WO2018154881A1 - 生型砂の注水混練システム - Google Patents

生型砂の注水混練システム Download PDF

Info

Publication number
WO2018154881A1
WO2018154881A1 PCT/JP2017/041285 JP2017041285W WO2018154881A1 WO 2018154881 A1 WO2018154881 A1 WO 2018154881A1 JP 2017041285 W JP2017041285 W JP 2017041285W WO 2018154881 A1 WO2018154881 A1 WO 2018154881A1
Authority
WO
WIPO (PCT)
Prior art keywords
water injection
water
kneading
green sand
sand
Prior art date
Application number
PCT/JP2017/041285
Other languages
English (en)
French (fr)
Inventor
裕一 小倉
原田 久
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to US16/481,440 priority Critical patent/US11229946B2/en
Priority to BR112019017066A priority patent/BR112019017066A2/pt
Priority to MX2019009919A priority patent/MX2019009919A/es
Priority to KR1020197027255A priority patent/KR20190120275A/ko
Priority to CN201780087315.6A priority patent/CN110325301A/zh
Priority to EP17898324.3A priority patent/EP3586994B1/en
Publication of WO2018154881A1 publication Critical patent/WO2018154881A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/04Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by grinding, blending, mixing, kneading, or stirring
    • B22C5/0409Blending, mixing, kneading or stirring; Methods therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/04Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by grinding, blending, mixing, kneading, or stirring
    • B22C5/0409Blending, mixing, kneading or stirring; Methods therefor
    • B22C5/0472Parts; Accessories; Controlling; Feeding; Discharging; Proportioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/14Equipment for storing or handling the dressed mould material, forming part of a plant for preparing such material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the present invention relates to a water injection and kneading system for green sand.
  • the present invention has been made in view of the above, and an object thereof is to provide a water injection and kneading system that creates a kneaded sand having more stable properties by more appropriately controlling the amount of water injected into green sand. To do.
  • a water injection kneading system includes a weighing hopper for storing measured green sand, a kneader for kneading green sand and water, and the inside of the weighing hopper.
  • the sand is discharged into the kneading machine, or sand injection means for blocking the discharge, a water injection device for injecting water into the green sand in the kneading machine, and a pair of electrodes.
  • a moisture sensor that measures the moisture content of the stored green sand by measuring the potential difference between the electrodes, and a kneading device that controls the amount of water injected by the water injection device based on the output of the moisture sensor and controls the sand input means And a control device.
  • the ratio of green sand to water can be adjusted, and the amount of water injected into the green sand can be controlled more appropriately to create kneaded sand having more stable properties.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. It is a figure showing the detail of the electrode of a moisture sensor.
  • FIG. 1 is a front view of a green sand pouring / kneading system according to the present embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of a green sand pouring / kneading system.
  • the water injection kneading system 1 adds a binder and water to green sand and mixes them to produce kneaded sand having a certain property.
  • the water injection kneading system 1 includes a kneading unit 2, a weighing hopper 3, a sand injection cylinder 4, a binder injection device 5, a CB controller 6, a water injection unit 7, a moisture sensor 8, and a temperature sensor 9.
  • the kneading unit 2 includes a kneading machine 10 and a kneading control device 11.
  • the kneading machine 10 adds the binder discharged from the binder injection device 5 and the water injected from the water injection unit 7 to the green sand input from the weighing hopper 3 and kneads them to produce the mixed sand. To do.
  • the kneading control device 11 controls the opening operation of the sand injection cylinder 4, the water injection operation of the water injection unit 7, and the operation of the kneader 10.
  • the kneading control device 11 includes an amount of green sand stored in the weighing hopper 3, a moisture measurement value of the moisture sensor 8 installed in the weighing hopper 3, and a temperature of the temperature sensor 9 installed in the weighing hopper 3. Based on the measured value, the water amount of the green sand in the kneader 10 is controlled by determining the amount of water that the water injection unit 7 injects.
  • the kneading control device 11 includes a moisture content calculation unit 12 that calculates the moisture content of green sand from the measurement value of the moisture sensor 8 and the measurement value of the temperature sensor 9.
  • the moisture amount calculation unit 12 will be described in detail later when the moisture sensor 8 and the temperature sensor 9 are described.
  • the kneading control device 11 transmits a sand injection signal and a water injection request signal.
  • FIG. 3 is a block diagram showing the relationship between the kneading control device 11, the weighing hopper 3, the sand throwing cylinder 4, the water injection unit 7, the moisture sensor 8, and the temperature sensor 9.
  • the kneading control device 11 receives a moisture measurement value from the moisture sensor 8, a temperature measurement value from the temperature sensor 9, and a weighing completion signal from the weighing hopper 3. Further, the kneading control device 11 instructs the sand injection cylinder 4 to open the sand injection cylinder 4 and instruct to input raw sand into the kneader 10, and to instruct the water injection unit 7 to inject water and the amount of water injection. A water injection request signal is transmitted.
  • the kneading control device 11 is, for example, a computer or a PLC that is electrically connected to the weighing hopper 3, the sand injection cylinder 4, the water injection unit 7, the moisture sensor 8, and the temperature sensor 9.
  • the weighing hopper 3 measures the green sand with a sand weighing means (not shown) provided in the weighing hopper 3 and stores it.
  • the weighing hopper 3 transmits a measurement completion signal to the kneading control device 11 after completion of the measurement of the green sand.
  • the green sand is weighed by the weighing hopper 3.
  • a separate sand weighing device may be provided, and the weighing hopper 3 may be used only for storing the measured green sand. Is possible.
  • the weighing hopper 3 is arranged on the upper part of the kneader 10.
  • the sand weighing means operates in response to the start signal of the kneader 10, but there are other operations such as an operator's manual signal.
  • the sand throwing cylinder 4 opens between the weighing hopper 3 and the kneading machine 10 based on an instruction from the kneading control device 11, and closes the space between the weighing hopper 3 and the kneading machine 10 after a certain period of time by timer control. Specifically, by opening the sand injection cylinder 4, the green sand in the weighing hopper 3 is discharged to the kneader 10, and after the green sand is charged into the kneader 10, the sand injection cylinder 4 is closed to perform the next kneading.
  • the sand throwing cylinder 4 is installed between the weighing hopper 3 and the kneader 10.
  • the binder feeding device 5 releases the binder into the kneader 10 in accordance with an instruction from the kneading control device 11 or an instruction from the operator.
  • the binder feeding device 5 is not shown in the figure, but is disposed at the upper portion of the kneader 10. In this embodiment, bentonite is used as the binder.
  • the CB controller 6 measures a CB value (compactability value) that is a property of the kneaded sand, determines whether the kneaded sand has a desired CB value, and the kneaded sand does not have a desired CB value. If so, direct additional water injection.
  • the CB controller 6 has a computer or a PLC.
  • the water injection unit 7 injects water into the kneader 10 and adds an optimal amount of water to the green sand and the binder in the kneading unit 2.
  • FIG. 4 is a diagram illustrating the water injection unit 7.
  • FIG. 5 is a diagram for explaining a mechanism of water injection by the water injection unit 7.
  • the water injection unit 7 includes a water injection device 13 and a water injection control device 14.
  • the water injection device 13 injects water from a water source into the kneader 10.
  • the water injection device 13 includes a water injection tank 15, a water supply valve 16, a full level meter 17, a pressurization valve 18, a small water injection valve 19, a large water injection valve 20, and a digital flow meter 21.
  • the water injection tank 15 stores water from a water source such as a water pipe.
  • the water supply valve 16 adjusts the amount of water supplied to the water injection tank 15 by opening and closing a valve (valve).
  • the water supply valve 16 is provided between the water source and the water injection tank 15.
  • the full level meter 17 measures whether the amount of water in the water injection tank 15 is full.
  • the full level meter 17 is provided at a position of the water injection tank 15 at the same height as the water surface when the water in the water injection tank 15 is full.
  • the pressurizing valve 18 adjusts the amount of compressed air that pressurizes the inside of the water injection tank 15 by opening and closing a valve (valve).
  • the pressurizing valve 18 is provided between the compressed air source and the water injection tank 15.
  • the small water injection valve 19 and the large water injection valve 20 adjust the amount of water flowing from the water injection tank 15 to the kneader 10 by opening and closing a valve (valve).
  • the small water injection valve 19 and the large water injection valve 20 are connected in parallel between the water injection tank 15 and the kneader 10.
  • the digital flow meter 21 measures the flow rate of water discharged from the water injection tank 15.
  • the digital flow meter 21 is disposed at a position downstream of the small water injection valve 19 and the large water injection valve 20. Then, the water in the water injection tank 15 is injected into the kneader 10 via the small water injection valve 19, the large water injection valve 20, and the digital flow meter 21.
  • the amount of water flowing to the small water injection valve 19 is set to be smaller than the amount of water flowing to the large water injection valve 20.
  • the flow rate ratio between the amount of water flowing through the small water injection valve 19 and the amount of water flowing through the large water injection valve 20 is set between 1: 2 and 1:10.
  • the water injection control device 14 controls the water injection device 13 and supplies water to the water injection tank 15. Further, the water injection control device 14 controls the water injection device 13 based on the water injection request signal from the kneading control device 11 to adjust the amount of water injected from the water injection tank 15 to the kneader 10. Specifically, water is supplied to the water injection tank 15 by controlling the opening and closing of the water supply valve 16, and kneading is performed by controlling the opening and closing of the pressure valve 18, the water injection valve small 19, and the water injection valve large 20. The amount of water poured into the machine 10 is adjusted.
  • the water injection control device 14 measures whether or not the amount of water in the water injection tank 15 is full by the full level meter 17. When the amount of water in the water injection tank 15 is not full, the water injection control device 14 instructs to open the water supply valve 16, and as a result, the water supply valve 16 is opened, and water to the water injection tank 15 is opened. Supply is started. When the amount of water in the water injection tank 15 is full, the water injection control device 14 instructs the water supply valve 16 to be closed. As a result, the water supply valve 16 is closed and water supply to the water injection tank 15 is performed. finish. Note that when the amount of water in the water injection tank 15 is full when the kneading machine 10 is started, the water injection control device 14 does not give any instruction.
  • the water injection control device 14 monitors whether or not the amount of water in the water injection tank 15 is full by the full level meter 17. To do. During the start-up of the kneader 10, the water injection control device 14 always keeps the water in the water injection tank 15 so that the amount of water in the water injection tank 15 is full, except when water is being injected into the kneader 10. The amount of control.
