WO2018153174A1 - 一种复合纳米压印光刻机及工作方法 - Google Patents

一种复合纳米压印光刻机及工作方法 Download PDF

Info

Publication number
WO2018153174A1
WO2018153174A1 PCT/CN2018/072078 CN2018072078W WO2018153174A1 WO 2018153174 A1 WO2018153174 A1 WO 2018153174A1 CN 2018072078 W CN2018072078 W CN 2018072078W WO 2018153174 A1 WO2018153174 A1 WO 2018153174A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
soft mold
composite soft
substrate
embossing
Prior art date
Application number
PCT/CN2018/072078
Other languages
English (en)
French (fr)
Inventor
兰红波
Original Assignee
青岛博纳光电装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛博纳光电装备有限公司 filed Critical 青岛博纳光电装备有限公司
Priority to DE112018000010.9T priority Critical patent/DE112018000010B4/de
Publication of WO2018153174A1 publication Critical patent/WO2018153174A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the invention belongs to the technical field of micro-nano manufacturing, and relates to a composite nano-imprinting lithography machine, in particular to a large-area composite nano-imprinting lithography machine and a working method based on roller auxiliary and composite soft mold.
  • High-definition flat panel display high-efficiency solar panels, anti-reflective and self-cleaning glass, LED graphics, wafer-level micro-nano optics, etc.
  • LED graphics wafer-level micro-nano optics
  • a common feature of these products is the need to efficiently and cost-effectively fabricate large-area complex three-dimensional micro-nanostructures on large, non-flat, rigid substrates (hard substrates or substrates).
  • micro-nano manufacturing technologies such as electron beam lithography, optical lithography, laser interference lithography, holographic lithography, self-assembly, etc.
  • electron beam lithography optical lithography
  • laser interference lithography laser interference lithography
  • holographic lithography self-assembly
  • graphical production costs, efficiency, consistency, yield and other aspects are still difficult to meet the actual requirements of industrial-scale large-scale production.
  • Nanoimprint Lithography as a new micro-nano manufacturing technology, has higher resolution and ultra-low cost than current projection lithography and next-generation lithography technology.
  • Horizontal NIL is at least an order of magnitude lower than conventional optical projection lithography and high productivity, and its most significant advantages are the ability to fabricate large-area, complex three-dimensional micro-nano structures and the patterning of non-flat substrates, especially soft UV nanoimprinting also has the potential to achieve wafer-level nanoimprinting on non-flat (bending, warping or step), curved, fragile substrates, and continuous patterning capabilities unique to roll-pressing processes .
  • NIL is based on the deformation of the imprinted material to achieve its patterning, does not involve the use of various high-energy beams, and has less damage to the substrate, which is very important for many applications of optoelectronics and quantum devices. At present, the minimum feature size of nanoimprint has reached 2.4 nm.
  • nanoimprint lithography has outstanding advantages and great potential in large-area micro-nano patterning
  • the existing nanoimprinting processes also have the advantages of graphic area, imprinting cost, efficiency and consistency.
  • the rigid substrate hard substrate
  • the maximum size of the whole embossing is limited to 8 inches or less, and it is difficult to realize large-area patterning of large-area, meter-scale rigid substrates.
  • roll-to-roll embossing can realize large-area continuous patterning, it is mainly suitable for flexible substrates (substrates), which is not suitable for micro-nano patterning of rigid rigid substrates, especially for large-sized non-flat rigid substrates. Unable to implement its graphics.
  • Roll-to-plane stamping based on roller die requires high rigidity of the rigid substrate on the one hand (difficult to handle warpage and non-flat substrate imprinting), and on the other hand, roller die manufacturing is difficult, especially for nano-scale seamless rolls. The manufacture of wheel molds is almost impossible to solve with existing technology.
  • the Chinese patent application discloses a large area micro-nano patterning device and method, which can solve the above problems, but still has the following deficiencies and problems: (1) Simultaneous use of imprinting and curing get on.
  • the problem in this way is that on the one hand, the film soft mold will be deformed under the action of the embossing force during the embossing process, and the direct curing will result in a large deformation of the embossed pattern after curing, the embossing precision is low, and the embossing quality is low.
  • embossing and curing are carried out simultaneously, requiring the imprint material to have a fast curing property (which limits the choice of imprint material), and at the same time, there is a problem of incomplete curing (even at very low pressure).
  • the printing speed is working); (2) the embossing force is directly applied to the roller (or the roller shaft).
  • the present invention provides a high-area, low-cost scale manufacturing of large-area micro-nano on an oversized, non-flat rigid substrate (hard substrate or substrate), a fragile substrate.
  • the nano-imprint lithography machine of the structure realizes large-area micro-nano patterning of the ultra-large-size rigid substrate of the meter-scale scale with high efficiency and low cost, improves the embossing reliability, improves the embossing quality, increases the graphic size, and expands and applies.
  • the type of embossed material is a high-area, low-cost scale manufacturing of large-area micro-nano on an oversized, non-flat rigid substrate (hard substrate or substrate), a fragile substrate.
  • a composite nanoimprint lithography machine comprises a base, a fixed workbench is fixed on the base, a vacuum suction cup is arranged on the moving table of the worktable, a vacuum suction cup vacuum adsorbs the substrate, and the embossed material is uniformly coated on the substrate
  • An embossing module is disposed correspondingly on the substrate, and the embossing module is connected to the upper and lower moving mechanism, and the vertical moving mechanism comprises a guiding rod vertically fixed on the base, and the guiding rod is provided with a moving plate
  • the bottom of the moving plate is connected with the embossing module, and the top of the moving plate is connected with the driving device;
  • the embossing module comprises an embossing assembly and a curing assembly, the curing assembly is disposed at the rear side of the embossing assembly, and the embossing assembly comprises a roller
  • the top of the guiding rod and the top plate are fixedly connected to each other, and the driving device is fixed on the top plate.
  • the moving plate and the guiding rod are connected by a linear bearing.
  • the drive device is an electric cylinder, and the power device is a motor.
  • the curing assembly includes a lamp holder guide plate fixed to the movable plate, the lamp holder guiding plate is slidably connected to the curing light source lamp holder, and the UV exposure lamp is fixed on the curing light source lamp holder.
  • the height of the UV exposure lamp is higher than the height of the lowest end of the roller.
  • a sliding slot is disposed on the guide plate of the lamp holder, and a sliding block is disposed in the sliding slot.
  • the curing light source lamp holder is disposed at the sliding slot, and the sliding block is fixedly connected to the curing light source lamp holder.
  • the sliding slot is curved, the first end of the sliding slot is connected to one side of the guiding plate of the lamp holder, and the second end of the sliding slot is connected to the other side of the guiding plate of the lamp holder; the height of the first end of the sliding slot is lower than the sliding slot Second end. It can adjust the front and rear position as well as adjust the height.
  • the curing light source lamp holder is provided with a fastener at a joint with the chute.
  • the air inlet hole extends from the second end toward the inside of the roller base body, and the air inlet hole does not communicate with the first end.
  • a plurality of axial adsorption grooves are evenly arranged on the outer surface of the roller, and a plurality of radial holes are arranged in the bottom of the adsorption groove to the inside of the roller, and the radial holes communicate the intake holes and the adsorption grooves.
  • the composite soft mold includes a pattern layer and a support layer, the support layer is located above the pattern layer, and the pattern layer comprises the micro-nano feature structure to be copied, and the flexible material layer is disposed on the support layer.
  • the pattern layer has a thickness in the range of 10 to 50 microns
  • the support layer has a thickness in the range of 100 to 500 microns
  • the flexible material layer has a thickness in the range of 100 to 500 microns.
  • the present invention also provides a working method of the composite nanoimprint lithography machine, comprising the following steps:
  • Step 1 Pretreatment
  • the substrate coated with the embossed material is adsorbed and fixed on the vacuum chuck, and the composite soft mold is vacuum-adsorbed to the outer surface of the roller, and the working table and the embossing assembly are moved to the embossing station;
  • Step 2 lay a composite soft mold
  • the driving table moves in the same direction as the roller steering, and the composite soft mold is sequentially placed on the substrate by switching between the vacuum line and the pressure line;
  • Step 3 Embossing
  • the driving roller moves downward, and drives the working table to move in the same direction as the roller steering, so that the composite soft mold and the substrate obtain complete conformal contact, and the embossing is completed;
  • Step 4 curing
  • the driving roller moves up, the working table moves horizontally, and the curing component completes the exposure of the entire composite soft mold and the curing of the imprinting material;
  • Step 5 demoulding
  • the driving table moves in the opposite direction to the roller steering, and the vacuum pipeline is controlled to work, and the composite soft mold is gradually adsorbed on the outer surface of the roller to complete the demoulding.
  • step 1 The specific steps of step 1 are as follows:
  • the embossing material is uniformly coated on the substrate, the substrate is placed on the vacuum chuck, and the substrate is adsorbed and fixed on the vacuum chuck; the composite soft mold is wrapped on the outer surface of the roller, and the inlet hole is passed into the negative Pressing, the composite soft mold is adsorbed on the outer surface of the roller;
