage based on the detection signal from the detection means, in which is configured to disable the detection signal from the refrigerant detecting means.
- the first threshold for example, the threshold value R1 of the first embodiment or the threshold value R2 of the second embodiment.
- the detection signal from the refrigerant detection means is invalidated, so that erroneous detection of the refrigerant detection means can be prevented.
- the control unit 30 causes the rotational speed of the blower fan to be smaller than the second threshold value (for example, the threshold value R1 in the first and second embodiments) in the normal state B.
- the second threshold value may be equal to or smaller than the first threshold value.
- the refrigeration cycle system includes a refrigeration cycle apparatus having a refrigerant circuit 40 that circulates refrigerant and a control unit 30 that controls the refrigerant circuit 40, and a blower fan (for example, controlled by the control unit 30).
- Air blowing fans 604 and 607) and refrigerant detection means for example, refrigerant detection means 605 and 608 that detect the refrigerant and output a detection signal to the control unit 30, and the control unit 30 receives the refrigerant from the refrigerant detection means.
- the blower fan When the refrigerant leakage is detected based on the detection signal, the blower fan is operated, and the control unit 30 has a rotation speed of the blower fan equal to or higher than a first threshold (for example, in the first embodiment). Even if the refrigerant leakage is detected based on the detection signal from the refrigerant detection means when the threshold value is R1 or the threshold value R2 in the second embodiment, the detection signal from the refrigerant detection means is invalidated. Those that are configured.
- the control unit 30 in the normal state B, has the rotational speed of the blower fan smaller than the second threshold (for example, the threshold R1 in the first and second embodiments). In such a case, the refrigerant leakage is notified, and the second threshold value may be equal to or smaller than the first threshold value.
- the second threshold for example, the threshold R1 in the first and second embodiments.
- a floor-standing indoor unit has been exemplified as the indoor unit 1, but the present invention can be applied to other indoor units such as a ceiling cassette type, a ceiling-embedded type, a ceiling-suspended type, and a wall-mounted type. Is also applicable.
- an air conditioner or a showcase is used as an example of the refrigeration cycle apparatus.
- the present invention is not limited to a heat pump water heater (for example, a heat pump apparatus described in JP-A-2016-3783), or The present invention can also be applied to other refrigeration cycle apparatuses such as chillers that are often installed in machine rooms.
- the semiconductor gas sensor or the hot-wire semiconductor gas sensor is used as an example of the refrigerant detection means.
- the present invention is not limited to this.
- other refrigerant detection means such as an infrared type can be used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Air Conditioning Control Device (AREA)
Abstract
冷凍サイクル装置は、冷媒を循環させる冷媒回路と、冷媒回路の熱交換器を収容する熱交換器ユニットと、熱交換器ユニットを制御する制御部と、を有し、熱交換器ユニットは、送風ファンと、冷媒検知手段と、を備えており、前記制御部は、送風ファンを運転させるように構成されており、送風ファンの回転速度が第1の閾値以上であるときに、冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段からの検知信号を無効にするように構成されているものである。
Description
本発明は、冷媒検知手段によって冷媒の漏洩を検知する冷凍サイクル装置及び冷凍サイクルシステムに関するものである。
特許文献1には、空気調和機が記載されている。この空気調和機は、室内機の外表面に設けられて冷媒を検知するガスセンサと、ガスセンサが冷媒を検知したときに室内送風ファンを回転させる制御を行う制御部と、を備えている。この空気調和機では、室内機につながる延長配管から室内へ冷媒が漏洩した場合や、室内機内部で漏洩した冷媒が室内機の筺体の隙間を通して室内機の外部へ流出した場合に、漏洩冷媒をガスセンサによって検知できる。また、冷媒の漏洩を検知したときに室内送風ファンを回転させることにより、室内機の筐体に設けられた吸込口から室内の空気を吸い込み、吹出口から室内へ空気を吹き出すので、漏洩した冷媒を拡散させることができる。
冷媒検知手段である半導体式ガスセンサ等のガスセンサは、大気中に含まれている水素(H)及び炭素(C)などに反応する特性がある。このような特性を備えたガスセンサは、プロパン(C3H8)、ブタン(C4H10)、又は、エタノール(C2H6O)など、水素(H)及び炭素(C)を含有する物質が周囲に存在すると反応してしまう。なお、プロパン(C3H8)又はブタン(C4H10)は、一般的に市販されているスプレー類に含有されている。また、エタノール(C2H6O)は、消毒用のアルコールとして多用されている。
このような理由から、空気調和機が使用される環境において、プロパン又はブタンを含むスプレー類、又は、消毒用のアルコールとしてエタノールが使用されると、ガスセンサは冷媒が存在しないにも関わらず漏洩を誤検知してしまう可能性がある。冷媒を誤検知した場合、空気調和機は、異常を発報し、運転停止するよう構成されていることが多い。そのため、ユーザは、冷媒が漏洩していないにも関わらず、サービスマンにより空気調和機が復旧するまで、空気調和機の運転を実行できないといった課題がある。
本発明は、上述のような課題を解決するためになされたものであり、冷媒検知手段の検知特性の変化を抑制できる冷凍サイクル装置及び冷凍サイクルシステムを提供することを目的とする。
本発明に係る冷凍サイクル装置は、冷媒を循環させる冷媒回路と、前記冷媒回路の熱交換器を収容する熱交換器ユニットと、前記熱交換器ユニットを制御する制御部と、を有し、前記熱交換器ユニットは、送風ファンと、冷媒検知手段と、を備えており、前記制御部は、前記送風ファンを運転させるように構成されており、前記送風ファンの回転速度が第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、前記冷媒検知手段からの検知信号を無効にするように構成されているものである。
本発明に係る冷凍サイクルシステムは、冷媒を循環させる冷媒回路と前記冷媒回路を制御する制御部とを有する冷凍サイクル装置と、前記制御部により制御される送風ファンと、前記制御部に検知信号を出力する冷媒検知手段と、を有し、前記制御部は、前記送風ファンを運転させるように構成されており、前記送風ファンの回転速度が第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、前記冷媒検知手段からの検知信号を無効にするように構成されているものである。
本発明によれば、冷媒検知手段からの検知信号を無効にする構成を備えているので、送風ファンが回転していて可燃域が生じえない条件において、冷媒検知手段の誤検知を防止することができる。
