WO2018155073A1 - 電動工具 - Google Patents

電動工具 Download PDF

Info

Publication number
WO2018155073A1
WO2018155073A1 PCT/JP2018/002442 JP2018002442W WO2018155073A1 WO 2018155073 A1 WO2018155073 A1 WO 2018155073A1 JP 2018002442 W JP2018002442 W JP 2018002442W WO 2018155073 A1 WO2018155073 A1 WO 2018155073A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
capacitor
motor
brushless motor
switching element
Prior art date
Application number
PCT/JP2018/002442
Other languages
English (en)
French (fr)
Inventor
拓家 吉成
一彦 船橋
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2019501149A priority Critical patent/JPWO2018155073A1/ja
Publication of WO2018155073A1 publication Critical patent/WO2018155073A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor

Definitions

  • the present invention relates to an AC-driven electric tool using a brushless motor as a drive source.
  • An AC-driven electric tool using a brushless motor as a drive source includes a rectifier circuit such as a diode bridge, an inverter circuit that supplies a drive current to the motor, and a capacitor that absorbs a surge voltage of the inverter circuit.
  • a rectifier circuit such as a diode bridge
  • an inverter circuit that supplies a drive current to the motor
  • a capacitor that absorbs a surge voltage of the inverter circuit.
  • a smoothing circuit in which two capacitors having different capacitances are connected in parallel is provided on the output side of the rectifier circuit, and the surge voltage and peak current of the inverter circuit are suppressed.
  • the present invention has been made in recognition of such a situation, and an object thereof is to provide an electric tool capable of suppressing harmonics. Another object of the present invention is to provide an electric tool that suppresses harmonics and suppresses an increase in size.
  • One embodiment of the present invention is a power tool.
  • This electric tool A brushless motor, A rectifier circuit that converts alternating current to direct current; An inverter circuit for supplying a drive current to the brushless motor; A trigger unit for instructing activation of the brushless motor, a capacitor provided in parallel with the inverter circuit between output terminals of the rectifier circuit, and a first switch connected in series with the capacitor, The first switch is configured to be switched from an off state to an on state when a load of the brushless motor increases.
  • the first switch may be turned off when the trigger unit is instructed to start the brushless motor and the tip tool is not in contact with the mating member.
  • the first switch may be switched to an on state in the process of increasing the contact force of the tip tool with the mating member.
  • the first switch may be turned off when the load is less than or equal to a threshold, and the first switch may be turned on when the load exceeds a predetermined value.
  • the load may be a current flowing through the brushless motor.
  • the capacitor is a first capacitor; You may provide the 2nd capacitor
  • the trigger unit switches on and off of a second switch provided in a current path between the rectifier circuit and the inverter circuit,
  • the capacitor and the first switch may be provided on the rectifier circuit side of the second switch.
  • a control unit for controlling the inverter circuit may include a switching element controlled by the control unit.
  • the electric tool which can suppress a harmonic can be provided.
  • FIG. 1 is a side sectional view of a portable cutting machine 1.
  • FIG. 5 is a waveform diagram showing a difference between an AC current waveform and a DC voltage waveform when the capacitance between output terminals of the diode bridge 42 is changed in FIGS. 3 and 4.
  • 4 is a control flowchart of the portable cutting machine 1.
  • 4 is a time chart showing an example of the operation of the portable cutting machine 1.
  • the control block diagram of 1 A of portable cutting machines which concern on Embodiment 2 of this invention.
  • the control block diagram of the portable cutting machine 1B which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a perspective view of a portable cutting machine (portable circular saw) 1 as an electric tool according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional side view of the portable cutting machine 1. With reference to FIG. 1, the front and rear, top and bottom, and left and right directions are defined.
  • the portable cutting machine 1 includes a main body 10, a base 30, a stand unit 40, a connecting member 50, and a bracket 60.
  • the mechanical configuration of the portable cutting machine 1 is well known, and only a brief description will be given below.
  • the main body 10 is supported relative to the base 30 so as to be tiltable in the left-right direction or one left-right direction and swingable in the up-down direction.
  • the main body 10 has an outer shell formed by the housing 11 and the gear cover 13.
  • the housing 11 is a resin molded body, for example, and accommodates the motor (electric motor) 6 shown in FIG.
  • the handle portion 12 is provided in the housing 11.
  • the handle portion 12 is provided with a trigger portion 5 for the user to instruct the start of the motor.
  • the gear cover 13 is made of metal such as aluminum, for example, and covers a reduction mechanism (not shown) that reduces the rotation of the motor 6 and transmits it to the saw blade 16 and covers the upper half of the saw blade 16.
  • the protective cover 15 is a resin molded body, for example, and covers the lower half of the saw blade 16 so that it can be opened and closed.
  • a saw blade 16 as a tip tool (rotating tool) is a disk-shaped rotating blade and is driven to rotate by a motor 6. The saw blade 16 projects downward from the lower surface of the base 30 through the through hole 31 of the base 30.
  • the base 30 is a substantially rectangular plate made of metal such as aluminum.
  • the longitudinal direction of the base 30 coincides with the cutting progress direction.
  • the bottom surface of the base 30 is a sliding surface with the work material.
  • the base 30 has a through hole 31 through which the saw blade 16 is passed.
  • the stand part 40 is erected on the front end part of the base 30 and constitutes a tilt position adjusting mechanism for adjusting the tilt position of the main body 10.
  • the stand part 40 has a bevel plate part 47.
  • the bevel plate portion 47 is substantially perpendicular to the front-rear direction, has a tilt guide hole 48, and functions as a tilt guide for the main body 10.
  • the tilt guide hole 48 is an arc-shaped long hole centered on a tilt shaft 49 substantially parallel to the front-rear direction.
  • the connecting member 50 is a member that connects the main body 10 and the stand unit 40, and one end of the connecting member 50 is rotatably supported by the tilting shaft 49. The other end of the connecting member 50 rotatably supports the housing 11 of the main body 10.
