WO2018155348A1 - 異常監視装置、異常監視方法およびプログラム - Google Patents

異常監視装置、異常監視方法およびプログラム Download PDF

Info

Publication number
WO2018155348A1
WO2018155348A1 PCT/JP2018/005577 JP2018005577W WO2018155348A1 WO 2018155348 A1 WO2018155348 A1 WO 2018155348A1 JP 2018005577 W JP2018005577 W JP 2018005577W WO 2018155348 A1 WO2018155348 A1 WO 2018155348A1
Authority
WO
WIPO (PCT)
Prior art keywords
abnormality
acceleration
type
frequency
vehicle
Prior art date
Application number
PCT/JP2018/005577
Other languages
English (en)
French (fr)
Inventor
章央 川内
浩幸 河野
内田 浩二
勝也 黒木
宗 田村
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to SG11201905743PA priority Critical patent/SG11201905743PA/en
Priority to US16/473,376 priority patent/US11465507B2/en
Publication of WO2018155348A1 publication Critical patent/WO2018155348A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • the present invention relates to an abnormality monitoring apparatus, an abnormality monitoring method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2017-32613 for which it applied to Japan on February 23, 2017, and uses the content here.
  • Patent Document 1 describes a railway vehicle state monitoring device for detecting an abnormality while eliminating the influence of travel speed dependency.
  • the state monitoring apparatus described in Patent Document 1 detects horizontal and horizontal vibrations of the vehicle body using an accelerometer, and detects two different frequency band components from the detected vibrations. Then, this state monitoring device calculates the amplitude ratio between the two detected different frequency band components, and performs abnormality determination by comparing the calculated amplitude ratio with a threshold value.
  • Patent Document 1 does not show a method for acquiring information indicating the type of abnormality.
  • the present invention provides an abnormality monitoring device, an abnormality monitoring method, and a program capable of obtaining information indicating the type of abnormality when an abnormality occurs in a vehicle.
  • an abnormality monitoring device includes an acceleration data acquisition unit that acquires measurement data of acceleration of a vehicle body, and an abnormality presence / absence determination unit that determines presence / absence of an abnormality based on a comparison between the acceleration and a threshold value.
  • an acceleration data acquisition unit that acquires measurement data of acceleration of a vehicle body
  • an abnormality presence / absence determination unit that determines presence / absence of an abnormality based on a comparison between the acceleration and a threshold value.
  • the abnormality type identification unit may identify the abnormality type based on the frequency pattern and the acceleration measurement result.
  • the abnormality type identification unit may determine whether to start identifying the abnormality type based on a traveling pattern of a vehicle including the vehicle body.
  • the abnormality type identification unit determines that there is a possibility of abnormality on the orbit side when the abnormality presence / absence determination unit determines that there is an abnormality in a certain section of the track and determines that there is no abnormality in another section. You may do it.
  • the acceleration data acquiring unit acquires acceleration measurement data from a plurality of vehicle bodies, and the abnormality type specifying unit is configured so that the abnormality presence / absence determining unit is in the same section of the track for each of the acceleration measurement data from the plurality of vehicle bodies.
  • the abnormality type specifying unit is configured so that the abnormality presence / absence determining unit is in the same section of the track for each of the acceleration measurement data from the plurality of vehicle bodies.
  • the abnormality monitoring method includes a step of acquiring measurement data of acceleration of the vehicle body, a step of determining the presence or absence of abnormality based on a comparison between the acceleration and a threshold, and presence of abnormality. If it is determined, the method includes a step of analyzing the frequency of the acceleration and a step of specifying the type of abnormality based on the frequency pattern.
  • the program acquires the measurement data of the acceleration of the vehicle body in the computer, the step of determining whether there is an abnormality based on the comparison between the acceleration and the threshold, and the presence of the abnormality If it is determined, the program for executing the step of analyzing the frequency of the acceleration and the step of specifying the type of abnormality based on the frequency pattern.
  • abnormality monitoring device abnormality monitoring method, and program
  • information indicating the type of abnormality can be obtained when an abnormality occurs in the vehicle.
  • FIG. 1 is a schematic block diagram showing a functional configuration of the abnormality monitoring system according to the first embodiment.
  • the abnormality monitoring apparatus 100 includes a communication unit 110, an operation input unit 120, a display unit 130, a storage unit 180, and a control unit 190.
  • the control unit 190 includes an acceleration data acquisition unit 191, an abnormality presence / absence determination unit 192, a frequency analysis unit 193, and an abnormality type identification unit 194.
  • the abnormality monitoring apparatus 100 targets the traffic system 900 as a monitoring target.
  • the vehicle 910 travels on the track 920.
  • the vehicle 910 includes a carriage 911 and a vehicle body 912.
  • An acceleration sensor 913 is installed on the vehicle body 912.
  • the acceleration sensor 913 measures acceleration in the vertical direction, the horizontal direction, and the front-rear direction in the vehicle body 912.
  • the traffic system 900 is an AGT (Automated Guideway Transit) will be described as an example.
  • the monitoring target of the abnormality monitoring apparatus 100 is not limited to the AGT, but may be a vehicle.
  • the abnormality monitoring apparatus 100 detects the occurrence of an abnormality when the abnormality occurs in the vehicle 910, and identifies the type of abnormality.
  • the abnormality monitoring apparatus 100 is configured using, for example, a computer.
  • the abnormality monitoring apparatus 100 may be mounted on the vehicle 910. Alternatively, the abnormality monitoring device 100 may be disposed outside the vehicle 910 such as in a building.
  • the communication unit 110 transmits and receives various data by communicating with other devices.
  • the communication unit 110 communicates with the acceleration sensor 913 and receives acceleration data indicating the acceleration of the vehicle body 912 measured by the acceleration sensor 913.
  • the operation input unit 120 includes input devices such as a keyboard and a mouse and receives user operations.
  • the display unit 130 includes a display screen such as a liquid crystal panel or an LED (Light Emitting Diode) panel, and displays various data.
  • the storage unit 180 stores various data.
  • the storage unit 180 is configured using a storage device included in the abnormality monitoring apparatus 100.
  • the control unit 190 controls each unit of the abnormality monitoring apparatus 100 and executes various processes.
  • the control unit 190 is configured by, for example, a CPU (Central Processing Unit) included in the abnormality monitoring apparatus 100 reading out a program from the storage unit 180 and executing the program.
  • a CPU Central Processing Unit
  • the acceleration data acquisition unit 191 acquires acceleration measurement data of the vehicle body 912. Specifically, the acceleration data acquisition unit 191 selectively acquires acceleration measurement data of the vehicle body 912 from the data received by the communication unit 110.
  • the abnormality presence / absence determination unit 192 determines the presence / absence of abnormality based on a comparison between the acceleration of the vehicle body 912 and a threshold value. Specifically, the abnormality determination unit 192 compares each of the vertical acceleration, the horizontal acceleration, and the longitudinal acceleration of the vehicle body 912 with a threshold value, and the maximum value of the absolute value (the magnitude of acceleration) of any of the accelerations. Is determined to be abnormal when the value is equal to or greater than the threshold.
  • the abnormality presence / absence determining unit 192 determines that there is no abnormality.
  • the threshold here may be a preset constant. Further, the threshold value may be different between the vertical acceleration, the horizontal acceleration, and the longitudinal acceleration.
  • the frequency analysis unit 193 performs an acceleration frequency analysis and acquires acceleration frequency pattern data. For example, the frequency analysis unit 193 performs 1/3 octave band analysis on the acceleration data in the vertical direction, the horizontal direction, and the longitudinal direction. In the frequency pattern data, the magnitude of the amplitude is indicated for each frequency. For example, when the frequency analysis unit 193 performs 1/3 octave band analysis, the frequency pattern data indicates the amplitude for each 1/3 octave frequency band.
  • the abnormality type identification unit 194 identifies the type of abnormality based on the frequency pattern obtained by the frequency analysis of the frequency analysis unit 193. When the abnormality type cannot be identified from the frequency pattern, the abnormality type identification unit 194 identifies the abnormality type based on the frequency pattern and the acceleration measurement result.
  • FIG. 2 is a graph showing an example of a change in acceleration frequency when an abnormality occurs in the vehicle 910.
  • the horizontal axis in FIG. 2 indicates the frequency, and the vertical axis indicates the amplitude.
  • a line L11 indicates an example of normal acceleration.
  • Line L12 shows an example of acceleration when the air spring is abnormal. This air spring is provided between the carriage 911 and the vehicle body 912. In the example of FIG. 2, the rigidity of the vehicle 910 is increased and the natural frequency is higher than normal due to an abnormality in the air spring.