実施の形態1.
本発明の実施の形態1に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。図1は、本実施の形態に係る空気調和機の概略構成を示す冷媒回路図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
本発明の実施の形態1に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。図1は、本実施の形態に係る空気調和機の概略構成を示す冷媒回路図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。
図1に示すように、空気調和機は、冷媒を循環させる冷媒回路40を有している。冷媒回路40は、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5(例えば、室外熱交換器)、減圧装置6、及び負荷側熱交換器7(例えば、室内熱交換器)が冷媒配管を介して順次環状に接続された構成を有している。また、空気調和機は、熱源ユニットとして、例えば室外に設置される室外機2を有している。さらに、空気調和機は、負荷ユニットとして、例えば室内に設置される室内機1(熱交換器ユニットの一例)を有している。室内機1と室外機2との間は、冷媒配管の一部である延長配管10a、10bを介して接続されている。
冷媒回路40を循環する冷媒としては、例えば、HFO-1234yf、HFO-1234ze等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられる。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。以下、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の可燃性を有する冷媒のことを「可燃性冷媒」という場合がある。また、冷媒回路40を循環する冷媒としては、不燃性(例えば、ASHRAE34の分類で1)を有するR22、R410A等の不燃性冷媒を用いることもできる。これらの冷媒は、例えば、大気圧下において空気よりも大きい密度を有している。
圧縮機3は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出する流体機械である。冷媒流路切替装置4は、冷房運転時と暖房運転時とで冷媒回路40内の冷媒の流れ方向を切り替えるものである。冷媒流路切替装置4としては、例えば四方弁が用いられる。熱源側熱交換器5は、冷房運転時には放熱器(例えば、凝縮器)として機能し、暖房運転時には蒸発器として機能する熱交換器である。熱源側熱交換器5では、内部を流通する冷媒と、後述する室外送風ファン5fにより送風される室外空気との熱交換が行われる。減圧装置6は、高圧冷媒を減圧して低圧冷媒とするものである。減圧装置6としては、例えば開度を調節可能な電子膨張弁などが用いられる。負荷側熱交換器7は、冷房運転時には蒸発器として機能し、暖房運転時には放熱器(例えば、凝縮器)として機能する熱交換器である。負荷側熱交換器7では、内部を流通する冷媒と、後述する室内送風ファン7fにより送風される空気との熱交換が行われる。ここで、冷房運転とは、負荷側熱交換器7に低温低圧の冷媒を供給する運転のことであり、暖房運転とは、負荷側熱交換器7に高温高圧の冷媒を供給する運転のことである。
室外機2には、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5及び減圧装置6が収容されている。また、室外機2には、熱源側熱交換器5に室外空気を供給する室外送風ファン5fが収容されている。室外送風ファン5fは、熱源側熱交換器5に対向して設置されている。室外送風ファン5fを回転させることで、熱源側熱交換器5を通過する空気流が生成される。室外送風ファン5fとしては、例えばプロペラファンが用いられている。室外送風ファン5fは、当該室外送風ファン5fが生成する空気流において、例えば熱源側熱交換器5の下流側に配置されている。
室外機2には、冷媒配管として、冷房運転時にガス側となる延長配管接続バルブ13aと冷媒流路切替装置4とを繋ぐ冷媒配管、圧縮機3の吸入側に接続されている吸入配管11、圧縮機3の吐出側に接続されている吐出配管12、冷媒流路切替装置4と熱源側熱交換器5とを繋ぐ冷媒配管、熱源側熱交換器5と減圧装置6とを繋ぐ冷媒配管、及び、冷房運転時に液側となる延長配管接続バルブ13bと減圧装置6とを繋ぐ冷媒配管、が配置されている。延長配管接続バルブ13aは、開放及び閉止の切替えが可能な二方弁で構成されており、その一端にフレア継手が取り付けられている。また、延長配管接続バルブ13bは、開放及び閉止の切替えが可能な三方弁で構成されている。延長配管接続バルブ13bの一端には、冷媒回路40に冷媒を充填する前作業である真空引きの際に使用するサービス口14aが取り付けられ、他の一端にはフレア継手が取り付けられている。
吐出配管12には、冷房運転時及び暖房運転時のいずれにおいても、圧縮機3で圧縮された高温高圧のガス冷媒が流れる。吸入配管11には、冷房運転時及び暖房運転時のいずれにおいても、蒸発作用を経た低温低圧のガス冷媒又は二相冷媒が流れる。吸入配管11には、低圧側のフレア継手付きのサービス口14bが接続されており、吐出配管12には、高圧側のフレア継手付きのサービス口14cが接続されている。サービス口14b、14cは、空気調和機の据付け時や修理時の試運転の際に圧力計を接続して、運転圧力を計測するために使用される。
室内機1には、負荷側熱交換器7が収容されている。また、室内機1には、負荷側熱交換器7に空気を供給する室内送風ファン7fが設置されている。室内送風ファン7fを回転させることで、負荷側熱交換器7を通過する空気流が生成される。室内送風ファン7fとしては、室内機1の形態によって、遠心ファン(例えば、シロッコファン、ターボファン等)、クロスフローファン、斜流ファン、軸流ファン(例えば、プロペラファン)などが用いられる。本例の室内送風ファン7fは、当該室内送風ファン7fが生成する空気流において負荷側熱交換器7の上流側に配置されているが、負荷側熱交換器7の下流側に配置されていてもよい。
室内機1の冷媒配管のうちガス側の室内配管9aにおいて、ガス側の延長配管10aとの接続部には、延長配管10aを接続するための継手部15a(例えば、フレア継手)が設けられている。また、室内機1の冷媒配管のうち液側の室内配管9bにおいて、液側の延長配管10bとの接続部には、延長配管10bを接続するための継手部15b(例えば、フレア継手)が設けられている。
また、室内機1には、室内から吸い込まれる室内空気の温度を検出する吸込空気温度センサ91、負荷側熱交換器7の冷房運転時の入口部(暖房運転時の出口部)の冷媒温度を検出する熱交換器入口温度センサ92、負荷側熱交換器7の二相部の冷媒温度(蒸発温度又は凝縮温度)を検出する熱交換器温度センサ93等が設けられている。さらに、室内機1には、後述する冷媒検知手段99(例えば、半導体式ガスセンサ)が設けられている。これらのセンサ類は、室内機1又は空気調和機全体を制御する制御部30に検出信号を出力するようになっている。
制御部30は、CPU、ROM、RAM、I/Oポート等を備えたマイクロコンピュータ(以下、「マイコン」という場合がある。)を有している。制御部30は、不図示の操作部との間で相互にデータ通信を行うことができるようになっている。操作部は、ユーザによる操作を受け付け、操作に基づく操作信号を制御部30に出力するものである。本例の制御部30は、操作部からの操作信号やセンサ類からの検出信号等に基づき、室内送風ファン7fの動作を含む室内機1又は空気調和機全体の動作を制御する。また、本例の制御部30は、冷媒検知手段99への通電及び非通電を切り替えることができるようになっている。制御部30は、室内機1の筐体内に設けられていてもよいし、室外機2の筐体内に設けられていてもよい。また、制御部30は、室外機2に設けられる室外機制御部と、室内機1に設けられ、室外機制御部とデータ通信可能な室内機制御部と、により構成されていてもよい。
次に、空気調和機の冷媒回路40の動作について説明する。まず、冷房運転時の動作について説明する。図1において、実線矢印は、冷房運転時の冷媒の流れ方向を示している。冷房運転では、冷媒流路切替装置4によって冷媒流路が実線で示すように切り替えられ、負荷側熱交換器7に低温低圧の冷媒が流れるように冷媒回路40が構成される。
圧縮機3から吐出された高温高圧のガス冷媒は、冷媒流路切替装置4を経てまず熱源側熱交換器5へと流入する。冷房運転では、熱源側熱交換器5は凝縮器として機能する。すなわち、熱源側熱交換器5では、内部を流通する冷媒と、室外送風ファン5fにより送風される室外空気との熱交換が行われ、冷媒の凝縮熱が室外空気に放熱される。これにより、熱源側熱交換器5に流入した冷媒は、凝縮して高圧の液冷媒となる。高圧の液冷媒は、減圧装置6に流入し、減圧されて低圧の二相冷媒となる。低圧の二相冷媒は、延長配管10bを経由して室内機1の負荷側熱交換器7に流入する。冷房運転では、負荷側熱交換器7は蒸発器として機能する。すなわち、負荷側熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気(例えば、室内空気)との熱交換が行われ、冷媒の蒸発熱が送風空気から吸熱される。これにより、負荷側熱交換器7に流入した冷媒は、蒸発して低圧のガス冷媒又は二相冷媒となる。また、室内送風ファン7fにより送風される空気は、冷媒の吸熱作用によって冷却される。負荷側熱交換器7で蒸発した低圧のガス冷媒又は二相冷媒は、延長配管10a及び冷媒流路切替装置4を経由して圧縮機3に吸入される。圧縮機3に吸入された冷媒は、圧縮されて高温高圧のガス冷媒となる。冷房運転では、以上のサイクルが繰り返される。
次に、暖房運転時の動作について説明する。図1において、点線矢印は、暖房運転時の冷媒の流れ方向を示している。暖房運転では、冷媒流路切替装置4によって冷媒流路が点線で示すように切り替えられ、負荷側熱交換器7に高温高圧の冷媒が流れるように冷媒回路40が構成される。暖房運転時には、冷媒は冷房運転時とは逆方向に流れ、負荷側熱交換器7は凝縮器として機能する。すなわち、負荷側熱交換器7では、内部を流通する冷媒と、室内送風ファン7fにより送風される空気との熱交換が行われ、冷媒の凝縮熱が送風空気に放熱される。これにより、室内送風ファン7fにより送風される空気は、冷媒の放熱作用によって加熱される。
図2は、本実施の形態に係る空気調和機の室内機1の内部構造を模式的に示す正面図である。図3は、本実施の形態に係る空気調和機の室内機1の内部構造を模式的に示す側面図である。図3における左方は、室内機1の前面側(すなわち、室内空間側)を示している。本実施の形態では、室内機1として、空調対象空間となる室内空間の床面上に設置される床置形の室内機1を例示している。なお、以下の説明における各構成部材同士の位置関係(例えば、上下関係等)は、原則として、室内機1を使用可能な状態に設置したときのものである。