  • the user can adjust the tilt position of the main body 10 by loosening the tilt fixing lever 51 so that the connecting member 50 can be rotated about the tilt shaft 49. Further, the user can fix the pivot position of the connecting member 50 and fix the tilt position of the main body 10 by tightening the tilt fixing lever 51.
  • the bracket 60 is a support body of a link (not shown) that constitutes a cut depth adjusting mechanism, and is provided behind the through hole 31. The link makes the main body 10 swingable in the vertical direction (that is, the cutting depth by the saw blade 16 can be adjusted).
  • a main board 41 is provided inside the housing 11 at a position near the extension source of the power cord 7 as a connecting means connected to the AC power source 51 shown in FIG. 3.
  • the main board 41 is provided with electrolytic capacitors C2 to C4 and a switching element Q7.
  • the diode bridge 42, inverter circuit 43, control unit 50, filter circuit 52, IPD circuit shown in FIG. 53, a regulator 54, and the like are also provided.
  • FIG. 3 is a control block diagram of the portable cutting machine 1.
  • a diode bridge 42 as a rectifier circuit for converting alternating current into direct current is connected to the alternating current power source 51 through a filter circuit 52 for noise suppression.
  • the filter circuit 52 includes a fuse Fin, a varistor Z1, a pattern fuse F1, a capacitor C1, a resistor R1, and a choke coil L1.
  • the fuse Fin is for protection when the switching elements Q1 to Q6 are short-circuited.
  • the varistor Z1 is for absorbing surge voltage.
  • the pattern fuse F1 has a role of preventing a short circuit between lines when the varistor Z1 is activated.
  • the capacitor C1 and the choke coil L1 are for removing noise between lines.
  • the resistor R1 is a discharge resistor of the capacitor C1.
  • the diode bridge 42 performs full-wave rectification on the output current (alternating current) from the filter circuit 52 and converts it into direct current.
  • electrolytic capacitors C2 and C3 as first capacitors and a switching element Q7 as a first switch are provided in parallel with the inverter circuit 43.
  • the switching element Q7 is an FET in the illustrated example, but may be an IGBT.
  • One ends of the electrolytic capacitors C2 and C3 are connected to one output terminal of the diode bridge.
  • the other ends of the electrolytic capacitors C2 and C3 are connected to one end of the switching element Q7.
  • the other end of the switching element Q7 is connected to the other output terminal of the diode bridge 42.
  • a control signal from the control unit 50 is input to the gate as the control terminal of the switching element Q7.
  • an electrolytic capacitor C4 as a second capacitor is provided in parallel with the electrolytic capacitors C2, C3 and the switching element Q7 and in parallel with the inverter circuit 43.
  • the electrolytic capacitor C4 has a smaller capacity than the electrolytic capacitors C2 and C3.
  • a contact switch 5a as a second switch is provided in a current path between the diode bridge 42 and the inverter circuit 43.
  • the electrolytic capacitors C2, C3 and the switching element Q7 are provided on the diode bridge 42 side of the contact switch 5a.
  • the electrolytic capacitor C4 is provided on the inverter circuit 43 side of the contact switch 5a.
  • the contact switch 5 a is switched on and off by operating the trigger unit 5.
  • the trigger unit 5 is an operation unit of a two-pole trigger switch. When the contact switch 5 a is turned on by the operation of the trigger unit 5, the contact connected to the control unit 50 is closed at the same time, and an ON signal is input to the control unit 50.
  • the inverter circuit 43 includes switching elements Q1 to Q6 such as IGBTs and FETs connected in a three-phase bridge, and performs a switching operation according to the control of the control unit 50, whereby each of the windings of the stator coil 6e (U, V, W of the motor 6). Line).
  • the motor 6 is an inner rotor type brushless motor, and the rotor has a plurality of (for example, four) rotor magnets (permanent magnets) 6c.
  • a stator core 6d is provided around the rotor, and the stator core 6d includes a stator coil. 6e is provided.
  • the resistor Rs is provided in the current path of the motor 6. The voltage across the resistor Rs is input to the control unit 50.
  • the controller 50 detects the current (load) of the motor 6 based on the voltage across the resistor Rs. Further, the control unit 50 detects the rotational position (rotor rotational position) of the motor 6 based on the output voltages of the plurality of Hall ICs 45.
  • the anode of the diode D1 is connected to one output terminal of the diode bridge.
  • the cathode of the diode D1 is connected to the first input terminal of the IPD circuit 53.
  • a second input terminal of the IPD circuit 53 is connected to the other output terminal of the diode bridge 42.
  • An electrolytic capacitor C5 is provided between the first and second input terminals of the IPD circuit 53.
  • the IPD circuit 53 is a circuit configured by an IPD element, a capacitor, or the like, which is an intelligent power device, and DC-DC switching that reduces the voltage between the output terminals of the diode bridge 42 to, for example, about 18V. It is a power supply circuit.
  • the IPD circuit 53 is an integrated circuit and has an advantage of low power consumption and energy saving.
  • the output voltage of the IPD circuit 53 is further stepped down to, for example, about 5 V by the regulator 54 and supplied to the control unit 50 as an operating voltage (power supply voltage Vcc).
  • the IPD circuit 53 and the regulator 54 constitute a control system power supply circuit that supplies an operating voltage to the control unit 50.
  • the control unit 50 is, for example, a microcontroller (microcomputer).
  • control unit 50 When the control unit 50 detects that the contact switch 5a is turned on by operating the trigger unit 5, the control unit 50 performs switching control (for example, PWM control) on the switching elements Q1 to Q6 and drives the motor 6. As will be described later, after the trigger of the motor 6 is instructed by the trigger unit 5 (after the contact switch 5a is turned on), the control unit 50 turns off the switching element Q7, and then turns on the switching element Q7. Control to switch to. When the switching element Q7 is on, the capacitance between the output terminals of the diode bridge 42 is the sum of the capacitances of the electrolytic capacitors C2 to C4 and becomes large. For this reason, the surge voltage absorption effect is high, and the allowable ripple current is also large.
  • switching control for example, PWM control
  • FIG. 4 is a control block diagram of the portable cutting machine according to the comparative example.