  • the water injection control device 14 receives the water injection request signal from the kneading control device 11, the water injection control device 14 instructs to open the pressurizing valve 18, and as a result, compressed air is supplied to the water injection tank 15 and the inside of the water injection tank 15 is added. Pressed.
  • the water injection control device 14 instructs to open the water injection valve small 19 and the water injection valve large 20, and as a result, the water injection valve small 19 and the water injection valve large 20 are opened, and water injection to the kneader 10 is started.
  • the digital flow meter 21 integrates the water injection amount, and when the value reaches the set water injection amount with respect to the initially required required water injection amount, the large water injection valve 20 is closed and the small flow rate flows. Water injection is continued only with the small water injection valve 19.
  • the amount of water from when the water injection control device 14 transmits a close signal to the small water injection valve 19 until the water injection by the small water injection valve 19 stops is known in advance. Then, when the integrated water injection amount becomes a value obtained by subtracting the water amount from the target water amount until the water injection stops, the water injection control device 14 transmits a close signal of the water injection valve small 19. In addition, it is not necessary to grasp
  • the digital flow meter 21 is disposed downstream of the small water injection valve 19 and the large water injection valve 20, but is disposed on the path from the small water injection valve 19 and the large water injection valve 20 to the water injection tank 15. May be. That is, after the digital flow meter 21 measures the flow rate of the water discharged from the water injection tank 15, the water may flow through the small water injection valve 19 and the large water injection valve 20.
  • FIG. 7 is a diagram showing details of the electrodes of the moisture sensor 8.
  • the moisture sensor 8 measures the moisture content of the sand thrown into the weighing hopper 3.
  • the moisture sensor 8 includes a pair of rod-shaped electrodes 22 and measures moisture between the pair of electrodes.
  • the moisture sensor 8 (a pair of electrodes 22) is attached in the weighing hopper 3 via an insulator to a moisture sensor support device 23 provided on the upper portion of the weighing hopper 3.
  • the moisture sensor support device 23 has a long hole cut and can move in a lateral direction, and the moisture sensor 8 itself can be moved up and down because it is sandwiched between pipe clamps. Therefore, the moisture sensor support device 23 can freely adjust the installation height of the moisture sensor 8 (the pair of electrodes 22) with respect to the weighing hopper 3 and the horizontal distance between the moisture sensors 8 (the pair of electrodes 22). Yes. More specifically, the pair of electrodes are configured to be separated and approachable in the horizontal direction by the moisture sensor support device 23 and configured to be able to rise and fall in the vertical direction.
  • FIG. 6 is a diagram showing that the horizontal distance between the pair of electrodes 22 of the moisture sensor 8 can be changed from A to B.
  • the electrode 22 measures the amount of water at two locations, the upper part and the lower part.
  • the electrode 22 includes an upper electrode wiring connection portion 24, a lower electrode wiring connection portion 25, an upper electrode wiring connection member 26, a lower electrode wiring connection member 27, an upper electrode portion 28, a lower electrode portion 29, an upper electrode conductive member 30, and a lower electrode.
  • a conductive member (shaft component) 31, an insulating member 32, and a nut 33 are provided.
  • the upper electrode wiring connection unit 24 electrically connects the upper electrode wiring connection member 26 and the kneading control device 11 (moisture amount calculation unit 12) via an electric wire or the like.
  • the lower electrode wiring connection unit 25 electrically connects the lower electrode wiring connection member 27 and the kneading control device 11 (moisture amount calculation unit 12) via an electric wire or the like.
  • the upper electrode portion 28 is in electrical contact with the green sand in the upper layer portion of the weighing hopper 3 and is used for measuring a current value flowing between a pair of electrodes 22 facing each other.
  • the lower electrode portion 29 is in electrical contact with the green sand in the lower layer portion of the weighing hopper 3 and is used for measuring a current value flowing between a pair of opposed electrodes 22.
  • the upper electrode conductive member 30 electrically connects the upper electrode wiring connecting member 26 and the upper electrode portion 28.
  • the lower electrode conductive member (shaft component) 31 is disposed at the center of the electrode 22, electrically connects the upper electrode wiring connection member 27 and the lower electrode portion 29, and serves as a shaft of the electrode 22.
  • the insulating member 32 is composed of the upper electrode wiring connecting portion 24, the upper electrode wiring connecting member 26, the upper electrode portion 28, and the upper electrode conductive member 30, and is a constituent member necessary for measuring the amount of moisture at the upper portion.
  • a substantially tubular insulating member 32 is disposed around the lower electrode conductive member (shaft component) 31 at the center of the electrode 22, and the upper electrode conductive of the substantially tubular body is disposed around the insulating member 32.
  • the member 30 is arranged. Therefore, the upper electrode part 28 and the lower electrode part 29 form separate measurement parts on the upper and lower sides with the insulating member 32 as a boundary.
  • the tip portion composed of the upper electrode portion 28 and the lower electrode portion 29 and the insulating member 32 disposed therebetween is integrated.
  • the nut 33 fixes each component of the electrode 22.
  • the electrode 22 has a structure in which the aforementioned tip portion can be easily removed by loosening the nut 33. Therefore, even if the tip portion is worn due to contact with green sand, only that portion can be replaced with a new part.
  • the nut 33 is tightened, each component is fixed, and the lower electrode wiring connecting member 27 and the lower electrode portion 29 are electrically connected through the lower electrode conductive member 31, and the upper electrode wiring connecting member is connected through the upper electrode conductive member 30. 26 and the upper electrode portion 28 are electrically connected.
  • the temperature sensor 9 measures the temperature of the green sand put into the weighing hopper 3.
  • the temperature sensor 9 is attached to a temperature sensor support device (not shown) provided on the upper portion of the weighing hopper 3 and installed in the weighing hopper 3.
  • the temperature sensor support device has a long hole cut and can move in a lateral direction.
  • the temperature sensor 9 itself can be moved in the vertical direction because it is sandwiched between pipe clamps. Therefore, the temperature sensor 9 can be freely adjusted with respect to the position where the moisture sensor 8 is installed.
  • the temperature sensor 9 is adjusted so that the measurement part is located at a position corresponding to the upper electrode part 28 and the lower electrode part 29 of the moisture sensor 8 (the pair of electrodes 22).
  • FIG. 9 is a diagram illustrating the configuration of the moisture sensor 8 (a pair of electrodes 22) and the moisture amount calculation unit 12.
  • the pair of electrodes 22 is electrically connected to the moisture amount calculation unit 12.
  • the moisture amount calculation unit 12 includes a rectangular wave constant current supply unit 34, a switch 35, a voltage smoothing measurement unit 36, a voltage value correction unit 37, and a moisture amount conversion unit 38.
  • the rectangular wave constant current supply means 34 applies a low frequency rectangular wave constant current to the upper electrode portion 28 and the lower electrode portion 29 of each of the pair of electrodes 22 via the upper electrode wiring connection portion 24 and the lower electrode wiring connection portion 25.
  • the switch 35 switches whether the low-frequency rectangular wave constant current supplied from the rectangular wave constant current supply unit 34 to the two electrodes 22 is supplied to the upper electrode part 28 or the lower electrode part 29. Therefore, the low-frequency rectangular wave constant current supplied between the opposed upper electrode portions 28 and the low-frequency rectangular wave constant current supplied between the opposed lower electrode portions 29 are shifted in supply timing by switching. The upper electrode part 28 and the lower electrode part 29 are not supplied simultaneously.
  • the voltage smoothing measuring means 36 smoothes and measures the voltage generated between the upper electrode wiring connecting portions 24 of the pair of electrodes 22 by the current flowing between the upper electrode portions 28 of the pair of electrodes 22 through the green sand. . Similarly, the voltage smoothing measuring means 36 smoothes the voltage generated between the lower electrode wiring connecting portions 25 of the pair of electrodes 22 by the current flowing between the lower electrode portions 29 of the pair of electrodes 22 through the green sand. Measure with.
  • the voltage value correcting unit 37 corrects the smoothed voltage value obtained from the voltage smoothing measuring unit 36 based on the temperature measurement result from the temperature sensor 9.
  • the moisture content conversion means 38 converts the moisture content of the green sand based on the smoothed voltage value corrected by the voltage value correction means 37.
  • the rectangular wave constant current supply means 34 applies low frequency to the upper electrode portion 28 and the lower electrode portion 29 of the pair of electrodes 22.
  • a rectangular wave constant current is supplied to cause a current to flow between the upper electrode portions 28 of the pair of electrodes 22 and between the lower electrode portions 29 of the pair of electrodes 22 via the green sand, and two upper electrode wiring connections
  • the voltage generated between the parts 24 and the voltage generated between the two lower electrode wiring connecting parts 25 are smoothed and measured by the voltage smoothing measuring means 36.
  • the voltage value correcting unit 37 corrects the smoothed voltage value obtained from the voltage smoothing measuring unit 36, and based on the corrected smoothed voltage value, the moisture amount converting unit 38 converts the moisture of the green sand. Convert the amount. Thereby, the water content of the actual green sand is calculated.
  • the measurement by the upper electrode portion 28 of the electrode 22 and the measurement by the lower electrode portion 29 of the electrode 22 are alternately performed.
  • the measurement accuracy can be improved by measuring the upper and lower layers of the green sand layer with the upper electrode portion 28 and the lower electrode portion 29 and averaging the values.
  • the required measurement accuracy can be obtained only by measuring either the upper electrode part 28 or the lower electrode part 29.
  • a parallel plate electrode type moisture sensor has been installed on the belt conveyor before the green sand is stored in the weighing hopper 3, and the amount of water in the green sand flowing on the belt conveyor has been measured.
  • the moisture sensor is not buried at a certain depth in the green sand layer, the amount of water cannot be measured under the same conditions. Therefore, a quantitative hopper for quantitative cutting of the green sand is required, and the layout In some cases, the moisture content immediately before kneading cannot be measured.
  • measurement accuracy is not stable.
  • the moisture sensor 8 is a pair of rod-shaped electrodes 22 and therefore has the following advantages in addition to those described above. ⁇ Because there is no need for a belt conveyor or quantitative cut-out hopper, it is easy to install into existing equipment. ⁇ It is possible to measure the amount of water immediately before green sand is added. -Compared to a parallel plate electrode type moisture sensor that is installed on a belt conveyor and measures the flowing green sand, the friction of the green sand of the sensor itself is small and it is difficult to wear. ⁇ Since the moisture content of the stored green sand is measured, the measurement accuracy is stable.