  • the horizontal movement of the table drives the vacuum chuck to move from the initial station to the imprint station, and the up and down moving mechanism drives the roller and the composite soft mold to move from the initial station to the imprint station.
  • step 2 The specific steps of step 2 are as follows:
  • the driving roller rotates to convert the air inlet hole at the lowermost end of the roller from a negative pressure to a positive pressure, and the table moves horizontally in the same direction as the roller steering.
  • the vacuum line is closed, the pressure line is opened, and the other intake holes of the roller are sequentially converted from negative pressure to positive pressure, and the composite soft mold adsorbed on the outer surface of the roller is gradually formed. Separating from the roller and simultaneously spreading the entire composite soft mold onto the substrate under the uniform pressure contact of the roller line; the composite soft mold is completely detached from the roller and placed on the surface of the embossed material on the substrate , close the air path of the roller air intake hole.
  • step 3 The specific steps of step 3 are as follows:
  • the driving roller continues to move downward by 20-50 micrometers.
  • the composite soft mold With the rotation of the roller and the horizontal movement of the table, under the uniform pressure of the roller line contact, the composite soft mold is completely conformed to the substrate, and The embossing material is pressed into the composite soft mold micro-nano feature structure cavity under the action of the roller line contact uniform embossing force, and the large-area embossing of the whole substrate is completed by sequentially pressing the line contact pressure embossing. .
  • step 4 The specific steps of step 4 are as follows:
  • the driving roller moves upward by 100-500 micrometers to disengage the roller from the composite soft mold; the working table moves horizontally, and the curing component transparently exposes the imprinting material through the composite soft mold, and sequentially completes the entire composite with the movement of the working table. Exposure of the soft mold and curing of the imprinted material; if necessary, the workbench is reciprocated multiple times to increase the exposure time.
  • step 5 The specific steps of step 5 are as follows:
  • the driving roller is moved up, so that the roller and the composite soft mold have a gap of 100-1000 micrometers;
  • the driving roller rotates, and the air inlet hole near the lowermost end of the roller is introduced into the negative pressure, and the other roller inlet holes are sequentially introduced into the negative pressure, and the composite soft mold is gradually separated from the embossing structure, and sequentially adsorbed.
  • the drive roller moves upwards and returns to the initial station; the table returns from the embossing station to the initial station, the embossed substrate is removed, a new substrate is placed, and the next cycle is started.
  • the roller and the composite soft mold are in line contact, and a sequential micro-contact embossing method is adopted.
  • the embossing force applied to the composite soft mold is uniform.
  • the imprinting method has a simple process and a low cost compared with a gas or fluid-assisted pressing method.
  • the roller is fixed on the movable plate through the connecting frame, the embossing force is applied to the center of the moving plate, and the moving plate is guided by the guiding rod and the guiding linear bearing, and on the one hand, the embossing force is applied to the oversized substrate.
  • Uniformity on the other hand, the rigidity of the device is good, especially for the oversized substrate, the more prominent the characteristics, especially for the imprint of the oversized substrate.
  • a rigid tube and a rotary joint are arranged at the inlet of the roller to solve the problem of winding of the air hose by the rotation of the roller.
  • the embossing machine is reliable and suitable for oversized substrate imprinting.
  • a plurality of adsorption grooves are arranged on the outer surface of the roller, and the composite soft mold is easily and reliably adsorbed on the roller, and is particularly suitable for imprinting with an oversized substrate.
  • the invention realizes efficient and low-cost mass production of large-sized, non-flat substrate, fragile substrate/substrate large-area micro-nano structure, and provides an industrial-grade solution for commercial application of large-area micro-nano structure. Program.
  • the invention is suitable for industrial-scale large-scale production of ultra-large-size high-definition flat panel display, high-efficiency solar panel, anti-reflection and self-cleaning glass, large-size LED patterning, wafer-level micro-nano optics, and ultra-large-area surface micro-nano functional structure.
  • FIG. 1 is a perspective view showing the structure of a composite nanoimprint lithography machine.
  • FIG. 2 is a side view showing the structure of a composite nanoimprint lithography machine.
  • Figure 3 is a schematic view showing the structure of a UV curing module.
  • Figure 4 is a schematic view of the structure of the roller.
  • Figure 5 is a schematic view of the structure of the stamping head.
  • Figure 6 is a schematic view of the structure of a composite soft mold.
  • 7a-7j are schematic diagrams showing the steps of the working method of the nanoimprint lithography machine.
  • 901 elastic material layer 902 roller base body, 903 air inlet hole, 904 radial hole, 905 adsorption groove, 906 roller outer surface, 90101-90108 roller side surface sequentially arranged air intake holes.
  • the prior art has the disadvantages of low imprint precision and poor imprint quality.
  • the present application proposes a composite nano imprint lithography machine.
  • a composite nanoimprint lithography machine which comprises: a base 1, a worktable 2, a vacuum chuck 3, a substrate 4, and an embossing material. 5.
  • the worktable 2 is fixed on the base 1, and the vacuum chuck 3 is fixed on the worktable 2; the substrate 4 is vacuum-adsorbed directly above the vacuum chuck 3; the liquid ultraviolet curing type imprint material 5 is uniformly coated on the substrate 4;
  • the mold 8 is attached to the outer surface 906 of the roller by vacuum adsorption; one end of the roller 9 is connected to the motor 11 that drives the roller through the coupling 10; the UV curing module 12 is placed on the rear side of the roller 9;
  • the coupling 10 and the motor 11 for driving the roller rotation are placed on the connecting frame 13; the connecting frame 13 is fixed on the movable plate 14; the moving plate 14 is provided with four guiding linear bearings 15, and the guiding linear bearing 15 on the movable plate 14 is
  • the guiding rod 16 is connected; the lower end of the guiding rod 16 is fixed on the base 1, and the top plate 17 is fixed on the upper end of the guiding rod 16; the electric cylinder 18 is fixed on the top plate 17, and the electric cylinder push rod is fixed
  • FIG. 2 is a side view showing the structure of a composite nanoimprinting lithography machine 12 mounted on the lower surface of the movable plate 14 and located on the rear side of the connecting frame 13. Wherein, the lower end of the UV exposure lamp is higher than the lower end of the roller.
  • FIG. 3 is a schematic structural view of a UV curing module, which includes a UV exposure lamp 121, a UV lamp holder 122, a lock nut 123, a slider 124, a chute 125, and a lamp holder guide plate 126.
  • the UV exposure lamp 121 is mounted on the UV lamp holder 122, and the UV exposure lamp is an ultraviolet LED lamp array; the UV lamp holder 122 is mounted with the slider 124; the slider 124 is mounted in the chute 125; the lamp holder guide plate 126 is mounted on The lower surface of the movable plate 14; the lock nut 123 is used to lock the position of the UV lamp holder 122, the lock nut 123 is tightened, the position of the UV exposure lamp 121 is fixed, and the lock nut 123 is released to adjust the UV exposure lamp. 121 location.
  • FIG. 4 is a schematic view of a roller structure including: an elastic material layer 901, a roller base 902, a roller inlet hole 903, a radial hole 904, an adsorption groove 905, and a roller outer surface 906.
  • the elastic material layer 901 is wrapped on the outer surface of the roller base 902, and a plurality of (not less than 8 sets) roller inlet holes 903 are evenly arranged on the side of the roller base 902, and the roller inlet 903 is only connected to one side of the roller base.
  • the plurality of adsorption grooves 905 are uniformly disposed on the outer surface 906 of the roller; the bottom of the adsorption groove 905 is provided with a plurality of adsorption grooves 905 at the bottom of the roller base 902.
  • Radial holes 904 (the number of radial holes in each group is not less than 3), the radial holes 904 communicate the roller inlet holes 903 and the adsorption grooves 905; the roller inlet holes 903 are connected to the pressure lines and the vacuum tubes By controlling the on and off of the pressure line and the vacuum line, the positive and negative pressure changes of the adsorption tank 905 are realized, thereby achieving the gradual sequential adsorption fixation and separation of the composite soft mold 8 on the outer surface 906 of the roller. Among them, a similar gas path has a total of 8 sets, and is evenly distributed on the surface and inside of the roller.
  • the elastic material layer 901 may be made of silicone rubber or elastomer polyurethane or PDMS or the like.
  • Applying a layer of elastic material 901 on the surface of the roller base 902 can not only play a buffering role, but also ensure the quality of the imprinting, and more importantly, the airtightness of the adsorption tank 905 is greatly improved.
  • the support layer of the composite soft mold 8 used is mostly PET or the like. Since the PET surface is relatively smooth and has a certain hardness, the adsorption groove 905 has a poor adsorption effect on the composite soft mold 8, and is wrapped in a layer of elastic material. After 901, the adsorption effect of the adsorption tank 905 on the composite soft mold 8 is greatly improved.
  • FIG. 5 is a schematic structural view of an imprint head, which includes: a connecting hole 601, a swivel joint fixing portion 602, a swivel joint rotating portion 603, an air outlet 604, a hard pipe 7, a roller 9, a roller coupling 10, and a drive.
  • the motor 11 and the connecting frame 13 for rotating the roller includes: a connecting hole 601, a swivel joint fixing portion 602, a swivel joint rotating portion 603, an air outlet 604, a hard pipe 7, a roller 9, a roller coupling 10, and a drive.