  • the portable cutting machine of this comparative example is different from the portable cutting machine 1 of the first embodiment in that the electrolytic capacitor C3 is eliminated and the switching element Q7 is replaced with a short circuit. Match.
  • the capacitance between the output terminals of the diode bridge 42 is fixed, the higher the capacitance, the higher the harmonics, and the smaller the capacitance, the lower the surge voltage absorption effect and the smaller the allowable ripple current.
  • FIG. 5 is a waveform diagram showing the difference between the AC current waveform and the DC voltage waveform when the magnitude of the capacitance between the output terminals of the diode bridge 42 is changed in FIGS. 3 and 4.
  • capacitance between the output terminals of the diode bridge 42 when the capacity
  • the case where the capacitance between the output terminals of the diode bridge 42 is small corresponds to the case where the switching element Q7 is OFF in FIG. 3, and corresponds to the case where the total capacitance of the electrolytic capacitors C2 and C4 is small in FIG.
  • the waveform diagram shown in FIG. ⁇ Voltage waveform of AC power supply 51, The current waveform of the AC power source 51 when there is no load and the capacitance between the output terminals of the diode bridge 42 is large; The current waveform of the AC power supply 51 when there is no load and the capacitance between the output terminals of the diode bridge 42 is small; A voltage waveform between the output terminals of the diode bridge 42 when the load is high and the capacitance between the output terminals of the diode bridge 42 is small; A voltage waveform between the output terminals of the diode bridge 42 when the load is high and the capacitance between the output terminals of the diode bridge 42 is large; Indicates.
  • the voltage waveform of the AC power supply 51 is also shown by a broken line.
  • the switching element Q7 when there is no load or low load, the switching element Q7 is turned off to reduce the capacitance between the output terminals of the diode bridge 42, thereby suppressing the deterioration of the power factor and suppressing harmonics.
  • the switching element Q7 when the load is high, the switching element Q7 is turned on to increase the capacitance between the output terminals of the diode bridge 42, thereby enhancing the surge voltage absorption effect and increasing the allowable ripple current.
  • FIG. 6 is a control flowchart of the portable cutting machine 1.
  • the flowchart shown in FIG. 6 starts when the power cord 7 is connected to the AC power source 51, and the trigger unit 5 is off at the start.
  • the control unit 50 stops the motor 6 (S1) and turns off the switching element Q7 (S2).
  • the control unit 50 controls the switching elements Q1 to Q6 of the inverter circuit 43 to drive the motor 6 (S4).
  • the controller 50 monitors the current flowing through the motor 6 (hereinafter also referred to as “motor current”) while the motor 6 is being driven, and turns on the switching element Q7 when the motor current exceeds the first threshold (YES in S5). (S6). Thereafter, when the motor current becomes equal to or smaller than the second threshold value smaller than the first threshold value (YES in S7), the control unit 50 turns off the switching element Q7 (S8).
  • FIG. 7 is a time chart showing an example of the operation of the portable cutting machine 1.
  • the time chart shown in FIG. 7 is, in order from the top, the effective value of the input voltage from the AC power supply 51 (hereinafter also referred to as “AC voltage effective value”), the on / off of the trigger unit 5, the current flowing through the motor 6, the switching element Q7 Indicates on / off.
  • AC voltage effective value the effective value of the input voltage from the AC power supply 51
  • the control unit 50 stops the motor 6 and turns off the switching element Q7.
  • the control unit 50 drives the motor 6 and the motor current rises.
  • the motor current is equal to or less than the second threshold value I2, and the control unit 50 keeps the switching element Q7 off.
  • the motor current increases.
  • the control unit 50 performs switching.
  • the element Q7 is turned on.
  • the control unit 50 performs switching.
  • the element Q7 is turned off.
  • the switching element Q7 When the motor current is small or no load, the switching element Q7 is turned off to reduce the capacitance between the output terminals of the diode bridge 42. Waves can be suppressed. In addition, when the motor current is high and the load is high, the switching element Q7 is turned on to increase the capacitance between the output terminals of the diode bridge 42. Therefore, the surge voltage absorption effect is improved compared to the case where the capacitance between the output terminals is always small. And the allowable ripple current can be increased. Therefore, suppression of harmonics, a high surge voltage absorption effect, and a large allowable ripple current can be realized with a good balance. Moreover, since it is not necessary to provide a power factor correction circuit, the enlargement of an electric tool can be suppressed.
  • FIG. 8 is a control block diagram of a portable cutting machine 1A according to Embodiment 2 of the present invention.
  • the portable cutting machine 1A is different from the portable cutting machine 1 of the first embodiment in that the electrolytic capacitor C4 is replaced with a film capacitor C7, and is identical in other points.
  • the present embodiment can achieve the same effects as those of the first embodiment.
  • FIG. 9 is a control block diagram of portable cutting machine 1B according to Embodiment 3 of the present invention.
  • the portable cutting machine 1B is different from the portable cutting machine 1 of the first embodiment in that the electrolytic capacitor C3 is eliminated, and is identical in other points.
  • the present embodiment can achieve the same effects as those of the first embodiment.
  • the power tool is not limited to the portable cutting machine exemplified in the embodiment, and may be another type such as a grinder.
  • a contact switch such as a relay may be used instead of the switching element Q7.
  • the number of rotations of the brushless motor or tip tool (saw blade), the duty ratio of the switching elements constituting the inverter circuit, etc. may be detected. It is not limited. When the load increases, the rotational speed of the brushless motor or the tip tool decreases, so the rotational speed may be detected to switch the switching element Q7 on and off.
  • the duty ratio of the switching element is increased so that the rotation speed of the brushless motor is constant. Therefore, the load can be detected by detecting this duty ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Sawing (AREA)

