WO2018151542A1 - 구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법 - Google Patents

구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법 Download PDF

Info

Publication number
WO2018151542A1
WO2018151542A1 PCT/KR2018/001956 KR2018001956W WO2018151542A1 WO 2018151542 A1 WO2018151542 A1 WO 2018151542A1 KR 2018001956 W KR2018001956 W KR 2018001956W WO 2018151542 A1 WO2018151542 A1 WO 2018151542A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
polymer
target analyte
primary
secondary amine
Prior art date
Application number
PCT/KR2018/001956
Other languages
English (en)
French (fr)
Inventor
남좌민
고광표
김재호
박정은
린무홍
주인선
이정수
Original Assignee
서울대학교 산학협력단
대한민국(식품의약품안전처장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교 산학협력단, 대한민국(식품의약품안전처장) filed Critical 서울대학교 산학협력단
Priority to US16/486,674 priority Critical patent/US11747333B2/en
Priority to EP18753738.6A priority patent/EP3598107A4/en
Publication of WO2018151542A1 publication Critical patent/WO2018151542A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5306Improving reaction conditions, e.g. reduction of non-specific binding, promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54346Nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Definitions

  • the present invention provides a method for detecting a target analyte using gold nanoparticles, comprising treating a solution containing a copper ion, a polymer having a primary or secondary amine group, and a reducing agent to grow copper crystals specifically on the gold nanoparticles.
  • a method, a signal amplification composition used in the detection method, and a target analyte detection kit comprising the composition for signal amplification.
  • Gold nanoparticles are not only chemically stable, but are easily modified and exhibit excellent optical properties including plasmonic properties.
  • labeling with very high density and / or number is required to obtain visible signal strength, which means that the detection limits for biomaterials are fundamentally low without any amplification process.
  • detection methods such as surface-enhanced Raman scattering (SERS), conductivity measurement, and electrochemical stripping are being developed.
  • SERS surface-enhanced Raman scattering
  • conductivity measurement conductivity measurement
  • electrochemical stripping electrochemical stripping
  • the present inventors can provide a simple and economically significant signal augmentation effect in addition to the method of introducing a silver shell to conventional gold nanoparticles requiring high cost and harsh reaction conditions.
  • the copper ions are reduced in the presence of a polymer containing a primary or secondary amine group, high sensitivity and The present invention was completed by confirming that the selectivity can be easily detected.
  • the present invention provides a method for detecting a target analyte using gold nanoparticles, the target analyte is fixed directly or through a material capable of capturing the target analyte
  • a first step of preparing A second step of forming a complex with the target analyte by contacting the substrate of the first step with a substance specifically binding to the target analyte, labeled with gold nanoparticles;
  • the present invention is a composition for amplifying a signal used in a method for detecting a target analyte using gold nanoparticles, the compound capable of providing copper ions in solution, a polymer having a primary or secondary amine group and a reducing agent It provides a composition comprising a.
  • the present invention provides a kit for detecting a target analyte using gold nanoparticles comprising the composition for amplifying the signal.
  • the present invention comprises the steps of growing a copper crystal on the gold nanoparticles by treating a gold nanoparticles with a solution comprising a copper ion, a polymer having a primary or secondary amine group and a reducing agent.
  • a manufacturing method can be provided.
  • the present invention provides a method for detecting an analyte using gold nanoparticles as a probe, by a simple process of treating gold nanoparticles immobilized on a substrate with a solution containing a copper ion, a polymer having a primary or secondary amine group, and a reducing agent. It is based on the discovery that it can grow hundreds of nm of copper nanopolyhedron in minutes at room temperature without additional energy such as heating.
  • the polymer having a primary or secondary amine group may be a polymer capable of forming a ligand complex with copper ions through an amine group included therein.
  • the polymer having a primary or secondary amine group may be polyethyleneimine.
  • the polymer having a primary or secondary amine group can be strongly bonded to copper ions through the amine group contained therein to form a ligand complex, thereby lowering the chemical potential of the copper ions can be suppressed non-specific reduction.
  • the molecular weight of the polymer may be 100 to 10000, more specifically 1000 to 5000 based on the number average molecular weight or weight average molecular weight, but is not limited thereto.
  • the reducing agent may be, for example, ascorbic acid, hydroxyamine, or hydroquinone, which is a mild reducing agent, but the reducing agent may be, for example, ascorbic acid, hydroxyamine, or hydroquinone, which is a mild reducing agent. Can be used, but is not limited thereto. By using such a mild reducing agent, it is possible to block the formation of nonspecific copper crystals and to selectively form crystals only on the gold nanoparticles, thereby improving the signal-to-noise ratio.
  • the solvent of the solution may be specifically water, but is not limited thereto.
  • the third step for overgrowing the copper crystals on the gold nanoparticles can be accomplished by performing for 3 to 20 minutes at room temperature, such as 10 to 35 °C, but is not limited thereto.
  • the particles in which the copper crystals are grown may have an increased diameter of 100 to 1,000 nm.
  • the diameter may mean the maximum diameter or the average diameter of the particles, the maximum diameter may mean the maximum distance between one end and the other end of the particle.
  • Significant scattering signal enhancement can be achieved by overgrowing the copper crystals to form particles with an increased diameter of several hundred nm as described above, so that it can be detected with the naked eye without any additional analysis equipment.
  • the presence and absence of the target analyte can be confirmed by taking an image through a naked eye, a microscope, or a photograph.
  • the gold nanoparticle specific overgrowth of the copper crystals according to the present invention can be achieved even in the absence of gold nanoparticles capable of acting as seeds, i.e., in the absence of gold nanoparticles due to the absence of a target analyte.
  • gold nanoparticles capable of acting as seeds
  • copper hardly forms crystals in the absence of gold nanoparticles.
  • the signal-to-noise ratio achievable with the detection method of the present invention may vary depending on the concentration of the target analyte, but may be 20-100 for 8 fM gold nanoprobes, but is not limited thereto.
  • the signal of the gold nanoprobe itself as well as the background signal increases due to the formation of non-specific silver crystals, so that the improvement of the signal-to-noise ratio is achieved.
  • the detection method using the overgrowth of copper crystals according to the present invention can significantly improve the signal-to-noise ratio because copper crystals are selectively formed only where gold nanoprobes are present.
  • the signal-to-noise ratio may refer to the ratio of the signal when the gold nanoprobe is added and the background signal when the gold nanoprobe is not added.