  • the abnormality type identification unit 194 identifies the type of abnormality based on such a change in frequency.
  • the storage unit 180 stores an abnormality type and an acceleration frequency pattern in association with each other. Then, the abnormality type identification unit 194 selects a pattern similar to the frequency pattern obtained by the analysis of the frequency analysis unit 193, and identifies the type of abnormality associated with this pattern.
  • Data in which the type of abnormality and the acceleration frequency pattern are associated with each other can be obtained, for example, by performing a running simulation of the vehicle 910 or an actual running such as an experimental running in advance.
  • the storage unit 180 may store the obtained data as an acceleration database.
  • the traveling simulation of the vehicle 910 is performed using, for example, a tire, an air spring, a left-right motion damper, and a guide wheel as components. In the traveling simulation, for example, vertical and horizontal vehicle floor accelerations and cart accelerations are evaluated. However, the component parts and the evaluation target are not limited to these and can be increased or decreased.
  • the failure is simulated by changing any one or a combination of the spring rigidity, the damping coefficient, the backlash amount, and the like of each component.
  • the target trajectory may be divided into sections such as a straight line section and a curved section, and simulation may be performed for each section to generate data.
  • the method of dividing the track section is not limited to a specific method.
  • a vehicle of an orbital transportation system such as AGT usually travels in a predetermined traveling pattern.
  • the weight of the vehicle varies depending on the number of passengers. Therefore, a simulation may be performed for each certain weight to generate an acceleration database.
  • the obtained acceleration may be subjected to frequency analysis such as 1/3 octave band. Then, a change in frequency characteristics for each type of abnormality such as each failure mode may be stored as a database. Further, the principal component analysis may be performed using the acceleration, the maximum acceleration acceleration value, the minimum acceleration value, the effective value, and the like as the feature amount, and the principal component score may be calculated using the obtained principal component load amount. For example, when there are N feature amounts, the Nth principal component score may be calculated. By storing these results in a database, it is possible to determine which state the actual running state is close to. Regarding the effective value of acceleration, for example, the effective value of acceleration may be calculated from acceleration data for a predetermined time during traveling.
  • FIG. 3 is a diagram illustrating an example of a processing procedure in which the abnormality monitoring apparatus 100 determines whether or not the vehicle 910 is abnormal and identifies the type of abnormality when the abnormality occurs.
  • the abnormality monitoring apparatus 100 performs the process of FIG. 3 for every predetermined sampling cycle, for example.
  • the acceleration data acquisition unit 191 acquires acceleration data of the vehicle body 912 in the vertical direction, the horizontal direction, and the front-rear direction (step S111).
  • the abnormality presence / absence determination unit 192 detects the maximum value, the minimum value, and the effective acceleration value for each acceleration data of the vehicle body 912 in the vertical direction, the horizontal direction, and the front-rear direction (step S112).
  • the control unit 190 performs determination by data (step S113). In the determination by data, the control unit 190 determines whether there is an abnormality for each acceleration data of the vehicle body 912 in the vertical direction, the horizontal direction, and the longitudinal direction. When it is determined that there is an abnormality, the control unit 190 identifies the type of abnormality.
  • FIG. 4 is a diagram illustrating an example of a processing procedure in which the control unit 190 performs the determination for each data.
  • the control unit 190 performs the process of FIG. 4 in step S113 of FIG.
  • the abnormality presence / absence determination unit 192 determines that the maximum value of the absolute value of acceleration (acceleration magnitude) is greater than or equal to a predetermined threshold value for each acceleration data of the vehicle 910 in the vertical direction, the horizontal direction, and the longitudinal direction. It is determined whether or not (step S211). If it is determined in step S211 that it is less than the threshold (step S211: less than the threshold), the abnormality presence / absence determination unit 192 determines that there is no abnormality for the data (step S221). When it is determined that there is no abnormality for all data, the process of FIG. 4 is terminated, and the process of FIG. 3 is further terminated.
  • step S211 determines whether or not the type of abnormality has been successfully identified in step S232 (step S233).
  • the abnormality monitoring apparatus 100 When it is determined that the abnormality type is successfully identified with one or more data (step S233: identification success), the abnormality monitoring apparatus 100 outputs the identified abnormality type (step S241). For example, the display unit 130 may display the specified abnormality type under the control of the control unit 190. Alternatively, the communication unit 110 may transmit data indicating the specified abnormality type to another device under the control of the control unit 190. After step S241, the abnormality monitoring apparatus 100 ends the process of FIG. 4 and further ends the process of FIG. On the other hand, if it is determined in step S233 that identification of the type of abnormality has failed for any data (step S233: identification failure), the abnormality monitoring apparatus 100 ends the processing in FIG. 4 and returns to the processing in FIG. .
  • the frequency analysis unit 193 performs frequency analysis on the data if there is acceleration data that has not been subjected to frequency analysis. (Step S114). Then, the abnormality type identification unit 194 performs principal component analysis based on all acceleration data in the vertical direction, the horizontal direction, and the front-rear direction of the vehicle body 912 (step S121). For example, the storage unit 180 uses the maximum value, the minimum value, the effective value, and the amplitude of each frequency band of the acceleration in the vertical direction, the horizontal direction, and the front-rear direction of the vehicle body 912 as feature quantities, for each type of abnormality of the vehicle 910.
  • the abnormality type identification unit 194 reads the abnormality type associated with the feature amount most similar to the feature amount obtained in steps S112, S113, and S114 from the storage unit 180, thereby identifying the abnormality type. I do
  • the abnormality monitoring device 100 outputs the type of abnormality identified by the principal component analysis (step S122).
  • the display unit 130 may display the specified abnormality type under the control of the control unit 190.
  • the communication unit 110 may transmit data indicating the specified abnormality type to another device under the control of the control unit 190.
  • the acceleration data acquisition unit 191 acquires the acceleration measurement data of the vehicle body 912.
  • the abnormality presence / absence determination unit 192 determines the presence / absence of an abnormality based on a comparison between the acceleration measurement data of the vehicle body 912 acquired by the acceleration data acquisition unit 191 and a threshold value.
  • the frequency analysis unit 193 analyzes the frequency of the acceleration, and the abnormality type identification unit 194 identifies the type of abnormality based on the frequency pattern.
  • information indicating the type of abnormality can be obtained when an abnormality occurs in the vehicle.
  • an acceleration sensor may be installed on the vehicle body 912 of the vehicle 910, and there is no need to install an acceleration sensor on the carriage 911.
  • an acceleration sensor it is possible to grasp the abnormality of the vehicle 910 with a relatively small number of sensors.
  • the abnormality type identification unit 194 identifies the abnormality type based on the frequency pattern and the acceleration measurement result. Accordingly, the abnormality type identification unit 194 can identify the type of abnormality based on more feature amounts. In this regard, the abnormality type identification unit 194 can improve the identification accuracy of the type of abnormality.
  • the abnormality monitoring device 100 may determine whether to start specifying the type of abnormality based on the travel pattern of the vehicle 910. Good.
  • an acceleration different from a normal traveling pattern may occur due to a sudden braking or the like while the vehicle 910 is traveling.
  • it is possible to make an erroneous determination by determining whether or not to start identifying the type of abnormality based on the traveling pattern of the vehicle 910, even though no abnormality has occurred in the vehicle 910. Can be reduced.
  • FIG. 5 is a diagram illustrating an example of a processing procedure when the abnormality monitoring apparatus 100 determines whether to start specifying the type of abnormality based on the traveling pattern of the vehicle 910.
  • the abnormality monitoring apparatus 100 performs the process of FIG. 5 instead of the process of FIG. 4 in step S113 of FIG.
  • Step S311 in FIG. 5 is the same as step S211 in FIG.
  • step S311 when the abnormality presence / absence determination unit 192 determines that the maximum value of the absolute value of acceleration is equal to or greater than the threshold (step S311: greater than or equal to the threshold), the abnormality type identification unit 194 determines that the travel pattern of the vehicle 910 is predetermined. It is determined whether or not the pattern matches (step S321).