Abstract

高調波を抑制可能な電動工具を提供するため、電動工具としての携帯用切断機(1)は、モータ(6)、交流を直流に変換するダイオードブリッジ(42)、モータ(6)に駆動電流を供給するインバータ回路(43)、モータ(6)の起動を指示するトリガ部(5)、ダイオードブリッジ(42)の出力端子間に設けられた電解コンデンサ(C2、C3)、及びダイオードブリッジ(42)の出力端子間に電解コンデンサ(C2、C3)と直列接続されたスイッチング素子(Q7)、を備える。トリガ部(5)によりモータ(6)の起動が指示された後、低負荷時にはスイッチング素子(Q7)をオフ状態とし、高負荷時にはスイッチング素子(Q7)をオン状態とする。

Description

電動工具
本発明は、ブラシレスモータを駆動源とする交流駆動の電動工具に関する。
ブラシレスモータを駆動源とする交流駆動の電動工具は、ダイオードブリッジ等の整流回路、モータに駆動電流を供給するインバータ回路、及びインバータ回路のサージ電圧を吸収するコンデンサを備える。グラインダや丸のこ等の出力の高い電動工具の場合、大きなリプル電流を許容するために、コンデンサの容量を大きくする必要がある。下記特許文献1は、整流回路の出力側に、静電容量の異なる2つのコンデンサを並列接続した平滑回路を設け、インバータ回路のサージ電圧及びピーク電流を抑制している。
国際公開第2016/158133号
交流駆動の電動工具では、無負荷時の高調波を小さくすることが好ましいが、整流回路の出力側に設けるコンデンサの容量を大きくすると、力率が悪くなり高調波も大きくなるという問題がある。これを改善するために力率改善回路を設けると電動工具が大きくなってしまう。
本発明はこうした状況を認識してなされたものであり、その目的は、高調波を抑制可能な電動工具を提供することにある。また、高調波を抑えつつ大型化も抑えた電動工具を提供することにある。
本発明のある態様は、電動工具である。この電動工具は、
ブラシレスモータと、
交流を直流に変換する整流回路と、
前記ブラシレスモータに駆動電流を供給するインバータ回路と、
前記ブラシレスモータの起動を指示するトリガ部と、前記整流回路の出力端子間に、前記インバータ回路と並列に設けられたコンデンサと、前記コンデンサと直列に接続された第1スイッチと、を備え、
前記ブラシレスモータの負荷が大きくなっていくと前記第1スイッチをオフ状態からオン状態に切り替えるように構成されたことを特徴とする。
前記ブラシレスモータによって駆動される先端工具を備え、
前記トリガ部により前記ブラシレスモータの起動が指示された後、前記先端工具が相手材に接触していない状態では、前記第1スイッチをオフ状態としてもよい。
相手材に対する前記先端工具の接触力を大きくしていく過程で前記第1スイッチをオン状態に切り替えてもよい。
負荷が閾値以下の場合に前記第1スイッチをオフ状態とし、負荷が所定値を超えた場合に前記第1スイッチをオン状態としてもよい。
負荷を前記ブラシレスモータを流れる電流としてもよい。
前記コンデンサが第1コンデンサであり、
前記第1コンデンサ及び前記第1スイッチと並列に接続された、前記第1コンデンサより容量が小さい第2コンデンサ、を備えてもよい。
前記トリガ部は、前記整流回路と前記インバータ回路との間の電流経路に設けられた第2スイッチのオンオフを切り替えるものであり、
前記コンデンサ及び前記第1スイッチは、前記第2スイッチの前記整流回路側に設けられてもよい。
前記インバータ回路を制御する制御部を備え、
前記第1スイッチは、前記制御部によって制御されるスイッチング素子で構成されてもよい。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、高調波を抑制可能な電動工具を提供することができる。
本発明の実施の形態1に係る電動工具としての携帯用切断機(携帯用丸鋸)1の斜視図。 携帯用切断機1の側断面図。 携帯用切断機1の制御ブロック図。 比較例に係る携帯用切断機の制御ブロック図。 図3及び図4においてダイオードブリッジ42の出力端子間の容量の大小を変えた場合の、交流電流波形及び直流電圧波形の違いを示す波形図。 携帯用切断機1の制御フローチャート。 携帯用切断機1の動作の一例を示すタイムチャート。 本発明の実施の形態2に係る携帯用切断機1Aの制御ブロック図。 本発明の実施の形態3に係る携帯用切断機1Bの制御ブロック図。
以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。
(実施の形態1) 図1は、本発明の実施の形態1に係る電動工具としての携帯用切断機(携帯用丸鋸)1の斜視図である。図2は、携帯用切断機1の側断面図である。図1により、前後、上下、左右の各方向を定義する。携帯用切断機1は、本体10、ベース30、スタンド部40、連結部材50、及びブラケット60、を備える。携帯用切断機1の機械的構成は周知であり、以下では簡単な説明に留める。