  • the signal-to-noise ratio of 2 to 5 or more can be considered as a significant signal
  • the signal-to-noise ratio of at least 20 for 8 fM gold nanoprobes in the detection method using copper according to the present invention was only about 1 when using silver. This indicates that even traces of target analytes present at concentrations below fM can be detected based on the significantly improved signal-to-noise ratio.
  • the method for detecting a target analyte using gold nanoparticles of the present invention may be performed using a compound capable of providing copper ions in a solution, a signal amplifying composition comprising a polymer having a primary or secondary amine group and a reducing agent.
  • the compound capable of providing copper ions in the solution may be copper chloride, but is not limited thereto.
  • the polymer having a primary or secondary amine group is a polymer capable of forming a ligand complex with copper ions.
  • the polymer having the primary or secondary amine group may be polyethyleneimine, but is not limited thereto.
  • non-limiting examples of the reducing agent usable in the signal amplification composition of the present invention include ascorbic acid, hydroxyamine or hydroquinone.
  • the present invention may provide a kit for detecting a target analyte using gold nanoparticles comprising the composition for amplifying the signal.
  • the kit may further include a solution containing water as a solvent, but is not limited thereto.
  • the kit for detecting a target analyte of the present invention may be advantageously used for signal amplification of gold nanoparticles directly or indirectly fixed to a substrate through specific binding with a target analyte.
  • the present invention provides a method for producing copper crystals comprising the step of growing a copper crystal on the gold nanoparticles by treating the gold nanoparticles with a solution containing a copper ion, a polymer having a primary or secondary amine group and a reducing agent. can do.
  • Detecting a target analyte using gold nanoparticles comprising the steps of growing a copper crystal specifically on the gold nanoparticles by treating a solution containing a copper ion, a polymer having a primary or secondary amine group and a reducing agent of the present invention
  • the method can selectively grow copper crystals on the gold nanoparticles up to several hundred nm within a few minutes at room temperature, and thus can be useful for detecting a small amount of target analyte since it can be detected with a good signal-to-noise ratio without a separate analytical device.
  • 1 is a schematic representation of specific copper crystal overgrowth on gold nanoprobes according to the present invention.
  • FIG. 2 is a schematic diagram illustrating a method for detecting analyte labeled with gold nanoprobes using copper crystal overgrowth.
  • Figure 3 is a diagram showing the results of DNA detection using the specific copper crystal overgrowth in the number and phase of gold nano probes according to the present invention. As a control, an analysis result using silver instead of copper was used.
  • Figure 4 is a diagram showing the results of norovirus detection using specific copper crystal overgrowth on the gold nanoprobe according to the present invention.
  • FIG. 5 is a diagram showing specific overgrowth of copper crystals by a polymer having primary or secondary amine groups on gold nanoparticles according to the present invention.
  • FIG. 6 is a diagram illustrating a DNA detection method using copper crystal overgrowth according to the present invention.
  • Figure 7 is a diagram showing a norovirus detection method using the copper crystal overgrowth according to the present invention.
  • 50 nm diameter gold nanoparticles (1 mL) dispersed in distilled water are polyethylene glycol (PEG) polymers (MW 5K, 200 ⁇ M, each having a thiol group (-SH) and a carboxyl group (-COOH) at both ends).
  • PEG polyethylene glycol
  • the supernatant was removed by centrifugation at 6000 rpm for 10 minutes, then suspended in 0.25 mL of 50 mM MES buffer (2- (N-morpholino) ethanesulfonic acid, pH 4.8) and 1-ethyl-3 at a concentration of 1 mg / mL.
  • N-hydroxysulfosuccinimide; sulfo at 0.1 mL and 1 mg / mL concentrations of (1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide; EDC) -NHS) was reacted with 0.1 mL at room temperature for 5 minutes to activate the carboxyl group. After removing the supernatant by centrifugation again at 6500 rpm for 15 minutes, it was suspended in 0.25 mL of 10 mM PBS (phosphate buffered saline, pH 7.2) solvent and the anti-norovirus capsid protein VP1 antibody (at pH 7.2 conditions for 3 hours at room temperature).
  • PBS phosphate buffered saline, pH 7.2
  • Example 1 Using Gold Nanoparticle-specific Copper Crystal Overgrowth Norovirus Detection method
  • 5 'terminal thiolated anthrax probe oligonucleotide (SEQ ID NO: 1: 5'-SH-A 10 -PEG 18 -AAT GCT TTA TTC CAT TCC TGA TTT ATA TTT AAC TGT GCT T-3') at a concentration of 10 nM Excess was added to a 10 nm diameter gold nanoparticle solution. The salt concentration was gradually increased to reach the final 0.15 M concentration by adding 2.0 M NaCl solution in hot water (95 ° C.).
  • Example 2 Anthrax Gene Detection Method Using Gold Nanoparticle-Specific Copper Crystal Overgrowth
  • the capturing oligonucleotides (SEQ ID NO: 2: 5'-CTT GAA TTT TTG TAT CTA TTT TAC TCT TTG GCA CTA CTT T-PEG 18 -C 6 Amine-3 ') yield 0.15 M NaCl, 0.01% SDS and 5% glycerol. Diluted to 5 ⁇ M with pH 10 carbonate buffer containing. Using a microarray, the capturing oligonucleotide solution was printed on an aldehyde-modified glass substrate as a spot about 500 ⁇ m in diameter and aged overnight. The substrate printed with the capturing oligonucleotide solution was washed with 0.1% SDS, 1 ⁇ PBS.
  • a copper amplification solution was added to the substrate treated in the same manner as in Example 1 or 2 except that the gold nanoprobe solution was not added, followed by reaction for 30 minutes to confirm the formation of copper crystals (see FIG. 3 right).
  • Example 1 and 2 15 minutes (Examples 1 and 2) or 30 minutes (comparative to the silver amplification solution (SE100-Silver Enhancer Kit) of Sigma-Aldrich, Inc. on the substrate with or without gold nano probe according to Examples 1 and 2 and Comparative Example 1 Example 1)
  • the silver crystals formed were observed.
  • FIG. 3 when the copper nanocrystals introduced on the substrate were treated with a copper amplification solution to grow the copper crystals, a more significant signal enhancement effect was observed compared to the case where the silver crystals were formed, thereby lowering the concentration. It was confirmed that it was possible to detect (left side of FIG. 3).
  • the copper amplification solution was added to the gold nanoprobe-fixed substrate and incubated for 10 minutes to grow the copper crystals, followed by washing. The formed copper crystals were visually observed and photographed for analysis. The experiment was repeated three times each and the measured signal was digitized to derive mean and standard deviation.
  • the detection method using the gold nano-probe through the copper amplification according to the present invention showed excellent reproducibility in the repeated experiments, and the measured signal is determined by the concentration of the gold nano probe bound to the analyte It was confirmed to increase proportionally.
  • DNA thiolated probe olifonucleotide
  • DNA target oligonucleotide; 5'-AAA GTA GTG CCA AAG AGT AAA ATA GAT ACA AAA ATT CAA GAA GCA CAG TTA AAT ATA AAT CAG GAA TGG AAT AAA GCA TT-3 '; 80 bases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 특이적으로 구리 결정을 성장시키는 단계를 포함하는, 금 나노입자를 이용한 표적 분석물질의 검출방법, 상기 검출방법에 사용되는 신호 증폭용 조성물, 및 상기 신호 증폭용 조성물을 포함하는 표적 분석물질 검출용 키트에 관한 것이다.