  • the moisture sensor 8 (and the temperature sensor 9) can be easily attached by attaching the moisture sensor support device 23 (and the temperature sensor support device) to the weighing hopper 3, so that it is additionally modified to existing equipment. In some cases, it can be easily introduced with little modification. -Since the moisture sensor 8 (and temperature sensor 9) can be installed in the weighing hopper 3, a special place for installing the moisture sensor 8 (and temperature sensor 9) is not required. -Since the moisture sensor 8 (and temperature sensor 9) is exposed from the weighing hopper 3, the distance between the moisture sensors 8 and the insertion depth of the moisture sensor 8 (and temperature sensor 9) can be easily changed from the outside. It is.
  • the water injection and kneading system 1 of this embodiment was actually operated, and the measurement accuracy of the moisture sensor 8 was evaluated.
  • Experiment 1 The moisture content of green sand measured by the moisture sensor 8 immediately after the adjustment was completed, and the moisture content of green sand measured by the moisture sensor 8 after the water pouring and kneading system 1 was operated for two weeks after the adjustment was completed. did. The moisture sensor 8 was not cleaned at all during the operation of the water pouring / kneading system 1.
  • FIG. 10 is a graph showing the relationship between the moisture voltage measured by the moisture sensor 8 and the measured moisture immediately after the adjustment is completed and after operating for two weeks.
  • the measurement accuracy of the moisture sensor 8 of the present embodiment did not decrease even after two weeks had passed since the water injection kneading system 1 was operated.
  • FIG. 11 is a graph showing the relationship between the moisture voltage measured by the moisture sensor 8 and the measured moisture.
  • the conventional sensor cannot measure a high moisture region where the moisture content of green sand is about 3%.
  • the moisture sensor 8 of the present embodiment was able to measure even when the moisture content of green sand was about 3%.
  • FIG. 12 is a graph showing the relationship between the distance between the pair of electrodes 22 and the moisture voltage.
  • the moisture sensor 8 of the present embodiment even when green sand having the same moisture content was measured, the moisture voltage decreased when the distance between the electrodes 22 was increased. Therefore, even if the moisture content of green sand to be measured is high, it is possible to widen the measurement range by increasing the distance between the electrodes 22.
  • FIG. 13 is a flowchart showing a green sand kneading method using the water injection kneading system 1 according to the present embodiment.
  • the kneader 10 is started (step S1). Simultaneously with the start-up of the kneading machine 10, the sand weighing for weighing the green sand put into the kneading machine 10 is started (step S2). Next, sand weighing is completed, and a sand throwing signal is transmitted from the kneading control device 11 to the sand throwing cylinder 4. When the sand throwing signal is received, the sand throwing cylinder 4 is opened, and green sand is thrown into the kneader 10 from the weighing hopper 3 (step S3). The sand throwing cylinder 4 closes the space between the weighing hopper 3 and the kneading machine 10 after a certain time has passed by the timer control.
  • the binder is charged into the kneading machine 10 from the binder charging device 5 (step S4).
  • the kneading control device 11 instructs the kneading machine 10 to start kneading by the kneading machine 10 (step S5).
  • the kneading control device 11 transmits a water injection request signal to the water injection control device 14 of the water injection unit 7.
  • the water injection control device 14 of the water injection unit 7 starts the water injection operation (step S6).
  • water is poured into the kneader 10 from the water injection tank 15 of the water injection unit 7. The water injection operation by the water injection unit 7 will be described in detail later.
  • the CB controller 6 measures the CB value (step S7), and determines whether the kneaded sand has a desired CB value (step S8).
  • the CB controller 6 determines that the kneaded sand does not have the desired CB value (step S8: No)
  • the CB controller 6 calculates the necessary water injection amount (step S9) and kneads the calculated amount of water again.
  • An instruction is given to the water injection unit 7 through the kneading control device 11 so as to inject water into the machine 11 (a water injection request signal is transmitted). And it returns to step S6 and the water injection control apparatus 14 of the water injection unit 7 starts water injection operation again.
  • step S8 When the CB controller 6 determines that the kneaded sand has a desired CB value (step S8: Yes), the kneaded sand is discharged from the kneader 10 (step S10).
  • the kneading control device 11 determines whether or not to perform kneading work continuously from the amount of green sand to be kneaded (step S11). When it is determined that the kneading operation is continuously performed (step S11: Yes), the kneading control device 11 returns to step S3, waits for the completion of the sand weighing (step S2), and repeats the steps after step S3. When the kneading control device 11 determines that the kneading operation is not performed continuously (step S11: No), the kneading machine 10 is stopped (step S12), and the kneading operation is completed. In addition, the amount of water injection and the amount of change in the CB value are fed back to the next water injection amount, and the accuracy of the water injection amount after the next time is increased.
  • FIG. 14 is a flowchart showing a sand weighing method.
  • the weight of the green sand in the weighing hopper 3 is measured by a sand weighing means (not shown) provided in the weighing hopper 3, and it is confirmed that the weighing hopper 3 is empty.
  • Step S101 Upon receiving an empty signal from the weighing hopper 3, the kneading control device 11 operates a sand throwing means (not shown) provided in the weighing hopper 3 to throw green sand into the weighing hopper 3 (step S102).
  • the sand measuring means measures and stores green sand (step S103).
  • a measuring method of green sand there are weighing with a load cell, timer weighing, weighing with a level meter, and the like.
  • the weighing hopper 3 transmits a weighing completion signal to the kneading control device 11 after the weighing of the green sand is completed.
  • the kneading control device 11 when receiving the measurement completion signal from the weighing hopper 3, the kneading control device 11 measures the moisture content of the green sand put in by the moisture sensor 8 and measures the temperature of the green sand put in by the temperature sensor 9. (Step S104). Next, the kneading control device 11 is supplied based on the moisture measurement value measured by the moisture sensor 8, the temperature measurement value measured by the temperature sensor 9, and the amount of green sand stored in the weighing hopper 3. The amount of water is calculated (step S105). When the calculation of the water injection amount is completed, one step of sand weighing is completed (step 106).
  • the kneading controller 11 determines whether or not to continue the next sand measurement (step S107). When the kneading control device 11 determines to continue sand weighing (step S107: Yes), the kneading control device 11 returns to step S101 and repeats the subsequent steps. When it is determined that the sand measurement is not continued (step S107: No), the kneading control device 11 ends the sand measurement.
  • FIG. 15 is a flowchart showing an operation method of the water injection unit 7.
  • the water injection control device 14 determines whether or not the amount of water in the water injection tank 15 is full using the full level meter 17 (step S1001).
  • step S1001 determines that the amount of water in the water injection tank 15 is not full (step S1001: No)
  • the water injection valve 16 is opened and the water injection tank 15 is instructed to open the water supply valve 16.
  • the supply of water is started (step S1002).
  • step S1003 the water injection control device 14 instructs the water supply valve 16 to be closed, and the water supply valve 16 is closed (step S1004).
  • the process proceeds to S1005.
  • step S1005 the water injection control device 14 of the water injection unit 7 starts the water injection operation when receiving the water injection request signal. Accordingly, steps S1001 to S1004 in FIG. 15 are operations actually performed in the water injection unit 7 during steps S1 to S5 in FIG. 13. Steps after step S1005 in FIG. 15 are steps S6 in FIG. This corresponds to the operation performed in.
  • step S1005 when receiving the water injection request signal, the water injection control device 14 instructs the pressurization valve 18 to open, and compressed air is supplied to the water injection tank 15 to pressurize the inside of the water injection tank 15 (step S1006).
  • step S1006 the water injection control device 14 instructs to open the water injection valve small 19 and the water injection valve large 20, the water injection valve small 19 and the water injection valve large 20 are opened, and water injection into the kneader 10 is started (step). S1007).
  • step S1008 When the water injection amount integrated by the digital flow meter 21 reaches the calculated predetermined amount (step S1008), the water injection control device 14 instructs to close the water injection valve small 19 and the water injection valve large 20, and the water injection valve small 19 and The large water injection valve 20 is closed, and the water injection into the kneader 10 is completed (step S1009). After completing the water injection operation, the water injection control device 14 instructs the pressurization valve 18 to close, the compressed air is discharged from the water injection tank 15, and the pressure inside the water injection tank 15 returns to the state before pressurization (step S1010). ).
  • step S1011 determines whether or not the kneader 10 is in operation.
  • step S1011: Yes the water injection control device 14 returns to step S1001 and continues to operate the water injection unit 7.
  • step S1011: No the operation of the water injection unit 7 is terminated.
  • the moisture sensor support device 23 uses a driving device or the like to set the installation height of the moisture sensor 8 (the pair of electrodes 22) and the horizontal distance between the moisture sensors 8 (the pair of electrodes 22). You may design so that it may adjust automatically.
  • the temperature sensor support device may be designed so as to automatically adjust the vertical position and horizontal position of the temperature sensor 9 using a drive device or the like according to an instruction from the kneading control device 11.
  • the kneading control device 11 can give an accurate instruction to the moisture sensor support device 23 and the temperature sensor support device in consideration of the moisture measurement value measured by the moisture sensor 8.
  • the electrode 22 has two measurement portions, that is, the upper electrode portion 28 and the lower electrode portion 29, but is not limited to two locations.
  • the length of the tip portion of the electrode 22 changes in accordance with the amount of green sand put into the weighing hopper 3 and the size and shape of the weighing hopper 3, so that only one measurement portion is provided. Three or more locations may be provided.
  • a moisture sensor may be separately provided in the kneader 10 and connected to the CB controller 6.
  • the moisture content of the kneading sand in the kneading machine 11 is measured, and when the moisture content is large, the green sand is additionally supplied from the kneading control device 11 connected to the CB controller 6 to the kneading unit 2.
  • the amount of moisture is small, it is possible to instruct to add additional water to the water injection unit 7 from the kneading control device 11 connected to the CB controller 6.
  • the CB controller 6 may not be provided in the water injection and kneading system. In that case, the operator directly measures the CB value. As a result, when the kneaded sand does not have the desired CB value, the additional water injection valve 19 and / or the large water injection valve 20 are opened again by manually pressing the additional water injection button added to the kneader 10 to perform additional water injection.
  • the kneading control device controls the water pouring and kneading system, so that the amount of water pouring into the green sand is more appropriately controlled and has a more stable property. It becomes possible to create kneaded sand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