本体10は、ベース30に対して、左右方向又は左右の一方向に傾動可能かつ上下方向に揺動可能に支持される。本体10は、ハウジング11及びギヤカバー13により外殻が形成される。ハウジング11は、例えば樹脂成形体であり、図3に示すモータ(電動モータ)6を内部に収容する。ハンドル部12は、ハウジング11に設けられる。ハンドル部12には、使用者がモータの起動を指示するためのトリガ部5が設けられる。ギヤカバー13は、例えばアルミ等の金属製であり、モータ6の回転を減速して鋸刃16に伝達する不図示の減速機構を覆うと共に、鋸刃16の上半分を覆う。保護カバー15は、例えば樹脂成形体であり、鋸刃16の下半分を開閉可能に覆う。先端工具(回転具)としての鋸刃16は、円板状の回転刃であり、モータ6によって回転駆動される。鋸刃16は、ベース30の貫通穴31を通ってベース30の下面から下方に突出する。
ベース30は、例えばアルミ等の金属製の略長方形の板材である。ベース30の長手方向は切断進行方向と一致する。ベース30の底面は、被削材との摺動面である。ベース30は、鋸刃16を通すための貫通穴31を有する。スタンド部40は、ベース30の前端部に立設され、本体10の傾動位置を調節する傾動位置調節機構を構成する。スタンド部40は、ベベルプレート部47を有する。ベベルプレート部47は、前後方向と略垂直であって、傾動ガイド穴48を有し、本体10の傾動ガイドとして機能する。傾動ガイド穴48は、前後方向と略平行な傾動軸49を中心とする円弧状の長穴である。連結部材50は、本体10とスタンド部40とを連結する部材であり、一端が傾動軸49に回動可能に支持される。連結部材50の他端は、本体10のハウジング11を回動可能に支持する。使用者は、傾動固定レバー51を緩めることで、連結部材50を傾動軸49を中心に回動可能とし、本体10の傾動位置を調節できる。また、使用者は、傾動固定レバー51を締めることで、連結部材50の回動位置を固定し、本体10の傾動位置を固定できる。ブラケット60は、切込み深さ調整機構を構成する不図示のリンクの支持体であり、貫通穴31の後方に設けられる。前記リンクは、本体10を上下方向に揺動可能(すなわち鋸刃16による切込み深さを調整可能)とする。
図2に示すように、ハウジング11の内部には、図3に示す交流電源51に接続する接続手段としての電源コード7の延出元付近となる位置に、メイン基板41が設けられる。メイン基板41には、電解コンデンサC2~C4及びスイッチング素子Q7が設けられ、また図2には現れないが、図3に示すダイオードブリッジ42、インバータ回路43、制御部50、フィルタ回路52、IPD回路53、及びレギュレータ54等も設けられる。
図3は、携帯用切断機1の制御ブロック図である。交流電源51には、ノイズ対策用のフィルタ回路52を介して、交流を直流に変換する整流回路としてのダイオードブリッジ42が接続される。フィルタ回路52は、ヒューズFin、バリスタZ1、パターンヒューズF1、コンデンサC1、抵抗R1、及びチョークコイルL1を含む。ヒューズFinは、スイッチング素子Q1~Q6が短絡した場合の保護用である。バリスタZ1は、サージ電圧吸収用である。パターンヒューズF1は、バリスタZ1が働いた場合に線間がショートするのを防止する役割を持つ。コンデンサC1及びチョークコイルL1は、線間のノイズ除去用である。抵抗R1は、コンデンサC1の放電抵抗である。ダイオードブリッジ42は、フィルタ回路52からの出力電流(交流)を全波整流して直流に変換する。
ダイオードブリッジ42の出力端子間には、第1コンデンサとしての電解コンデンサC2、C3、及び第1スイッチとしてのスイッチング素子Q7が、インバータ回路43と並列に設けられる。スイッチング素子Q7は、図示の例ではFETであるが、IGBTであってもよい。電解コンデンサC2、C3の一端は、ダイオードブリッジ42の一方の出力端子に接続される。電解コンデンサC2、C3の他端は、スイッチング素子Q7の一端に接続される。スイッチング素子Q7の他端は、ダイオードブリッジ42の他方の出力端子に接続される。スイッチング素子Q7の制御端子としてのゲートには、制御部50からの制御信号が入力される。ダイオードブリッジ42の出力端子間には、電解コンデンサC2、C3、及びスイッチング素子Q7と並列に、かつインバータ回路43と並列に、第2コンデンサとしての電解コンデンサC4が設けられる。電解コンデンサC4は、電解コンデンサC2、C3より容量が小さい。
ダイオードブリッジ42とインバータ回路43との間の電流経路には、第2スイッチとしての接点スイッチ5aが設けられる。電解コンデンサC2、C3、及びスイッチング素子Q7は、接点スイッチ5aのダイオードブリッジ42側に設けられる。電解コンデンサC4は、接点スイッチ5aのインバータ回路43側に設けられる。接点スイッチ5aは、トリガ部5の操作によってオンオフが切り替えられる。トリガ部5は、2極トリガスイッチの操作部であり、トリガ部5の操作により接点スイッチ5aがオンになると、同時に制御部50に繋がる接点が閉じ、制御部50にオン信号が入力される。