図2及び図3に示すように、室内機1は、縦長の直方体状の形状を有する筐体111を備えている。筐体111の前面下部には、室内空間の空気を吸い込む吸込口112が形成されている。本例の吸込口112は、筐体111の上下方向において中央部よりも下方であり、床面近傍の位置に設けられている。筐体111の前面上部、すなわち吸込口112よりも高さの高い位置(例えば、筐体111の上下方向における中央部よりも上方)には、吸込口112から吸い込まれた空気を室内に吹き出す吹出口113が形成されている。筐体111の前面のうち、吸込口112よりも上方で吹出口113よりも下方には、不図示の操作部が設けられている。操作部では、ユーザの操作により空気調和機の運転開始操作、運転終了操作、運転モードの切替え、設定温度及び設定風量の設定などが行われる。操作部には、情報をユーザに報知する表示部や音声出力部等が設けられていてもよい。
筐体111は中空の箱体であり、筐体111の前面には前面開口部が形成されている。筐体111は、前面開口部に対して着脱可能に取り付けられる第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cを備えている。第1前面パネル114a、第2前面パネル114b及び第3前面パネル114cは、いずれも略長方形平板状の外形状を有している。第1前面パネル114aは、筐体111の前面開口部の下部に対して着脱可能に取り付けられている。第1前面パネル114aには、上記の吸込口112が形成されている。第2前面パネル114bは、第1前面パネル114aの上方に隣接して配置されており、筐体111の前面開口部の上下方向における中央部に対して着脱可能に取り付けられている。第2前面パネル114bには、上記の操作部が設けられている。第3前面パネル114cは、第2前面パネル114bの上方に隣接して配置されており、筐体111の前面開口部の上部に対して着脱可能に取り付けられている。第3前面パネル114cには、上記の吹出口113が形成されている。
筐体111の内部空間は、送風部となる空間115aと、空間115aの上方に位置し、熱交換部となる空間115bと、に大まかに分けられている。空間115aと空間115bとの間は、仕切部20によって仕切られている。仕切部20は、例えば、平板状の形状を有しており、概ね水平に配置されている。仕切部20には、空間115aと空間115bとの間の風路となる風路開口部20aが少なくとも形成されている。空間115aは、第1前面パネル114aを筐体111から取り外すことによって前面側に露出するようになっており、空間115bは、第2前面パネル114b及び第3前面パネル114cを筐体111から取り外すことによって前面側に露出するようになっている。すなわち、仕切部20が設置されている高さは、第1前面パネル114aの上端又は第2前面パネル114bの下端の高さと概ね一致している。ここで、仕切部20は、後述するファンケーシング108と一体的に形成されていてもよいし、後述するドレンパンと一体的に形成されていてもよいし、ファンケーシング108及びドレンパンとは別体として形成されていてもよい。
空間115aには、吸込口112から吹出口113に向かう空気の流れを筐体111内の風路81に生じさせる室内送風ファン7fが配置されている。本例の室内送風ファン7fは、不図示のモータと、モータの出力軸に接続され、複数の翼が周方向に例えば等間隔で配置された羽根車107と、を備えたシロッコファンである。羽根車107の回転軸は、筐体111の奥行方向とほぼ平行になるように配置されている。室内送風ファン7fの回転速度は、ユーザに設定された設定風量等に基づいた制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。
室内送風ファン7fの羽根車107は、渦巻状のファンケーシング108で覆われている。ファンケーシング108は、例えば筐体111とは別体で形成されている。ファンケーシング108の渦巻中心付近には、吸込口112を介してファンケーシング108内に室内空気を吸い込む吸込開口部108bが形成されている。吸込開口部108bは、吸込口112に対向するように配置されている。また、ファンケーシング108の渦巻の接線方向には、送風空気を吹き出す吹出開口部108aが形成されている。吹出開口部108aは、上方を向くように配置されており、仕切部20の風路開口部20aを介して空間115bに接続されている。言い換えれば、吹出開口部108aは、風路開口部20aを介して空間115bと連通している。吹出開口部108aの開口端と風路開口部20aの開口端との間は、直接繋がっていてもよいし、ダクト部材等を介して間接的に繋がっていてもよい。
また、空間115aには、例えば制御部30を構成するマイコン、各種電気部品、基板などが収容される電気品箱25が設けられている。
空間115b内の風路81には、負荷側熱交換器7が配置されている。負荷側熱交換器7の下方には、負荷側熱交換器7の表面で凝縮した凝縮水を受けるドレンパン(図示せず)が設けられている。ドレンパンは、仕切部20の一部として形成されていてもよいし、仕切部20とは別体として形成されて仕切部20上に配置されていてもよい。
空間115aの下方寄りの位置には、冷媒検知手段99が設けられている。冷媒検知手段99としては、半導体式ガスセンサ又は熱線型半導体式ガスセンサ等の通電式ガスセンサを含む通電式の冷媒検知手段が用いられる。冷媒検知手段99は、例えば、当該冷媒検知手段99の周囲の空気中における冷媒濃度を検知し、検知信号を制御部30に出力する。制御部30では、冷媒検知手段99からの検知信号に基づき、冷媒の漏洩の有無が判定される。
室内機1において冷媒漏洩のおそれがあるのは、負荷側熱交換器7のろう付け部及び継手部15a、15bである。また、本実施の形態で用いられる冷媒は、大気圧下において空気よりも大きい密度を有している。したがって、本実施の形態の冷媒検知手段99は、筐体111内において負荷側熱交換器7及び継手部15a、15bよりも高さが低い位置に設けられている。これにより、少なくとも室内送風ファン7fの停止時において、冷媒検知手段99では、漏洩した冷媒を確実に検知することができる。なお、本実施の形態では、冷媒検知手段99が空間115aの下方寄りの位置に設けられているが、冷媒検知手段99の設置位置は他の位置であってもよい。
図4は、本実施の形態に係る空気調和機の制御部30で実行される冷媒漏洩検知処理の一例を示すフローチャートである。この冷媒漏洩検知処理は、空気調和機の運転中及び停止中を含む常時、空気調和機の停止中のみ、又は後述する正常状態Aのみに、所定の時間間隔で繰り返して実行されるものである。
図4のステップS1では、制御部30は、冷媒検知手段99からの検知信号に基づき、冷媒検知手段99の周囲の冷媒濃度の情報を取得する。
次に、ステップS2では、冷媒検知手段99の周囲の冷媒濃度が予め設定された閾値以上であるか否かを判定する。冷媒濃度が閾値以上であると判定した場合にはステップS3に進み、冷媒濃度が閾値未満であると判定した場合には処理を終了する。
ステップS3では、室内送風ファン7fの運転を開始する。室内送風ファン7fが既に運転している場合には、そのまま運転を継続する。また、ステップS3では、室内送風ファン7fの回転速度を、冷媒漏洩量が最大であっても十分に冷媒を拡散できる回転速度(例えば、後述する閾値R1以上の回転速度)に設定するようにしてもよい。この回転速度は、通常運転中に使用される回転速度には限られない。ステップS3では、操作部に設けられている表示部や音声出力部等を用いて、冷媒の漏洩が生じたことをユーザに報知するようにしてもよい。なお、報知については、図5で詳しく説明する。
以上のように、この冷媒漏洩検知処理では、冷媒の漏洩が検知された場合(すなわち、冷媒検知手段99で検知される冷媒濃度が閾値以上である場合)、室内送風ファン7fの運転が開始される。これにより、漏洩冷媒を拡散させることができるため、冷媒濃度が室内で局所的に高くなってしまうのを抑制することができる。
上述のとおり、本実施の形態では、冷媒回路40を循環する冷媒として、例えば、HFO-1234yf、HFO-1234ze、R290、R1270等の可燃性冷媒が用いられている。このため、万一室内機1で冷媒の漏洩が生じた場合、室内の冷媒濃度が上昇して可燃濃度域(例えば、冷媒濃度が燃焼下限濃度(LFL)以上となる領域)が形成されてしまうおそれがある。
これらの可燃性冷媒は、大気圧下において空気よりも大きい密度を有している。したがって、室内の床面からの高さが比較的高い位置で冷媒の漏洩が生じた場合には、漏洩した冷媒は下降中に拡散し、冷媒濃度が室内空間で均一化するため、冷媒濃度は高くなりにくい。これに対し、室内の床面からの高さが低い位置で冷媒の漏洩が生じた場合には、漏洩した冷媒が床面付近の低い位置に留まるため、冷媒濃度が局所的に高くなりやすい。これにより、可燃濃度域が形成される可能性が相対的に高まってしまう。
空気調和機の運転中には、室内機1の室内送風ファン7fの運転によって空気が室内に吹き出される。このため、万一可燃性冷媒が室内に漏洩したとしても、漏洩した可燃性冷媒は、吹き出される空気によって室内で拡散する。これにより、室内に可燃濃度域が形成されるのを抑制することができる。しかしながら、空気調和機の停止中には、室内機1の室内送風ファン7fも停止しているため、吹き出される空気によって漏洩冷媒を拡散させることはできない。したがって、漏洩冷媒の検知は、空気調和機の停止中にこそ必要となる。本実施の形態では、冷媒の漏洩が検知された場合に室内送風ファン7fの運転が開始されるため、空気調和機の停止中に可燃性冷媒が室内に漏洩したとしても、室内に可燃濃度域が形成されるのを抑制することができる。
ここで、図4のステップS3で運転が開始された室内送風ファン7fは、予め設定された所定時間が経過した後に停止されるようにしてもよい。
図5は、本実施の形態に係る空気調和機の状態遷移の一例を示す状態遷移図である。図5に示すように、空気調和機の状態には、少なくとも正常状態Aと正常状態Bとがある。本例の正常状態A及び正常状態Bは、いずれも冷媒の漏洩が生じていない状態である。正常状態A又は正常状態Bにある空気調和機では、操作部によるユーザの操作等に基づき、通常の運転動作及び停止動作が行われる。空気調和機の状態は、室内送風ファン7fの回転速度に基づき、制御部30の制御によって正常状態A及び正常状態Bの間で相互に遷移するようになっている。状態遷移の判断に用いられる回転速度の閾値は、予め制御部30のROMに記憶されている。
停止中の空気調和機は正常状態Aにある。正常状態Aでは、制御部30の制御によって冷媒検知手段99に通電される。これにより、冷媒検知手段99は、冷媒を検知できる動作状態となる。すなわち、正常状態Aは、冷媒検知手段99によって冷媒の漏洩を検知できる状態である。そして、制御部30は、正常状態Aであるときに、冷媒検知手段99からの検知信号に基づき冷媒の漏洩を検知すると、室内送風ファン7fを運転させ、冷媒の漏洩を報知する。報知は、文字及び画像の少なくとも1つによる表示、音声及びブザーの少なくとも1つによる発報によって行えばよい。報知は、操作部及びリモコン(実施の形態4で説明するリモコン27)の少なくとも1つを用いて行うことができる。なお、報知については、以下の実施の形態についても同様であるものとする。
ユーザの操作等に基づいて空気調和機の運転が開始されると、室内送風ファン7fは、制御部30によって所定の回転速度に制御される。制御部30は、室内送風ファン7fの回転速度が予め設定された閾値R1以上になった場合、空気調和機の状態を正常状態Aから正常状態Bに遷移させる。正常状態Bでも、冷媒検知手段99によって冷媒の漏洩を検知ができる状態になっている。ただし、制御部30は、正常状態Bであるときに、冷媒検知手段99からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段99からの検知信号を無効にする。つまり、制御部30は、正常状態Bでは、冷媒が漏洩したことを報知しない。