  • the storage unit 180 stores in advance acceleration pattern information indicating the longitudinal acceleration of the vehicle 910, for example, every kilometer or every elapsed time from the start of traveling. Then, the abnormality type identification unit 194 determines whether or not the acceleration pattern indicated in the longitudinal acceleration data matches the acceleration in the acceleration pattern information. In the coincidence determination, for example, the abnormality type identification unit 194 determines whether or not the difference in acceleration is within a predetermined ratio in any kilometer or time.
  • step S321 If the abnormality type identification unit 194 determines in step S321 that the traveling pattern of the vehicle 910 does not match the predetermined pattern (step S321: mismatch), the process proceeds to step S331. On the other hand, when the abnormality type identification unit 194 determines in step S321 that the traveling pattern of the vehicle 910 matches the predetermined pattern (step S321: match), the process proceeds to step S341.
  • Step S331 is the same as step S221 of FIG.
  • Steps S341 to S351 are the same as steps S231 to S241 in FIG.
  • a plurality of patterns of vehicle acceleration may be calculated in advance for each traveling speed, curvature of the track, gradient, and the like in a traveling simulation. Even if the actual driving pattern is different from the assumed driving pattern, if there is data that matches the actual driving pattern and the driving pattern, abnormal data can be obtained by comparing the data with the actual driving data. It is possible to determine whether or not there is an abnormality and to specify the type of abnormality. As a result, it is possible to increase the interval in which the presence / absence of abnormality and the type of abnormality can be specified. In addition, even if the actual driving pattern is different from the assumed driving pattern, if you are running in the same pattern in other parts of the track, compare the data in that part with the data in the actual driving. You may do it.
  • the abnormality type specifying unit 194 determines whether or not to start specifying the type of abnormality based on the traveling pattern of the vehicle 910. As a result, when an acceleration different from the normal traveling pattern of the vehicle 910 occurs, the possibility of erroneous determination that the abnormality monitoring device 100 determines that there is an abnormality even though no abnormality has occurred in the vehicle 910 is reduced. Can do.
  • FIG. 6 is a diagram illustrating an example of a processing procedure in which the abnormality monitoring apparatus 100 determines whether the vehicle 910 is abnormal or the track 920 is abnormal.
  • the acceleration data acquisition unit 191 acquires acceleration data in the vertical direction, the horizontal direction, and the front-rear direction of the vehicle 910 (step S411).
  • the control unit 190 starts a loop L111 that performs processing for each section set in the trajectory 920 (step S421). Then, the abnormality presence / absence determination unit 192 determines the presence / absence of abnormality (step S422). The abnormality presence / absence determination unit 192 compares the maximum value of the absolute value of the acceleration with a threshold value, for example, as in step S211 of FIG.
  • the storage unit 180 stores information indicating a section determined to be abnormal according to the control of the control unit 190 (step S423).
  • the control part 190 performs the termination process of the loop L111 (step S424).
  • the control unit 190 determines whether or not the processing of the loop L111 has been performed for all the sections that are the management targets on the track 920. If it is determined that there is an unprocessed section, the process returns to step S421, and the control unit 190 continues the process of the loop L111 for the unprocessed section. On the other hand, if it is determined that the processing of the loop L111 has been performed for all the target sections, the control unit 190 ends the loop L111.
  • the control unit 190 determines whether or not the number of sections determined to be abnormal is equal to or greater than a predetermined threshold (step S431).
  • the abnormality type specifying unit 194 specifies the abnormality of the trajectory 920 (step S441).
  • the abnormality type identification unit 194 identifies an abnormality such as a foreign matter adhering to a road surface or a road surface depression in a section determined to be abnormal.
  • the abnormality monitoring apparatus 100 complete
  • the abnormality type identification unit 194 identifies abnormality of the vehicle 910 (step S451). ). For example, the abnormality type identification unit 194 performs the same processing as in the case of FIGS. And the abnormality monitoring apparatus 100 complete
  • the abnormality type identification unit 194 determines that there is an abnormality in a certain section of the track 920 and that there is no abnormality in another section of the track 920, and the abnormality on the track 920 side. It is determined that there is a possibility. For example, the abnormality type identification unit 194 distinguishes between an abnormality in the track 920 and an abnormality in the vehicle 910 based on the number of sections determined to be abnormal as described above. As a result, the abnormality monitoring apparatus 100 can detect an abnormality in the track 920 by monitoring the vehicle 910 without installing a sensor or the like on the track 920.
  • FIG. 7 is a diagram illustrating an example of management targets of the abnormality monitoring apparatus 100 according to the second embodiment of the present invention. As shown in FIG. 7, the abnormality monitoring apparatus 100 acquires acceleration data from each of the vehicles 910 with a plurality of vehicles 910 as monitoring targets. The configuration of the abnormality monitoring apparatus 100 and each configuration of the vehicle 910 are the same as those in FIG.
  • the abnormality type specifying unit 194 specifies the abnormality of the track 920.
  • the determination of the presence / absence of abnormality of the vehicle 910 and the specification of the type of abnormality are the same as in the first embodiment.
  • the abnormality determination can be performed with higher accuracy by collecting the traveling data of each vehicle having the same weight condition.
  • the internal pressure of the air spring is generally determined according to the weight of the passenger, for example, a plurality of groups are defined according to the internal pressure of the air spring.
  • the acceleration data is classified into groups according to the magnitude of the internal pressure measured during travel.
  • the internal pressure of the air spring changes due to the change in weight.
  • the internal pressure of the air spring always changes due to the vibration of the vehicle body even during traveling. Therefore, the average value of the air spring's internal pressure, which is considered to have the smallest change in the internal pressure of the air spring, is several seconds from when the door is closed at the station until departure.
  • the acceleration data for each travel distance (for example, about kilometer) is divided for each relatively short distance section such as about 10 meters. Then, the abnormality determination device 100 determines the presence / absence of abnormality and specifies the type of abnormality by the maximum value, effective value, frequency analysis, etc. of acceleration for each divided section as described above. Also good.
  • the abnormality monitoring device 100 may identify the abnormality of the portion related to the carriage 911. For example, when a flat spot is generated on the traveling wheel, the frequency at which the vibration is generated can be estimated from the traveling speed and the diameter of the traveling wheel. Therefore, the cause can be estimated together with the frequency analysis result. When the vibration of the vehicle 910 has a low correlation with the traveling speed, the abnormality monitoring apparatus 100 may identify the abnormality of the vehicle body 912.
  • the abnormality monitoring device 100 may calculate the wavelength of the irregular track, which is the main factor that increases the acceleration, from the main speeds of the traveling speed and acceleration of the vehicle 910. Good. The calculation result of this wavelength can be used for the examination of the repair procedure for orbital irregularities.
  • the acceleration data acquisition unit 191 acquires acceleration measurement data from the plurality of vehicle bodies 912.
  • the abnormality type identification unit 194 determines that there is a possibility of abnormality on the track side when the abnormality presence / absence determination unit 192 determines that there is an abnormality in the same section of the track section for each of the acceleration measurement data from the plurality of vehicle bodies. To do. Thereby, the abnormality monitoring apparatus 100 can detect the abnormality of the track 920 with higher accuracy.
  • a program for realizing all or part of the functions of the control unit 190 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may perform the process of.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • An embodiment of the present invention includes an acceleration data acquisition unit that acquires measurement data of acceleration of a vehicle body, an abnormality presence / absence determination unit that determines presence / absence of an abnormality based on a comparison between the acceleration and a threshold, and the abnormality presence / absence determination unit
  • the present invention relates to an abnormality monitoring device including a frequency analysis unit that analyzes the frequency of the acceleration when it is determined that there is an abnormality, and an abnormality type identification unit that identifies the type of abnormality based on the frequency pattern. According to this embodiment, when an abnormality occurs in the vehicle, information indicating the type of abnormality can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