インバータ回路43は、三相ブリッジ接続されたIGBTやFET等のスイッチング素子Q1~Q6を含み、制御部50の制御に従ってスイッチング動作することで、モータ6のステータコイル6e(U,V,Wの各巻線)に駆動電流を供給する。モータ6は、インナーロータ型のブラシレスモータであり、ロータに複数の(例えば4つの)ロータマグネット(永久磁石)6cを有し、ロータの周囲にはステータコア6dが設けられ、ステータコア6dにはステータコイル6eが設けられる。抵抗Rsは、モータ6の電流経路に設けられる。抵抗Rsの両端間の電圧は、制御部50に入力される。制御部50は、抵抗Rsの両端間の電圧により、モータ6の電流(負荷)を検出する。また、制御部50は、複数のホールIC45の出力電圧により、モータ6の回転位置(ロータ回転位置)を検出する。
ダイオードブリッジ42の一方の出力端子には、ダイオードD1のアノードが接続される。ダイオードD1のカソードは、IPD回路53の第1入力端子に接続される。ダイオードブリッジ42の他方の出力端子には、IPD回路53の第2入力端子が接続される。IPD回路53の第1及び第2入力端子間には、電解コンデンサC5が設けられる。IPD回路53は、インテリジェント・パワー・デバイス(Intelligent Power Device)であるIPD素子やコンデンサ等により構成された回路であり、ダイオードブリッジ42の出力端子間の電圧を例えば約18Vに降圧するDC-DCスイッチング電源回路である。IPD回路53は、集積回路であり、消費電力が小さく省エネルギーであるというメリットがある。IPD回路53の出力電圧は、レギュレータ54によって例えば約5Vに更に降圧され、制御部50に動作電圧(電源電圧Vcc)として供給される。IPD回路53及びレギュレータ54は、制御部50に動作電圧を供給する制御系電源回路を構成する。制御部50は、例えばマイクロコントローラ(マイコン)である。
制御部50は、トリガ部5の操作により接点スイッチ5aがオンになったことを検出すると、スイッチング素子Q1~Q6をスイッチング制御(例えばPWM制御)し、モータ6を駆動する。制御部50は、後述のように、トリガ部5によりモータ6の起動が指示された後(接点スイッチ5aがオンされた後)、スイッチング素子Q7をオフ状態とし、その後、スイッチング素子Q7をオン状態に切り替える制御を行う。スイッチング素子Q7がオンの場合、ダイオードブリッジ42の出力端子間の容量は、電解コンデンサC2~C4の容量の和で、大容量となる。このため、サージ電圧吸収効果が高く、また許容リプル電流も大きい。一方、スイッチング素子Q7がオフの場合、ダイオードブリッジ42の出力端子間の容量は、電解コンデンサC4のみで小容量となる。このため、力率の悪化が抑制され、高調波が抑制される。
図4は、比較例に係る携帯用切断機の制御ブロック図である。本比較例の携帯用切断機は、実施の形態1の携帯用切断機1と比較して、電解コンデンサC3が無くなり、スイッチング素子Q7の部分が短絡に替わった点で相違し、その他の点で一致する。本比較例では、ダイオードブリッジ42の出力端子間の容量が固定されるため、容量を大きくすると高調波が大きくなり、容量を小さくするとサージ電圧吸収効果が低く且つ許容リプル電流が小さくなる。
図5は、図3及び図4においてダイオードブリッジ42の出力端子間の容量の大小を変えた場合の、交流電流波形及び直流電圧波形の違いを示す波形図である。なお、ダイオードブリッジ42の出力端子間の容量が大きい場合は、図3ではスイッチング素子Q7がオンの場合に対応し、図4では電解コンデンサC2、C4の合計容量が大きい場合に対応する。また、ダイオードブリッジ42の出力端子間の容量が小さい場合は、図3ではスイッチング素子Q7がオフの場合に対応し、図4では電解コンデンサC2、C4の合計容量が小さい場合に対応する。図5に示す波形図は、上から順に、
・交流電源51の電圧波形、
・無負荷かつダイオードブリッジ42の出力端子間の容量が大きい場合の交流電源51の電流波形、
・無負荷かつダイオードブリッジ42の出力端子間の容量が小さい場合の交流電源51の電流波形、
・高負荷かつダイオードブリッジ42の出力端子間の容量が小さい場合のダイオードブリッジ42の出力端子間電圧波形、
・高負荷かつダイオードブリッジ42の出力端子間の容量が大きい場合のダイオードブリッジ42の出力端子間電圧波形、
を示す。なお、交流電源51の電流波形の波形図(図5の上から2つ目と3つ目の波形図)には、交流電源51の電圧波形を破線で併せて示している。
図5の上から2つ目と3つ目の電流波形の比較から明らかなように、無負荷時又は低負荷時において、ダイオードブリッジ42の出力端子間の容量が小さいと、容量が大きい場合と比較して、1サイクルあたりの通電時間が長くなり、力率の悪化が抑制され、高調波が抑制される。また、図5の上から4つ目と5つ目の電圧波形の比較から明らかなように、高負荷時において、ダイオードブリッジ42の出力端子間の容量が大きいと、容量が小さい場合と比較して、サージ電圧がより吸収され、電圧のオーバーシュートが抑制される。そこで本実施の形態では、無負荷時ないし低負荷時は、スイッチング素子Q7をオフにしてダイオードブリッジ42の出力端子間の容量を小さくし、力率の悪化を抑制して高調波を抑制する。一方、高負荷時は、スイッチング素子Q7をオンにしてダイオードブリッジ42の出力端子間の容量を大きくし、サージ電圧吸収効果を高め且つ許容リプル電流を大きくする。