  • the motor 11 and the connecting frame 13 for rotating the roller.
  • the connecting hole 601 is in communication with the vacuum line and the pressure line; the rotating joint fixing portion 602 is fixed on the inner side of the connecting frame 13, and the side of the rotating joint rotating portion 603 is provided with a plurality of air outlets 604, and the air outlet 604 passes through the hard pipeline 7
  • the intake holes 903 on the side of the roller 9 are connected, and the connection holes 601 and the air outlets 604 are in communication; the other side of the roller 9 is connected to the motor 11 that drives the rollers to rotate through the coupling 10.
  • the motor 11 that drives the rotation of the roller drives the roller 9 to rotate.
  • the roller 9 passes through the hard pipe 7 (the rotating portion 603 can also be fixed to the shaft by means of a key connection) to drive the rotary joint rotating portion 603 to rotate synchronously, and the rotary joint is fixed.
  • the portion 602 is fixed, which solves the problem of winding of the gas path and ensures a normal and reliable working cycle.
  • the rotary joint 6, the composite soft mold 8, the roller 9, the coupling 10, the motor 11 for driving the roller rotation, the UV exposure lamp 121, and the connecting frame 13 constitute an imprinting module.
  • the embossing module is fixed on the movable plate 14, and the electric cylinder 18 drives the moving plate 14 to move up and down along the guiding rod 16.
  • the motor 11 that drives the rotation of the roller rotates synchronously by the roller 10, and the roller 9 further drives the rotary joint 6 to rotate synchronously, and the positive and negative pressures of the adsorption groove 905 of the outer surface 906 of the roller are sequentially changed.
  • the laying, embossing, and demolding of the composite soft mold 8 is achieved, wherein the embossing material 5 is cured by the UV exposure lamp 121. .
  • the rotation speed of the roller 9 during operation is extremely slow, and the driving motor is required to be smoothly and smoothly operated at a constant speed, and a speed reducer is required.
  • the moving speed of the table 2 is strictly synchronized with the linear speed of the rotation of the roller 9, and the composite is realized by the movement of the table 2, the rotation of the roller 9, and the positive and negative pressure sequence of the roller adsorption groove 905.
  • FIG. 6 is a schematic structural view of a composite soft mold, which includes a pattern layer 801, a support layer 802, and a soft film 803.
  • the composite soft mold 8 is a transparent film composite soft mold, the support layer 802 is located on the pattern layer 801, and the soft film 803 is located above the support layer 802.
  • the graphic layer 801 includes a micro/nano feature 80101 to be reproduced, wherein the graphic layer 801 has extremely low surface energy, high modulus of elasticity, and transparent characteristics; the support layer 802 has properties of transparency and film structure; and the flexible film 803 has Transparent, highly flexible, and with a certain degree of adhesion.
  • the softness of the support layer 802 is limited (the support layer 802 is too soft to affect the quality of the embossed pattern) and has a certain hardness, when the roller outer surface 906 is directly in contact with the support layer 802, the adsorption effect is limited, and the present invention is supported.
  • the surface of the layer 802 is uniformly covered with a soft film 803 to form a three-layer composite soft mold.
  • the soft film 803 is highly flexible and has certain adhesion, and does not directly contact the roller outer surface 906 through the support layer 802 during adsorption. Rather, the soft film 803 is in contact with the outer surface 906 of the roller, which greatly enhances the adsorption effect.
  • the graphic layer 801 is ETFE; the support layer 802 is made of high transparent PET material; and the soft film 803 is made of h-PDMS.
  • the thickness of the pattern layer 801 is 40 micrometers, the thickness of the support layer 802 is 300 micrometers, and the thickness of the soft film 803 is 300 micrometers.
  • the imprint material is an ultraviolet curable liquid organic polymer material having a viscosity of 30 mPa.s.
  • the invention adopts a whole wafer nanoimprint of 8 inch (about 200 mm diameter) GaN-based photonic crystal LED (LED epitaxial nano-patterning) as an embodiment, and combines the working method steps of the nanoimprinting lithography machine of the invention.
  • Schematic Fig. 6a - Fig. 6j, detailing the principle and specific process steps of the nanoimprint lithography machine.
  • the substrate 4 is an 8-inch GaN-based epitaxial wafer, and a photonic crystal structure in which a photonic crystal structure is required to be printed on a P-type semiconductor is required.
  • the geometric parameters are: a lattice constant of 600 nm, a diameter of a circular hole of 200 nm, and a depth of the hole of 100 nm.
  • the imprint material was micro-resistance mr-XNIL26, and the thickness of the GaN-based epitaxial wafer was 300 nm.
  • FIGS. 7a-7j are schematic diagrams of working steps of the nanoimprint lithography machine, and the specific working process includes: pretreatment Process, deposition process of composite soft mold, embossing process, curing process, demoulding process.
  • the vacuum chuck 3 is fixed on the table 2 and moves together with the table 2; the air inlet 903 is connected to the vacuum line and the pressure line.
  • Step (1) a pretreatment process
  • a liquid ultraviolet curing type imprinting material 5 is evenly coated on the substrate 4, the substrate 4 is placed on the vacuum chuck 3, and the substrate 4 of the coating imprinting material 5 is adsorbed and fixed by vacuum adsorption.
  • the vacuum chuck 3 is wrapped on the outer surface 906 of the roller, the side air inlet 903 of the roller 9 is connected to the negative pressure, and the composite soft mold 8 is adsorbed and fixed on the outer surface 906 of the roller;
  • the horizontal movement of the table 2 drives the vacuum chuck 3 to move from the initial station to the imprint station, and the electric cylinder driving roller 9 and the composite soft mold 8 are moved from the initial station to the imprint station, as shown in Fig. 7a.
  • Step (2) a composite soft mold laying process
  • the motor 11 for driving the roller rotation is turned on to rotate the roller 9 counterclockwise, and the air inlet hole 90301 at the lowermost end of the roller 9 is converted from a negative pressure to a positive pressure, and the table 2 is horizontally turned in the same direction as the roller 9 Movement (the moving speed of the table 2 is strictly synchronized with the linear speed of the roller 9), with the rotation of the roller 9 and the horizontal movement of the table 2, starting from the intake hole 90301 at the lowermost end of the roller, closing the vacuum line Opening the pressure line, sequentially converting the other inlet holes 90302-90308 of the roller from negative pressure to positive pressure (the pressure of the adsorption tank after contact with the atmosphere changes from positive pressure to normal pressure), and adsorbing on the outer surface 906 of the roller
  • the composite soft mold 8 is gradually separated from the outer surface 906 of the roller, and the entire composite soft mold 8 is laid flat on the substrate 4 under the uniform pressure application of the roller 9 in line contact.
  • the roller 9 continues to move downward by 30 micrometers, and the motor 11 that drives the roller rotation is turned on. With the rotation of the roller 9 and the horizontal movement of the table 2, the roller 9 is uniformly contacted by the line contact (20N embossing) Under the action of force, it is ensured that the composite soft mold 8 and the substrate 4 obtain complete conformal contact, and under the action of the roller 9 with a uniform embossing force, the liquid pressure embossing material 5 is extruded to the composite soft mold 8 micron. In the characteristic structure cavity, large-area imprinting of the entire substrate is completed by sequentially pressing the line contact pressure imprinting in sequence, as shown in Fig. 7e.
  • Step (4) curing process
  • Step (4-1) The electric cylinder 18 drives the roller 9 to move upward by 100 micrometers, and the roller 9 is separated from the composite soft mold 8.
  • the UV exposure lamp 121 is turned on, the table 2 performs horizontal movement, and the UV exposure lamp 121 performs ultraviolet exposure on the imprint material 5 through the transparent composite soft mold 8.
  • the exposure of the entire composite soft mold 8 is sequentially completed with the movement of the table 2. And curing of the imprinting material 5; as shown in Figure 7f;
  • Step (4-2) The workbench is reciprocated twice;
  • Step (4-3) After the exposure curing is completed, the ultraviolet exposure lamp 121 is turned off.
  • Step (5) demolding process
  • Step (5-1) the electric cylinder 18 drives the roller 9 to move upward, so that the gap distance between the roller 9 and the tiled composite soft mold 8 is 500 micrometers;
  • Step (5-3) With the rotation of the roller 9 and the horizontal movement of the table 2, starting from the intake hole 90301 at the lowermost end of the roller 9, the vacuum line is opened, and the other intake holes 90302 of the roller are sequentially sequentially- 90308 is introduced into the negative pressure, and the composite soft mold 8 is gradually adsorbed and fixed to the outer surface 906 of the roller to realize a similar continuous "uncovering" demolding;
  • Step (5-4) When the entire composite soft mold 8 is completely detached from the embossing material 5, and the composite soft mold 8 is completely adsorbed and fixed on the outer surface 906 of the roller, the demoulding step is completed; as shown in Fig. 7g, 7h , 7i shown.
  • Step (5-5) Then the electric cylinder 18 drives the roller 9 and the composite soft mold 8 to move up quickly, returning to the initial station; the worktable 2 returns from the imprint station to the initial station, and the embossing is completed. Substrate 4, placing a new substrate, begins the next cycle of work; as shown in Figure 7j.
  • the impression force applied to the roller 9 by the electric cylinder 18 is 30 N, and the power of the UV exposure lamp 121 is 600 W.
  • the horizontal moving speed of the table, the rotation speed of the roller, the order of the positive and negative pressures of each inlet of the roller must be strictly synchronized.
  • the moving speed of the table is 30 mm/s, and the linear speed of the roller is 30 mm/s.