制御部30は、正常状態Bにおいて室内送風ファン7fの回転速度が閾値R1よりも小さくなった場合、空気調和機の状態を正常状態Bから再び正常状態Aに遷移させる。
通常運転中における室内送風ファン7fの最大回転速度をRmaxとし、最小回転速度をRminとすると、閾値R1は、例えば0以上Rmax以下の回転速度範囲内(0≦R1≦Rmax)、好ましくは0よりも大きくRmax以下の回転速度範囲内(0<R1≦Rmax)、さらに好ましくはRminよりも大きくRmax以下の回転速度範囲内(Rmin<R1≦Rmax)で設定される。可燃性冷媒が用いられる場合には、閾値R1は、室内への冷媒漏洩量が最大であっても室内に可燃濃度域が形成されないような回転速度以上に設定されるのが望ましい。閾値R1は、制御公差を見込んで設定される。また、モータの負荷によって室内送風ファン7fの回転速度が変動する場合には、閾値R1は最大負荷を考慮して設定される。
冷媒検知手段99は、半導体式ガスセンサ等のガスセンサであり、大気中に含まれている水素及び炭素などに反応する特性がある。これに対し、本実施の形態では、室内送風ファン7fの回転速度が閾値R1以上である正常状態Bにおいては、冷媒検知手段99からの検知信号が無効にされる。すなわち、正常状態Bにおいては、室内送風ファン7fの回転速度が閾値R1以上で回転しているため、可燃域が生じえない。そのため、本実施の形態では、正常状態Bという条件下において、冷媒検知手段99からの検知信号を無効にし、冷媒検知手段99の誤検知を防止している。仮に、正常状態Bにおいて冷媒の漏洩が生じたとしても、冷媒検知手段99からの検知信号を無効にしてしまうが、正常状態Bでは室内送風ファン7fが閾値R1以上の回転速度で回転しているため、漏洩した冷媒を室内に拡散させることができる。
なお、正常状態Aにおいて冷媒が漏洩した場合には、冷媒の漏洩を検知し、室内送風ファン7fを運転させる。
以上のように、本実施の形態では、正常状態A及び正常状態Bのいずれの状態で冷媒が漏洩した場合にも、室内送風ファン7fを確実に運転させることができる。したがって、本実施の形態によれば、万一、冷媒が漏洩したとしても、冷媒濃度が局所的に高くなってしまうのを抑制することができる。これにより、例えば可燃性冷媒が用いられる場合であっても、より安全を確保した空気調和機を実現できる。
実施の形態2.
本発明の実施の形態2に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。なお、本実施の形態に係る空気調和機の基本的な構成については、上記実施の形態1と同様であるので説明を省略する。図6は、本実施の形態に係る空気調和機における室内送風ファン7fの回転速度と空気調和機の状態との関係を示す図である。図6の横軸は室内送風ファン7fの回転速度を表しており、縦軸は空気調和機の状態を表している。図6に示すように、正常状態Bから正常状態Aに遷移するときの閾値R1と、正常状態Aから正常状態Bに遷移するときの閾値R2との間には、制御上の不感帯となるディファレンシャルが設定されている。ここで、閾値R2は閾値R1よりも大きい値である(R2>R1)。閾値R1及び閾値R2は、例えば0以上Rmax以下の回転速度範囲内(0≦R1<R2≦Rmax)、好ましくは0よりも大きくRmax以下の回転速度範囲内(0<R1<R2≦Rmax)、さらに好ましくはRminよりも大きくRmax以下の回転速度範囲内(Rmin<R1<R2≦Rmax)で設定される。
本発明の実施の形態2に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。なお、本実施の形態に係る空気調和機の基本的な構成については、上記実施の形態1と同様であるので説明を省略する。図6は、本実施の形態に係る空気調和機における室内送風ファン7fの回転速度と空気調和機の状態との関係を示す図である。図6の横軸は室内送風ファン7fの回転速度を表しており、縦軸は空気調和機の状態を表している。図6に示すように、正常状態Bから正常状態Aに遷移するときの閾値R1と、正常状態Aから正常状態Bに遷移するときの閾値R2との間には、制御上の不感帯となるディファレンシャルが設定されている。ここで、閾値R2は閾値R1よりも大きい値である(R2>R1)。閾値R1及び閾値R2は、例えば0以上Rmax以下の回転速度範囲内(0≦R1<R2≦Rmax)、好ましくは0よりも大きくRmax以下の回転速度範囲内(0<R1<R2≦Rmax)、さらに好ましくはRminよりも大きくRmax以下の回転速度範囲内(Rmin<R1<R2≦Rmax)で設定される。
空気調和機が正常状態Aにある場合において、室内送風ファン7fの回転速度が閾値R2以上になったときには、空気調和機が正常状態Aから正常状態Bに遷移する。一方、空気調和機が正常状態Bにある場合において、室内送風ファン7fの回転速度が閾値R1よりも小さくなったときには、空気調和機が正常状態Bから正常状態Aに遷移する。正常状態Aでは冷媒の漏洩を報知し、正常状態Bでは冷媒の漏洩を報知しない点は、上記実施の形態1と同様である。
上記実施の形態1では、室内送風ファン7fが閾値R1付近の回転速度で運転している場合、正常状態A及び正常状態Bが頻繁に切り替えられる可能性がある。これに対し、本実施の形態では、正常状態Aから正常状態Bに遷移するときの閾値R2と、正常状態Bから正常状態Aに遷移するときの閾値R1との間にディファレンシャルが設定されている。このため、本実施の形態によれば、正常状態A及び正常状態Bが頻繁に切り替えられるのを防止することができる。
以上説明したように、上記実施の形態1及び2に係る空気調和機は、冷媒を循環させる冷媒回路40と、冷媒回路40の負荷側熱交換器7を収容し、室内に設置される室内機1と、室内機1を制御する制御部30と、を有し、室内機1は、室内送風ファン7fと、冷媒検知手段99と、を備えており、制御部30は、冷媒検知手段99からの検知信号に基づき冷媒の漏洩を検知したときに、室内送風ファン7fを運転させるように構成されており、制御部30は、室内送風ファン7fの回転速度が第1の閾値以上(例えば、実施の形態1の閾値R1、又は実施の形態2の閾値R2)であるときに、冷媒検知手段99からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段99からの検知信号を無効にするように構成されているものである。
この構成によれば、正常状態Bという条件下においては、冷媒検知手段99からの検知信号を無効にしているので、冷媒検知手段99の誤検知を防止することができる。
また、上記実施の形態に係る空気調和機において、制御部30は、正常状態Bにおいて室内送風ファン7fの回転速度が第2の閾値(例えば、実施の形態1及び2の閾値R1)よりも小さくなった場合には、冷媒の漏洩を報知するように構成されており、第2の閾値は、第1の閾値と同一又はそれより小さいものであってもよい。
実施の形態3.
本発明の実施の形態3に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。図7は、本実施の形態に係る空気調和機の室外機2(熱交換器ユニットの一例)の構成を模式的に示す図である。既に述べたように、室外機2には、例えば、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5、減圧装置6及び室外送風ファン5f等が収容されている。図7では、これらのうち圧縮機3及び室外送風ファン5fを図示している。室外送風ファン5fの回転速度は、制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。また、室外機2には、延長配管10a、10bが接続されている。延長配管10a、10bと室外機2内の冷媒配管との間は、継手部16a、16b(例えば、フレア継手)を介して接続されている。継手部16a、16bは、室外機2の内部に配置されている。継手部16a、16bは、室外機2の外部に配置されていてもよい。
本発明の実施の形態3に係る冷凍サイクル装置について説明する。本実施の形態では、冷凍サイクル装置の一例として、空気調和機を例示している。図7は、本実施の形態に係る空気調和機の室外機2(熱交換器ユニットの一例)の構成を模式的に示す図である。既に述べたように、室外機2には、例えば、圧縮機3、冷媒流路切替装置4、熱源側熱交換器5、減圧装置6及び室外送風ファン5f等が収容されている。図7では、これらのうち圧縮機3及び室外送風ファン5fを図示している。室外送風ファン5fの回転速度は、制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。また、室外機2には、延長配管10a、10bが接続されている。延長配管10a、10bと室外機2内の冷媒配管との間は、継手部16a、16b(例えば、フレア継手)を介して接続されている。継手部16a、16bは、室外機2の内部に配置されている。継手部16a、16bは、室外機2の外部に配置されていてもよい。
本実施の形態の室外機2(熱交換器ユニットの一例)は、冷媒検知手段98を備えている。冷媒検知手段98は、例えば、室外機2の内部であって継手部16a、16bの下方に配置されている。冷媒検知手段98は、熱源側熱交換器5のろう付け部の下方に配置されていてもよい。冷媒検知手段98としては、例えば、半導体式ガスセンサ、熱線型半導体式ガスセンサ等の通電式のガスセンサが用いられる。冷媒検知手段98は、例えば、当該冷媒検知手段98の周囲の空気中における冷媒濃度を検知し、検知信号を制御部30に出力する。制御部30では、冷媒検知手段98からの検知信号に基づき、冷媒の漏洩の有無が判定される。
制御部30で実行される本実施の形態の冷媒漏洩検知処理は、例えば、図4~図6等を用いて説明した実施の形態1又は2のいずれかの冷媒漏洩検知処理において、「冷媒検知手段99」及び「室内送風ファン7f」をそれぞれ「冷媒検知手段98」及び「室外送風ファン5f」に読み替えたものとなる。すなわち、本実施の形態の冷媒漏洩検知処理では、冷媒検知手段98からの検知信号によって冷媒の漏洩が検知された場合、室外送風ファン5fの運転が開始される。このため、漏洩した冷媒を室外機2の設置空間(例えば、屋外空間又は機械室空間等)に拡散させることができる。したがって、本実施の形態によれば、万一、室外機2で冷媒が漏洩したとしても、室外機2の設置空間における冷媒濃度が局所的に高くなってしまうのを抑制することができる。
また、本実施の形態では、室外送風ファン5fの回転速度が閾値R1以上である正常状態Bにおいては、冷媒検知手段98からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段98からの検知信号を無効にする。これにより、正常状態Bという条件下においては、冷媒検知手段98の誤検知を防止することができる。仮に、正常状態Bにおいて冷媒の漏洩が生じたとしても、冷媒検知手段98からの検知信号を無効にしてしまうが、正常状態Bでは室外送風ファン5fが閾値R1以上の回転速度で回転しているため、漏洩した冷媒を室外機2の設置空間に拡散させることができる。
実施の形態4.