Description

구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법
본 발명은 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 특이적으로 구리 결정을 성장시키는 단계를 포함하는, 금 나노입자를 이용한 표적 분석물질의 검출방법, 상기 검출방법에 사용되는 신호 증폭용 조성물, 및 상기 신호 증폭용 조성물을 포함하는 표적 분석물질 검출용 키트에 관한 것이다.
화학적 및 생물학적 분자에 대한 고감도 및 고민감성 검출 방법의 개발은 지난 십수년에 걸친 유전학 및 단백질체학적 진보의 잠재력을 실현하는데 있어 매우 중요하다. 고밀도 유전자칩은 수천 종의 유전자 발현을 동시에 모니터링할 수 있도록 하였다. 보다 낮은 밀도의 칩은 단일 시료에서 발생가능한 잠재적 생물학적 위험(biohazards)의 실험적 및 임상적 동정을 가능하게 하였다. 현재 사용되는 표지 기법은 분자적 형광체 마커에 기초하고 있으나, 최근 나노입자 기술의 진보로 종래 형광체에 기초한 방법에 비해 현저히 더 높은 민감도 및 선택도를 갖는 시스템을 구현할 수 있게 되었다.
금 나노입자는 화학적으로 안정할 뿐만 아니라, 다양한 개질이 용이하고, 플라즈모닉 특성을 비롯한 우수한 광학적 성질을 나타내므로 바이오물질 검지에서 프로브 등으로 다양하게 활용되고 있다. 그러나, 금 나노입자를 프로브로써 사용할 경우 가시적인 신호 세기를 얻기 위해서는 매우 높은 밀도 및/또는 개수로 표지하는 것이 요구되며, 이는 별도의 증폭 과정 없이는 바이오물질에 대한 검출한계가 근본적으로 낮음을 의미한다. 보다 낮은 검출 한계를 달성하기 위하여 표면증강라만산란법(surface-enhanced Raman scattering; SERS), 전도율 측정법(conductometric), 전기화학적 박리법(stripping) 등의 검출방법이 개발되고 있으나 별도의 장비와 여러 단계를 통한 측정 방법이 필요하다는 단점이 있다. 따라서, 현장현시검사(point of care testing)와 같은 기술적 요구에 대하여, 검지에 활용된 금 나노입자에 은 또는 금 나노껍질(shell)을 추가로 도입하여 프로브의 광학적 산란 신호를 증폭하는 방법이 사용되고 있으나 재현성 및 민감도 등의 측면에서 한계가 있다.
한편 콜로이드 상태의 금 나노입자에 구리 또는 팔라듐과 같은 금속물질을 나노껍질 형태로 과성장 시켜 코어쉘 나노입자를 만드는 몇몇 연구가 보고된 바 있으나, 선택성과 같은 측면에 대한 아직까지 보고된 바 없으며, 대개 얇은 껍질과 같은 구조처럼 크기의 증폭이 크지 않은 콜로이드상태의 이성원소 나노입자에 머물고 있다.
종래의 은 증강(enhancement)법은 금 나노프로브를 이용하여 바이오물질을 검지한 후 이온 상태의 은을 금 나노프로브의 표면에 환원시켜 강한 산란 신호를 발생할 수 있도록 하는 기술로, 별도의 분석장비 없이도 금 나노프로브의 존재 유/무 및 많고 적음의 정도를 알아낼 수 있도록 한다. 하지만 은 증폭을 이용한 경우에는 은 원소의 본질적으로 강한 환원되려는 화학적 성질 때문에, 금 나노프로브 이외의 위치에서도 은 이온이 환원되어 상대적으로 비특이적(non-specific)이며 이로 인해 노이즈의 신호도 함께 증가한다. 또한 귀금속 계열의 높은 재료원가로 의해 은 증강법을 이용할 경우 상대적으로 높은 비용이 요구된다. 따라서 높은 민감도, 선택성, 재현성을 가지며 낮은 비용으로도 간단히 적은 수의 금 나노프로브를 검출할 수 있는 방법이 요구된다.
본 발명자들은 금 나노입자를 이용한 표적 분석물질의 검출방법에 있어서, 고비용과 가혹한 반응 조건을 요구하는 종래 금 나노입자에 은 쉘을 도입하는 방법 외에 간편하고 경제적으로 현저한 신호 증강효과를 제공할 수 있는 방법을 발굴하기 위하여 예의 연구노력한 결과, 일차 또는 이차 아민기를 포함하는 고분자 존재 하에 구리 이온을 환원시키는 경우, 상온에서 수 분 이내에 금 나노입자 상에 구리 결정을 수백 nm 수준까지 과성장시킴으로써 높은 민감성 및 선택성으로 용이하게 검출할 수 있음을 확인하고 본 발명을 완성하였다.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 금 나노입자를 이용한 표적 분석물질의 검출방법에 있어서, 표적 분석물질이 직접 또는 상기 표적 분석물질을 캡쳐할 수 있는 물질을 통해 고정된 기재를 준비하는 제1단계; 상기 제1단계의 기재에 금 나노입자로 표지된, 상기 표적 분석물질에 특이적으로 결합하는 물질을 접촉시켜 표적 분석물질과 복합체를 형성하는 제2단계; 및 상기 제2단계의 복합체가 형성된 기재를 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 특이적으로 구리 결정을 성장시키는 제3단계를 포함하는, 분석물질의 검출방법을 제공한다.
다른 하나의 양태로서, 본 발명은 금 나노입자를 이용한 표적 분석물질의 검출방법에 사용되는 신호 증폭용 조성물에 있어서, 용액 상에서 구리 이온을 제공할 수 있는 화합물, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 조성물을 제공한다.
또 하나의 양태로서, 본 발명은 상기 신호 증폭용 조성물을 포함하는 금 나노입자를 이용한 표적 분석물질의 검출용 키트를 제공한다.
또 하나의 양태로서, 본 발명은 금 나노입자에 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 구리 결정을 성장시키는 단계를 포함하는, 구리 결정의 제조 방법을 제공할 수 있다.
이하, 본 발명을 상세히 설명한다.