異常監視装置が、車体の加速度の測定データを取得する加速度データ取得部と、前記加速度と閾値との比較に基づいて異常の有無を判定する異常有無判定部と、前記異常有無判定部が異常有りと判定した場合、前記加速度の周波数を分析する周波数分析部と、前記周波数のパターンに基づいて異常の種類を特定する異常種類特定部と、を備える。

Description

異常監視装置、異常監視方法およびプログラム
 本発明は、異常監視装置、異常監視方法およびプログラムに関する。
 本願は、2017年2月23日に、日本国に出願された特願2017-32613号に基づき優先権を主張し、その内容をここに援用する。

 車両の異常の検出に関して幾つかの技術が提案されている。例えば、特許文献1には、走行速度依存性の影響を排除して異常を検出するための、鉄道車両の状態監視装置が記載されている。特許文献1に記載の状態監視装置は、加速度計を用いて車体の水平左右方向の振動を検出し、検出した振動から2つの異なる周波数帯成分を検出する。そして、この状態監視装置は、検出した2つの異なる周波数帯成分の振幅比率を算出し、算出した振幅比率と閾値との比較にて異常判定を行う。
日本国特許第5525404号公報

 車両に異常が発生した際、異常の有無を判定するのみならず異常の種類を示す情報を得られれば、異常に対する対策の検討に役立てることができる。
 これに対し特許文献1では、異常の種類を示す情報を取得する方法は示されていない。 

 本発明は、車両に異常が発生した際に異常の種類を示す情報を得ることができる異常監視装置、異常監視方法およびプログラムを提供する。

 本発明の第1の態様によれば、異常監視装置は、車体の加速度の測定データを取得する加速度データ取得部と前記加速度と閾値との比較に基づいて異常の有無を判定する異常有無判定部と、前記異常有無判定部が異常有りと判定した場合、前記加速度の周波数を分析する周波数分析部と、前記周波数のパターンに基づいて異常の種類を特定する異常種類特定部と、を備える。 

 前記異常種類特定部は、前記周波数のパターンから異常の種類を特定できない場合、前記周波数のパターンと加速度の測定結果とに基づいて異常の種類を特定するようにしてもよい。 

 前記異常種類特定部は、前記車体を備える車両の走行パターンに基づいて前記異常の種類の特定を開始するか否かを判定するようにしてもよい。 

 前記異常種類特定部は、前記異常有無判定部が軌道の区間のうちある区間で異常有りと判定し、他のある区間で異常無しと判定した場合、軌道側の異常の可能性ありと判定するようにしてもよい。 

 前記加速度データ取得部は、複数の車体から加速度の測定データを取得し、異常種類特定部は、前記異常有無判定部が複数の車体から加速度の測定データの各々について軌道の区間のうち同一区間で異常有りと判定した場合、軌道側の異常の可能性ありと判定する、ようにしてもよい。 

 本発明の第2の態様によれば、異常監視方法は、車体の加速度の測定データを取得する工程と、前記加速度と閾値との比較に基づいて異常の有無を判定する工程と、異常有りと判定した場合、前記加速度の周波数を分析する工程と、前記周波数のパターンに基づいて異常の種類を特定するする工程と、を含む。 

 本発明の第3の態様によれば、プログラムは、コンピュータに、車体の加速度の測定データを取得する工程と、前記加速度と閾値との比較に基づいて異常の有無を判定する工程と、異常有りと判定した場合、前記加速度の周波数を分析する工程と、前記周波数のパターンに基づいて異常の種類を特定する工程と、を実行させるためのプログラムである。

 上記した異常監視装置、異常監視方法およびプログラムによれば車両に異常が発生した際に異常の種類を示す情報を得られる。

第一実施形態に係る異常監視システムの機能構成を示す概略ブロック図である。 第一実施形態に係る車両に異常が生じた際の加速度の周波数の変化の例を示すグラフである。 第一実施形態に係る異常監視装置が、車両の異常の有無を判定し、異常発生時に異常の種類を特定する処理の手順の例を示す図である。 第一実施形態に係る制御部がデータ別判定を行う処理手順の例を示す図である。 第一実施形態に係る異常監視装置が、車両の走行パターンに基づいて異常の種類の特定を開始するか否かを判定する場合の処理手順の例を示す図である。 第一実施形態に係る異常監視装置が、車両の異常および軌道の異常の判定を行う処理の手順の例を示す図である。 第二実施形態に係る異常監視装置の管理対象の例を示す図である。

 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 

<第一実施形態>
 図1は、第一実施形態に係る異常監視システムの機能構成を示す概略ブロック図である。図1に示すように、異常監視装置100は、通信部110と、操作入力部120と、表示部130と、記憶部180と、制御部190とを備える。制御部190は、加速度データ取得部191と、異常有無判定部192と、周波数分析部193と、異常種類特定部194とを備える。 

 異常監視装置100は、交通システム900を監視対象とする。交通システム900では、車両910が軌道920の上を走行する。車両910は、台車911と、車体912とを備える。車体912には加速度センサ913が設置されている。加速度センサ913は、車体912における上下方向、左右方向、前後方向それぞれの加速度を測定する。 以下では、交通システム900が、AGT(Automated Guideway Transit、自動案内軌条式旅客輸送システム)である場合を例に説明する。但し、異常監視装置100の監視対象はAGTに限らず、車両があればよい。 

 異常監視装置100は、車両910に異常が発生した際に異常の発生を検出し、異常の種類を特定する。異常監視装置100は、例えばコンピュータを用いて構成される。
 異常監視装置100は、車両910に搭載されていてもよい。あるいは、異常監視装置100は、例えば建物内など車両910の外部に配置されていてもよい。 

 通信部110は、他の装置と通信を行って各種データを送受信する。特に、通信部110は加速度センサ913と通信を行って、加速度センサ913が測定した車体912の加速度を示す加速度データを受信する。
 操作入力部120は、例えばキーボード及びマウスなどの入力デバイスを備え、ユーザ操作を受ける。
 表示部130は、例えば液晶パネル又はLED(Light Emitting Diode、発光ダイオード)パネルなどの表示画面を備え、各種データを表示する。 

 記憶部180は各種データを記憶する。記憶部180は、異常監視装置100が備える記憶デバイスを用いて構成される。
 制御部190は、異常監視装置100の各部を制御して各種処理を実行する。制御部190は、例えば異常監視装置100が備えるCPU(Central Processing Unit、中央処理装置)が記憶部180からプログラムを読み出して実行することで構成される。 