Abstract

一种复合纳米压印光刻机及工作方法,它解决了压印图形存在较大的变形,压印精度低,压印质量差的问题,利用辊轮(9)、复合软模具(8)、工作台(2)的密切配合,在正负压共同和协同作用下,高效自动完成大面积压印和揭开式脱模,实现对超大尺寸刚性衬底的大面积微纳米图形化。其技术方案为:包括底座(1),底座(1)上固定工作台(2),工作台(2)的移动台面上设置真空吸盘(3),真空吸盘(3)真空吸附着基材(4),基材(4)上均匀涂铺压印材料(5);基材(4)上方对应配合设置有压印模组,压印模组包括压印组件和固化组件,压印组件包括辊轮(9),辊轮(9)外表面真空吸附着复合软模具(8),辊轮(9)外表面包覆弹性材料层(901),复合软模具(8)与辊轮(9)接触的一侧设置柔性材料层(803)。

Description

一种复合纳米压印光刻机及工作方法 技术领域
本发明属于微纳制造技术领域,涉及一种复合纳米压印光刻机,尤其涉及一种基于辊轮辅助和复合软模具的大面积复合纳米压印光刻机及工作方法。
背景技术
高清平板显示、高效太阳能电池板、抗反射和自清洁玻璃、LED图形化、晶圆级微纳光学器件等领域为了改进和提高产品的性能和品质,对于大面积微纳图形化技术有着非常巨大的产业需求。这些产品其共同特征是需要在大尺寸非平整刚性衬底上(硬质基材或者基板)高效、低成本制造出大面积复杂三维微纳米结构。但是,现有的各种微纳米制造技术(诸如电子束光刻、光学光刻、激光干涉光刻、全息光刻、自组装等)无论在技术层面(非平整衬底大面积微纳图形化、复杂三维微纳结构制造),还是在图形化的生产成本、效率、一致性、良率等方面都还难以满足工业级规模化生产的实际要求。
纳米压印光刻(Nanoimprint Lithography,NIL)作为一种全新的微纳米制造技术,较之现行的投影光刻和下一代光刻技术,具有高分辩率、超低成本(国际权威机构评估同等制作水平的NIL比传统光学投影光刻至少低一个数量级)和高生产率的特点,而且其最显著的优势在于大面积、复杂三维微纳结构制造的能力以及非平整衬底的图形化,尤其是软紫外纳米压印工艺还具有在非平整(弯曲、翘曲或者台阶)、曲面、易碎衬底上底上实现晶圆级纳米压印的潜能,以及滚压印工艺所特有的连续图形化能力。此外,NIL是基于压印材料受力变形而实现其图形化,不涉及各种高能束的使用,对于衬底的损伤较小,这对于许多光电子、量子器件的应用非常重要。目前纳米压印的最小特征尺寸已经达到2.4nm。
尽管纳米压印光刻在大面积微纳图形化方面具有非常突出的优势和巨大的潜能,但是现有的各种纳米压印工艺在图形化面积、压印成本、效率、一致性等方面还存在着诸多的不足,尤其是对于刚性衬底(硬质基材)整片压印的最大尺寸还局限在8英寸以下,对于大幅面、米级尺度刚性衬底的大面积图形化还难以实现,已经严重影响和制约了大面积纳米压印在新一代大尺寸高清平板显示、高效太阳能电池板、高性能玻璃幕墙、大尺寸LED图形化、大尺寸晶圆级微纳光学产品等的广泛应用。
目前,大面积纳米压印主要有三种工艺:(1)整片晶圆压印;(2)滚对平面压印(又分为使用辊轮模具和基于平板模具的辊轮施压);(3)滚对滚型压印(Roll-to-Roll imprinting)。目前整片晶圆压印(亦称晶圆级压印)主要策略是结合气体辅助施压和平板型软模具实现晶圆级纳米压印,目前最大压印的面积限定在8英寸以下晶圆,对于更大晶圆尺寸压印面 临许多挑战性难以处理的问题(诸如非常大的压印力、大面积共形接触、大面积均匀施压、气泡消除、大面积脱难等诸多难题。例如8英寸整片晶圆纳米压印如果施加2Bar的压印力,整片晶圆所要承受的压印力就达到628kgf/cm 2,气腔室的压力将可能超过1400kgf/cm 2,而且随着压印面积的进一步增大,压印力成几何倍数增加。导致软模具的变形以及压印工艺的实现等许多问题非常难以处理),更大尺寸晶圆的整片压印,尤其是对于米级尺度刚性衬底的图形化目前还几乎无法实现。滚对滚型压印虽然可以实现大面积连续图形化,但主要适用于柔性衬底(基材),对于硬质刚性衬底微纳图形化不适合,尤其对于大尺寸非平整刚性衬底几乎无法实现其图形化。基于辊轮模具的滚对平面压印一方面对刚性衬底平整度要求高(难以处理翘曲、非平整衬底压印),另一方面辊轮模具制造困难,尤其对于纳尺度无缝辊轮型模具的制造,现有的技术几乎还无法解决。基于平板模具辊轮施压型滚对平面压印仅仅能实现压印工步(主要是仅仅利用辊轮施加均匀压印力),放置模具和脱模等操作还需要设置专门的机构,而且脱模效果差,生产效率低,设备复杂和成本高。压印面积目前也还限定在较小的面积,无法实现大尺寸硬质基材的大面积微纳图形化。
中国专利申请(公布号为CN105159029A)公开了一种大面积微纳图形化的装置和方法,其虽能解决上述问题,但其仍然存在以下不足和问题:(1)其采用压印和固化同时进行。这样的方式存在的问题为:一方面压印过程中薄膜软模具在压印力的作用下会产生变形,直接固化导致固化后压印图形存在较大的变形,压印精度低,压印质量差;另一方面,压印和固化同时进行,要求压印材料具有快速固化的性能(这就使得压印材料的选择受限),同时,存在固化不完全的问题(即使以非常低的压印速度进行工作);(2)其压印力直接施加在辊轮(或者辊轮轴)上,一方面存在难以保证施加均匀一致的压印力,导致压印图形的一致性差,压印面积受限,另一方面,对于衬底不平整度适应性差,尤其难以对超大尺寸衬底和易碎衬底进行压印;(3)辊轮旋转带动与之相连接的气管转动,导致气管缠绕,无法实现正常可靠的工作循环,尤其是压印效率要求较高时(辊轮转速很快),会导致设备无法工作;(4)辊轮外表面所设置的长槽密封性差,复合软模具难以完全被吸附固定在辊轮上(尤其随着衬底尺寸的增大,复合软模具可靠完全吸附在辊轮上变的非常困难),因此,存在压印质量和精度差,设备可靠性低;(5)整个装置的结构刚性差、精度差,难以满足大面积纳米的压印的工艺要求,尤其是对于超大尺寸衬底,几乎无法实现正常的压印图形化。
综上所述,现有的各种微纳制造工艺和方法还难以满足大尺寸(8英寸以上)、非平整刚性衬底和易碎衬底大面积图形化工业级规模化生产的要求,已经严重影响和制约了大面积功能性表面纳米结构和纳米结构涂层在高性能玻璃、高效太阳能电池板、新一代高清平 板显示、大尺寸LED图形化等行业的应用和推广,成为制约这些新技术推广和应用的瓶颈。因此,迫切需要开发新的超大面积纳米图形化的装置和方法,实现米级尺度超大尺寸衬底、非平整衬底、易碎衬底的大面积微纳图形化,解决超大尺寸、非平整刚性衬底、易碎衬底上高效、低成本规模化制造大面积微纳米结构的难题。
发明内容
为了克服上述现有技术的不足,本发明提供一种适用于在超大尺寸、非平整刚性衬底(硬质基材或基板)、易碎衬底上高效、低成本规模化制造大面积微纳米结构的纳米压印光刻机,高效、低成本的实现米级尺度超大尺寸刚性衬底的大面积微纳米图形化,提高压印可靠性,改进压印质量,增大图形化尺寸,扩展适用压印材料的种类。
为实现上述目的,本发明采用下述技术方案:
一种复合纳米压印光刻机,包括底座,所述底座上固定工作台,所述工作台的移动台面上设置真空吸盘,真空吸盘真空吸附着基材,基材上均匀涂铺压印材料;基材上方对应配合设置有压印模组,所述压印模组与上下移动机构连接,所述上下移动机构包括垂直固定于底座上的导向杆,所述导向杆上穿设有动板,动板底部与压印模组连接,动板顶部与驱动装置连接;所述压印模组包括压印组件和固化组件,固化组件设置于压印组件后侧,所述压印组件包括辊轮,所述辊轮外表面真空吸附着复合软模具,所述辊轮外表面包覆弹性材料层,所述复合软模具与辊轮接触的一侧设置柔性材料层,所述辊轮通过连接架与动板连接,所述辊轮包括辊轮基体,所述辊轮基体第一端与动力装置连接,辊轮基体第二端均匀布设多个进气孔,进气孔通过硬质管路与旋转接头旋转部分的出气口对应连接,压力管路和真空管路均与旋转接头固定部分的连接孔相连接,连接孔和出气口连通。
所述导向杆顶部与顶板相互垂直固定连接,所述驱动装置固定于顶板上。
所述动板和导向杆之间通过直线轴承连接。
所述驱动装置为电动缸,所述动力装置为电机。
所述固化组件包括与动板固定的灯架导向板,所述灯架导向板与固化光源灯架滑动连接,固化光源灯架上固定UV曝光灯。
所述UV曝光灯的高度高于辊轮最低端的高度。
所述灯架导向板上设置滑槽,滑槽内设置有滑块,固化光源灯架配合设置于滑槽处,所述滑块与固化光源灯架固定连接。