본 발명은 금 나노입자를 프로브로 이용하는 분석물질의 검출 방법에 있어서, 기재 상에 고정된 금 나노입자를 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액으로 처리하는 단순한 과정에 의해 가열을 하는 등의 별도의 에너지를 가하지 않고도 상온에서 수 분 이내에 수백 nm 크기의 구리 나노다면체를 성장시킬 수 있음을 발견한 것에 기초한다.
종래 기재 상에 고정된 금 나노입자 상에 구리 결정을 성장시키는 경우 금 나노입자 주변에서 공간적으로 비대칭적인 환경이 조성되어 확산 의존적 성장으로 제한되어 오랜 시간이 소요되거나 가열 등을 통해 에너지를 가해주어야 하는 번거로움이 있었으며, 이와 같은 가열 공정으로 인해 DNA나 단백질과 같은 물질들은 변성될 우려가 있어 이들 물질의 검출에는 적용하기 어려웠다.
따라서, 비용이 높기는 하나 환원이 용이하여 도입이 용이하고, 상대적으로 검출에 유리한 은 쉘을 도입하여 신호를 증강시키는 방법을 이용하였으나, 전술한 바와 같이 비용의 높은 것은 물론 환원성으로 인해 비특이적인 은 입자 형성이 일어나게 되어 선택성이 저하되고 바탕 신호가 함께 높아져 신호 대 잡음 비가 낮아지는 단점이 있다.
상기 일차 또는 이차 아민기를 갖는 고분자는 이에 포함된 아민기를 통해 구리 이온과 리간드 착물을 형성할 수 있는 고분자일 수 있고, 예컨대, 상기 일차 또는 이차 아민기를 갖는 고분자는 폴리에틸렌이민일 수 있다. 상기 일차 또는 이차 아민기를 갖는 고분자는 이에 포함된 아민기를 통해 구리 이온과 강하게 결합하여 리간드 착물을 형성할 수 있고, 이에 따라 구리 이온의 화학 퍼텐셜이 낮아지므로 비특이적인 환원이 억제될 수 있다.
상기 고분자의 분자량은 수평균 분자량 또는 중량평균 분자량을 기준으로 구체적으로 100 내지 10000, 더욱 구체적으로 1000 내지 5000 일 수 있으나, 이에 제한되지 않는다.
상기 환원제로는 예컨대, 순한(mild) 환원제인 아스코르브산, 히드록시아민 또는 하이드로퀴논 등을 사용할 수 있으나, 상기 환원제로는 예컨대, 순한(mild) 환원제인 아스코르브산, 히드록시아민 또는 하이드로퀴논 등을 사용할 수 있으나, 이에 제한되지 않는다. 이와 같이 순한 환원제를 사용함으로써 비특이적인 구리 결정의 형성을 차단하고 금 나노입자 상에서만 선택적으로 결정을 형성하도록 할 수 있으므로 신호 대 잡음 비를 향상시킬 수 있다.
상기 용액의 용매는 구체적으로 물일 수 있으나, 이에 제한되지 않는다.
금 나노입자 상에 구리 결정을 과성장시키기 위한 상기 제3단계는 상온, 예컨대 10 내지 35℃에서 3 내지 20분 동안 수행하여 달성할 수 있으나, 이에 제한되지 않는다.
상기 제3단계에서, 구리 결정이 성장된 입자는 100 내지 1,000 nm의 증가된 직경을 가질 수 있다. 상기 직경은 입자의 최대 직경 또는 평균 직경을 의미할 수 있으며, 최대 직경은 입자의 일측 말단과 타측 말단 사이의 최대 거리를 의미할 수 있다. 상기와 같이 수백 nm의 증가된 직경을 갖는 입자를 형성하도록 구리 결정을 과성장시킴으로써 현저한 산란신호 증강을 달성할 수 있으므로, 별도의 분석장비 없이도 육안으로도 검출 가능하도록 할 수 있다.
본 발명의 검출방법을 이용하면 표적 분석물질의 유무(有無) 및 다소(多少)를 맨눈이나 현미경을 통해, 또는 사진으로 이미지를 찍어 확인할 수 있다.
나아가, 사진의 이미지로부터 도출한 세기 히스토그램(intensity histogram) 등을 분석하거나 스캐너 등을 이용하는 경우 정량적인 분석도 가능하다.
전술한 바와 같이, 본 발명에 따른 구리 결정의 금 나노입자 특이적 과성장은 종자로서 작용할 수 있는 금 나노입자가 존재하지 않는 위치에서도 즉, 표적 분석물질이 부재하여 금 나노입자가 존재하지 않는 위치에서도 자체의 환원성으로 인해 입자를 형성하는 은과는 달리 구리는 금 나노입자 부재시에는 결정을 거의 형성하지 않으므로 종래 검출방법에 비해 수십 내지 만 배까지 신호 대 잡음 비를 향상시킬 수 있는 검출방법을 제공할 수 있다. 예컨대, 본 발명의 검출방법으로 달성할 수 있는 신호 대 잡음 비는, 표적 분석물질의 농도에 따라 상이할 수 있으나, 8 fM 금 나노프로브에 대해 20 내지 100일 수 있으나, 이에 제한되지 않는다. 예컨대, 본 발명의 검출방법과 유사하나 구리 대신에 은을 이용하는 종래 검출방법의 경우 금 나노프로브 자체의 신호는 물론 비특이적인 은 결정 형성으로 인해 바탕 신호가 증가하므로 신호 대 잡음 비의 개선은 달성하기 어려웠으나, 본 발명에 따른 구리 결정의 과성장을 이용한 검출방법은 금 나노프로브가 존재하는 곳에서만 선택적으로 구리 결정이 형성되므로 신호 대 잡음 비를 현저하게 개선할 수 있다.
상기 신호 대 잡음 비는 금 나노프로브를 첨가한 경우의 신호와 금 나노프로브를 첨가하지 않은 경우의 바탕 신호의 비를 의미할 수 있다.
구체적으로, 통상 신호 대 잡음 비가 2 내지 5 이상인 경우 유의미한 신호로 간주할 수 있음을 고려할 때, 본 발명에 따른 구리를 이용한 검출방법의 경우 8 fM 금 나노프로브에 대해 최소 20 정도의 신호 대 잡음 비를 나타내었으나, 은을 이용한 경우 신호 대 잡음 비는 단지 1 정도에 불과하였다. 이는 현저히 향상된 신호 대 잡음 비를 토대로 fM 미만의 농도로 존재하는 미량의 표적 분석물질까지도 검출 가능함을 나타내는 것이다.
본 발명의 금 나노입자를 이용한 표적 분석물질의 검출방법은 용액 상에서 구리 이온을 제공할 수 있는 화합물, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 신호 증폭용 조성물을 사용하여 수행할 수 있다.
예컨대, 상기 용액 상에서 구리 이온을 제공할 수 있는 화합물은 염화구리일 수 있으나, 이에 제한되지 않는다.
예컨대, 상기 일차 또는 이차 아민기를 갖는 고분자는 구리 이온과 리간드 착물을 형성할 수 있는 고분자로서, 그 구체적인 예로 상기 일차 또는 이차 아민기를 갖는 고분자는 폴리에틸렌이민일 수 있으나, 이에 제한되지 않는다.