本発明の実施の形態4に係る冷凍サイクルシステムについて説明する。図8は、本実施の形態に係る冷凍サイクルシステムの概略の全体構成を示す図である。本実施の形態では、冷凍サイクルシステムに含まれる冷凍サイクル装置として、セパレート形のショーケースを例示している。図8に示すように、ショーケースは、例えば、店舗内などの室内空間に設置される室内機601(負荷ユニットの一例でかつ熱交換器ユニットの一例)と、例えば機械室空間に設置される室外機602(熱源ユニットの一例でかつ熱交換器ユニットの一例)と、を有している。室内機601と室外機602との間は、延長配管10a、10bを介して接続されている。本例の室内機601には、設置空間の空気を攪拌するような送風ファンは設けられていない。室外機602には、室外送風ファン5fが設けられている。
本発明の実施の形態4に係る冷凍サイクルシステムについて説明する。図8は、本実施の形態に係る冷凍サイクルシステムの概略の全体構成を示す図である。本実施の形態では、冷凍サイクルシステムに含まれる冷凍サイクル装置として、セパレート形のショーケースを例示している。図8に示すように、ショーケースは、例えば、店舗内などの室内空間に設置される室内機601(負荷ユニットの一例でかつ熱交換器ユニットの一例)と、例えば機械室空間に設置される室外機602(熱源ユニットの一例でかつ熱交換器ユニットの一例)と、を有している。室内機601と室外機602との間は、延長配管10a、10bを介して接続されている。本例の室内機601には、設置空間の空気を攪拌するような送風ファンは設けられていない。室外機602には、室外送風ファン5fが設けられている。
図8では図示を省略しているが、制御部30は、室内機601に設けられる室内機制御部と、室外機602に設けられ、室内機制御部と通信可能な室外機制御部と、を有している。室内機制御部と室外機制御部との間は、制御線603を介して接続されている。
室内空間には、ショーケースとは別に、室内空間の空気を攪拌する送風ファン604が設けられている。送風ファン604は、ショーケースの室内機601の筐体の外部に設けられている。送風ファン604は、例えばショーケースとは独立した動作が可能である。送風ファン604は、不図示の制御線を介して制御部30(例えば、室内機制御部)と接続されている。送風ファン604の回転速度は、制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。室内空間に冷媒が漏洩した場合において、送風ファン604が動作すると、室内空間の空気が漏洩冷媒と共に攪拌される。これにより、漏洩冷媒が室内空間に拡散するため、室内空間で冷媒濃度が局所的に高くなってしまうことが抑制される。すなわち、送風ファン604は、室内空間に漏洩した冷媒を希釈する漏洩冷媒希釈手段として機能する。
また、室内空間には、ショーケースとは別に、冷媒を検知する冷媒検知手段605が設けられている。冷媒検知手段605は、ショーケースの室内機601の筐体の外部に設けられている。冷媒は大気圧下において空気よりも大きい密度を有しているため、冷媒検知手段605は、例えば室内空間の床面近傍に設けられている。冷媒検知手段605は、通信線606を介して制御部30(例えば、室内機制御部)と接続されている。冷媒検知手段605としては、例えば、半導体式ガスセンサ、熱線型半導体式ガスセンサ等の通電式のガスセンサが用いられる。冷媒検知手段605は、当該冷媒検知手段605の周囲の空気中における冷媒濃度を検知し、検知信号を制御部30に出力する。制御部30では、冷媒検知手段605からの検知信号に基づき、冷媒の漏洩の有無が判定される。
実施の形態1と同様に、制御部30は、正常状態Aにおいて、冷媒検知手段605からの検知信号に基づき冷媒の漏洩を検知すると、送風ファン604を運転させ、冷媒の漏洩を報知するように構成されている。また、制御部30は、正常状態Bにおいて、冷媒検知手段605からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段605からの検知信号を無効にするように構成されている。例えば可燃性冷媒が用いられる場合には、閾値R1は、室内空間への冷媒漏洩量が最大であっても室内空間に可燃濃度域が形成されないような回転速度以上に設定されるのが望ましい。また、実施の形態2と同様に、正常状態Bから正常状態Aに遷移するときの閾値R1と、正常状態Aから正常状態Bに遷移するときの閾値R2との間に、ディファレンシャルが設定されていてもよい。
機械室空間には、ショーケースとは別に、機械室空間の空気を屋外空間に排出する換気用の送風ファン607が設けられている。送風ファン607は、ショーケースの室外機602の筐体の外部(例えば、機械室空間のうち屋外空間に面した壁部)に設けられている。送風ファン607は、例えばショーケースとは独立した動作が可能である。送風ファン607は、不図示の制御線を介して制御部30(例えば、室外機制御部)と接続されている。送風ファン607の回転速度は、制御部30の制御により、多段階(例えば、2段階以上)又は連続的に可変に設定される。機械室空間に冷媒が漏洩した場合において、送風ファン607が動作すると、機械室空間の空気が漏洩冷媒と共に屋外空間に排出される。これにより、漏洩冷媒が屋外空間に排出されるため、機械室空間で冷媒濃度が局所的に高くなってしまうことが抑制される。すなわち、送風ファン607は、機械室空間に漏洩した冷媒を希釈する漏洩冷媒希釈手段として機能する。
また、機械室空間には、ショーケースとは別に、冷媒を検知する冷媒検知手段608が設けられている。冷媒検知手段608は、例えば、ショーケースの室外機602の筐体の外部に設けられている。冷媒は大気圧下において空気よりも大きい密度を有しているため、冷媒検知手段608は、機械室空間の床面近傍に設けられている。冷媒検知手段608は、通信線609を介して制御部30(例えば、室外機制御部)と接続されている。冷媒検知手段608としては、例えば、半導体式ガスセンサ、熱線型半導体式ガスセンサ等の通電式のガスセンサが用いられる。冷媒検知手段608は、当該冷媒検知手段608の周囲の空気中における冷媒濃度を検知し、検知信号を制御部30に出力する。制御部30では、冷媒検知手段608からの検知信号に基づき、冷媒の漏洩の有無が判定される。
実施の形態1と同様に、制御部30は、正常状態Aにおいて、冷媒検知手段608からの検知信号に基づき冷媒の漏洩を検知すると、送風ファン607を運転させ、冷媒の漏洩を報知するように構成されている。また、制御部30は、正常状態Bにおいて、冷媒検知手段608からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段608からの検知信号を無効にするように構成されている。例えば可燃性冷媒が用いられる場合には、閾値R1は、機械室空間への冷媒漏洩量が最大であっても機械室空間に可燃濃度域が形成されないような回転速度以上に設定されるのが望ましい。また、実施の形態2と同様に、正常状態Bから正常状態Aに遷移するときの閾値R1と、正常状態Aから正常状態Bに遷移するときの閾値R2との間に、ディファレンシャルが設定されていてもよい。
図9は、本実施の形態に係る冷凍サイクルシステムの制御部30の構成を示すブロック図である。図9に示すように、制御部30は、室内機601に搭載されて室内機601を制御する室内機制御部610と、室外機602に搭載されて室外機602を制御する室外機制御部611と、リモコン27(例えば、室内機601に設けられた操作部)に搭載されてリモコン27を制御するリモコン制御部612と、を有している。
室内機制御部610は、各制御線を介して、室外機制御部611及びリモコン制御部612と通信可能に接続されている。室内機制御部610は、制御基板610aを有している。制御基板610aには、マイコン620が実装されている。
室外機制御部611は、制御基板611aを有している。制御基板611aには、マイコン621が実装されている。
リモコン制御部612は、制御基板612aを有している。制御基板612aには、マイコン622が実装されている。
また、本例の送風ファン604には、送風ファン604を制御する送風ファン制御部613が搭載されている。本例の送風ファン607には、送風ファン607を制御する送風ファン制御部614が搭載されている。
送風ファン制御部613は、制御線を介して室内機制御部610と通信可能に接続されている。送風ファン制御部613は、制御基板613aを有している。制御基板613aには、マイコン623が実装されている。
送風ファン制御部614は、制御線を介して室外機制御部611と通信可能に接続されている。送風ファン制御部614は、制御基板614aを有している。制御基板614aには、マイコン624が実装されている。
また、制御部30は、冷媒検知手段605を制御するセンサ制御部615と、冷媒検知手段608を制御するセンサ制御部616と、を有している。
センサ制御部615は、室内機制御部610と通信可能に接続されている。センサ制御部615は、制御基板615aを有している。制御基板615aには、マイコン625及び冷媒検知手段605がそれぞれ着脱不能に実装されている。本例の冷媒検知手段605は制御基板615aに直接実装されているが、冷媒検知手段605は、制御基板615aに着脱不能に接続されていればよい。例えば、冷媒検知手段605を制御基板615aから離れた位置に設け、冷媒検知手段605からの配線をはんだ付け等により制御基板615aに接続するようにしてもよい。また、本例では制御基板615aが制御基板610aとは別に設けられているが、制御基板615aを省略し、冷媒検知手段605を制御基板610aに着脱不能に接続するようにしてもよい。
センサ制御部616は、室外機制御部611と通信可能に接続されている。センサ制御部616は、制御基板616aを有している。制御基板616aには、マイコン626及び冷媒検知手段608がそれぞれ着脱不能に実装されている。本例の冷媒検知手段608は制御基板616aに直接実装されているが、冷媒検知手段608は、制御基板616aに着脱不能に接続されていればよい。例えば、冷媒検知手段608を制御基板616aから離れた位置に設け、冷媒検知手段608からの配線をはんだ付け等により制御基板616aに接続するようにしてもよい。また、本例では制御基板616aが制御基板611aとは別に設けられているが、制御基板616aを省略し、冷媒検知手段608を制御基板611aに着脱不能に接続するようにしてもよい。