【課題】生型砂への注水量をより適切に制御して、より安定した性状を有する混練砂を作成する注水混練システムを提供すること。 【解決手段】生型砂の注水混練システムであって、計量された生型砂を貯留する計量ホッパと、生型砂と水とを混練する混練機と、計量ホッパ内の生型砂を混練機に放出し、又は、放出を遮断する砂投入手段と、混練機内の生型砂に対して注水を行う注水装置と、一対の電極で構成され、計量ホッパ内に貯留された生型砂の水分量を電極間の電位差を測定することにより測定する水分センサと、水分センサの出力に基づいて注水装置による注水量を制御し、砂投入手段を制御する混練制御装置と、を備えたこと、を特徴とする。

Description

生型砂の注水混練システム
 本発明は、生型砂の注水混練システムに関する。
 従来から、鋳物砂にベントナイト等の添加剤(粘結剤)が加えられた生型砂に水を注水し、混練する混練機が知られている(例えば、特許文献1参照)。
特開2013-237086号公報
 以前より、生型砂への注水量をより適切に制御して、より安定した性状を有する混練砂を作成する注水混練システムが望まれていた。
 本発明は、上記に鑑みてなされたものであって、生型砂への注水量をより適切に制御して、より安定した性状を有する混練砂を作成する注水混練システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明における注水混練システムは、計量された生型砂を貯留する計量ホッパと、生型砂と水とを混練する混練機と、前記計量ホッパ内の生型砂を前記混練機に放出し、又は、放出を遮断する砂投入手段と、前記混練機内の生型砂に対して注水を行う注水装置と、一対の電極で構成され、前記計量ホッパ内に貯留された生型砂の水分量を前記電極間の電位差を測定することにより測定する水分センサと、前記水分センサの出力に基づいて前記注水装置による注水量を制御し、砂投入手段を制御する混練制御装置と、を備えたことを特徴とする。
 本発明によれば、生型砂と水の割合を調整し、生型砂への注水量をより適切に制御して、より安定した性状を有する混練砂を作成することができるという効果を奏する。
本実施の形態に係る生型砂の注水混練システムの正面図である。 生型砂の注水混練システムの機能構成を表すブロック図である。 混練制御装置と、計量ホッパ、砂投入シリンダ、注水ユニット、水分センサ、及び、温度センサとの関係を表すブロック図である。 注水ユニットを表す図である。 注水ユニットによる注水の仕組みを説明する図である。 図1のA-A矢視断面図である。 水分センサの電極の詳細を表す図である。 水分センサの一対の電極間の水平距離をAからBに変更することが可能なことを表す図である。 水分センサ(一対の電極)と水分量算出部の構成を表す図である。 調整を終了した直後と2週間稼働した後に水分センサが測定した水分電圧と実測水分の関係を示すグラフである。 水分センサが測定した水分電圧と実測水分の関係を示すグラフである。 一対の電極間の距離と水分電圧の関係を示すグラフである。 本実施の形態に係る注水混練システムを用いた生型砂の混練方法を示すフローチャートである。 砂計量方法を示すフローチャートである。 注水ユニットの操作方法を示すフローチャートである。
 以下、添付図面を参照して、本発明による生型砂の注水混練システムを実施するための形態について、図面に基づいて説明する。
 図1は、本実施の形態に係る生型砂の注水混練システムの正面図である。また、図2は、生型砂の注水混練システムの機能構成を表すブロック図である。注水混練システム1は、生型砂に粘結剤と水を加えて、それらを混合して一定の性状を有する混練砂を作製する。注水混練システム1は、混練ユニット2、計量ホッパ3、砂投入シリンダ4、粘結剤投入装置5、CBコントローラ6、注水ユニット7、水分センサ8、及び、温度センサ9を備えている。
 混練ユニット2は、混練機10、及び、混練制御装置11を備えている。混練機10は、計量ホッパ3から投入された生型砂に、粘結剤投入装置5から放出された粘結剤と、注水ユニット7から注水された水とを加えて混練し、混練砂を作製する。
 混練制御装置11は、砂投入シリンダ4の開く動作、注水ユニット7の注水動作、及び、混練機10の動作を制御する。混練制御装置11は、計量ホッパ3内に貯留された生型砂の量、計量ホッパ3内に設置された水分センサ8の水分測定値、及び、計量ホッパ3内に設置された温度センサ9の温度測定値に基づいて、注水ユニット7が注水する水の量を決定することにより、混練機10内の生型砂の水分量を制御する。混練制御装置11は、水分センサ8の測定値及び温度センサ9の測定値から生型砂の水分量を算出する水分量算出部12を備えている。水分量算出部12については、後ほど水分センサ8及び温度センサ9の説明時に詳細に説明する。混練制御装置11は、砂投入信号及び注水要求信号を発信する。
 図3は、混練制御装置11と、計量ホッパ3、砂投入シリンダ4、注水ユニット7、水分センサ8、及び、温度センサ9との関係を表すブロック図である。混練制御装置11は、水分センサ8から水分測定値、温度センサ9から温度測定値、及び、計量ホッパ3から計量完了信号を受信する。また、混練制御装置11は、砂投入シリンダ4に、砂投入シリンダ4を開いて生型砂の混練機10への投入を指示する砂投入信号、及び、注水ユニット7に、注水及び注水量を指示する注水要求信号を送信する。混練制御装置11は、計量ホッパ3、砂投入シリンダ4、注水ユニット7、水分センサ8、及び、温度センサ9と電気的に接続された、例えば、コンピューター、又は、PLCである。
 計量ホッパ3は、計量ホッパ3に備えられた砂計量手段(図示せず)で生型砂を計量し、貯留する。そして、計量ホッパ3は、生型砂の計量完了後、混練制御装置11に計量完了信号を発信する。なお、本実施の形態において生型砂の計量は、計量ホッパ3にて行っているが、別に砂計量を行う装置を備え、本計量ホッパ3を計量された生型砂の貯留のみに使用することも可能である。計量ホッパ3は、混練機10の上部に配置される。なお、砂計量手段は混練機10の起動信号を受けて作動するが、その他、作業者の手動信号での作動等もある。
 砂投入シリンダ4は、混練制御装置11からの指示に基づき計量ホッパ3と混練機10の間を開き、タイマー制御により一定の時間が経過した後、計量ホッパ3と混練機10の間を閉じる。具体的には、砂投入シリンダ4を開くことにより計量ホッパ3内の生型砂を混練機10へ放出し、生型砂の混練機10への投入後に砂投入シリンダ4を閉じることにより、次の混練バッチ用に計量ホッパ3に新たに生型砂を計量したとき計量ホッパ3から混練機10へ生型砂が流入することを防ぐ。砂投入シリンダ4は、計量ホッパ3と混練機10との間に設置される。
 粘結剤投入装置5は、混練制御装置11からの指示、又は、作業者からの指示により、粘結剤を混練機10内へ放出する。粘結剤投入装置5は、図示されていないが、混練機10の上部に配置される。なお、本実施の形態では、粘結剤としてベントナイトを用いる。
 CBコントローラ6は、混練された砂の性状であるCB値(コンパクタビリティ値)を測定するとともに、混練された砂が所望のCB値か否かを判断し、混練砂が所望のCB値ではない場合、追加注水を指示する。CBコントローラ6は、コンピューター、又は、PLCを有している。
(注水ユニット)
 注水ユニット7は、水を混練機10内に注水し、混練ユニット2内の生型砂と粘結剤に対して最適の注水量を添加する。図4は、注水ユニット7を表す図である。また、図5は、注水ユニット7による注水の仕組みを説明する図である。注水ユニット7は、注水装置13、及び、注水制御装置14を備えている。
 注水装置13は、水源からの水を混練機10へ注水する。注水装置13は、注水タンク15、給水バルブ16、満レベル計17、加圧バルブ18、注水バルブ小19、注水バルブ大20、及び、デジタル流量計21を備えている。
 注水タンク15は、水道管等の水源からの水を蓄える。給水バルブ16は、弁(バルブ)を開閉することにより注水タンク15へ供給する水の量を調整する。給水バルブ16は、水源と注水タンク15との間に設けられる。満レベル計17は、注水タンク15内の水の量が満杯の状態であるかを測定する。満レベル計17は、注水タンク15の、注水タンク15内の水が満杯になった時の水面と同じ高さの位置に設けられる。加圧バルブ18は、弁(バルブ)を開閉することにより注水タンク15内を加圧する圧縮空気の量を調整する。加圧バルブ18は、圧縮空気源と注水タンク15との間に設けられる。