所述滑槽呈弧形,滑槽第一端与灯架导向板一侧边连接,滑槽第二端与灯架导向板另一侧边连接;滑槽第一端的高度低于滑槽第二端。既能调整前后位置,也能调整高矮。
所述固化光源灯架与滑槽配合处设置紧固件。
所述进气孔由第二端向辊轮基体内部延伸,且进气孔不与第一端连通。
所述辊轮外表面上均匀布设多个轴向的吸附槽,所述吸附槽底至辊轮内部设有多个径向孔,径向孔将进气孔和吸附槽相连通。
所述复合软模具包括图形层和支撑层,支撑层位于图形层之上,图形层包含所要复制的微纳特征结构,所述柔性材料层设置于支撑层之上。
所述图形层的厚度范围是10-50微米,支撑层的厚度范围是100-500微米,柔性材料层的厚度范围是100-500微米。
为了克服现有技术中压印产生变形、压印精度低的不足,本发明还提供一种复合纳米压印光刻机的工作方法,包括以下步骤:
步骤1:预处理;
将涂铺有压印材料的基材吸附固定于真空吸盘上,将复合软模具真空吸附于辊轮外表面,工作台和压印组件均移动至压印工位;
步骤2:复合软模具铺放;
驱动工作台与辊轮转向相同的方向移动,通过真空管路和压力管路的切换,将复合软模具顺序铺放在基材上;
步骤3:压印;
驱动辊轮下移,再次驱动工作台与辊轮转向相同的方向移动,使复合软模具与基材获得完全共形接触,完成压印;
步骤4:固化;
驱动辊轮上移,工作台水平移动,固化组件完成对整个复合软模具的曝光和压印材料的固化;
步骤5:脱模;
驱动工作台与辊轮转向相反的方向移动,控制真空管路工作,将复合软模具逐渐吸附于辊轮外表面,完成脱模。
所述步骤1的具体步骤为:
在基材上均匀涂铺压印材料,将基材置于真空吸盘上,并将基材吸附固定在真空吸盘上;将复合软模具包裹在辊轮外表面上,由进气孔通入负压,将复合软模具吸附在辊轮外表面;
工作台水平移动带动真空吸盘从初始工位移动到压印工位,上下移动机构带动辊轮和复合软模具从初始工位移动到压印工位。
所述步骤2的具体步骤为:
驱动辊轮旋转,将辊轮最下端处的进气孔从负压转换成正压,同时工作台以与辊轮转向相同的方向水平移动,随着辊轮的旋转和工作台的水平移动,从辊轮最下端处的进气孔开始,关闭真空管路,打开压力管路,依次顺序将辊轮其它进气孔由负压转换成正压,吸附在辊轮外表面上的复合软模具逐渐与辊轮分离,同时在辊轮线接触均匀施压作用下,实现将整个复合软模具平铺到基材上;复合软模具完全脱离辊轮并铺放到基材上的压印材料表面之后,关闭辊轮进气孔的气路。
所述步骤3的具体步骤为:
驱动辊轮继续向下移动20-50微米,随着辊轮的旋转和工作台的水平移动,在辊轮线接触均匀施压作用下,确保复合软模具与基材获得完全共形接触,并在辊轮线接触均匀压印力作用下将压印材料挤压到复合软模具微纳特征结构型腔中,通过依次逐渐顺序线接触施压压印,完成对整片衬底大面积压印。
所述步骤4的具体步骤为:
驱动辊轮向上移动100-500微米,使辊轮与复合软模具脱离;工作台水平移动,固化组件透过复合软模具对压印材料进行紫外曝光,随着工作台的移动依次完成对整个复合软模具的曝光和压印材料的固化;根据需要,使工作台多次往返,增加曝光时间。
所述步骤5的具体步骤为:
驱动辊轮上移,使辊轮与复合软模具有100-1000微米的间隙;
驱动辊轮旋转,同时将靠近辊轮最下端的进气孔通入负压,依次顺序将其它辊轮进气孔通入负压,复合软模具与压印结构逐渐分离,并被依次顺序吸附固定在辊轮外表面上,同时随着工作台反向移动,进行连续脱模操作;
驱动辊轮向上运动,返回到初始工位;工作台从压印工位返回到初始工位,卸下压印完成的基材,放置新的基材,开始下一轮工作循环。
与现有技术相比,本发明的有益效果为:
(1)充分结合了平板型纳米压印和辊轮型纳米压印工艺的优势,利用辊轮、复合软模具、工作台的密切配合,在正负压共同和协同作用下,高效自动完成大面积压印和揭开式脱模,实现对超大尺寸刚性衬底的大面积微纳米图形化,具有结构和工艺简单、生产效率高、成本低、压印图形精度高和缺陷低的特点。
(2)压印力小:压印过程中辊轮与复合软模具为线接触,并且采用的是顺序微接触压印方式。因而,所需要施加的压印力非常小。与传统整片晶圆压印施加的压印力相比,所需要的压印力仅是传统气体辅助施压的1/15-50/1。所带来的有益效果是一方面软模具的变形小,提高了压印图形的精度和质量,另一方面,极大简化了设备结构,降低了成本。此 外,还能够实现易碎衬底/基材的大面积压印(外延片、玻璃等大面积纳米压印)。
(3)施加压印力均匀:辊轮与复合软模具为线接触,并且采用的是顺序微接触压印方式。因而,一方面施加在复合软模具上的压印力均匀一致。另外,与传统大面积压印所采用通过气体或者流体辅助施压方法相比,该压印方法具有工艺和结构简单、成本低。
(4)生产环境的要求低,对于衬底、基材或者晶圆的不平整度、缺陷、颗粒物不敏感,适应度高。这在实际工业应用中是非常重要的。
(5)将辊轮通过连接架固定在动板上,压印力施加在动板的中心,同时动板通过导向杆和导向直线轴承的导向,一方面对于超大尺寸衬底确保压印力施加均匀,另一方面,设备的刚性好,尤其对于超大尺寸衬底其显著特点越明显,特别适合超大尺寸衬底的压印。
(6)采用先铺放复合软模具,然后再压印,最后进行固化的工作方法。固化时由于没有施加压印,复合软模具没有变形(压印时模具的变形已经得到充分释放),提高压印图形的精度和压印质量。
(7)由于固化工步是单独进行,能够保证充分固化(可以设置工作台多次往返,实现充分的固化)。
(8)扩大了压印材料的适用范围(对于固化时间长的材料,可以通过工作台多次往返,实现充分完全固化)。
(9)在辊轮进气口设置硬管和旋转接头,解决辊轮旋转导致气路软管的缠绕问题。实现压印机工作可靠,适用于超大尺寸衬底压印。
(10)辊轮外表面设置多个吸附槽,复合软模具易于可靠性完全紧密的吸附在辊轮上,尤其适合与超大尺寸衬底压印图形化。
本发明实现了超大尺寸、非平整衬底、易碎衬底/基材大面积微纳米结构的高效、低成本批量化制造,为大面积微纳米结构的商业化应用提供一种工业级的解决方案。
本发明适合于超大尺寸高清平板显示、高效太阳能电池板、抗反射和自清洁玻璃、大尺寸LED图形化、晶圆级微纳光学器件、超大面积表面微纳功能结构等工业级规模化生产。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是复合纳米压印光刻机结构立体图。
图2是复合纳米压印光刻机结构侧视图。
图3是UV固化模块结构示意图。
图4是辊轮结构示意图。
图5是压印头结构示意图。
图6是复合软模具结构示意图。
图7a-图7j是纳米压印光刻机的工作方法步骤示意图。
图中,1底座、2工作台、3真空吸盘、4基材、5压印材料、6旋转接头、7硬质管路、8复合软模具、9辊轮、10联轴器、11驱动辊轮旋转的电机、12UV固化模块、13连接架、14动板、15导向直线轴承、16导向杆、17顶板、18电动缸;
601连接孔、602旋转接头固定部分、603旋转接头旋转部分、604出气孔;
121UV曝光灯、122固化光源灯架、123锁紧螺母、124滑块、125滑槽、126灯架导向板;
801图形层、802支撑层、803柔性材料层、80101微纳特征结构;
901弹性材料层、902辊轮基体、903进气孔、904径向孔、905吸附槽、906辊轮外表面、90101-90108辊轮侧面依次顺序设置的进气孔。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,现有技术存在压印精度低、压印质量差的不足,为了解决如上的技术问题,本申请提出了一种复合纳米压印光刻机。
本申请的一种典型的实施方式中,如图1所示,提供了一种复合纳米压印光刻机,它包括:底座1、工作台2、真空吸盘3、基材4、压印材料5、旋转接头6、硬质管路7、复合软模具8、辊轮9、联轴器10、驱动辊轮旋转的电机11、UV固化模块12、连接架13、动板14、导向直线轴承15、导向杆16、顶板17、电动缸18。工作台2固定在底座1上,真空吸盘3固定于工作台2上;真空吸盘3正上方真空吸附着基材4;基材4上均匀涂铺液态紫外光固化型压印材料5;复合软模具8通过真空吸附的方式附着在辊轮外表面906;辊轮9一端通过联轴器10与驱动辊轮旋转的电机11相连;UV固化模块12置于辊轮9后侧;辊轮9、联轴器10、驱动辊轮旋转的电机11置于连接架13上;连接架13固定在动板14上;动板14设置4个导向直线轴承15,动板14上的导向直线轴承15与导向杆16相连接; 导向杆16下端固定在底座1上,顶板17固定在导向杆16上端;电动缸18固定于顶板17上,电动缸推杆穿过顶板17固定在动板14上,电动缸推杆置于动板14的中心。