図6は、携帯用切断機1の制御フローチャートである。図6に示すフローチャートは、電源コード7が交流電源51に接続されることによりスタートし、スタート時、トリガ部5はオフである。制御部50は、初期状態として、モータ6を停止し(S1)、スイッチング素子Q7をオフする(S2)。制御部50は、トリガ部5がオンになると(S3のYES)、インバータ回路43のスイッチング素子Q1~Q6をスイッチング制御し、モータ6を駆動する(S4)。制御部50は、モータ6の駆動中にモータ6に流れる電流(以下「モータ電流」とも表記)を監視し、モータ電流が第1閾値以上になると(S5のYES)、スイッチング素子Q7をオンにする(S6)。その後、制御部50は、モータ電流が第1閾値より小さい第2閾値以下になると(S7のYES)、スイッチング素子Q7をオフにする(S8)。
図7は、携帯用切断機1の動作の一例を示すタイムチャートである。図7に示すタイムチャートは、上から順に、交流電源51からの入力電圧の実効値(以下「AC電圧実効値」とも表記)、トリガ部5のオンオフ、モータ6に流れる電流、スイッチング素子Q7のオンオフ、を示す。時刻t1において電源コード7が交流電源51に接続されると、AC電圧実効値が立ち上がる。時刻t1ではトリガ部5がオフであり、制御部50は、モータ6を停止し、スイッチング素子Q7をオフしている。時刻t2においてトリガ部5がオンされると、制御部50がモータ6を駆動し、モータ電流が立ち上がる。時刻t2では、鋸刃16は相手材に接触していない無負荷運転のため、モータ電流は第2閾値I2以下であり、制御部50はスイッチング素子Q7をオフに維持する。時刻t3において鋸刃16が相手材に接触し始めると、モータ電流が上昇する。その後、鋸刃16を相手材に押し付けていく(相手材に対する鋸刃16の接触力を大きくしていく)過程の時刻t4においてモータ電流が第1閾値I1以上になると、制御部50は、スイッチング素子Q7をターンオンする。その後、鋸刃16を相手材から離していく(相手材に対する鋸刃16の接触力を小さくしていく)過程の時刻t5においてモータ電流が第2閾値I2以下になると、制御部50は、スイッチング素子Q7をターンオフする。
本実施の形態によれば、下記の効果を奏することができる。
(1) モータ電流が小さい無負荷ないし低負荷時は、スイッチング素子Q7をオフにしてダイオードブリッジ42の出力端子間の容量を小さくするため、出力端子間の容量が常に大きい場合と比較して高調波を抑制できる。また、モータ電流が大きい高負荷時は、スイッチング素子Q7をオンにしてダイオードブリッジ42の出力端子間の容量を大きくするため、出力端子間の容量が常に小さい場合と比較してサージ電圧吸収効果を高め且つ許容リプル電流を大きくすることができる。したがって、高調波の抑制と、高いサージ電圧吸収効果及び大きい許容リプル電流と、をバランス良く実現することができる。また、力率改善回路を設ける必要がないため、電動工具の大型化を抑制することができる。
(2) スイッチング素子Q7をターンオンする第1閾値と、ターンオフする第2閾値と、の間に差を持たせ、第2閾値を第1閾値より小さくしているため、ターンオン及びターンオフを同一の閾値で行う場合と比較して、スイッチング素子Q7のオンオフ動作の安定性が高められる。
(実施の形態2) 図8は、本発明の実施の形態2に係る携帯用切断機1Aの制御ブロック図である。携帯用切断機1Aは、実施の形態1の携帯用切断機1と比較して、電解コンデンサC4がフィルムコンデンサC7に替わった点で相違し、その他の点で一致する。本実施の形態も、実施の形態1と同様の効果を奏することができる。
(実施の形態3) 図9は、本発明の実施の形態3に係る携帯用切断機1Bの制御ブロック図である。携帯用切断機1Bは、実施の形態1の携帯用切断機1と比較して、電解コンデンサC3が無くなった点で相違し、その他の点で一致する。本実施の形態も、実施の形態1と同様の効果を奏することができる。
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。
電動工具は、実施の形態で例示した携帯用切断機に限定されず、グラインダ等の他の種類のものであってもよい。第1スイッチとして、スイッチング素子Q7に替えて、リレー等の接点スイッチを使用してもよい。また、負荷としてブラシレスモータに流れる電流を検出するのではなく、ブラシレスモータ又は先端工具(鋸刃)の回転数や、インバータ回路を構成するスイッチング素子のデューティ比等を検出してもよく、電流に限るものではない。負荷が大きくなるとブラシレスモータや先端工具の回転数が低下するため、回転数を検出してスイッチング素子Q7のオンとオフを切り替えてもよい。ブラシレスモータを定速度制御する場合には、ブラシレスモータの回転数は一定となるように、スイッチング素子のデューティ比を増加させるため、このデューティ比を検出すれば負荷を検出することができる。
1,1A,1B…携帯用切断機、7…電源コード、42…ダイオードブリッジ、43…インバータ回路、50…制御部(マイクロコントローラ)、51…交流電源、52…フィルタ回路、53…IPD回路、54…レギュレータ、Rs…検出抵抗