 注水バルブ小19及び注水バルブ大20は、弁(バルブ)を開閉することにより注水タンク15から混練機10へ流れる水の量を調整する。注水バルブ小19及び注水バルブ大20は、注水タンク15と混練機10の間で並列に接続される。デジタル流量計21は、注水タンク15から放出される水の流量を測定する。デジタル流量計21は、注水バルブ小19及び注水バルブ大20より下流の位置に配置される。そして、注水タンク15内の水は、注水バルブ小19及び注水バルブ大20、及び、デジタル流量計21を経由し、混練機10へ注水される。
 ここで、弁が開いている時に、注水バルブ小19に流れる水の量が注水バルブ大20に流れる水の量より少なくなるように設定する。例えば、注水バルブ小19に流れる水の量と注水バルブ大20に流れる水の量の流量比を、1:2から1:10の間に設定する。
 注水制御装置14は、注水装置13を制御し、注水タンク15へ水を供給する。また、注水制御装置14は、混練制御装置11からの注水要求信号に基づいて注水装置13を制御し、注水タンク15から混練機10へ注水する水の量を調整する。具体的には、給水バルブ16の開閉を制御することにより、注水タンク15へ水を供給し、加圧バルブ18、注水バルブ小19、及び、注水バルブ大20の開閉を制御することにより、混練機10へ注水する水の量を調整する。
 次に、注水ユニット7が水源から注水タンク15へ水を供給する仕組みを説明する。初めに、混練機10が起動すると、注水制御装置14は、満レベル計17により、注水タンク15内の水の量が満杯の状態であるかを測定する。そして、注水タンク15内の水の量が満杯の状態でない場合、注水制御装置14は、給水バルブ16を開くように指示し、その結果、給水バルブ16が開かれ、注水タンク15への水の供給が開始される。注水タンク15内の水の量が満杯の状態となると、注水制御装置14は、給水バルブ16を閉じるように指示し、その結果、給水バルブ16が閉じられ、注水タンク15への水の供給が終了する。なお、混練機10の起動時点で、注水タンク15内の水の量が満杯の状態である場合は、注水制御装置14は、特に何も指示をしない。
 さらに、注水ユニット7が注水タンク15から混練機10へ水を注水した後にも、注水制御装置14は、満レベル計17により、注水タンク15内の水の量が満杯の状態であるかを監視する。混練機10の起動中は、注水制御装置14は、混練機10への水の注水時以外、常に、注水タンク15内の水の量が満杯の状態であるように、注水タンク15内の水の量を制御する。
 次に、注水ユニット7が注水タンク15から混練機10へ水を注水する仕組みを説明する。初めに、注水制御装置14は、混練制御装置11から注水要求信号を受信すると、加圧バルブ18を開くように指示し、その結果、圧縮空気が注水タンク15へ供給され注水タンク15内部が加圧される。次に、注水制御装置14は、注水バルブ小19及び注水バルブ大20を開くように指示し、その結果、注水バルブ小19及び注水バルブ大20が開かれ、混練機10への注水が開始される。デジタル流量計21は、注水量を積算し、その値が当初予定した必要注水量に対する設定注水量に達した時、大流量が流れている注水バルブ大20が閉じられて、少流量が流れている注水バルブ小19だけで注水が継続される。
 注水制御装置14が注水バルブ小19に対して閉信号を発信してから、注水バルブ小19による注水が止まるまでの水量は、予め把握されている。そして、積算された注水量が、目標水量からその注水が止まるまでの水量を減じた量になったときに、注水制御装置14は注水バルブ小19の閉信号を発信する。なお、注水が止まるまでの水量は必ずしも測定によって把握する必要は無く、目標水量に対する注水完了時のデジタル流量計21の計測値により加減してもよい。これらの工程により、注水装置13における水圧の変化や配管の詰まりが生じても正確な注水が可能になる。注水の完了後、注水制御装置14は、加圧バルブ18を閉じるように指示し、その結果、圧縮空気が注水タンク15から排出され、注水タンク15内部の圧力は加圧前の状態に戻る。
 なお、本実施の形態では、デジタル流量計21は、注水バルブ小19及び注水バルブ大20の下流に配置されるが、注水バルブ小19及び注水バルブ大20から注水タンク15までの経路上に配置されても良い。すなわち、デジタル流量計21が注水タンク15から放出される水の流量を測定した後、注水バルブ小19及び注水バルブ大20に水が流れるようにしても良い。
(水分センサ及び温度センサ)
 図6は、図1のA-A矢視断面図である。また、図7は、水分センサ8の電極の詳細を表す図である。水分センサ8は、計量ホッパ3内に投入された砂の水分量を測定する。水分センサ8は、一対の棒状の電極22からなり、これら一対の電極間の水分を測定する。
 水分センサ8(一対の電極22)は、計量ホッパ3の上部に設けられた水分センサ支持装置23に絶縁物を介して計量ホッパ3内に取り付けられる。水分センサ支持装置23には長穴が切ってあり、横方法に移動することが可能であり、水分センサ8自体はパイプクランプで挟んでいるため上下方向に移動することも可能である。よって、水分センサ支持装置23は、水分センサ8(一対の電極22)の計量ホッパ3に対する設置の高さと水分センサ8(一対の電極22)間の水平距離を自由に調整可能な構成となっている。詳細すると、一対の前記電極は、水分センサ支持装置23により、水平方向に離間と接近が可能なように構成されるとともに、上下方向に上昇と下降が可能なように構成される。
 このように、一対の電極22間の距離を調整することにより、水分の計測範囲を広くすることができる。図6をみると、一対の電極22が距離Aだけ離れた状態で計量ホッパ3の上方から下方に向けて設置され、その上端が計量ホッパ3の上面から露出している。図8は、水分センサ8の一対の電極22間の水平距離をAからBに変更することが可能なことを表す図である。
 本実施の形態では、電極22は、上部と下部の2ヵ所で水分量を測定している。電極22は、上部電極配線接続部24、下部電極配線接続部25、上部電極配線接続部材26、下部電極配線接続部材27、上部電極部28、下部電極部29、上部電極導電部材30、下部電極導電部材(軸部品)31、絶縁部材32、及び、ナット33を備えている。
 上部電極配線接続部24は、上部電極配線接続部材26と混練制御装置11(水分量算出部12)とを、電線等を介して電気的に接続する。下部電極配線接続部25は、下部電極配線接続部材27と混練制御装置11(水分量算出部12)とを、電線等を介して電気的に接続する。
 上部電極部28は、計量ホッパ3の上層部分の生型砂と電気的に接触し、対向する一対の電極22の間に流れる電流値の測定に用いられる。下部電極部29は、計量ホッパ3の下層部分の生型砂と電気的に接触し、対向する一対の電極22の間に流れる電流値の測定に用いられる。
 上部電極導電部材30は、上部電極配線接続部材26と上部電極部28とを電気的に接続する。下部電極導電部材(軸部品)31は、電極22の中心部に配置され、上部電極配線接続部材27と下部電極部29とを電気的に接続するとともに、電極22の軸となる部分である。
 絶縁部材32は、上部電極配線接続部24、上部電極配線接続部材26、上部電極部28、及び、上部電極導電部材30で構成される、上部で水分量を測定するために必要な構成部材と、下部電極配線接続部25、下部電極配線接続部材27、下部電極部29、及び、下部電極導電部材(軸部品)31で構成される、下部で水分量を測定するために必要な構成部材とを電気的に絶縁する。
 具体的には、電極22の中心部にある下部電極導電部材(軸部品)31の周囲に略管状体の絶縁部材32が配置され、さらに、絶縁部材32の周囲に略管状体の上部電極導電部材30が配置された構造となっている。従って、上部電極部28と下部電極部29は、絶縁部材32を境に上下別々の測定部を形成している。
 なお、上部電極部28と下部電極部29と、その間に配置された絶縁部材32から構成される先端の部分は一体化されている。
 ナット33は、電極22の各構成要素を固定している。そして、電極22は、ナット33を緩めることにより、前述した先端の部分を容易に取り外すことができる構造となっている。そのため、生型砂と接触して先端の部分が摩耗しても、その部分だけ新しい部品と交換することが可能である。ナット33を締めると、各構成要素が固定され、下部電極導電部材31を通じて下部電極配線接続部材27と下部電極部29が電気的に接続されるとともに、上部電極導電部材30を通じて上部電極配線接続部材26と上部電極部28が電気的に接続される。