图2是复合纳米压印光刻机结构侧视图,UV固化模块12安装在动板14的下表面,并且位于连接架13的后侧。其中,UV曝光灯下端高于辊轮下端一定距离。
图3是UV固化模块结构示意图,它包括:UV曝光灯121、UV灯架122、锁紧螺母123、滑块124、滑槽125、灯架导向板126。UV曝光灯121安装在UV灯架122上,UV曝光灯为紫外LED灯阵列;UV灯架122与滑块124安装在一起;滑块124安装在滑槽125内;灯架导向板126安装在动板14的下表面;锁紧螺母123用于锁死UV灯架122的位置,锁紧螺母123拧紧,UV曝光灯121的位置即被固定,松开锁紧螺母123即可调节UV曝光灯121的位置。
图4是辊轮结构示意图,它包括:弹性材料层901、辊轮基体902、辊轮进气孔903、径向孔904、吸附槽905、辊轮外表面906。弹性材料层901包裹在辊轮基体902外表面,辊轮基体902侧面上均匀布设若干(不少于8组)辊轮进气孔903,辊轮进气孔903只与辊轮基体的一侧相连通(辊轮进气孔903与辊轮基体902的另一侧并未贯通);辊轮外表面906上均匀设置若干个吸附槽905;吸附槽905底部至辊轮基体902内部设有若干个径向孔904(每组径向孔的数量不少于3个),径向孔904将辊轮进气孔903和吸附槽905相连通;辊轮进气孔903连接压力管路与真空管路,通过控制压力管路、真空管路的通断,来实现吸附槽905的正、负压变换,从而实现复合软模具8在辊轮外表面906上的逐渐顺序吸附固定和分离。其中,所类似的气路共设有8组,并且均匀分布于辊轮表面与内部。弹性材料层901可以为硅橡胶或弹性体聚氨酯或PDMS等制成。在辊轮基体902表面涂覆一层弹性材料层901,不仅可以起到缓冲的作用,保证压印质量,更为重要的是大大提高了吸附槽905的气密性。所采用的复合软模具8的支撑层多为PET等材料,由于PET表面较为光滑,并且具有一定硬度,因此吸附槽905对复合软模具8的吸附效果较差,而在包裹一层弹性材料层901之后,大大提高了吸附槽905对复合软模具8的吸附效果。
图5是压印头结构示意图,它包括:连接孔601、旋转接头固定部分602、旋转接头旋转部分603、出气孔604、硬质管路7、辊轮9、辊轮联轴器10、驱动辊轮旋转的电机11、连接架13。连接孔601与真空管路和压力管路相连通;旋转接头固定部分602固定在连接架13的内侧,旋转接头旋转部分603的侧面设有若干出气孔604,出气孔604通过硬质管路7与辊轮9侧面的进气孔903相连接,连接孔601和出气孔604相连通;辊轮9的另一侧与驱动辊轮旋转的电机11通过联轴器10相连接。驱动辊轮旋转的电机11驱动辊轮9旋转,辊轮9通过硬质管路7(旋转部分603也可以通过键连接的方式固定在轴上)带动旋转 接头旋转部分603同步旋转,旋转接头固定部分602固定不动,这样便解决了气路的缠绕问题,保证了正常可靠的工作循环。
旋转接头6、复合软模具8、辊轮9、联轴器10、驱动辊轮旋转的电机11、UV曝光灯121和连接架13组成压印模组。压印模组固定在动板14上,电动缸18带动动板14沿着导向杆16上下运动。驱动辊轮旋转的电机11通过联轴器10驱动辊轮9同步旋转,辊轮9进一步带动旋转接头6同步旋转,通过辊轮外表面906的吸附槽905的正、负压依次顺序变换,同时配合工作台2的水平移动,以及辊轮9压印力辅助作用下,实现复合软模具8的铺放、压印、以及脱模,其中压印材料5在UV曝光灯121的作用下完成固化。
辊轮9在工作时旋转速度极为缓慢,要求驱动电机可以缓慢匀速平稳运转,需要设置减速机。
压印时,工作台2的移动速度与辊轮9旋转的线速度严格同步,通过工作台2的移动、辊轮9的旋转、同时配合辊轮吸附槽905正、负压顺序变换,实现复合软模具8在辊轮外表面906的吸附固定以及软模具在工作台上的铺开。
图6是复合软模具结构示意图,它包括:图形层801、支撑层802、软薄膜803。复合软模具8为透明薄膜复合软模具,支撑层802位于图形层801之上;软薄膜803位于支撑层802之上。图形层801包含所要复制的微纳特征结构80101,其中,图形层801具有极低的表面能、高弹性模量和透明的特性;支撑层802具有透明、和薄膜结构的特性;软薄膜803具有透明、高度柔软的特性,并且具有一定粘附性。由于支撑层802的柔软度有限(支撑层802过于柔软会影响压印图形的质量),并且具有一定硬度,辊轮外表面906直接与支撑层802相接触时,吸附效果有限,本发明在支撑层802的表面均匀覆盖一层软薄膜803,形成三层复合软模具,软薄膜803采用高度柔性材料,并且具有一定粘附性,吸附时不通过支撑层802与辊轮外表面906直接接触,而是通过软薄膜803与辊轮外表面906相接触,大大提高了吸附效果。图形层801采用ETFE;支撑层802采用高透明PET材料;软薄膜803采用h-PDMS。其中图形层801的厚度是40微米,支撑层802的厚度是300微米,软薄膜803的厚度是300微米。
压印材料是紫外光固化型液态有机聚合物材料,其粘度30mpa.s。
本发明以8英吋(直径约200毫米)GaN基光子晶体LED(LED外延片纳米图形化)的整片晶圆纳米压印为实施例,结合本发明纳米压印光刻机的工作方法步骤示意图(图6a-图6j),详细说明纳米压印光刻机的原理和具体工艺步骤。
实施例中基材4、复合软模具8和图形化过程的一些具体参数设置如下:基材4为8英吋GaN基外延片,需要在P型半导体层压印出光子晶体结构,其中光子晶体的几何参数 是:晶格常数600nm,圆孔的直径200nm,孔的深度是100nm。压印材料使用Micro resist technology公司的mr-XNIL26,在GaN基外延片旋涂的厚度是300nm。
本申请的另一种典型的实施方式中,提供了复合纳米压印光刻机的工作方法,图7a-图7j是纳米压印光刻机的工作方法步骤示意图,具体工作过程包括:预处理过程、复合软模具的铺放过程、压印过程、固化过程、脱模过程。其中,真空吸盘3固定在工作台2上,并且随工作台2一起运动;进气孔903连接真空管路与压力管路。
具体的,工作方法步骤如下:
步骤(1):预处理过程;
在基材4上均匀涂铺一层液态紫外光固化型压印材料5,将基材4置于真空吸盘3上,并通过真空吸附方式将涂铺压印材料5的基材4吸附固定在真空吸盘3上;将复合软模具8包裹在辊轮外表面906上,辊轮9侧面进气孔903通入负压,将复合软模具8吸附固定在辊轮外表面906上;
工作台2水平移动带动真空吸盘3从初始工位移动到压印工位,电动缸带动辊轮9和复合软模具8从初始工位移动到压印工位,如图7a所示。
步骤(2):复合软模具铺放过程;
开启驱动辊轮旋转的电机11,使辊轮9逆时针旋转,辊轮9最下端处的进气孔90301从负压转换成正压,同时工作台2以与辊轮9转向相同的方向水平移动(工作台2的移动速度与辊轮9的线速度严格同步),随着辊轮9的旋转和工作台2的水平移动,从辊轮最下端处的进气孔90301开始,关闭真空管路,打开压力管路,依次顺序将辊轮其它进气孔90302-90308由负压转换成正压(与大气接触之后的吸附槽压力从正压变为常压),吸附在辊轮外表面906上的复合软模具8逐渐与辊轮外表面906分离,同时在辊轮9线接触均匀施压作用下,将整个复合软模具8平铺到基材4上。复合软模具8完全脱离辊轮外表面906并铺放到基材4上的压印材料5表面之后,关闭辊轮进气孔903的气路;如图7b、7c、7d所示。
步骤(3):压印过程;
辊轮9继续向下移动30微米,开启驱动辊轮旋转的电机11,随着辊轮9的旋转和工作台2的水平移动,在辊轮9线接触均匀施压作用下(20N的压印力作用下),确保复合软模具8与基材4获得完全共形接触,并在辊轮9线接触均匀压印力作用下,将液态压压印材料5挤压到复合软模具8微纳特征结构型腔中,通过依次逐渐顺序线接触施压压印,完成对整片衬底大面积压印;如图7e所示。
步骤(4):固化过程;