 加速度データ取得部191は、車体912の加速度の測定データを取得する。具体的には加速度データ取得部191は、通信部110が受信したデータの中から車体912の加速度の測定データを選択的に取得する。
 異常有無判定部192は、車体912の加速度と閾値との比較に基づいて異常の有無を判定する。具体的には異常有無判定部192は、車体912の上下方向加速度、左右方向加速度、前後方向加速度の各々と閾値とを比較し、いずれかの加速度の絶対値(加速度の大きさ)の最大値が閾値以上である場合に異常有りと判定する。一方、いずれの加速度も閾値未満である場合、異常有無判定部192は異常無しと判定する。
 ここでの閾値は、予め設定された定数であってもよい。また、上下方向加速度と、左右方向加速度と、前後方向加速度とで閾値が異なっていてもよい。 

 周波数分析部193は、異常有無判定部192が異常有りと判定した場合、加速度の周波数分析を行って、加速度の周波数パターンデータを取得する。例えば、周波数分析部193は、上下方向、左右方向、前後方向それぞれの加速度データに対して1/3オクターブバンド分析を行う。
 周波数パターンデータでは、周波数毎に振幅の大きさが示される。例えば、周波数分析部193が1/3オクターブバンド分析を行う場合、周波数パターンデータでは、1/3オクターブの周波数帯毎の振幅が示される。
 異常種類特定部194は、周波数分析部193の周波数分析で得られた周波数パターンに基づいて異常の種類を特定する。周波数パターンから異常の種類を特定できない場合、異常種類特定部194は、周波数のパターンと加速度の測定結果とに基づいて異常の種類を特定する。 

 図2は、車両910に異常が生じた際の加速度の周波数の変化の例を示すグラフである。図2の横軸は周波数を示し、縦軸は振幅を示す。
 線L11は、通常時の加速度の例を示す。線L12は、空気ばね異常時の加速度の例を示す。この空気ばねは台車911と車体912との間に設けられている。図2の例では、空気ばねの異常によって通常時よりも車両910の剛性が増加して固有振動数が高くなっている。 

 異常種類特定部194は、このような周波数の変化に基づいて異常の種類を特定する。例えば、記憶部180が異常の種類と加速度の周波数パターンとを対応付けて記憶しておく。そして、異常種類特定部194は、周波数分析部193の分析で得られた周波数のパターンに類似するパターンを選択し、このパターンに対応付けられている異常の種類に特定する。 

 異常の種類と加速度の周波数パターンとを対応付けたデータは、例えば事前に車両910の走行シミュレーション、又は、実験走行などの実走を行うことで得られる。記憶部180が、得られたデータを加速度のデータベースとして記憶しておくようにしてもよい。
 車両910の走行シミュレーションは、例えば、タイヤ、空気ばね、左右動ダンパおよび案内輪を構成部品として行われる。その走行シミュレーションで、例えば、上下、左右及び前後の車両床上加速度と、台車加速度とが、評価対象となる。但し、構成部品及び評価対象はこれらに限定されず増減可能である。 

 故障を模擬したシミュレーションでは、例えば、各部品のばね剛性、減衰係数、ガタ量等のうちいずれか又はこれらの組み合わせを変更することで、故障が模擬される。
 対象とする軌道を、直線部及び曲線部等の区間に分けて区間毎にシミュレーションを行ってデータを生成するようにしてもよい。但し、軌道の区間の分割方法は特定の方法に限定されない。
 AGTなどの軌道系交通システムの車両は、通常、決められた走行パターンで走行する。一方、車両の重量は乗客人数によって変動する。そこで、ある重量ごとにシミュレーションを実施して、加速度のデータベースを生成するようにしてもよい。 

 加速度のデータベースの生成では、得られた加速度について、例えば1/3オクターブバンド等の周波数分析を実施するようにしてもよい。そして、故障モード毎など異常の種類毎の周波数特性の変化をデータベースとして持っておくようにしてもよい。
 さらに、加速度、加速度の最大、最小値及び実効値などを特徴量として、主成分分析を実施し、得られた主成分負荷量を用いて主成分得点を算出するようにしてもよい。例えば、特徴量がN個の場合、第N次主成分得点まで算出しておくようにしてもよい。これらの結果もデータベースとしておくことで、実際の走行状態が、どの状態に近いかを判別することが可能となる。
 加速度の実効値については、例えば走行中の所定時間分の加速度データから加速度の実効値を算出するようにしてもよい。 

 図3は、異常監視装置100が、車両910の異常の有無を判定し、異常発生時に異常の種類を特定する処理の手順の例を示す図である。異常監視装置100は、例えば所定のサンプリング周期毎に図3の処理を行う。
 図3の処理で、加速度データ取得部191は、車体912の上下方向、左右方向、前後方向それぞれの加速度のデータを取得する(ステップS111)。 

 そして、異常有無判定部192は、車体912の上下方向、左右方向、前後方向それぞれの加速度のデータ毎に、加速度の最大値、最小値、及び、加速度の実効値を検出する(ステップS112)。
 次に、制御部190は、データ別判定を行う(ステップS113)。データ別判定では、制御部190は、車体912の上下方向、左右方向、前後方向それぞれの加速度のデータ毎に異常の有無を判定する。異常有りと判定した場合、制御部190は、異常の種類を特定する。 

 図4は、制御部190がデータ別判定を行う処理手順の例を示す図である。制御部190は、図3のステップS113で図4の処理を行う。
 図4の処理で、異常有無判定部192は、車両910の上下方向、左右方向、前後方向それぞれの加速度のデータ毎に、加速度の絶対値(加速度の大きさ)の最大値が所定の閾値以上か否かを判定する(ステップS211)。
 ステップS211で閾値未満であると判定した場合(ステップS211:閾値未満)、異常有無判定部192は、そのデータについては異常無しと判定する(ステップS221)。全てのデータについて異常無しと判定した場合は、図4の処理を終了し、さらに図3の処理を終了する。 

 一方、ステップS211で閾値以上であると判定した場合(ステップS211:閾値以上)、周波数分析部193が、閾値以上と判定されたデータに対して周波数分析を行い、周波数データを取得する(ステップS231)。
 そして、異常種類特定部194は、得られた周波数データを用いて、異常の種類を特定する(ステップS232)。
 次に、制御部190は、ステップS232で異常の種類の特定に成功したか否かを判定する(ステップS233)。 

 1つ以上のデータで異常の種類の特定に成功したと判定した場合(ステップS233:特定成功)、異常監視装置100は、特定された異常の種類を出力する(ステップS241)。例えば、表示部130が、制御部190の制御に従って、特定された異常の種類を表示するようにしてもよい。あるいは、通信部110が、制御部190の制御に従って、特定された異常の種類を示すデータを他の装置へ送信するようにしてもよい。
 ステップS241の後、異常監視装置100は、図4の処理を終了し、さらに図3の処理を終了する。
 一方、ステップS233においていずれのデータについても異常の種類の特定に失敗したと判定した場合(ステップS233:特定失敗)、異常監視装置100は、図4の処理を終了して図3の処理へ戻る。 

 ステップS113で異常有りと判定し、かつ、いずれのデータでも異常の種類の特定に失敗した場合、周波数分析部193は、周波数分析を行っていない加速度データがあれば、そのデータの周波数分析を行う(ステップS114)。
 そして、異常種類特定部194は、車体912の上下方向、左右方向、及び、前後方向の全ての加速度データに基づく主成分分析を行う(ステップS121)。例えば、記憶部180が、車体912の上下方向、左右方向、前後方向それぞれの加速度の最大値、最小値、実効値、及び、周波数帯毎の振幅を特徴量として、車両910の異常の種類毎に、特徴量と異常の種類とを対応付けて記憶しておく。そして、異常種類特定部194は、ステップS112、S113、S114で得られた特徴量に最も類似する特徴量に対応付けられている異常の種類を記憶部180から読み出すことで、異常の種類の特定を行う

 そして、異常監視装置100は、主成分分析で特定された異常の種類を出力する(ステップS122)。例えば、表示部130が、制御部190の制御に従って、特定された異常の種類を表示するようにしてもよい。あるいは、通信部110が、制御部190の制御に従って、特定された異常の種類を示すデータを他の装置へ送信するようにしてもよい。
 ステップS122の後、異常監視装置100は、図3の処理を終了する。