 図1に示すように、温度センサ9は、計量ホッパ3内に投入された生型砂の温度を測定する。温度センサ9は、計量ホッパ3の上部に設けられた温度センサ支持装置(図示せず)に取り付けられ、計量ホッパ3内に設置される。温度センサ支持装置には長穴が切ってあり、横方法に移動することが可能であり、温度センサ9自体はパイプクランプで挟んでいるため上下方向に移動することも可能である。よって、温度センサ9は、水分センサ8の設置された位置に対して自由に調整可能な構成となっている。通常、温度センサ9は、その測定部が、水分センサ8(一対の電極22)の上部電極部28及び下部電極部29に対応する位置になるように調整される。
 次に、水分センサ8(一対の電極22)を制御して生型砂の水分量を算出する水分量算出部12について説明する。図9は、水分センサ8(一対の電極22)と水分量算出部12の構成を表す図である。一対の電極22は、水分量算出部12に電気的に接続されている。水分量算出部12は、矩形波定電流供給手段34、スイッチ35、電圧平滑測定手段36、電圧値補正手段37、及び、水分量換算手段38を備えている。
 矩形波定電流供給手段34は、一対の電極22のそれぞれの上部電極部28及び下部電極部29に、上部電極配線接続部24及び下部電極配線接続部25を介して低周波矩形波定電流を供給する。スイッチ35は、矩形波定電流供給手段34から2つの電極22に供給する低周波矩形波定電流を、上部電極部28に供給するか、下部電極部29に供給するかを切り替える。よって、対向する上部電極部28の間に供給する低周波矩形波定電流、及び、対向する下部電極部29の間に供給する低周波矩形波定電流は、スイッチングにより供給タイミングをずらしているため、上部電極部28及び下部電極部29に同時に供給されることはない。
 電圧平滑測定手段36は、生型砂を介して一対の電極22の上部電極部28の間に流れる電流により、一対の電極22の上部電極配線接続部24間に生じる電圧を平滑化するとともに測定する。同様に、電圧平滑測定手段36は、生型砂を介して一対の電極22の下部電極部29の間に流れる電流により、一対の電極22の下部電極配線接続部25間に生じる電圧を平滑化するとともに測定する。
 電圧値補正手段37は、電圧平滑測定手段36から得た平滑電圧値を温度センサ9からの温度の測定結果に基づき補正する。水分量換算手段38は、電圧値補正手段37によって補正された平滑電圧値に基づき生型砂の水分量を換算する。
 水分量を測定すべき生型砂の中に水分センサ8(一対の電極22)を配置した後、矩形波定電流供給手段34により一対の電極22の上部電極部28及び下部電極部29に低周波矩形波定電流を供給して一対の電極22の上部電極部28の間、及び、一対の電極22の下部電極部29の間に生型砂を介して電流を流すとともに、2つの上部電極配線接続部24の間に生じる電圧、及び、2つの下部電極配線接続部25の間に生じる電圧を電圧平滑測定手段36によって平滑化するとともに測定する。
 次いで、温度センサ9の測定結果に基づき、電圧値補正手段37が電圧平滑測定手段36から得た平滑電圧値を補正し、この補正した平滑電圧値に基づき水分量換算手段38が生型砂の水分量を換算する。これにより、実際の生型砂の水分量が算出される。なお、電極22の上部電極部28による測定と、電極22の下部電極部29による測定は、交互に行われる。
 大容量のホッパを用いる場合、生型砂層の上下層を上部電極部28及び下部電極部29でそれぞれ計測して値を平均化することにより測定精度が向上させることが可能である。一方、少容量のホッパを用いる場合、上部電極部28及び下部電極部29のいずれかの測定のみで必要な測定精度を得ることが可能である。
 従来は、生型砂が計量ホッパ3に貯留される前のベルトコンベア上に平行板電極式の水分センサを設置し、ベルトコンベア上を流れてくる生型砂の水分の量を測定していた。しかしながら、水分センサが生型砂層中に一定の深さで埋まっていないと同じ条件で水分の量を測定することができないため、生型砂を定量切り出す定量切り出し用ホッパが必要であり、また、レイアウトによっては混練直前の水分を測定することはできないという問題があった。また、ベルトコンベア上を流れてくる生型砂に対して測定を行うため、測定精度が安定しないという問題があった。
 一方、本実施の形態に係る水分センサ8は、一対の棒状の電極22であるため、上述した以外にも、以下のような利点を有する。
・設置に際しベルトコンベアや定量切り出し用ホッパが必要なく既設設備への導入が容易である。
・生型砂投入直前の水分量を測定することが可能である。
・ベルトコンベアに設置し、流れてくる生型砂を測定する平行板電極式の水分センサと比べて、センサ自身の生型砂の摩擦が小さく、摩耗しにくい。
・貯留された生型砂の水分量を測定するので、測定精度が安定している。
・水分センサ8(及び温度センサ9)は、計量ホッパ3に水分センサ支持装置23(及び温度センサ支持装置)を取り付けることにより、容易に取り付けることが可能であるので、既設の設備に追加改造する際にも、改造が少なく容易に導入できる。
・計量ホッパ3内に水分センサ8(及び温度センサ9)を設置することができるので、水分センサ8(及び温度センサ9)を設置するための特別な場所を取らない。
・計量ホッパ3から水分センサ8(及び温度センサ9)が露出しているため外から容易に水分センサ8間の距離と水分センサ8(及び温度センサ9)の挿入深さを変更することが可能である。
 本実施の形態の注水混練システム1を実際に稼働させ、水分センサ8の測定精度を評価した。
 実験1:調整を終了した直後に水分センサ8で測定した生型砂の水分量と、調整終了後、注水混練システム1を2週間稼働した後に水分センサ8で測定した生型砂の水分量とを測定した。なお、注水混練システム1の稼働中に水分センサ8の清掃は一切行わなかった。図10は、調整を終了した直後と2週間稼働した後に水分センサ8が測定した水分電圧と実測水分の関係を示すグラフである。従来のセンサは、注水混練システム1を1日稼働しただけで、センサの測定部に生型砂が付着し測定が不安定となることがあった。一方、本実施の形態の水分センサ8は、注水混練システム1を稼働後、2週間経過しても測定精度は低下しなかった。
 実験2:水分センサ8が測定可能な生型砂の水分量の範囲の確認を行った。図11は、水分センサ8が測定した水分電圧と実測水分の関係を示すグラフである。従来のセンサは、生型砂の水分量が3%程度の高水分域は測定不能であった。一方、本実施の形態の水分センサ8は、生型砂の水分量が3%程度でも測定可能であった。
 実験3:生型砂の水分量を一定の状態にして、一対の電極22間の距離を離していき、その時の水分電圧を測定した。測定は、生型砂の水分量が、2.2%、1.9%、及び、1.4%の場合でそれぞれ行った。図12は、一対の電極22間の距離と水分電圧の関係を示すグラフである。本実施の形態の水分センサ8は、同じ水分量の生型砂を測定しても電極22間の距離を離すと水分電圧が低下した。よって測定する生型砂の水分量が高くても、電極22間の距離を離すことで測定範囲を広げることが可能である。
(注水混練方法)
 次に、本実施の形態に係る注水混練システム1を用いた生型砂の混練方法について説明する。図13は、本実施の形態に係る注水混練システム1を用いた生型砂の混練方法を示すフローチャートである。
 初めに、混練機10を起動する(ステップS1)。混練機10の起動と同時に混練機10に投入する生型砂を計量する砂計量を開始する(ステップS2)。次に、砂計量が完了し、混練制御装置11から砂投入信号を砂投入シリンダ4へ送信する。砂投入信号を受信すると砂投入シリンダ4が開き、生型砂が計量ホッパ3から混練機10に投入される(ステップS3)。砂投入シリンダ4は、タイマー制御により一定の時間が経過した後、計量ホッパ3と混練機10の間を閉じる。
 次に、混練制御装置11の指示により、粘結剤が粘結剤投入装置5から混練機10に投入される(ステップS4)。次に、混練制御装置11は、混練機10に指示をし、混練機10による混練が開始される(ステップS5)。
 次に、混練制御装置11は、注水要求信号を注水ユニット7の注水制御装置14へ送信する。注水ユニット7の注水制御装置14は、注水要求信号を受信すると、注水操作を開始する(ステップS6)。そして、注水ユニット7の注水タンク15から水が混練機10に注水される。なお、注水ユニット7による注水操作については、後ほど詳細に説明する。
 次に、CBコントローラ6は、CB値を測定し(ステップS7)、混練砂が所望のCB値か否かを判断する(ステップS8)。CBコントローラ6が、混練砂が所望のCB値ではないと判断した場合(ステップS8:No)、CBコントローラ6は、必要な注水量を計算し(ステップS9)、計算した量の水を再び混練機11に注水するように混練制御装置11を通じて注水ユニット7に指示をする(注水要求信号を送信する)。そして、ステップS6に戻り、注水ユニット7の注水制御装置14が、再び注水操作を開始する。