또한 본 발명의 신호 증폭용 조성물에 사용가능한 상기 환원제의 비제한적인 예는 아스코르브산, 히드록시아민 또는 하이드로퀴논을 포함한다.
또한, 본 발명은 상기 신호 증폭용 조성물을 포함하는 금 나노입자를 이용한 표적 분석물질의 검출용 키트를 제공할 수 있다.
이때, 상기 키트는 용매로서 물을 함유하는 용액을 추가로 포함할 수 있으나, 이에 제한되지 않는다.
예컨대, 본 발명이 표적 분석물질 검출용 키트는 표적 분석물질과의 특이적인 결합을 통해 기재에 직간접적으로 고정된 금 나노입자의 신호 증폭에 유리하게 사용될 수 있다.
또한, 본 발명은 금 나노입자에 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 구리 결정을 성장시키는 단계를 포함하는, 구리 결정의 제조 방법을 제공할 수 있다.
본 발명의 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 특이적으로 구리 결정을 성장시키는 단계를 포함하는, 금 나노입자를 이용한 표적 분석물질의 검출방법은 금 나노입자 상에서 선택적으로 구리 결정을 상온에서 수 분 이내에 수백 nm까지 성장시킬 수 있으므로 별도의 분석장비 없이도 우수한 신호 대 잡음 비로 검출 가능하므로 미량의 표적 분석물질 검출에 유용하게 사용될 수 있다.
도 1은 본 발명에 따른 금 나노프로브 상에서의 특이적인 구리 결정 과성장을 개략적으로 나타낸 도이다.
도 2는 구리 결정 과성장을 이용한 금 나노프로브로 표지된 분석물질의 검출 방법을 개략적으로 나타낸 도이다.
도 3은 본 발명에 따른 금 나노프로브 개수와 상에서의 특이적인 구리 결정 과성장을 이용한 DNA 검출 결과를 나타낸 도이다. 대조군으로는 구리 대신에 은을 이용한 분석 결과를 이용하였다.
도 4는 본 발명에 따른 금 나노프로브 상에서의 특이적인 구리 결정 과성장을 이용한 노로바이러스 검출 결과를 나타낸 도이다.
도 5는 본 발명에 따른, 금 나노입자 상에서 일차 또는 이차 아민기를 갖는 고분자에 의한 구리 결정의 특이적인 과성장을 나타낸 도이다.
도 6은 본 발명에 따른 구리 결정 과성장을 이용한 DNA 검출 방법을 나타낸 도이다.
도 7은 본 발명에 따른 본 발명에 따른 구리 결정 과성장을 이용한 노로바이러스 검출 방법을 나타낸 도이다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.
제조예 1: 노로바이러스 검지를 위한 항체에 금 나노입자가 표지된 금 나노프로브의 합성
증류수에 분산시킨 50 nm 직경의 금 나노입자(1 mL)를 양 말단에 각각 티올기(-SH)와 카르복실기(-COOH)를 갖는 폴리에틸렌글리콜(polyethylene glycol; PEG) 고분자(MW 5K, 200 μM, 0.1 mL)와 상온에서 3시간 동안 반응시켜 티올기를 통해 PEG 고분자가 금 나노입자 표면에 결합하도록 하였다. 6000 rpm으로 10분 동안 원심분리하여 상층액을 제거한 후, 50 mM MES 완충액(2-(N-morpholino)ethanesulfonic acid, pH 4.8) 0.25 mL에 현탁시키고, 1 mg/mL 농도의 1-에틸-3-(3-디메틸아미노프로필)카보디이미드(1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; EDC) 0.1 mL 및 1 mg/mL 농도의 N-히드록시설포숙신이미드(N-hydroxysulfosuccinimide; sulfo-NHS)0.1 mL와 상온에서 5분 동안 반응시켜 카르복실기를 활성화하였다. 다시 6500 rpm으로 15분 동안 원심분리하여 상층액을 제거한 후, 10 mM PBS(phosphate bufferedsaline, pH 7.2) 용매 0.25 mL에 현탁시키고 pH 7.2 조건에서 상온에서 3시간 동안 항-노로바이러스 캡시드 단백질 VP1 항체(Abcam, UK, #ab92976)와 반응시켜, PEG로 수식된 금 나노입자가 상기 활성화한 카르복실기를 이용하여 항체의 아민기를 통해 결합하도록 하였다. 4℃에서 6500 rpm으로 10분 동안 원심분리를 2회 반복한 후 상층액을 제거하고, 0.05% PBST(phosphate bufferedsaline with Tween-20)에 현탁시켜 200 pM 농도의 금 나노프로브 용액을 수득하였다.
실시예 1: 금 나노입자 특이적인 구리 결정 과성장을 이용한 노로바이러스 검출 방법
바이러스 샘플과 10 mM 트리스 완충액을 1:1 부피비로 혼합한 용액 1 μl를 알데하이드로 개질된 글라스 기재(Aldehyde glass, Luminano)상에 점적하여 상온에서 2시간 동안 반응시켜 바이러스 샘플이 글라스 기재 상에 결합되도록 하였다. 2 mL 0.05% PBST로 3회 세척한 후, 1% BSA 용액으로 상온에서 30분 동안 처리하여 노출된 표면을 차단하였다. 2 mL 0.05% PBST로 3회 세척한 후, 상기 제조예 1에 따라 준비한 금 나노프로브 용액 8 μl을 가하여 상온에서 1시간 동안 반응시켰다. 2 mL 0.05% PBST로 3회 세척한 후, 5 mL의 0.1 M 염화구리(CuCl2), 5 mL의 1% 폴리에틸렌이민(polyethyleneimine; PEI) 및 25 mL의 0.5M 아스코르브산(ascorbic acid)을 혼합하여 준비한 35 mL의 구리증폭용액에 반응을 완료한 글라스를 담궈 상온에서 10분 동안 반응시켜 금 나노프로브 상에 구리 결정을 과성장시켰다. 반응을 완료한 후 물로 세척하고 기판을 건조하였다. 구리 결정을 과성장시킨 기판을 ImageJ 소프트웨어로 분석하여 신호값을 정량하고 그 결과를 도 4에 나타내었다.
제조예 2: 탄저균 유전자 검지를 위한 DNA에 금 나노입자가 표지된 금 나노프로브의 합성