Claims (8)

  1. ブラシレスモータと、
    交流を直流に変換する整流回路と、
    前記ブラシレスモータに駆動電流を供給するインバータ回路と、
    前記ブラシレスモータの起動を指示するトリガ部と、
    前記整流回路の出力端子間に、前記インバータ回路と並列に設けられたコンデンサと、
    前記コンデンサと直列に接続された第1スイッチと、を備え、
    前記ブラシレスモータの負荷が大きくなっていくと前記第1スイッチをオフ状態からオン状態に切り替えるように構成されたことを特徴とする、電動工具。
  2. 前記ブラシレスモータによって駆動される先端工具を備え、
    前記トリガ部により前記ブラシレスモータの起動が指示された後、前記先端工具が相手材に接触していない状態では、前記第1スイッチをオフ状態とすることを特徴とする、請求項1に記載の電動工具。
  3. 相手材に対する前記先端工具の接触力を大きくしていく過程で前記第1スイッチをオン状態に切り替えることを特徴とする、請求項2に記載の電動工具。
  4. 負荷が閾値以下の場合に前記第1スイッチをオフ状態とし、負荷が所定値を超えた場合に前記第1スイッチをオン状態とすることを特徴とする、請求項1から3のいずれか一項に記載の電動工具。
  5. 前記負荷は、前記ブラシレスモータを流れる電流であることを特徴とする、請求項4に記載の電動工具。
  6. 前記コンデンサが第1コンデンサであり、
    前記第1コンデンサ及び前記第1スイッチと並列に接続された、前記第1コンデンサより容量が小さい第2コンデンサ、を備えることを特徴とする、請求項1から5のいずれか一項に記載の電動工具。
  7. 前記トリガ部は、前記整流回路と前記インバータ回路との間の電流経路に設けられた第2スイッチのオンオフを切り替えるものであり、
    前記コンデンサ及び前記第1スイッチは、前記第2スイッチの前記整流回路側に設けられることを特徴とする、請求項1から6のいずれか一項に記載の電動工具。
  8. 前記インバータ回路を制御する制御部を備え、
    前記第1スイッチは、前記制御部によって制御されるスイッチング素子で構成されることを特徴とする、請求項1から7のいずれか一項に記載の電動工具。
PCT/JP2018/002442 2017-02-24 2018-01-26 電動工具 WO2018155073A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019501149A JPWO2018155073A1 (ja) 2017-02-24 2018-01-26 電動工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-034181 2017-02-24
JP2017034181 2017-02-24

Publications (1)

Publication Number Publication Date
WO2018155073A1 true WO2018155073A1 (ja) 2018-08-30

Family

ID=63253796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002442 WO2018155073A1 (ja) 2017-02-24 2018-01-26 電動工具

Country Status (2)

Country Link
JP (1) JPWO2018155073A1 (ja)
WO (1) WO2018155073A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107556A (zh) * 2019-05-24 2019-08-09 台州巨力工具股份有限公司 一种液压工具
FR3108991A1 (fr) * 2020-04-06 2021-10-08 Vitesco Technologies Commande d’une unité électronique de commutation pour l’alimentation électrique d’une charge inductive de puissance.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668288A (en) * 1979-11-05 1981-06-08 Meidensha Electric Mfg Co Ltd Device for regeneration of commutatorless motor
JP2003018877A (ja) * 2001-06-29 2003-01-17 Hitachi Ltd 冷蔵庫
JP2007151207A (ja) * 2005-11-24 2007-06-14 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2009060705A (ja) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp 電力変換装置およびその装置を用いた空気調和機
JP2010213510A (ja) * 2009-03-11 2010-09-24 Ebara Corp ドライ真空ポンプ用電源装置、及びその運転方法
JP2012029440A (ja) * 2010-07-22 2012-02-09 Hitachi Appliances Inc 冷蔵庫およびそれが有するブラシレスdcモータの運転方法
JP2016015793A (ja) * 2014-06-30 2016-01-28 日立工機株式会社 モータ駆動装置及び電動工具
WO2016158133A1 (ja) * 2015-03-31 2016-10-06 日立工機株式会社 電動工具

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410841B2 (ja) * 2014-12-22 2018-10-24 三菱電機株式会社 電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5668288A (en) * 1979-11-05 1981-06-08 Meidensha Electric Mfg Co Ltd Device for regeneration of commutatorless motor
JP2003018877A (ja) * 2001-06-29 2003-01-17 Hitachi Ltd 冷蔵庫
JP2007151207A (ja) * 2005-11-24 2007-06-14 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2009060705A (ja) * 2007-08-31 2009-03-19 Mitsubishi Electric Corp 電力変換装置およびその装置を用いた空気調和機
JP2010213510A (ja) * 2009-03-11 2010-09-24 Ebara Corp ドライ真空ポンプ用電源装置、及びその運転方法
JP2012029440A (ja) * 2010-07-22 2012-02-09 Hitachi Appliances Inc 冷蔵庫およびそれが有するブラシレスdcモータの運転方法
JP2016015793A (ja) * 2014-06-30 2016-01-28 日立工機株式会社 モータ駆動装置及び電動工具
WO2016158133A1 (ja) * 2015-03-31 2016-10-06 日立工機株式会社 電動工具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107556A (zh) * 2019-05-24 2019-08-09 台州巨力工具股份有限公司 一种液压工具
FR3108991A1 (fr) * 2020-04-06 2021-10-08 Vitesco Technologies Commande d’une unité électronique de commutation pour l’alimentation électrique d’une charge inductive de puissance.
WO2021204561A1 (fr) * 2020-04-06 2021-10-14 Vitesco Technologies GmbH Commande d'une unite electronique de commutation pour l'alimentation electrique d'une charge inductive de puissance
CN115335257A (zh) * 2020-04-06 2022-11-11 纬湃科技有限责任公司 控制用于向感应功率负载供电的电子开关单元
US11716012B2 (en) 2020-04-06 2023-08-01 Vitesco Technologies GmbH Controlling an electronic switching unit for supplying power to an inductive power load

Also Published As

Publication number Publication date
JPWO2018155073A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
US10717138B2 (en) Power tool
CN107666238B (zh) 电动作业机
US10525579B2 (en) Electric tool
JP6915691B2 (ja) 電動工具
WO2016194535A1 (ja) 電動工具
US7034477B2 (en) Domestic electrical appliance including an electric motor
US10814470B2 (en) Electrically powered tool
WO2018155073A1 (ja) 電動工具
JP6724437B2 (ja) 電動工具
WO2018061554A1 (ja) 電動工具
US11211894B2 (en) Electric tool
JP2019033649A (ja) 電動工具
JP6760478B2 (ja) 携帯用電動工具
JP6953803B2 (ja) 電動工具
JP2022157786A (ja) 作業機
JP6618381B2 (ja) 電動作業機
JP2016210004A (ja) 卓上切断機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501149

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757018

Country of ref document: EP

Kind code of ref document: A1