 以上のように、加速度データ取得部191は、車体912の加速度の測定データを取得する。異常有無判定部192は、加速度データ取得部191が取得した車体912の加速度の測定データと閾値との比較に基づいて異常の有無を判定する。異常有無判定部192が異常有りと判定した場合、周波数分析部193が加速度の周波数を分析し、異常種類特定部194が周波数のパターンに基づいて異常の種類を特定する。
 これにより、車両に異常が発生した際に異常の種類を示す情報を得ることができる。
 また、異常監視装置100によれば、車両910の車体912に加速度センサを設置すればよく、台車911には加速度センサを設置する必要が無い。この点で、異常監視装置100によれば、比較的少ないセンサ数で車両910の異常を把握することができる。 

 また、異常種類特定部194は、周波数のパターンから異常の種類を特定できない場合、周波数のパターンと加速度の測定結果とに基づいて異常の種類を特定する。これにより、異常種類特定部194は、より多くの特徴量に基づいて異常の種類を特定することができる。この点で、異常種類特定部194は、異常の種類の特定精度を高めることができる。 

 なお、異常監視装置100が、加速度の絶対値の最大値と閾値との比較に加えて、車両910の走行パターンに基づいて異常の種類の特定を開始するか否かを判定するようにしてもよい。
 ここで、車両910の走行中の急なブレーキ等により、通常の走行パターンと異なる加速度が発生する場合がある。この場合に、車両910の走行パターンに基づいて異常の種類の特定を開始するか否かを判定することで、車両910に異常が発生していないにもかかわらず異常と判定する誤判定の可能性を低減させることができる。 

 図5は、異常監視装置100が、車両910の走行パターンに基づいて異常の種類の特定を開始するか否かを判定する場合の処理手順の例を示す図である。異常監視装置100は、図3のステップS113で図4の処理に代えて図5の処理を行う。
 図5のステップS311は、図4のステップS211と同様である。ステップS311で、異常有無判定部192が、加速度の絶対値の最大値が閾値以上であると判定した場合(ステップS311:閾値以上)、異常種類特定部194は、車両910の走行パターンが所定のパターンと一致するか否かを判定する(ステップS321)。 

 具体的には、記憶部180が、例えばキロ程毎、又は、走行開始からの経過時間毎の車両910の前後加速度を示す加速度パターン情報を予め記憶しておく。そして、異常種類特定部194は、前後加速度のデータに示される加速度のパターンが、加速度パターン情報における加速度に一致するか否かを判定する。一致の判定では、異常種類特定部194は、例えば、いずれのキロ程又は時間においても加速度の差が所定割合以内か否かを判定する。 

 ステップS321で異常種類特定部194が、車両910の走行パターンが所定のパターンと一致しないと判定した場合(ステップS321:不一致)、処理がステップS331へ進む。
 一方、ステップS321で異常種類特定部194が、車両910の走行パターンが所定のパターンと一致すると判定した場合(ステップS321:一致)、処理がステップS341へ進む。
 ステップS331は、図4のステップS221と同様である。
 ステップS341~S351は、図4のステップS231~S241と同様である。 

 事前に走行シミュレーションにて走行速度、軌道の曲率および勾配等毎に車両の加速度を複数パターン算出しておくようにしてもよい。実際の走行パターンが想定した走行パターンとは異なっている場合でも、実際の走行パターンと走行パターンが一致するデータがあれば、そのデータと実際の走行でのデータとの比較を行うことで、異常の有無の判定及び異常の種類の特定を行い得る。これによって、異常の有無の判定及び異常の種類の特定を行える区間を増やすことができる。
 また、実際の走行パターンが想定していた走行パターンと異なっていても、軌道の他の箇所で同様のパターンで走っていた場合は、その個所のデータと実際の走行でのデータとを比較するようにしてもよい。 

 以上のように、異常種類特定部194は、車両910の走行パターンに基づいて異常の種類の特定を開始するか否かを判定する。
 これにより、車両910の通常の走行パターンと異なる加速度が発生した場合に、車両910に異常が発生していないにもかかわらず異常監視装置100が異常と判定する誤判定の可能性を低減させることができる。 

 なお、異常監視装置100が、車両910の異常の判定に加えて、あるいは代えて、軌道920の異常の判定を行うようにしてもよい。
 図6は、異常監視装置100が、車両910の異常および軌道920の異常の判定を行う処理の手順の例を示す図である。
 図6の処理で、加速度データ取得部191は、車両910の上下方向、左右方向、前後方向それぞれの加速度データを取得する(ステップS411)。 

 次に、制御部190は、軌道920に設定されている区間毎に処理を行うループL111を開始する(ステップS421)。
 そして、異常有無判定部192が異常の有無を判定する(ステップS422)。異常有無判定部192は、例えば図4のステップS211と同様、加速度の絶対値の最大値と閾値とを比較して異常の有無を判定する。 

 ステップS422で異常有無判定部192が異常有りと判定した場合は、記憶部180が制御部190の制御に従って、異常有りと判定された区間を示す情報を記憶する(ステップS423)。
 そして、制御部190はループL111の終端処理を行う(ステップS424)。制御部190は、軌道920で管理対象になっている全ての区間についてループL111の処理を行ったか否かを判定する。未だ未処理の区間があると判定した場合は、処理がステップS421へ戻り、制御部190は、未処理の区間について引き続きループL111の処理を行う。一方、対象となっている全ての区間についてループL111の処理を行ったと判定した場合は、制御部190は、ループL111を終了する。 

 ステップS424でループL111を終了した場合、制御部190は、異常と判定された区間の数が所定の閾値以上か否かを判定する(ステップS431)。
 制御部190が、異常と判定された区間の数が閾値未満であると判定した場合(ステップS431:閾値未満)、異常種類特定部194は、軌道920の異常の特定を行う(ステップS441)。例えば、異常種類特定部194は、異常と判定された区間における路面への異物付着または路面の窪み等の異常を特定する。
 そして、異常監視装置100は、特定結果を出力した後(ステップS442)、図6の処理を終了する。 

 一方、制御部190が、異常と判定された区間の数が閾値以上であると判定した場合(ステップS431:閾値以上)、異常種類特定部194は、車両910の異常の特定を行う(ステップS451)。例えば、異常種類特定部194は、図3~図4の場合と同様の処理を行う。
 そして、異常監視装置100は、特定結果を出力した後(ステップS452)、図6の処理を終了する。 

 以上のように、異常種類特定部194は、異常有無判定部192が軌道920の区間のうちある区間で異常有りと判定し、他のある区間で異常無しと判定した場合、軌道920側の異常の可能性ありと判定する。例えば、異常種類特定部194は、上記のように異常有りと判定された区間の数に基づいて、軌道920の異常と車両910の異常との切り分けを行う。
 これによって、異常監視装置100では、軌道920にセンサ等を設置する必要なしに車両910のモニタリングで軌道920の異常を検知することができる。 

<第二実施形態>
 図7は、本発明の第二実施形態に係る異常監視装置100の管理対象の例を示す図である。図7に示すように、異常監視装置100は、複数の車両910を監視対象として、これら車両910の各々から加速度データを取得する。
 異常監視装置100の構成、及び、車両910の各々の構成は、図1の場合と同様である。 

 図7の構成で、異常有無判定部192が軌道920の同一区間で複数の車両について異常有りと判定した場合、異常種類特定部194は、軌道920の異常を特定する。
 車両910の異常の有無の判定及び異常の種類の特定は、第一実施形態の場合と同様である。 