5' 말단이 티올화된 탄저균 프로브 올리고뉴클레오티드(서열번호 1: 5'-SH-A10-PEG18-AAT GCT TTA TTC CAT TCC TGA TTT ATA TTT AAC TGT GCT T-3')를 10 nM 농도의 10 nm 직경의 금 나노입자 용액에 과량 첨가하였다. 뜨거운 물(95℃)에 중탕하면서 2.0 M 농도의 NaCl 용액을 첨가하여 최종 0.15 M 농도에 달하도록 점진적으로 염농도를 증가시켰다. 17000rpm으로 40분 동안 원심분리 후 상층액을 제거하고, 0.5 mL의 0.1% SDS, 1×PBS에 현탁시켜 500 pM 농도의 DNA로 수식된 금 나노입자 용액을 제조하고, 이를 금 나노프로브로 사용하였다.
실시예 2: 금 나노입자 특이적인 구리 결정 과성장을 이용한 탄저균 유전자 검출 방법
캡쳐링 올리고뉴클레오티드(서열번호 2: 5'-CTT GAA TTT TTG TAT CTA TTT TAC TCT TTG GCA CTA CTT T-PEG18-C6 Amine-3')는 0.15 M NaCl, 0.01% SDS 및 5% 글리세롤을 함유하는 pH 10 카보네이트 완충액을 이용하여 5 μM로 희석하였다. 마이크로어레이를 이용하여 알데하이드로 개질된 글라스 기재(aldehyde-modified glass substrate)에 상기 캡쳐링 올리고뉴클레오티드 용액을 약 500 μm 직경의 스팟으로 프린트하고 밤새도록 숙성시켰다. 상기 캡쳐링 올리고뉴클레오티드 용액으로 프린트한 기재를 0.1% SDS, 1×PBS로 세척하였다. 세척한 기재 상에 혼성화(hybridization)를 위한 실리콘 챔버를 부착하였다. 0.1% SDS, 1×PBS에 용해시킨 800 fM, 80 fM 및 8 fM 농도의 타겟 올리고뉴클레오티드(서열번호 3: 5'-AAA GTA GTG CCA AAG AGT AAA ATA GAT ACA AAA ATT CAA GAA GCA CAG TTA AAT ATA AAT CAG GAA TGG AAT AAA GCA TT-3') 용액 20 μl씩 투입하였다. 이후 30℃의 습식 환경에서 2시간 동안 인큐베이션하여 혼성화하였다. 반응이 완료되면, 0.1% SDS, 1×PBS로 세척하고, 상기 제조예 2에 따라 준비한 500 pM 프로브 올리고뉴클레오티드를 포함하는 금 나노프로브 용액을 18 μl 투입하였다. 30℃의 습식 환경에서 1시간 30분 동안 인큐베이션하여 혼성화하고, 0.1% SDS, 1×PBS로 3회 세척하였다. 1×PBS로 더 세척한 후, 실시예 1과 같은 구리증폭용액을 가하여 상온에서 5분 동안 반응시켜 구리 결정을 성장시켰다. 반응을 완료한 후 물로 세척하고 기판을 건조하였다.
비교예 1: 금 나노프로브를 포함하지 않는 기재 상에서 구리 결정의 비특이적 성장
금 나노프로브 용액을 첨가하지 않은 것을 제외하고는 실시예 1 또는 2와 동일하게 처리한 기재에 구리증폭용액을 가하고 30분 동안 반응시킨 후 구리 결정의 형성을 확인하였다(도 3 우측 참조).
비교예 2: 은 결정 성장을 이용한 DNA 검출
실시예 1 및 2와 비교예 1에 따른 금 나노프로브를 포함 또는 불포함하는 기재에 Sigma-Aldrich 사의 은증폭용액(SE100 - Silver Enhancer Kit)으로 15분(실시예 1 및 2) 또는 30분(비교예 1) 동안 인큐베이션하고 세척한 후, 형성된 은 결정을 관찰하였다. 그 결과, 도 3에 나타난 바와 같이, 기재 상에 도입된 금 나노프로브를 구리증폭용액으로 처리하여 구리 결정을 성장시키는 경우 은 결정을 형성시킨 경우에 비해 보다 현저한 신호 증강효과를 나타내어 더 낮은 농도까지 검출 가능함을 확인하였다(도 3의 좌측). 나아가, 금 나노프로브를 포함하지 않는 경우 구리증폭용액을 처리한 기재에서는 신호가 검출되지 않았으나, 즉, 금 나노프로브가 존재하지 않는 경우에는 구리 결정이 형성되지 않았으나, 은증폭용액을 처리한 기재에서는 신호가 검출된 것을 확인할 수 있었다(도 3 우측). 이는 은증폭용액으로 처리하는 경우 종자로 작용하는 금 나노프로브가 존재하지 않더라도 비특이적으로 은 나노입자를 형성함을 나타내는 것으로, 구리증폭용액으로 처리하는 경우 금 나노프로브 존재시에만 특이적인 결정 성장이 가능하므로 보다 높은 선택성으로 분석 가능함을 나타내는 것이다(도 3의 중앙).
실험예 1: 반복 실험에 대한 재현성
실시예 1에 따른, 각각 5×, 10× 및 20×104개 노로바이러스를 포함하는 시료와 반응시킨 기재에 항-노로바이러스 캡시드 단백질 VP1 항체가 표지된 금 나노프로브로 처리하였다. 상기 금 나노프로브가 고정된 기재에 구리증폭용액을 가하여 10분 동안 인큐베이션하여 구리 결정을 성장시킨 후 세척하고 형성된 구리 결정을 육안으로 관찰하고 사진으로 찍어 분석하였다. 상기 실험을 각각 3회씩 반복하여 수행하고 측정된 신호를 수치화하여 평균 및 표준편차를 도출하였다. 그 결과 도 4에 나타난 바와 같이, 본 발명에 따른 구리증폭을 통한 금 나노프로브를 이용한 검출방법은 반복실험에서 우수한 재현성을 나타내었으며, 또한 측정된 신호는 분석물질에 결합된 금 나노프로브의 농도에 따라 비례적으로 증가함을 확인하였다.
1; DNA; thiolated probe olifonucleotide; 5'-SH-A10-PEG18-AAT GCT TTA TTC CAT TCC TGA TTT ATA TTT AAC TGT GCT T-3'; 50 염기
2; DNA; capturing oligonucleotide; 5'-CTT GAA TTT TTG TAT CTA TTT TAC TCT TTG GCA CTA CTT T-PEG18-C6 Amine-3'; 40 염기
3; DNA; target oligonucleotide; 5'-AAA GTA GTG CCA AAG AGT AAA ATA GAT ACA AAA ATT CAA GAA GCA CAG TTA AAT ATA AAT CAG GAA TGG AAT AAA GCA TT-3'; 80 염기