センサ制御部615、616のマイコン625、626は、書換え可能な不揮発性メモリをそれぞれ有している。それぞれの不揮発性メモリには、冷媒漏洩の履歴を記憶する漏洩履歴ビット(漏洩履歴記憶領域の一例)が設けられている。漏洩履歴ビットは「0」又は「1」に設定可能である。漏洩履歴ビットの「0」は冷媒漏洩履歴のない状態を表すものであり、「1」は冷媒漏洩履歴のある状態を表すものである。漏洩履歴ビットの初期値は「0」である。すなわち、新品状態のマイコン625、626や、冷媒漏洩履歴のないマイコン625、626の場合、漏洩履歴ビットは「0」に設定されている。マイコン625の漏洩履歴ビットは、冷媒検知手段605で冷媒の漏洩を検知した場合、「0」から「1」に書き換えられる。マイコン626の漏洩履歴ビットは、冷媒検知手段608で冷媒の漏洩を検知した場合、「0」から「1」に書き換えられる。マイコン625、626の漏洩履歴ビットは、いずれも「0」から「1」への一方向にのみ不可逆に書換え可能である。また、マイコン625、626の漏洩履歴ビットは、当該マイコン625、626への電力供給の有無に関わらず維持される。
室内機601、室外機602及びリモコン27のマイコン620、621、622のメモリには、マイコン625の漏洩履歴ビットに対応する第1漏洩履歴ビットと、マイコン626の漏洩履歴ビットに対応する第2漏洩履歴ビットと、がそれぞれ設けられている。これらの漏洩履歴ビットは、「0」又は「1」に設定可能であり、「0」及び「1」の間で双方向に書換え可能である。マイコン620、621、622のそれぞれの第1漏洩履歴ビットの値は、通信により取得されるマイコン625の漏洩履歴ビットと同じ値に設定される。マイコン620、621、622のそれぞれの第2漏洩履歴ビットの値は、通信により取得されるマイコン626の漏洩履歴ビットと同じ値に設定される。マイコン620、621、622の第1漏洩履歴ビット及び第2漏洩ビットは、電力供給が遮断されて初期値(例えば「0」)に戻ったとしても、電力供給が再開されると再びマイコン625、626の漏洩履歴ビットと同じ値に設定される。
室内機制御部610は、マイコン620の第1漏洩履歴ビット及び第2漏洩履歴ビットがいずれも「0」に設定されているときには、室内機601の通常制御を行う。この状態の室内機601は、リモコン27等の操作に基づき通常の運転動作及び停止動作を行う。マイコン620の第1漏洩履歴ビットが「1」に設定されると、室内機制御部610は、例えば、送風ファン制御部613を介して送風ファン604を強制運転させる制御を行う。
室外機制御部611は、マイコン621の第1漏洩履歴ビット及び第2漏洩履歴ビットがいずれも「0」に設定されているときには、室外機602の通常制御を行う。マイコン621の第1漏洩履歴ビット又は第2漏洩履歴ビットが「1」に設定されると、室外機制御部611は、例えば、圧縮機3を停止させる制御を行う。圧縮機3の停止は、マイコン621の第1漏洩履歴ビット又は第2漏洩履歴ビットが「1」に設定され続ける限り継続される。また、マイコン621の第2漏洩履歴ビットが「1」に設定されると、室外機制御部611は、例えば、送風ファン制御部614を介して送風ファン607を強制運転させる制御を行う。このとき、室外機制御部611は、室外送風ファン5fを強制運転させる制御を併せて行ってもよい。
リモコン制御部612は、マイコン622の第1漏洩履歴ビット及び第2漏洩履歴ビットがいずれも「0」に設定されているときには、リモコン27の通常制御を行う。マイコン622の第1漏洩履歴ビット又は第2漏洩履歴ビットが「1」に設定されると、リモコン制御部612は、例えば、リモコン27に設けられた表示部に、異常種別又は処置方法を含む情報を表示する。このとき、リモコン制御部612は、第1漏洩履歴ビット及び第2漏洩履歴ビットのいずれが「1」に設定されたかに基づき、冷媒漏洩箇所の情報を表示部に表示してもよい。例えば、第1漏洩履歴ビットが「1」に設定された場合には、室内機601で冷媒の漏洩が生じた旨の情報を表示し、第2漏洩履歴ビットが「1」に設定された場合には、室外機602で冷媒の漏洩が生じた旨の情報を表示する。また、リモコン制御部612は、リモコン27に設けられた音声出力部に、異常種別、処置方法又は冷媒漏洩箇所の情報を音声で報知させるようにしてもよい。
本実施の形態によれば、冷媒の漏洩履歴が制御基板615a、616aの不揮発性メモリに不可逆に書き込まれる。冷媒の漏洩履歴をリセットするためには、制御基板615a、616aを漏洩履歴のない別の制御基板に交換する必要がある。制御基板615a、616aを交換する際には、着脱不能に接続された冷媒検知手段605、608も交換されることになる。したがって、冷媒雰囲気に曝露されて検知特性の変化した冷媒検知手段605、608が継続して用いられるのを防止できる。また、本実施の形態では、制御基板615a、616aが交換されない限りショーケースの運転を再開できないため、冷媒漏洩箇所の修理が行われていないショーケースの運転をヒューマンエラー又は故意により再開してしまうのを防ぐことができる。
また、本実施の形態では、送風ファン604の回転速度が閾値R1以上である正常状態Bにおいては、冷媒検知手段605からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段605からの検知信号を無効にされる。これにより、正常状態Bという条件下においては、冷媒検知手段605の誤検知を防止することができる。仮に、正常状態Bにおいて冷媒の漏洩が生じたとしても、冷媒検知手段605からの検知信号を無効にしてしまうが、正常状態Bでは送風ファン604が閾値R1以上の回転速度で回転しているため、漏洩した冷媒を室内空間に拡散させることができる。
また、本実施の形態では、送風ファン607の回転速度が閾値R1以上である正常状態Bにおいては、冷媒検知手段608からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段608からの検知信号を無効にされる。これにより、正常状態Bという条件下においては、冷媒検知手段608の誤検知を防止することができる。仮に、正常状態Bにおいて冷媒の漏洩が生じたとしても、冷媒検知手段608からの検知信号を無効にしてしまうが、正常状態Bでは送風ファン607が閾値R1以上の回転速度で回転しているため、機械室空間に漏洩した冷媒を屋外空間に排出することができる。
なお、本実施の形態では、室内機601、室外機602及びリモコン27のマイコン620、621、622のメモリにのみ、第1漏洩履歴ビット及び第2漏洩履歴ビットが設けられているが、送風ファン604、607のマイコン623、624のメモリにも第1漏洩履歴ビット及び第2漏洩履歴ビットが設けられていてもよい。
また、本実施の形態では、送風ファン604、607がそれぞれ送風ファン制御部613、614を有しているため、送風ファン604と室内機601との間、及び、送風ファン607と室外機602との間はそれぞれ制御線を介して接続されている。しかしながら、送風ファン604、607は必ずしも制御部を有している必要はない。送風ファン604、607が制御部を有していない場合には、例えば、送風ファン604と室内機601との間、及び、送風ファン607と室外機602との間はそれぞれ電源線を介して接続される。この場合、送風ファン604の運転及び停止の制御は、室内機制御部610の制御基板610aにおけるリレー制御によって行われ、送風ファン607の運転及び停止の制御は、室外機制御部611の制御基板611aにおけるリレー制御によって行われる。
また、本実施の形態では、不揮発性メモリに設けられる漏洩履歴記憶領域として、漏洩履歴の有無を1ビットで記憶する漏洩履歴ビットを例示したが、これには限られない。不揮発性メモリには、例えば、2ビット以上の漏洩履歴記憶領域が設けられていてもよい。漏洩履歴記憶領域は、冷媒漏洩履歴のない状態を表す第1の情報と、冷媒漏洩履歴のある状態を表す第2の情報と、のいずれか一方を選択的に記憶する。また、漏洩履歴記憶領域に記憶される情報は、第1の情報から第2の情報への一方向にのみ変更可能である。制御部30(例えば、センサ制御部615、616)は、冷媒の漏洩を検知したときに、漏洩履歴記憶領域に記憶される情報を第1の情報から第2の情報に変更するように構成される。
本実施の形態で説明したように、冷媒検知手段及び送風ファンは、必ずしも、冷凍サイクル装置の室内機又は室外機の筐体に内蔵されている必要はない。冷媒検知手段及び送風ファンは、制御線等を介して冷凍サイクル装置と通信可能に接続されているか、又は電源線を介して冷凍サイクル装置と遠隔操作可能に接続されていれば、冷凍サイクル装置とは別に設けられていてもよい。
また、本実施の形態で説明したように、室内機の設置場所及び室外機の設置場所のそれぞれに冷媒検知手段及び送風ファンが設置される場合には、冷媒の漏洩が検知された空間の送風ファンのみを運転させればよい。すなわち、室内機の設置場所に設けられた冷媒検知手段で冷媒の漏洩が検知された場合、室内機の設置場所に設けられた送風ファンのみを運転させればよい。室外機の設置場所に設けられた冷媒検知手段で冷媒の漏洩が検知された場合、室外機の設置場所に設けられた送風ファンのみを運転させればよい。
また、本実施の形態では、室内空間の空気を攪拌する送風ファン604が室内空間に設けられており、機械室空間の空気を屋外空間に排出する換気用の送風ファン607が機械室空間に設けられているが、これに限られない。例えば、室内空間の空気を屋外空間に排出する換気用の送風ファンが室内空間に設けられていてもよいし、機械室空間の空気を攪拌する送風ファンが機械室空間に設けられていてもよい。
以上説明したように、上記実施の形態に係る冷凍サイクル装置は、冷媒を循環させる冷媒回路40と、冷媒回路40の熱交換器(例えば、負荷側熱交換器7、熱源側熱交換器5)を収容する熱交換器ユニット(例えば、室内機1、室外機2)と、熱交換器ユニットを制御する制御部30と、を有し、熱交換器ユニットは、送風ファン(例えば、室内送風ファン7f、室外送風ファン5f)と、冷媒検知手段(例えば、冷媒検知手段98、99)と、を備えており、制御部30は、冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知したときに、送風ファンを運転させるように構成されており、制御部30は、送風ファンの回転速度が第1の閾値以上(例えば、実施の形態1の閾値R1、又は実施の形態2の閾値R2)であるときに、冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段からの検知信号を無効にするように構成されているものである。
この構成によれば、正常状態Bという条件下においては、冷媒検知手段からの検知信号を無効にしているので、冷媒検知手段の誤検知を防止することができる。