步骤(4-1):电动缸18带动辊轮9向上移动100微米,辊轮9与复合软模具8脱离。开启UV曝光灯121,工作台2执行水平移动,UV曝光灯121透过透明复合软模具8对压印材料5进行紫外曝光,随着工作台2的移动依次完成对整个复合软模具8的曝光和压印材料5的固化;如图7f所示;
步骤(4-2):工作台往返2次,充分固化;
步骤(4-3):曝光固化完成后,关闭紫外曝光灯121。
步骤(5):脱模过程;
步骤(5-1):电动缸18带动辊轮9向上移动,使辊轮9与平铺的复合软模具8的间隙距离为500微米;
步骤(5-2):开启驱动辊轮旋转的电机11,使辊轮9顺时针旋转,同时将靠近辊轮9最下端的进气孔90301通入负压,复合软模具8与压印结构逐渐分离,并被吸附固定在辊轮外表面906上,同时随着工作台2反向移动,开始进行连续脱模操作;
步骤(5-3):随辊轮9的旋转和工作台2的水平移动,从辊轮9最下端处的进气孔90301开始,打开真空管路,依次顺序将辊轮其它进气孔90302-90308通入负压,复合软模具8逐渐吸附固定到辊轮的外表面906上,实现类似连续“揭开式”脱模;
步骤(5-4):当整个复合软模具8全部与压印材料5脱离,复合软模具8完全被吸附固定在辊轮外表面906上后,即完成脱模工步;如图7g、7h、7i所示。
步骤(5-5):随后电动缸18带动辊轮9和复合软模具8快速向上运动,返回到初始工位;工作台2从压印工位返回到初始工位,卸下压印完成的基材4,放置新的基材,开始下一轮工作循环;如图7j所示。
本实施例中电动缸18向辊轮9施加的压印力是30N,UV曝光灯121的功率600W。
工作台的水平移动速度、辊轮的旋转速度、辊轮各个进气口顺序依次正、负压转换的时间必须保持严格的同步。工作台的移动速度30mm/s,滚轮旋转线速度是30mm/s。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种复合纳米压印光刻机,其特征是,包括底座,所述底座上固定工作台,所述工作台的移动台面上设置真空吸盘,真空吸盘真空吸附着基材,基材上均匀涂铺压印材料;基材上方对应配合设置有压印模组,所述压印模组与上下移动机构连接,所述上下移动机构包括垂直固定于底座上的导向杆,所述导向杆上穿设有动板,动板底部与压印模组连接,动板顶部与驱动装置连接;所述压印模组包括压印组件和固化组件,固化组件设置于压印组件后侧,所述压印组件包括辊轮,所述辊轮外表面真空吸附着复合软模具,所述辊轮外表面包覆弹性材料层,所述复合软模具与辊轮接触的一侧设置柔性材料层,所述辊轮通过连接架与动板连接,所述辊轮包括辊轮基体,所述辊轮基体第一端与动力装置连接,辊轮基体第二端均匀布设多个进气孔,进气孔通过硬质管路与旋转接头旋转部分的出气口对应连接,压力管路和真空管路均与旋转接头固定部分的连接孔相连接,连接孔和出气口连通。
  2. 如权利要求1所述的光刻机,其特征是,所述导向杆顶部与顶板相互垂直固定连接,所述驱动装置固定于顶板上;所述动板和导向杆之间通过直线轴承连接;所述驱动装置为电动缸,所述动力装置为电机;
    所述固化组件包括与动板固定的灯架导向板,所述灯架导向板与固化光源灯架滑动连接,固化光源灯架上固定UV曝光灯;所述UV曝光灯的高度高于辊轮最低端的高度。
  3. 如权利要求2所述的光刻机,其特征是,所述灯架导向板上设置滑槽,滑槽内设置有滑块,固化光源灯架配合设置于滑槽处,所述滑块与固化光源灯架固定连接;所述滑槽呈弧形,滑槽第一端与灯架导向板一侧边连接,滑槽第二端与灯架导向板另一侧边连接;滑槽第一端的高度低于滑槽第二端;所述固化光源灯架与滑槽配合处设置紧固件。
  4. 如权利要求1所述的光刻机,其特征是,所述进气孔由第二端向辊轮基体内部延伸,且进气孔不与第一端连通;所述辊轮外表面上均匀布设多个轴向的吸附槽,所述吸附槽底至辊轮内部设有多个径向孔,径向孔将进气孔和吸附槽相连通。
  5. 如权利要求1所述的光刻机,其特征是,所述复合软模具包括图形层和支撑层,支撑层位于图形层之上,图形层包含所要复制的微纳特征结构,所述柔性材料层设置于支撑层之上;
    所述图形层的厚度范围是10-50微米,支撑层的厚度范围是100-500微米,柔性材料层的厚度范围是100-500微米。
  6. 如权利要求1-5任一项所述的光刻机的工作方法,其特征是,包括以下步骤:
    步骤1:预处理;
    将涂铺有压印材料的基材吸附固定于真空吸盘上,将复合软模具真空吸附于辊轮外表面,工作台和压印组件均移动至压印工位;
    步骤2:复合软模具铺放;
    驱动工作台与辊轮转向相同的方向移动,通过真空管路和压力管路的切换,将复合软模具顺序铺放在基材上;
    步骤3:压印;
    驱动辊轮下移,再次驱动工作台与辊轮转向相同的方向移动,使复合软模具与基材获得完全共形接触,完成压印;
    步骤4:固化;
    驱动辊轮上移,工作台水平移动,固化组件完成对整个复合软模具的曝光和压印材料的固化;
    步骤5:脱模;
    驱动工作台与辊轮转向相反的方向移动,控制真空管路工作,将复合软模具逐渐吸附于辊轮外表面,完成脱模。
  7. 如权利要求6所述的光刻机的工作方法,其特征是,所述步骤1的具体步骤为:
    在基材上均匀涂铺压印材料,将基材置于真空吸盘上,并将基材吸附固定在真空吸盘上;将复合软模具包裹在辊轮外表面上,由进气孔通入负压,将复合软模具吸附在辊轮外表面;
    工作台水平移动带动真空吸盘从初始工位移动到压印工位,上下移动机构带动辊轮和复合软模具从初始工位移动到压印工位;
    所述步骤2的具体步骤为:
    驱动辊轮旋转,将辊轮最下端处的进气孔从负压转换成正压,同时工作台以与辊轮转向相同的方向水平移动,随着辊轮的旋转和工作台的水平移动,从辊轮最下端处的进气孔开始,关闭真空管路,打开压力管路,依次顺序将辊轮其它进气孔由负压转换成正压,吸附在辊轮外表面上的复合软模具逐渐与辊轮分离,同时在辊轮线接触均匀施压作用下,实现将整个复合软模具平铺到基材上;复合软模具完全脱离辊轮并铺放到基材上的压印材料表面之后,关闭辊轮进气孔的气路。
  8. 如权利要求6所述的光刻机的工作方法,其特征是,所述步骤3的具体步骤为:
    驱动辊轮继续向下移动20-50微米,随着辊轮的旋转和工作台的水平移动,在辊轮线接触均匀施压作用下,确保复合软模具与基材获得完全共形接触,并在辊轮线接触均匀压印力作用下将压印材料挤压到复合软模具微纳特征结构型腔中,通过依次逐渐顺序线接触施压压印,完成对整片衬底大面积压印。
  9. 如权利要求6所述的光刻机的工作方法,其特征是,所述步骤4的具体步骤为:
    驱动辊轮向上移动100-500微米,使辊轮与复合软模具脱离;工作台水平移动,固化组件透过复合软模具对压印材料进行紫外曝光,随着工作台的移动依次完成对整个复合软模具的曝光和压印材料的固化;根据需要,使工作台多次往返,增加曝光时间。
  10. 如权利要求1所述的光刻机的工作方法,其特征是,所述步骤5的具体步骤为:
    驱动辊轮上移,使辊轮与复合软模具有100-1000微米的间隙;
    驱动辊轮旋转,同时将靠近辊轮最下端的进气孔通入负压,依次顺序将其它辊轮进气孔通入负压,复合软模具与压印结构逐渐分离,并被依次顺序吸附固定在辊轮外表面上,同时随着工作台反向移动,进行连续脱模操作;
    驱动辊轮向上运动,返回到初始工位;工作台从压印工位返回到初始工位,卸下压印完成的基材,放置新的基材,开始下一轮工作循环。
PCT/CN2018/072078 2017-02-21 2018-01-10 一种复合纳米压印光刻机及工作方法 WO2018153174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018000010.9T DE112018000010B4 (de) 2017-02-21 2018-01-10 Verbund-Nanoimprint-Lithograph und Verfahren zu dessen Betrieb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710093354.9A CN106918987B (zh) 2017-02-21 2017-02-21 一种复合纳米压印光刻机及工作方法
CN201710093354.9 2017-02-21