 ここで、重量の条件が同等になる各車両の走行データをまとめることで、異常の判定をより高精度に行うことができる。乗客の重量に応じて空気ばねの内圧が概ね決まるため、例えば、空気ばねの内圧に応じてグループを複数定義しておく。そして、走行時に計測される内圧の大きさによって加速度データをグループに分類する。
 駅で乗客が乗降している場合、重量の変化により空気ばねの内圧が変化する。また、走行中も車体の振動により常に空気ばねの内圧が変化する。そこで、空気ばねの内圧の変化が最も小さいと思われる、駅で扉を閉めてから発車するまでの数秒間の平均値を空気ばねの内圧の値とする。
 空気ばねの内圧の大きさにより分類された各グループのデータについて、走行距離(例えばキロ程)毎の加速度のデータを、例えば10メートル程度など比較的短い距離の区間毎に分割する。そして、異常判定装置100が、分割された区間毎に、上記のように加速度の最大値、実効値、及び、周波数分析等により、異常の有無の判定及び異常の種類の特定を行うようにしてもよい。 

 なお、車両910の異常について、走行速度に反比例して周期が短くなる場合、異常監視装置100が、台車911に関連する部分の異常と特定するようにしてもよい。例えば、走行輪にフラットスポットが生じた場合、走行速度と走行輪の径から振動が発生する周波数が推定できるため、周波数分析結果と合わせて原因の推定が可能となる。
 車両910の異常について、走行速度と相関性の低い振動が生じている場合は、異常監視装置100が車体912の異常と特定するようにしてもよい。 

 一方、軌道920の異常について、異常監視装置100が、車両910の走行速度と加速度の主要な周波数から、加速度を大きくしている主要因となっている軌道不整の波長を算出するようにしてもよい。この波長の算出結果を軌道不整の改修要領検討に役立てることができる。 

 以上のように、加速度データ取得部191は、複数の車体912から加速度の測定データを取得する。異常種類特定部194は、異常有無判定部192が複数の車体からの加速度の測定データの各々について軌道の区間のうち同一区間で異常有りと判定した場合、軌道側の異常の可能性ありと判定する。
 これにより、異常監視装置100は、軌道920の異常をより高精度に検出することができる。 

 なお、制御部190の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 

 以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明の実施形態は、車体の加速度の測定データを取得する加速度データ取得部と、前記加速度と閾値との比較に基づいて異常の有無を判定する異常有無判定部と、前記異常有無判定部が異常有りと判定した場合、前記加速度の周波数を分析する周波数分析部と、前記周波数のパターンに基づいて異常の種類を特定する異常種類特定部と、を備える異常監視装置に関する。
 この実施形態によれば、車両に異常が発生した際に異常の種類を示す情報を得ることができる。

 100 異常監視装置
 110 通信部
 120 操作入力部
 130 表示部
 180 記憶部
 190 制御部
 191 加速度データ取得部
 192 異常有無判定部
 193 周波数分析部
 194 異常種類特定部
 900 交通システム
 910 車両
 911 台車
 912 車体
 913 加速度センサ
 920 軌道

Claims (7)

  1.  車体の加速度の測定データを取得する加速度データ取得部と、
     前記加速度と閾値との比較に基づいて異常の有無を判定する異常有無判定部と、
     前記異常有無判定部が異常有りと判定した場合、前記加速度の周波数を分析する周波数分析部と、
     前記周波数のパターンに基づいて異常の種類を特定する異常種類特定部と、
     を備える異常監視装置。
  2.  前記異常種類特定部は、前記周波数のパターンから異常の種類を特定できない場合、前記周波数のパターンと加速度の測定結果とに基づいて異常の種類を特定する、
     請求項1に記載の異常監視装置。
  3.  前記異常種類特定部は、前記車体を備える車両の走行パターンに基づいて前記異常の種類の特定を開始するか否かを判定する、
     請求項1又は請求項2に記載の異常監視装置。
  4.  前記異常種類特定部は、前記異常有無判定部が軌道の区間のうちある区間で異常有りと判定し、他のある区間で異常無しと判定した場合、軌道側の異常の可能性ありと判定する、
     請求項1から3の何れか一項に記載の異常監視装置。
  5.  前記加速度データ取得部は、複数の車体から加速度の測定データを取得し、
     異常種類特定部は、前記異常有無判定部が複数の車体から加速度の測定データの各々について軌道の区間のうち同一区間で異常有りと判定した場合、軌道側の異常の可能性ありと判定する、
     請求項1から4の何れか一項に記載の異常監視装置。
  6.  車体の加速度の測定データを取得する工程と、
     前記加速度と閾値との比較に基づいて異常の有無を判定する工程と、
     異常有りと判定した場合、前記加速度の周波数を分析する工程と、
     前記周波数のパターンに基づいて異常の種類を特定する工程と、
     を含む異常監視方法。
  7.  コンピュータに、
     車体の加速度の測定データを取得する工程と、
     前記加速度と閾値との比較に基づいて異常の有無を判定する工程と、
     異常有りと判定した場合、前記加速度の周波数を分析する工程と、
     前記周波数のパターンに基づいて異常の種類を特定する工程と、
     を実行させるためのプログラム。
PCT/JP2018/005577 2017-02-23 2018-02-16 異常監視装置、異常監視方法およびプログラム WO2018155348A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11201905743PA SG11201905743PA (en) 2017-02-23 2018-02-16 Abnormality monitoring device, abnormality monitoring method, and program
US16/473,376 US11465507B2 (en) 2017-02-23 2018-02-16 Abnormality monitoring device, abnormality monitoring method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032613 2017-02-23
JP2017032613A JP6867826B2 (ja) 2017-02-23 2017-02-23 異常監視装置、異常監視方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2018155348A1 true WO2018155348A1 (ja) 2018-08-30

Family

ID=63252672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005577 WO2018155348A1 (ja) 2017-02-23 2018-02-16 異常監視装置、異常監視方法およびプログラム

Country Status (4)