 CBコントローラ6が、混練砂が所望のCB値であると判断した場合(ステップS8:Yes)、混練砂を混練機10から排出する(ステップS10)。
 次に、混練制御装置11は、混練する予定の生型砂の量から、連続して混練作業を行うか否かを判断する(ステップS11)。混練制御装置11は、連続して混練作業を行うと判断した場合(ステップS11:Yes)、ステップS3へ戻り、砂計量(ステップS2)の完了を待ってステップS3以降の工程を繰り返す。また、混練制御装置11は、連続して混練作業を行わないと判断した場合(ステップS11:No)、混練機10を停止させ(ステップS12)、混練作業が終了する。なお、注水量とCB値の変化量を次回の注水量にフィードバックし、次回以降の注水量の精度を高めていく。
(砂計量)
 次に、砂の計量方法について詳細に説明する。図14は、砂計量方法を示すフローチャートである。初めに混練機10の起動と同時に、計量ホッパ3に備えられた砂計量手段(図示せず)により計量ホッパ3内の生型砂の重量を計測し、計量ホッパ3内が空であることを確認する(ステップS101)。計量ホッパ3より空信号を受けた混練制御装置11は、計量ホッパ3に備えられた砂投入手段(図示せず)を作動して計量ホッパ3に生型砂を投入する(ステップS102)。次に、砂計量手段は、生型砂を計量し、貯留する(ステップS103)。なお、生型砂の計量方法としては、ロードセルによる計量、タイマー計量、レベル計による計量等がある。計量ホッパ3は、生型砂の計量完了後、混練制御装置11に計量完了信号を発信する。
 次に、混練制御装置11は、計量ホッパ3から計量完了信号を受信すると、水分センサ8で投入された生型砂の水分量を測定するとともに、温度センサ9で投入された生型砂の温度を測定する(ステップS104)。次に、混練制御装置11は、水分センサ8で測定された水分測定値と温度センサ9で測定された温度測定値、及び、計量ホッパ3内に貯留された生型砂の量をもとに注水量を計算する(ステップS105)。注水量の計算が終了すると砂計量の一工程が完了する(ステップ106)。
 次に、混練制御装置11は、次の砂計量を継続するか否かを判断する(ステップS107)。混練制御装置11は、砂計量を継続すると判断した場合(ステップS107:Yes)、ステップS101に戻り、以降の工程を繰り返す。混練制御装置11は、砂計量を継続しないと判断した場合(ステップS107:No)、砂計量を終了する。
(注水ユニット操作)
 次に、注水ユニット7による注水ユニット操作について詳細に説明する。図15は、注水ユニット7の操作方法を示すフローチャートである。初めに、混練機10が起動すると、注水制御装置14は、満レベル計17により、注水タンク15内の水の量が満杯の状態であるか否かを判断する(ステップS1001)。注水制御装置14は、注水タンク15内の水の量が満杯の状態でないと判断した場合(ステップS1001:No)、給水バルブ16を開くように指示し、給水バルブ16が開かれ、注水タンク15への水の供給が開始される(ステップS1002)。次に、注水タンク15内の水の量が満杯の状態となると(ステップS1003)、注水制御装置14は、給水バルブ16を閉じるように指示し、給水バルブ16が閉じられ(ステップS1004)、ステップS1005へ進む。
 注水制御装置14は、注水タンク15内の水の量が満杯の状態であると判断した場合(S1001:Yes)、ステップS1005へ進む。
 ステップS1005において、注水ユニット7の注水制御装置14は、注水要求信号を受信すると、注水操作を開始する。従って、図15におけるステップS1001~S1004までのステップは、図13におけるステップS1~S5の間に注水ユニット7で実際に行われる動作であり、図15におけるステップS1005以降のステップが図13のステップS6で行われる動作に相当する。
 ステップS1005において、注水制御装置14は、注水要求信号を受信すると、加圧バルブ18を開くように指示し、圧縮空気が注水タンク15へ供給され注水タンク15内部が加圧される(ステップS1006)。次に、注水制御装置14は、注水バルブ小19及び注水バルブ大20を開くように指示し、注水バルブ小19及び注水バルブ大20が開かれ、混練機10への注水が開始される(ステップS1007)。
 デジタル流量計21により積算された注水量が計算された所定量になると(ステップS1008)、注水制御装置14は、注水バルブ小19及び注水バルブ大20を閉じるように指示し、注水バルブ小19及び注水バルブ大20が閉じられ、混練機10への注水が終了する(ステップS1009)。注水操作の完了後、注水制御装置14は、加圧バルブ18を閉じるように指示し、圧縮空気が注水タンク15から排出され、注水タンク15内部の圧力は加圧前の状態に戻る(ステップS1010)。
 次に、注水制御装置14は、混練機10が運転中であるか否かを判断する(ステップS1011)。注水制御装置14は、混練機10が運転中であると判断した場合(ステップS1011:Yes)、ステップS1001へ戻り、引き続き、注水ユニット7の操作を行う。注水制御装置14は、混練機10が運転中でないと判断した場合(ステップS1011:No)、注水ユニット7の操作を終了する。
(変形例)
 水分センサ支持装置23が混練制御装置11からの指示により、水分センサ8(一対の電極22)の設置の高さと水分センサ8(一対の電極22)間の水平距離を駆動装置等を使用して自動で調整するように設計しても良い。同様に、温度センサ支持装置が混練制御装置11からの指示により、温度センサ9の上下位置、及び、水平位置を駆動装置等を使用して自動で調整するように設計しても良い。混練制御装置11が水分センサ8で測定された水分測定値を考慮して、水分センサ支持装置23及び温度センサ支持装置へ的確な指示をすることが可能である。
 また、本実施の形態では、電極22は上部電極部28と下部電極部29の2ヵ所の測定部を有しているが、2ヵ所に限定されない。例えば、計量ホッパ3に投入される生型砂の量や、計量ホッパ3の大きさ、形状等に合わせて、電極22の先端の部分の長さも変わるため、測定部の箇所を1ヵ所だけにしたり、3ヵ所以上設けるようにしても良い。
 また、混練機10内に、水分センサを別に設け、CBコントローラ6と接続するように構成するようにしても良い。このように構成することにより、混練機11内の混練砂の水分量を測定し、水分量が大きい場合は、CBコントローラ6に接続された混練制御装置11から混練ユニット2へ生型砂を追加投入するように指示し、水分量が少ない場合は、CBコントローラ6に接続された混練制御装置11から注水ユニット7へ水を追加注入するように指示することが可能となる。さらに、混練完了後の水分を測定し、その結果を次回以降のバッチの注水量にフィードバックすることも可能となる。
 また、注水混練システムにCBコントローラ6が備えられていなくても良い。その場合は、作業者がCB値を直接測定する。その結果、混練砂が所望のCB値ではなかった場合、混練機10に付加された追加注水ボタンを手動で押すことにより注水バルブ小19及び/又は注水バルブ大20を再度開き追加注水を行う。
 このように、本実施の形態に係る注水混練システムによれば、混練制御装置が注水混練システムを制御することにより、生型砂への注水量をより適切に制御して、より安定した性状を有する混練砂を作成することが可能となる。
 また、本実施の形態に係る注水混練システムによれば、混練制御装置だけで生型砂と水の割合を制御することができるので、既設設備を大幅に改造することなく、導入することが可能となる。
1 注水混練システム
2 混練ユニット
3 計量ホッパ
4 砂投入シリンダ
5 粘結剤投入装置
6 CBコントローラ
7 注水ユニット
8 水分センサ
9 温度センサ
10 混練機
11 混練制御装置
12 水分量算出部
13 注水装置
14 注水制御装置
15 注水タンク
16 給水バルブ
17 満レベル計
18 加圧バルブ
19 注水バルブ小
20 注水バルブ大
21 デジタル流量計
22 電極
23 水分センサ支持装置
24 上部電極配線接続部
25 下部電極配線接続部
26 上部電極配線接続部材
27 下部電極配線接続部材
28 上部電極部
29 下部電極部
30 上部電極導電部材
31 下部電極導電部材(軸部品)
32 絶縁部材
33 ナット
34 矩形波定電流供給手段
35 スイッチ
36 電圧平滑測定手段
37 電圧値補正手段
38 水分量換算手段