また、上記実施の形態に係る冷凍サイクル装置において、制御部30は、正常状態Bにおいて送風ファンの回転速度が第2の閾値(例えば、実施の形態1及び2の閾値R1)よりも小さくなった場合には、冷媒の漏洩を報知するように構成されており、第2の閾値は、第1の閾値と同一又はそれより小さいものであってもよい。
また、上記実施の形態に係る冷凍サイクル装置において、熱交換器は、冷媒回路40の負荷側熱交換器7であってもよいし、熱源側熱交換器5であってもよい。
また、上記実施の形態に係る冷凍サイクルシステムは、冷媒を循環させる冷媒回路40と冷媒回路40を制御する制御部30とを有する冷凍サイクル装置と、制御部30により制御される送風ファン(例えば、送風ファン604、607)と、冷媒を検知して制御部30に検知信号を出力する冷媒検知手段(例えば、冷媒検知手段605、608)と、を有し、制御部30は、冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知したときに、送風ファンを運転させるように構成されており、制御部30は、送風ファンの回転速度が第1の閾値以上(例えば、実施の形態1の閾値R1、又は実施の形態2の閾値R2)であるときに、冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、冷媒検知手段からの検知信号を無効にするように構成されているものである。
この構成によれば、正常状態Bという条件下においては、冷媒検知手段からの検知信号を無効にしているので、冷媒検知手段の誤検知を防止することができる。
また、上記実施の形態に係る冷凍サイクルシステムにおいて、制御部30は、正常状態Bにおいて送風ファンの回転速度が第2の閾値(例えば、実施の形態1及び2の閾値R1)よりも小さくなった場合には、冷媒の漏洩を報知するように構成されており、第2の閾値は、第1の閾値と同一又はそれより小さいものであってもよい。
その他の実施の形態.
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、室内機1として床置形の室内機を例に挙げたが、本発明は、天井カセット形、天井埋込形、天吊形、壁掛形等の他の室内機にも適用できる。
本発明は、上記実施の形態に限らず種々の変形が可能である。
例えば、上記実施の形態では、室内機1として床置形の室内機を例に挙げたが、本発明は、天井カセット形、天井埋込形、天吊形、壁掛形等の他の室内機にも適用できる。
また、上記実施の形態では、冷凍サイクル装置として空気調和機又はショーケースを例に挙げたが、本発明は、ヒートポンプ給湯機(例えば、特開2016-3783号公報に記載のヒートポンプ装置)、又は機械室に設置されることが多いチラー等の他の冷凍サイクル装置にも適用できる。
また、上記実施の形態では、冷媒検知手段として半導体式ガスセンサ又は熱線型半導体式ガスセンサを例に挙げたが、これに限られない。冷媒検知手段としては、例えば赤外線式などの他の冷媒検知手段を用いることができる。
また、上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
1 室内機、2 室外機、3 圧縮機、4 冷媒流路切替装置、5 熱源側熱交換器、5f 室外送風ファン、6 減圧装置、7 負荷側熱交換器、7f 室内送風ファン、9a、9b 室内配管、10a、10b 延長配管、11 吸入配管、12 吐出配管、13a、13b 延長配管接続バルブ、14a、14b、14c サービス口、15a、15b、16a、16b 継手部、20 仕切部、20a 風路開口部、25 電気品箱、27 リモコン、30 制御部、40 冷媒回路、81 風路、91 吸込空気温度センサ、92 熱交換器入口温度センサ、93 熱交換器温度センサ、98、99 冷媒検知手段、107 羽根車、108 ファンケーシング、108a 吹出開口部、108b 吸込開口部、111 筐体、112 吸込口、113 吹出口、114a 第1前面パネル、114b 第2前面パネル、114c 第3前面パネル、115a、115b 空間、601 室内機、602 室外機、603 制御線、604 送風ファン、605 冷媒検知手段、606 通信線、607 送風ファン、608 冷媒検知手段、609 通信線、610 室内機制御部、610a 制御基板、611 室外機制御部、611a 制御基板、612 リモコン制御部、612a 制御基板、613、614 送風ファン制御部、613a、614a 制御基板、615、616 センサ制御部、615a、616a 制御基板、620、621、622、623、624、625、626 マイコン。
Claims (8)
- 冷媒を循環させる冷媒回路と、
前記冷媒回路の熱交換器を収容する熱交換器ユニットと、
前記熱交換器ユニットを制御する制御部と、を有し、
前記熱交換器ユニットは、送風ファンと、冷媒検知手段と、を備えており、
前記制御部は、
前記送風ファンを運転させるように構成されており、
前記送風ファンの回転速度が第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、前記冷媒検知手段からの検知信号を無効にするように構成されている冷凍サイクル装置。 - 前記制御部は、前記送風ファンの回転速度が第1の閾値よりも小さい回転速度で前記送風ファンを運転させている場合において、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知したときに、冷媒の漏洩を報知するように構成されている請求項1に記載の冷凍サイクル装置。
- 前記制御部は、前記送風ファンの回転速度が前記第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、冷媒の漏洩の報知を無効にする状態において、前記送風ファンの回転速度が第2の閾値よりも小さくなった場合には、冷媒の漏洩を報知するように構成されており、
前記第2の閾値は、前記第1の閾値と同一又はそれより小さいものである請求項2に記載の冷凍サイクル装置。 - 前記熱交換器は、前記冷媒回路の負荷側熱交換器である請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
- 前記熱交換器は、前記冷媒回路の熱源側熱交換器である請求項1~請求項3のいずれか一項に記載の冷凍サイクル装置。
- 冷媒を循環させる冷媒回路と前記冷媒回路を制御する制御部とを有する冷凍サイクル装置と、
前記制御部により制御される送風ファンと、
前記制御部に検知信号を出力する冷媒検知手段と、を有し、
前記制御部は、
前記送風ファンを運転させるように構成されており、
前記送風ファンの回転速度が第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、前記冷媒検知手段からの検知信号を無効にするように構成されている冷凍サイクルシステム。 - 前記制御部は、前記送風ファンの回転速度が第1の閾値よりも小さい回転速度で前記送風ファンを運転させている場合において、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知したときに、冷媒の漏洩を報知するように構成されている請求項6に記載の冷凍サイクルシステム。
- 前記制御部は、前記送風ファンの回転速度が前記第1の閾値以上であるときに、前記冷媒検知手段からの検知信号に基づき冷媒の漏洩を検知しても、冷媒の漏洩の報知を無効にする状態において、前記送風ファンの回転速度が第2の閾値よりも小さくなった場合には、冷媒の漏洩を報知するように構成されており、
前記第2の閾値は、前記第1の閾値と同一又はそれより小さいものである請求項7に記載の冷凍サイクルシステム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008318 WO2018158912A1 (ja) | 2017-03-02 | 2017-03-02 | 冷凍サイクル装置及び冷凍サイクルシステム |
US16/470,680 US20190383509A1 (en) | 2017-03-02 | 2017-03-02 | Refrigeration cycle device and refrigeration cycle system |
CN201780087484.XA CN110366665A (zh) | 2017-03-02 | 2017-03-02 | 制冷循环装置和制冷循环系统 |
EP17899186.5A EP3591304B1 (en) | 2017-03-02 | 2017-03-02 | Refrigeration cycle device and refrigeration cycle system |
JP2019502387A JP6797278B2 (ja) | 2017-03-02 | 2017-03-02 | 冷凍サイクル装置及び冷凍サイクルシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/008318 WO2018158912A1 (ja) | 2017-03-02 | 2017-03-02 | 冷凍サイクル装置及び冷凍サイクルシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018158912A1 true WO2018158912A1 (ja) | 2018-09-07 |
Family
ID=63371312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/008318 WO2018158912A1 (ja) | 2017-03-02 | 2017-03-02 | 冷凍サイクル装置及び冷凍サイクルシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190383509A1 (ja) |
EP (1) | EP3591304B1 (ja) |
JP (1) | JP6797278B2 (ja) |
CN (1) | CN110366665A (ja) |
WO (1) | WO2018158912A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3643980A1 (en) * | 2018-10-17 | 2020-04-29 | Lennox Industries Inc. | Hvac system and method of circulating flammable refrigerant |