Claims (16)

  1. 금 나노입자를 이용한 표적 분석물질의 검출방법에 있어서,
    표적 분석물질이 직접 또는 상기 표적 분석물질을 캡쳐할 수 있는 물질을 통해 고정된 기재를 준비하는 제1단계;
    상기 제1단계의 기재에 금 나노입자로 표지된, 상기 표적 분석물질에 특이적으로 결합하는 물질을 접촉시켜 표적 분석물질과 복합체를 형성하는 제2단계; 및
    상기 제2단계의 복합체가 형성된 기재를 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 특이적으로 구리 결정을 성장시키는 제3단계를 포함하는, 분석물질의 검출방법.
  2. 제1항에 있어서,
    상기 일차 또는 이차 아민기를 갖는 고분자는 구리 이온과 리간드 착물을 형성할 수 있는 고분자인 것인 검출방법.
  3. 제2항에 있어서,
    상기 일차 또는 이차 아민기를 갖는 고분자는 폴리에틸렌이민인 것인 검출방법.
  4. 제1항에 있어서,
    상기 환원제는 아스코르브산, 히드록시아민 또는 하이드로퀴논인 것인 검출방법.
  5. 제1항에 있어서,
    상기 제3단계는 10 내지 35℃에서 3 내지 20분 동안 수행하는 것인 검출방법.
  6. 제1항에 있어서,
    상기 제3단계에서 구리 결정이 성장된 입자는 100 내지 1,000 nm의 직경을 갖는 것인 검출방법.
  7. 제1항에 있어서,
    맨눈 또는 사진으로 검출 가능한 것인 검출방법.
  8. 제1항에 있어서,
    20 내지 100의 신호 대 잡음 비로 검출 가능한 것인 검출방법.
  9. 금 나노입자를 이용한 표적 분석물질의 검출방법에 사용되는 신호 증폭용 조성물에 있어서,
    용액 상에서 구리 이온을 제공할 수 있는 화합물, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 조성물.
  10. 제9항에 있어서,
    상기 용액 상에서 구리 이온을 제공할 수 있는 화합물은 염화구리인 것인 조성물.
  11. 제9항에 있어서,
    상기 일차 또는 이차 아민기를 갖는 고분자는 구리 이온과 리간드 착물을 형성할 수 있는 고분자인 것인 조성물.
  12. 제9항에 있어서,
    상기 일차 또는 이차 아민기를 갖는 고분자는 폴리에틸렌이민인 것인 조성물.
  13. 제9항에 있어서,
    상기 환원제는 아스코르브산, 히드록시아민 또는 하이드로퀴논인 것인 조성물.
  14. 용액 상에서 구리 이온을 제공할 수 있는 화합물, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 금 나노입자를 이용한 표적 분석물질의 검출용 키트.
  15. 제14항에 있어서,
    용매로서 물을 함유하는 용액을 추가로 포함하는 것인 키트.
  16. 금 나노입자에 구리 이온, 일차 또는 이차 아민기를 갖는 고분자 및 환원제를 포함하는 용액을 처리하여 금 나노입자 상에 구리 결정을 성장시키는 단계를 포함하는, 구리 결정의 제조 방법.
PCT/KR2018/001956 2017-02-16 2018-02-14 구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법 WO2018151542A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/486,674 US11747333B2 (en) 2017-02-16 2018-02-14 Detection method of target analyte using gold nanoprobe through overgrowth of copper crystal
EP18753738.6A EP3598107A4 (en) 2017-02-16 2018-02-14 DETECTION PROCESS FOR A TARGET ANALYTE WITH A GOLD NANO PROBE BY GROWING COPPER CRYSTAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0021136 2017-02-16
KR1020170021136A KR101892668B1 (ko) 2017-02-16 2017-02-16 구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법