Country Link
US (1) US11465507B2 (ja)
JP (1) JP6867826B2 (ja)
SG (1) SG11201905743PA (ja)
WO (1) WO2018155348A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024423A1 (ja) * 2019-08-07 2021-02-11 株式会社日立製作所 軌条車両の異常検出装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445406B2 (ja) * 2019-10-21 2024-03-07 三菱重工業株式会社 監視装置、監視方法及びプログラム
JP7242518B2 (ja) * 2019-12-16 2023-03-20 株式会社東芝 非破壊検査方法及び非破壊検査システム
CN112163348A (zh) * 2020-10-24 2021-01-01 腾讯科技(深圳)有限公司 道路异常路面的检测方法、装置、仿真方法、车辆和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105956A (ja) * 2004-09-13 2006-04-20 Nsk Ltd 異常診断装置
JP2007256153A (ja) * 2006-03-24 2007-10-04 Hitachi Ltd 鉄道車両台車異常検知システム
JP2012086671A (ja) * 2010-10-20 2012-05-10 Kyb Co Ltd 鉄道車両の振動解析装置
JP2012100434A (ja) * 2010-11-02 2012-05-24 Akebono Brake Ind Co Ltd 鉄道車両用異常診断システム
US20150051792A1 (en) * 2011-12-07 2015-02-19 Railway Metrics And Dynamics Sweden Ab Method and system for detection and analysis of railway bogie operational problems
JP2017026421A (ja) * 2015-07-21 2017-02-02 日本精工株式会社 軸受異常診断装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170313332A1 (en) 2002-06-04 2017-11-02 General Electric Company Autonomous vehicle system and method
JP4096091B2 (ja) 2002-09-19 2008-06-04 陽三 藤野 道路診断方法
US8924048B2 (en) 2004-07-15 2014-12-30 General Electric Company Graduated vehicle braking
US7860663B2 (en) 2004-09-13 2010-12-28 Nsk Ltd. Abnormality diagnosing apparatus and abnormality diagnosing method
US20070203621A1 (en) 2004-11-23 2007-08-30 Lioyd Haugen Rail track evaluation system
JP4648693B2 (ja) 2004-12-09 2011-03-09 東日本旅客鉄道株式会社 異常検出装置、及び異常検出方法
JP2006327551A (ja) 2005-05-30 2006-12-07 Tmp:Kk 車両運行管理システム及びこれを用いた車両および軌道異常診断方法
US8473127B2 (en) * 2006-03-20 2013-06-25 General Electric Company System, method and computer software code for optimizing train operations considering rail car parameters
JP4935157B2 (ja) * 2006-04-07 2012-05-23 日本精工株式会社 異常診断装置および異常診断方法
JP2008100669A (ja) * 2006-09-19 2008-05-01 Yokohama Rubber Co Ltd:The 線路管理支援システム
JP4431163B2 (ja) 2007-10-12 2010-03-10 東急車輛製造株式会社 移動体の異常検出システム、及び移動体の異常検出方法
DE102009020428A1 (de) * 2008-11-19 2010-05-20 Eureka Navigation Solutions Ag Vorrichtung und Verfahren für ein Schienenfahrzeug
JP2010165242A (ja) 2009-01-16 2010-07-29 Hitachi Cable Ltd 稼動体の異常検出方法及び異常検出システム
JP5432818B2 (ja) 2010-05-24 2014-03-05 株式会社日立製作所 鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両
US9365223B2 (en) 2010-08-23 2016-06-14 Amsted Rail Company, Inc. System and method for monitoring railcar performance
JP5691319B2 (ja) 2010-09-09 2015-04-01 株式会社Ihi 案内軌条式鉄道用モニタリング方法及び装置
JP5525404B2 (ja) 2010-10-01 2014-06-18 株式会社日立製作所 鉄道車両の状態監視装置及び状態監視方法、並びに鉄道車両
JP6119097B2 (ja) 2011-12-28 2017-04-26 富士通株式会社 路面調査プログラム及び路面調査装置
WO2013121344A2 (en) 2012-02-17 2013-08-22 Balaji Venkatraman Real time railway disaster vulnerability assessment and rescue guidance system using multi-layered video computational analytics
US10479380B2 (en) 2016-03-07 2019-11-19 Westinghouse Air Brake Technologies Corporation Hazardous event alert systems and methods
JP2015042106A (ja) 2013-08-23 2015-03-02 三菱重工業株式会社 軌道走行電動車両の故障検出装置、および軌道走行電動車両
BR112016011849B1 (pt) 2013-11-27 2022-04-05 Amsted Rail Company, Inc. Sistemas de gerenciamento de pátio ferroviário
US10845463B2 (en) 2015-07-17 2020-11-24 Origin Wireless, Inc. Method, apparatus, and system for wireless object scanning
WO2016035597A1 (ja) 2014-09-05 2016-03-10 三菱電機株式会社 自動列車運行システム
GB2532760A (en) 2014-11-27 2016-06-01 Skf Ab Condition monitoring system, condition monitoring unit and method for monitoring a condition of a bearing unit for a vehicle
US11067539B2 (en) 2014-12-24 2021-07-20 Technological Resources Pty Ltd System for detecting a break in a rail
US9836062B1 (en) 2015-01-20 2017-12-05 State Farm Mutual Automobile Insurance Company Analyzing telematics data to determine travel events and corrective actions
GB2542115B (en) 2015-09-03 2017-11-15 Rail Vision Europe Ltd Rail track asset survey system
US9714041B2 (en) 2015-10-14 2017-07-25 Westinghouse Air Brake Technologies Corporation Train control system and method
GB2546087A (en) 2016-01-07 2017-07-12 Skf Ab Railway condition monitoring sensor device and method for monitoring the condition of a railway bearing
CA3011456C (en) 2016-01-15 2020-06-02 New York Air Brake Llc Train brake safety monitoring and fault action system with ptc brake performance assurance
WO2017127806A1 (en) 2016-01-22 2017-07-27 International Electronic Machines Corp. Railway vehicle operations monitoring
US10807624B2 (en) 2018-02-12 2020-10-20 Eyedog Israel Ltd. Train collision avoidance and alert
US11235788B2 (en) 2018-03-23 2022-02-01 Union Pacific Railroad Company Wayside railway sensor package and method for application
US20190391049A1 (en) 2018-06-22 2019-12-26 The Charles Stark Draper Laboratory, Inc. Smart Rail Wheelset Bearing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105956A (ja) * 2004-09-13 2006-04-20 Nsk Ltd 異常診断装置
JP2007256153A (ja) * 2006-03-24 2007-10-04 Hitachi Ltd 鉄道車両台車異常検知システム
JP2012086671A (ja) * 2010-10-20 2012-05-10 Kyb Co Ltd 鉄道車両の振動解析装置
JP2012100434A (ja) * 2010-11-02 2012-05-24 Akebono Brake Ind Co Ltd 鉄道車両用異常診断システム
US20150051792A1 (en) * 2011-12-07 2015-02-19 Railway Metrics And Dynamics Sweden Ab Method and system for detection and analysis of railway bogie operational problems
JP2017026421A (ja) * 2015-07-21 2017-02-02 日本精工株式会社 軸受異常診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024423A1 (ja) * 2019-08-07 2021-02-11 株式会社日立製作所 軌条車両の異常検出装置
JPWO2021024423A1 (ja) * 2019-08-07 2021-09-13 株式会社日立製作所 軌条車両の異常検出装置

Also Published As

Publication number Publication date
SG11201905743PA (en) 2019-09-27
US11465507B2 (en) 2022-10-11
JP2018136270A (ja) 2018-08-30
US20200148237A1 (en) 2020-05-14
JP6867826B2 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2018155348A1 (ja) 異常監視装置、異常監視方法およびプログラム
US8452552B2 (en) Method for testing a vibration damper of a motor vehicle in the installed state, and vibration damper-test system for a motor vehicle
US8380389B2 (en) Health monitoring systems and methods with vehicle identification
JP5130181B2 (ja) 車輪振動抽出装置及び路面状態推定装置
JP4298433B2 (ja) 鉄道車両の異常検知装置
US20110224865A1 (en) Health monitoring systems and methods with vehicle velocity
CN107000503A (zh) 确定表征车轮的轮胎上的轮胎接触面积的尺寸的至少一个轮胎接触面积参数的系统与方法
US20030040885A1 (en) Apparatus and method for determining vehicle load weight status
US10953900B2 (en) Abnormality detection device, abnormality detection method, and program
JP6838176B2 (ja) 鉄道車両の異常検出装置および方法
JP2018155517A (ja) 車両の監視装置、監視方法、プログラム
CN108290585A (zh) 用于以比较控制方式检测脱轨的方法和设备
US10386265B2 (en) Estimating method, information processing device, and non-transitory computer-readable recording medium storing estimating program
KR102111196B1 (ko) 지상 차량 부품 탐지 시스템
Pieringer et al. A fast time-domain model for wheel/rail interaction demonstrated for the case of impact forces caused by wheel flats
CN112566832B (zh) 检查系统、检查方法以及存储介质
KR20180096235A (ko) 차량용 도로 상태 추정 시스템 및 그 방법
JP6952531B2 (ja) 鉄道車両の異常診断システム
JP5112730B2 (ja) タイヤ耐久力性能予測方法、タイヤ耐久力性能予測装置、及びタイヤ耐久力性能予測プログラム
JP6770414B2 (ja) 乗り心地測定方法及び装置
KR200488973Y1 (ko) 철도차량의 승차감 분석장치
KR100651187B1 (ko) 도시철도 차량의 운행중 진동 시험장치 및 그 방법
WO2023199369A1 (ja) 寿命評価装置および方法
KR101327666B1 (ko) 가속도 센서를 이용한 승차감 평가 방법
JP2019137298A (ja) 回転体への入力パワー推定システム及び入力パワー推定方法、並びに、当接面状態判定システム及び移動体機器制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18758373

Country of ref document: EP

Kind code of ref document: A1