WO2020226091A1 (ja) * | 2019-05-08 | 2020-11-12 | ダイキン工業株式会社 | 空調システム |
KR102251194B1 (ko) * | 2020-11-06 | 2021-05-13 | 주식회사 시스웍스 | 가축사용 히트펌프 냉난방시스템 |
JP2022006762A (ja) * | 2020-06-25 | 2022-01-13 | パナソニックIpマネジメント株式会社 | 空気調和機 |
JP7545069B2 (ja) | 2021-01-08 | 2024-09-04 | ダイキン工業株式会社 | 不具合箇所推定システム、不具合箇所推定方法、及びプログラム |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6899896B2 (ja) * | 2017-05-24 | 2021-07-07 | 三菱電機株式会社 | 空調システム |
EP3757474A4 (en) * | 2018-02-23 | 2021-03-03 | Mitsubishi Electric Corporation | INDOOR AIR CONDITIONING UNIT AND INDOOR AIR CONDITIONING SYSTEM |
US10767882B2 (en) * | 2018-10-17 | 2020-09-08 | Lennox Industries Inc. | Refrigerant pump down for an HVAC system |
US11704447B2 (en) * | 2019-03-12 | 2023-07-18 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for circuiting in heat exchangers |
JP6840906B1 (ja) * | 2020-06-18 | 2021-03-10 | 三菱電機ビルテクノサービス株式会社 | 冷媒回収システム及び冷媒回収方法 |
US11125457B1 (en) * | 2020-07-16 | 2021-09-21 | Emerson Climate Technologies, Inc. | Refrigerant leak sensor and mitigation device and methods |
CN114543332B (zh) * | 2020-11-26 | 2024-02-20 | 广东美的制冷设备有限公司 | 冷媒泄漏的检测方法、空调器及计算机存储介质 |
CN112985706A (zh) * | 2021-01-29 | 2021-06-18 | 华为技术有限公司 | 泄漏检测装置及泄漏检测方法 |
US20230020905A1 (en) * | 2021-07-14 | 2023-01-19 | Carrier Corporation | Methods of reducing the occurance of false positives in gas detectors |
EP4194096B1 (de) * | 2021-12-08 | 2024-03-06 | Eppendorf SE | Verfahren zum betreiben eines mittels eines entflammbaren kältemittels gekühlten laborgeräts |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4599699B2 (ja) | 2000-09-26 | 2010-12-15 | ダイキン工業株式会社 | 空気調和機 |
JP2016003783A (ja) | 2014-06-13 | 2016-01-12 | 三菱電機株式会社 | ヒートポンプ装置 |
WO2017026147A1 (ja) * | 2015-08-07 | 2017-02-16 | 三菱電機株式会社 | 冷凍サイクル装置及び冷凍サイクルシステム |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099065A1 (ja) * | 2010-02-10 | 2011-08-18 | 三菱電機株式会社 | 空気調和装置 |
JP2015117931A (ja) * | 2013-11-14 | 2015-06-25 | ダイキン工業株式会社 | 室内機 |
JP5939292B2 (ja) * | 2014-10-31 | 2016-06-22 | ダイキン工業株式会社 | 空気調和機 |
JP6222252B2 (ja) * | 2015-03-30 | 2017-11-01 | ダイキン工業株式会社 | 空気調和装置の室内機 |
WO2017006462A1 (ja) * | 2015-07-08 | 2017-01-12 | 三菱電機株式会社 | 空気調和機 |
-
2017
- 2017-03-02 US US16/470,680 patent/US20190383509A1/en not_active Abandoned
- 2017-03-02 WO PCT/JP2017/008318 patent/WO2018158912A1/ja unknown
- 2017-03-02 CN CN201780087484.XA patent/CN110366665A/zh active Pending
- 2017-03-02 EP EP17899186.5A patent/EP3591304B1/en active Active
- 2017-03-02 JP JP2019502387A patent/JP6797278B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4599699B2 (ja) | 2000-09-26 | 2010-12-15 | ダイキン工業株式会社 | 空気調和機 |
JP2016003783A (ja) | 2014-06-13 | 2016-01-12 | 三菱電機株式会社 | ヒートポンプ装置 |
WO2017026147A1 (ja) * | 2015-08-07 | 2017-02-16 | 三菱電機株式会社 | 冷凍サイクル装置及び冷凍サイクルシステム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3591304A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3643980A1 (en) * | 2018-10-17 | 2020-04-29 | Lennox Industries Inc. | Hvac system and method of circulating flammable refrigerant |
US10941953B2 (en) | 2018-10-17 | 2021-03-09 | Lennox Industries Inc. | HVAC system and method of circulating flammable refrigerant |
US11441803B2 (en) | 2018-10-17 | 2022-09-13 | Lennox Industries Inc. | HVAC system and method of circulating flammable refrigerant |
WO2020226091A1 (ja) * | 2019-05-08 | 2020-11-12 | ダイキン工業株式会社 | 空調システム |
JP2022006762A (ja) * | 2020-06-25 | 2022-01-13 | パナソニックIpマネジメント株式会社 | 空気調和機 |
JP7474923B2 (ja) | 2020-06-25 | 2024-04-26 | パナソニックIpマネジメント株式会社 | 空気調和機 |
KR102251194B1 (ko) * | 2020-11-06 | 2021-05-13 | 주식회사 시스웍스 | 가축사용 히트펌프 냉난방시스템 |
JP7545069B2 (ja) | 2021-01-08 | 2024-09-04 | ダイキン工業株式会社 | 不具合箇所推定システム、不具合箇所推定方法、及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
EP3591304B1 (en) | 2023-04-05 |
EP3591304A4 (en) | 2020-03-11 |
JP6797278B2 (ja) | 2020-12-09 |
CN110366665A (zh) | 2019-10-22 |
EP3591304A1 (en) | 2020-01-08 |
JPWO2018158912A1 (ja) | 2019-11-07 |
US20190383509A1 (en) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6289757B2 (ja) | 冷凍サイクル装置及び冷凍サイクルシステム | |
WO2018158912A1 (ja) | 冷凍サイクル装置及び冷凍サイクルシステム | |
JP6143977B1 (ja) | 冷凍サイクル装置及び冷凍サイクルシステム | |
JP6198922B2 (ja) | 冷凍サイクル装置及び冷凍サイクルシステム | |
JP6598878B2 (ja) | 冷凍サイクル装置 | |
WO2017187618A1 (ja) | 冷凍サイクル装置 | |
JP6121075B1 (ja) | 冷凍サイクル装置 | |
WO2017187562A1 (ja) | 冷凍サイクル装置 | |
JP6253853B1 (ja) | 冷凍サイクル装置 | |
WO2017081735A1 (ja) | 冷凍サイクル装置及び冷媒漏洩検知方法 | |
JP6906708B2 (ja) | 水冷式空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17899186 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019502387 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017899186 Country of ref document: EP Effective date: 20191002 |