Publications (1)

Publication Number Publication Date
WO2018151542A1 true WO2018151542A1 (ko) 2018-08-23

Family

ID=63170375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/001956 WO2018151542A1 (ko) 2017-02-16 2018-02-14 구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법

Country Status (4)

Country Link
US (1) US11747333B2 (ko)
EP (1) EP3598107A4 (ko)
KR (1) KR101892668B1 (ko)
WO (1) WO2018151542A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109668870B (zh) * 2019-01-24 2020-07-17 清华大学 基于表面增强拉曼检测溶液中铜离子浓度的方法
KR102538417B1 (ko) * 2020-10-29 2023-06-01 주식회사 셀트릭스 소 설사 바이러스 결합 펩타이드 및 이를 이용한 소 설사 바이러스 검출 키트

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087591A (ko) * 2008-02-13 2009-08-18 성균관대학교산학협력단 금 나노입자의 표면개질 방법 및 표면개질을 통한 금나노입자의 안정화 방법
KR20120053405A (ko) * 2010-11-17 2012-05-25 중앙대학교 산학협력단 음이온 검출용 조성물 및 이를 이용한 음이온 검출 방법
KR20130101289A (ko) * 2012-03-05 2013-09-13 연세대학교 산학협력단 형광신호가 향상된 금속 나노입자-형광물질 어레이 및 이의 제조방법
KR20160117688A (ko) * 2015-03-30 2016-10-11 한국전자통신연구원 생체물질의 검출 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048429B1 (ko) * 2009-09-09 2011-07-11 한국생명공학연구원 바이오칩을 이용한 표적 물질 검출 및 정량 방법
KR101842763B1 (ko) * 2016-03-11 2018-05-14 경희대학교 산학협력단 구리 나노구조물의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090087591A (ko) * 2008-02-13 2009-08-18 성균관대학교산학협력단 금 나노입자의 표면개질 방법 및 표면개질을 통한 금나노입자의 안정화 방법
KR20120053405A (ko) * 2010-11-17 2012-05-25 중앙대학교 산학협력단 음이온 검출용 조성물 및 이를 이용한 음이온 검출 방법
KR20130101289A (ko) * 2012-03-05 2013-09-13 연세대학교 산학협력단 형광신호가 향상된 금속 나노입자-형광물질 어레이 및 이의 제조방법
KR20160117688A (ko) * 2015-03-30 2016-10-11 한국전자통신연구원 생체물질의 검출 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FENG ET AL.: "Polyethyleneimine-templated Copper Nanoclusters via Ascorbic Acid Reduction Approach as Ferric Ion Sensor", ANALYTICA CHIMICA ACTA, vol. 854, 2015, pages 153 - 160, XP029107055 *

Also Published As

Publication number Publication date
KR101892668B1 (ko) 2018-08-28
EP3598107A1 (en) 2020-01-22
KR20180094680A (ko) 2018-08-24
EP3598107A4 (en) 2020-12-30
US20200011864A1 (en) 2020-01-09
US11747333B2 (en) 2023-09-05

Similar Documents

Publication Publication Date Title
Lee et al. Single functionalized pRNA/gold nanoparticle for ultrasensitive microRNA detection using electrochemical surface‐enhanced Raman spectroscopy
Zhou et al. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction
EP3919907A1 (en) Single molecule quantitative detection method and detection system
Cheng et al. Cascade signal amplification strategy for subattomolar protein detection by rolling circle amplification and quantum dots tagging
TW316291B (ko)
JP5777269B2 (ja) 元素分析によって実施される遺伝子発現アッセイ
WO2011071343A2 (ko) 라만 활성분자가 나노입자 이합체의 접합부에 위치한 이합체 코어쉘 나노 입자, 이의 용도 및 이의 제조방법
Thavanathan et al. Colorimetric detection of DNA hybridization based on a dual platform of gold nanoparticles and graphene oxide
AU759205B2 (en) Method for gold deposition
US20230081589A1 (en) Universal Aptamer-based Colloidal Gold Lateral Flow Test Strip for Detecting Small-molecule Substances
Abbaspour et al. Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles
Mohammadi et al. Carbon dots hybrid for dual fluorescent detection of microRNA-21 integrated bioimaging of MCF-7 using a microfluidic platform
Obliosca et al. Probing quenched dye fluorescence of Cy3–DNA–Au-nanoparticle hybrid conjugates using solution and array platforms
Shi et al. Gold nanoparticle aggregation: Colorimetric detection of the interactions between avidin and biotin
WO2018151542A1 (ko) 구리 결정 과성장에 의한, 금 나노프로브를 이용한 표적 분석물질의 검출방법
Garcia et al. Impedimetric sensor for Leishmania infantum genome based on gold nanoparticles dispersed in polyaniline matrix
EP2268571B1 (en) Fluorescent nanoparticle composites themselves, process for the preparation of such composites, and use in rapid diagnosis systems with affinity to biological molecules
CN113293197B (zh) 一种检测疾病核酸标志物的spr-sers双模传感器、其制备方法及其应用
CN113740398B (zh) 一种比率型生物传感器及用于检测muc1的方法
JP2009085840A (ja) 単一プローブ分子素子及び単一プローブ分子素子の製造方法
Chen et al. Core–shell nanostructures for ultrasensitive detection of α-thrombin
Cui et al. Simultaneous and sensitive detection of dual DNA targets via quantum dot‐assembled amplification labels
CN115494135A (zh) 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用
CN112941178B (zh) 一种用于snp位点检测的检测探针、检测方法及其应用
Wu et al. Sensitive Detection of Single-Nucleotide Polymorphisms by Solid Nanopores Integrated With DNA Probed Nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18753738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018753738

Country of ref document: EP

Effective date: 20190916