Publications (1)

Publication Number Publication Date
WO2018153174A1 true WO2018153174A1 (zh) 2018-08-30

Family

ID=59453953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072078 WO2018153174A1 (zh) 2017-02-21 2018-01-10 一种复合纳米压印光刻机及工作方法

Country Status (3)

Country Link
CN (1) CN106918987B (zh)
DE (1) DE112018000010B4 (zh)
WO (1) WO2018153174A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466267A (zh) * 2019-09-18 2019-11-19 凌云西南工业有限公司 一种玻璃滑槽的标识辊压系统
CN112965342A (zh) * 2021-02-05 2021-06-15 三河建华高科有限责任公司 一种接近接触光刻机的底部吹氮真空复印曝光模式
CN113075861A (zh) * 2021-04-01 2021-07-06 青岛天仁微纳科技有限责任公司 一种新型纳米压印设备及其压印方法
WO2022217954A1 (zh) * 2021-04-16 2022-10-20 深圳先进技术研究院 微纳结构制作方法及微纳结构制作装置
CN110466267B (zh) * 2019-09-18 2024-05-03 成都凌云汽车零部件有限公司 一种玻璃滑槽的标识辊压系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918987B (zh) * 2017-02-21 2019-12-06 青岛理工大学 一种复合纳米压印光刻机及工作方法
KR102524604B1 (ko) * 2017-12-14 2023-04-24 삼성디스플레이 주식회사 임프린트 장치 및 이를 이용한 임프린트 방법
CN108762001A (zh) * 2018-07-27 2018-11-06 青岛理工大学 一种批量化制造大面积微纳米结构的装置及其工作方法
CN110426918B (zh) * 2019-06-17 2022-06-21 集美大学 一种基于磁流体的光功能织构薄膜压印装置及压印方法
CN112364402B (zh) * 2020-10-27 2022-04-08 成都飞机工业(集团)有限责任公司 一种用于铺放仿真台阶曲面网格快速生成方法
CN113618090B (zh) * 2021-08-11 2022-06-07 吉林大学 一种微纳结构辊筒模具加工与压印成形机床及其控制方法
CN114669445B (zh) * 2022-03-08 2023-06-23 上海交通大学 一种微纳米结构涂层的柔性辊压成形装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052216A1 (en) * 2008-08-29 2010-03-04 Yong Hyup Kim Nano imprint lithography using an elastic roller
CN102360161A (zh) * 2011-10-09 2012-02-22 兰红波 大尺寸晶圆级纳米图形化蓝宝石衬底压印装置及方法
CN202252524U (zh) * 2011-09-23 2012-05-30 蓬莱金创集团公司 一种旋转供气装置
CN103149794A (zh) * 2011-12-06 2013-06-12 私立中原大学 滚轮式压印系统
CN105159029A (zh) * 2015-10-10 2015-12-16 兰红波 大面积微纳图形化的装置和方法
CN105922718A (zh) * 2016-04-28 2016-09-07 黄斌 一种全自动热压机
CN106918987A (zh) * 2017-02-21 2017-07-04 青岛理工大学 一种复合纳米压印光刻机及工作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844729B2 (ja) 2005-08-17 2011-12-28 独立行政法人産業技術総合研究所 ナノインプリント方法及び装置
CN202205025U (zh) * 2011-09-08 2012-04-25 青岛理工大学 一种整片晶圆纳米压印光刻机
JP5644014B2 (ja) 2012-06-21 2014-12-24 Scivax株式会社 ローラ式加圧装置、インプリント装置、ローラ式加圧方法
CN204925614U (zh) * 2015-10-10 2015-12-30 兰红波 大面积微纳图形化的装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100052216A1 (en) * 2008-08-29 2010-03-04 Yong Hyup Kim Nano imprint lithography using an elastic roller
CN202252524U (zh) * 2011-09-23 2012-05-30 蓬莱金创集团公司 一种旋转供气装置
CN102360161A (zh) * 2011-10-09 2012-02-22 兰红波 大尺寸晶圆级纳米图形化蓝宝石衬底压印装置及方法
CN103149794A (zh) * 2011-12-06 2013-06-12 私立中原大学 滚轮式压印系统
CN105159029A (zh) * 2015-10-10 2015-12-16 兰红波 大面积微纳图形化的装置和方法
CN105922718A (zh) * 2016-04-28 2016-09-07 黄斌 一种全自动热压机
CN106918987A (zh) * 2017-02-21 2017-07-04 青岛理工大学 一种复合纳米压印光刻机及工作方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466267A (zh) * 2019-09-18 2019-11-19 凌云西南工业有限公司 一种玻璃滑槽的标识辊压系统
CN110466267B (zh) * 2019-09-18 2024-05-03 成都凌云汽车零部件有限公司 一种玻璃滑槽的标识辊压系统
CN112965342A (zh) * 2021-02-05 2021-06-15 三河建华高科有限责任公司 一种接近接触光刻机的底部吹氮真空复印曝光模式
CN112965342B (zh) * 2021-02-05 2022-07-12 三河建华高科有限责任公司 一种接近接触光刻机的底部吹氮真空复印曝光装置
CN113075861A (zh) * 2021-04-01 2021-07-06 青岛天仁微纳科技有限责任公司 一种新型纳米压印设备及其压印方法
CN113075861B (zh) * 2021-04-01 2023-09-19 青岛天仁微纳科技有限责任公司 一种新型纳米压印设备及其压印方法
WO2022217954A1 (zh) * 2021-04-16 2022-10-20 深圳先进技术研究院 微纳结构制作方法及微纳结构制作装置

Also Published As

Publication number Publication date
DE112018000010T5 (de) 2018-10-18
CN106918987A (zh) 2017-07-04
CN106918987B (zh) 2019-12-06
DE112018000010B4 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2018153174A1 (zh) 一种复合纳米压印光刻机及工作方法
WO2017059745A1 (zh) 大面积微纳图形化的装置和方法
CN208766456U (zh) 采用超大尺寸软膜模板进行大面积压印的纳米压印装置
WO2014047750A1 (zh) 一种用于高亮度led图形化的纳米压印装置和方法
WO2017059828A1 (zh) 一种大尺寸晶圆整片纳米压印的装置及其压印方法
US8027086B2 (en) Roll to roll nanoimprint lithography
US8741199B2 (en) Method and device for full wafer nanoimprint lithography
TWI472422B (zh) 奈米壓印設備和方法
JP5478854B2 (ja) システム
JP5867764B2 (ja) Uv形成装置およびロールツーロール位置合わせのための方法
CN102346369B (zh) 一种整片晶圆纳米压印光刻机
KR20140109624A (ko) 대면적 임프린트 장치 및 방법
CN204925614U (zh) 大面积微纳图形化的装置
Lan Large-area nanoimprint lithography and applications
CN103172019A (zh) 一种干粘附微纳复合两级倾斜结构的制备工艺
KR20090020922A (ko) 대면적 나노 임프린트 리소그래피 장치
CN218938765U (zh) 一种纳米压印设备
CN202771153U (zh) 一种用于高亮度led图形化的纳米压印装置
CN202205025U (zh) 一种整片晶圆纳米压印光刻机
CN209879250U (zh) 一种可制备超疏水微结构的纳米压印装置
CN220053195U (zh) 一种夹持装置
CN108762001A (zh) 一种批量化制造大面积微纳米结构的装置及其工作方法
CN208506492U (zh) 一种批量化制造大面积微纳米结构的装置
CN220419792U (zh) 一种纳米压印制造设备及ar镜片制造设备
CN213149470U (zh) 一种紫外纳米压印光刻自动脱模系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112018000010

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758236

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18758236

Country of ref document: EP

Kind code of ref document: A1