Claims (14)

  1.  生型砂の注水混練システムであって、
     計量された生型砂を貯留する計量ホッパと、
     生型砂と水とを混練する混練機と、
     前記計量ホッパ内の生型砂を前記混練機に放出し、又は、放出を遮断する砂投入手段と、
     前記混練機内の生型砂に対して注水を行う注水装置と、
     一対の電極で構成され、前記計量ホッパ内に貯留された生型砂の水分量を前記電極間の電位差を測定することにより測定する水分センサと、
     前記水分センサの出力に基づいて前記注水装置による注水量を制御し、砂投入手段を制御する混練制御装置と、を備えたこと
    を特徴とする生型砂の注水混練システム。
  2.  前記注水装置を制御する注水制御装置をさらに備え、前記混練制御装置は、前記砂投入手段に開くことを指示する砂投入信号、及び、前記注水制御装置に注水及び注水量を指示する注水要求信号を少なくとも送信すること、
    を特徴とする請求項1に記載の生型砂の注水混練システム。
  3.  前記電極は棒状であり、生型砂と電気的に接触する測定部を備えること、を特徴とする請求項1又は2に記載の生型砂の注水混練システム。
  4.  前記測定部が複数箇所設けられていること、を特徴とする請求項3に記載の生型砂の注水混練システム。
  5.  前記電極は、前記測定部と絶縁部とからなる先端の部分が取り外し可能であること、を特徴とする請求項3又は4に記載の生型砂の注水混練システム。
  6.  前記水分センサが、前記計量ホッパ内の複数箇所に設けられていること、を特徴とする請求項1から5のいずれか一項に記載の生型砂の注水混練システム。
  7.  前記計量ホッパの上部には、水分センサ支持装置が設けられ、一対の前記電極は前記水分センサ支持装置に水平方向に離間した状態でそれぞれ生型砂内部へ埋設されるように下方へ吊下されていること、を特徴とする請求項1から6のいずれか一項に記載の生型砂の注水混練システム。
  8.  一対の前記電極は、水平方向に離間、接近自在、及び、上下方向に上昇、下降自在とされていること、を特徴とする請求項7に記載の生型砂の注水混練システム。
  9.  前記計量ホッパに貯留された生型砂の温度を測定する温度センサをさらに備えたこと、を特徴とする請求項1から8のいずれか一項に記載の生型砂の注水混練システム。
  10.  前記混練制御装置は、前記水分センサの測定値、及び、前記温度センサの測定値から生型砂の水分量を算出する水分量算出部をさらに備えたこと、を特徴とする請求項1から9のいずれか一項に記載の生型砂の注水混練システム。
  11.  前記注水装置は、デジタル流量計、及び、大流量と小流量の2つの注水系統を備えたこと、を特徴とする請求項1から10のいずれか一項に記載の生型砂の注水混練システム。
  12.  前記注水装置は、水が蓄えられている注水タンクをさらに備えたこと、を特徴とする請求項1から11のいずれか一項に記載の生型砂の注水混練システム。
  13.  混練された砂のCB値を測定するCBコントローラをさらに備え、前記混練制御装置が前記CBコントローラの測定値に基づいて、前記注水制御装置に追加注水の指示をすること、を特徴とする請求項1から12のいずれか一項に記載の生型砂の注水混練システム。
  14.  粘結剤を前記混練機内へ放出する粘結剤投入装置をさらに備えたこと、を特徴とする請求項1から13のいずれか一項に記載の生型砂の注水混練システム。
PCT/JP2017/041285 2017-02-24 2017-11-16 生型砂の注水混練システム WO2018154881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/481,440 US11229946B2 (en) 2017-02-24 2017-11-16 Water injection and kneading system for green molding sand
BR112019017066A BR112019017066A2 (pt) 2017-02-24 2017-11-16 sistema de injeção de água e de mistura para areia de moldagem verde
MX2019009919A MX2019009919A (es) 2017-02-24 2017-11-16 Sistema de inyeccion de agua y amasado para arena de moldeo verde.
KR1020197027255A KR20190120275A (ko) 2017-02-24 2017-11-16 생형사의 주수 혼련 시스템
CN201780087315.6A CN110325301A (zh) 2017-02-24 2017-11-16 湿型砂的注水混制系统
EP17898324.3A EP3586994B1 (en) 2017-02-24 2017-11-16 Water injection and kneading system for green molding sand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-032751 2017-02-24
JP2017032751A JP2018134679A (ja) 2017-02-24 2017-02-24 生型砂の注水混練システム

Publications (1)

Publication Number Publication Date
WO2018154881A1 true WO2018154881A1 (ja) 2018-08-30

Family

ID=63253179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041285 WO2018154881A1 (ja) 2017-02-24 2017-11-16 生型砂の注水混練システム

Country Status (9)

Country Link
US (1) US11229946B2 (ja)
EP (1) EP3586994B1 (ja)
JP (1) JP2018134679A (ja)
KR (1) KR20190120275A (ja)
CN (1) CN110325301A (ja)
BR (1) BR112019017066A2 (ja)
MX (1) MX2019009919A (ja)
TW (1) TW201834763A (ja)
WO (1) WO2018154881A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114253304A (zh) * 2022-01-11 2022-03-29 三一重型装备有限公司 机制砂含水量的控制方法及装置、系统、制砂设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958107A (en) * 1952-03-29 1960-11-01 Hartley Controls Corp Method for automatic moisture control in foundry sand supplies
JP4003808B2 (ja) * 2004-07-07 2007-11-07 新東工業株式会社 鋳物砂の水分値測定用電極機構、鋳物砂の水分値の測定装置、鋳物砂混練機への注水方法および注水装置
JP2013237086A (ja) 2012-05-16 2013-11-28 Sintokogio Ltd 混練砂性状計測装置における砂採取方法及びその装置
JP2015519200A (ja) * 2012-06-13 2015-07-09 新東工業株式会社 鋳物砂の混練調整方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304289A (en) * 1978-04-24 1981-12-08 Foundry Technology Inc. Apparatus for controlling the moisture content of foundry sand
JPS55113944A (en) 1979-02-27 1980-09-02 Hitachi Metals Ltd Water content measurement of granular body
JPS56141547A (en) * 1980-04-04 1981-11-05 Hitachi Metals Ltd Moisture measuring method of molding sand
JPS6114044A (ja) 1984-06-29 1986-01-22 Sintokogio Ltd 鋳物砂混練機の水分供給量制御装置
US4780665A (en) * 1986-09-30 1988-10-25 Deere & Company Apparatus and method for controlling sand moisture
US5330265A (en) * 1993-08-16 1994-07-19 Hartley Controls Corporation Apparatus and apparatus for mixing and cooling molding sand
CN1391101A (zh) * 2002-07-23 2003-01-15 东华大学 型砂混砂过程水分在线测控装置及其使用方法
CN200993646Y (zh) * 2006-12-26 2007-12-19 中国农业大学 土壤水分传感器
CN201378984Y (zh) * 2008-08-29 2010-01-13 胡迪 模糊控制自动浇花器
CN102621189A (zh) 2012-02-27 2012-08-01 广东省宜华木业股份有限公司 木材干燥过程中含水率梯度的测试方法及所用测试传感器
CN202857464U (zh) 2012-09-28 2013-04-10 南京信息工程大学 一种庭院花草自动浇水控制装置
CN103785792B (zh) * 2014-03-07 2015-09-16 孙晓宇 一种连续式粘土砂混砂机
CN204712268U (zh) * 2015-06-25 2015-10-21 常州信息职业技术学院 远程控制混凝土搅拌站
CN104950012A (zh) * 2015-07-02 2015-09-30 水利部南京水利水文自动化研究所 一体化可调节土壤纵向水分自动记录仪
CN204882437U (zh) * 2015-08-20 2015-12-16 云南电网有限责任公司电力科学研究院 一种绝缘油老化模拟试验装置
CN205426840U (zh) * 2016-03-14 2016-08-03 哈尔滨理工大学 一种用于电容法测量湿型砂含水量的传感器探头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2958107A (en) * 1952-03-29 1960-11-01 Hartley Controls Corp Method for automatic moisture control in foundry sand supplies
JP4003808B2 (ja) * 2004-07-07 2007-11-07 新東工業株式会社 鋳物砂の水分値測定用電極機構、鋳物砂の水分値の測定装置、鋳物砂混練機への注水方法および注水装置
JP2013237086A (ja) 2012-05-16 2013-11-28 Sintokogio Ltd 混練砂性状計測装置における砂採取方法及びその装置
JP2015519200A (ja) * 2012-06-13 2015-07-09 新東工業株式会社 鋳物砂の混練調整方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114253304A (zh) * 2022-01-11 2022-03-29 三一重型装备有限公司 机制砂含水量的控制方法及装置、系统、制砂设备

Also Published As

Publication number Publication date
MX2019009919A (es) 2019-11-18
BR112019017066A2 (pt) 2020-04-28
KR20190120275A (ko) 2019-10-23
TW201834763A (zh) 2018-10-01
JP2018134679A (ja) 2018-08-30
CN110325301A (zh) 2019-10-11
US11229946B2 (en) 2022-01-25
EP3586994A4 (en) 2020-08-19
EP3586994B1 (en) 2021-09-22
US20190358697A1 (en) 2019-11-28
EP3586994A1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
CN104441209B (zh) 一种用于制砖设备的自动配水系统
WO2018154881A1 (ja) 生型砂の注水混練システム
DK2155417T3 (en) A method for processing the molding sand.
JP2000515450A (ja) 順次ゲート制御を有する射出成形システム
TWI587944B (zh) 模砂之混練調整方法
WO2003000478A1 (fr) Equipement de pesage de constituant de beton
JP4003808B2 (ja) 鋳物砂の水分値測定用電極機構、鋳物砂の水分値の測定装置、鋳物砂混練機への注水方法および注水装置
CN204728168U (zh) 用于沥青路面再生料的精确掺配装置、控制系统及其设备
JP7113526B2 (ja) 回収生型砂の粘結材含有率推定装置、回収生型砂調整装置および粘結材含有率推定方法
CN217378780U (zh) 一种引水明渠边坡衬砌机
JP4937947B2 (ja) 生コンクリート製造装置および製造方法
EP3456432B1 (en) Property adjusting system and property adjusting method for kneaded sand
GB2088331A (en) Wet concrete dispensing equipment
JP4773700B2 (ja) 生コンクリートの製造装置
JPH0890549A (ja) 生コンクリートの混練システム
CN210729345U (zh) 烧注料配料装置
JPH07171657A (ja) 鋳物砂混練調整方法及びその装置
GB2071343A (en) Automatic feed weighers
JPS58124526A (ja) 流し込み施工装置の自動制御装置
KR101759172B1 (ko) 금속스크랩공급장치 및 이를 이용한 금속스크랩공급방법
SU1500711A1 (ru) Система управления процессом регенерирования асфальтобетонных дорожных покрытий
JP3688992B2 (ja) 地盤改良剤供給プラントの運転方法
JPS5917930B2 (ja) 超硬練りコンクリ−トの水分管理方法及び装置
CN205898265U (zh) 一种自动称量装置
JPS59187Y2 (ja) バツチヤプラントにおけるコンクリ−トの骨材表面水管理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17898324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017066

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197027255

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017898324

Country of ref document: EP

Effective date: 20190924

ENP Entry into the national phase

Ref document number: 112019017066

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190816