CN115494135A - 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用 - Google Patents

一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用 Download PDF

Info

Publication number
CN115494135A
CN115494135A CN202211078313.XA CN202211078313A CN115494135A CN 115494135 A CN115494135 A CN 115494135A CN 202211078313 A CN202211078313 A CN 202211078313A CN 115494135 A CN115494135 A CN 115494135A
Authority
CN
China
Prior art keywords
agins
target
electrode
probe
cof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211078313.XA
Other languages
English (en)
Inventor
接贵芬
李志康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202211078313.XA priority Critical patent/CN115494135A/zh
Publication of CN115494135A publication Critical patent/CN115494135A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种基于原位生成的超薄共价有机骨架COF薄膜和AgInS2量子点的光电化学生物传感器,应用于双目标HIV和CEA的检测;本发明的技术方案是通过目标HIV诱导循环扩增过程产生大量S0,利用DNA碱基互补将大量AuNPs‑AgInS2QDs探针结合到COF修饰电极表面,实现COF的光电信号的“关闭”分析,超灵敏检测目标一HIV。当目标二CEA与其适体特异性结合后,释放AuNPs‑AgInS2QDs淬灭信号探针,实现COF的光电信号“开启”分析,超灵敏检测CEA。本工作开创了利用2‑DCOF新材料和AgInS2量子点研制光电化学生物传感器的新技术,发展了检测多目标的光电化学生物传感的新方向,在生化分析以及临床检测领域具有很大的应用潜力。

Description

一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检 测双目标应用
技术领域:
本发明涉及一种基于COF薄膜和AgInS2量子点的光电化学生物传感器;以及所述传感器的制备方法及其检测HIV及CEA的分析应用。
背景技术:
艾滋病是世界上公认的最难解决的难题之一。在病状出现的不同阶段,病原体会表达出两种不同的生物特性分子(HIV和CEA),同时对两种目标的检测可以提高检测的准确性。同时检测两个目标可以避免由于缺乏单一目标或检测不理想而造成的假阳性和重复检测造成的医疗材料浪费。在众多检测方法中,光电化学(PEC)传感器由于其背景信号低、检测过程简单、易于小型化、灵敏度高而被广泛应用于生物标志物的灵敏检测中[Qin,Y.;Wen,J.et,al.ACS Nano 2022,16,2997-3007]。COF(共价有机骨架)是一种独特的光电材料,COF薄膜具有优良的光电性能。超薄共价有机骨架膜合成策略简单、拥有有序的苯环结构,能够成为光电化学生物传感器电极上的理想衬底[Keller,N.;Bein,T.Chem.Soc.Rev.2021,50,1813-1845.]。三元共聚物I-III-VI2AgInS2(AIS)量子点具有低毒性、高光电活性和可调带隙的优点。更重要的是,AgInS2量子点具有与COF非常匹配的带边能级,可产生有效猝灭光电流的效果,使光电流信号降低[Li,J.;Lin,X.et,al.Biosens.Bioelectron.2019,126,332-338.]。
本文以COF有机薄膜作为基底,AgInS2 QDs作为猝灭物质。通过与AuNPs、DNAH3 及DNA1复合,制备了AuNPs-AgInS2QDs-H3探针。同时对Target-HIV进行循环放大,产出大量的S0,成功将AuNPs-AgInS2QDs-H3探针修饰到电极上,从而实现PEC信号的猝灭,能够对目标HIV进行灵敏检测。同时H3中含有CEA的适体DNA,通过CEA与适体链结合,使AuNPs-AgInS2QDs-H3探针从电极上脱离,从而实现信号的恢复,能够实现对目标CEA的灵敏检测。
发明内容:
本发明的目的之一是首次将二维(2D)超薄共价有机骨架膜(DTACOF膜)用于光电化学生物传感器。
具体包括以下步骤:
COF有机薄膜的合成。取2,6-二羟基萘-1,2-二甲醛DHNDA和三(4-氨基苯基)胺TAPA 各1mg分别溶解在含有均三甲苯、乙醇和乙酸的混合溶液中,溶液配比为250μL、250μL、 50μL。两种溶液按照1:1混合,然后迅速把混合溶液滴到固定面积的ITO电极上,在真空常温下干燥10分钟,之后再次浸没在二氯甲烷内五分钟除去未反应的杂质。
本发明的目的之二是以AgInS2 QDs为核心构建信号放大的光电生物探针。
具体包括下步骤:
步骤1.AgInS2(MPA修饰)合成:在100mL三口烧瓶中制备50mL含有0.1mmolAgNO3、0.4mmol In(NO3)3和0.1mmol MPA的水溶液,在强力搅拌下,用1mol/LNaOH调节pH值到 7.5,此时溶液澄清。再将3mL0.2 mmol/L的Na2S(0.6mmol)溶液快速注入烧瓶中,然后将混合溶液加热到100℃。保温2h,使得AgInS2快速生长。
步骤2.金纳米粒子的合成:根据之前的文献合成金纳米粒子。首先在三口烧瓶中加入1.0 mL 1%的氯金酸、49.0mL二次水。加热到沸腾状态后,加入2.0mL 2%的柠檬酸钠,保持温度恒定的情况下搅拌至溶液呈现酒红色,停止加热并搅拌15分钟,得到粒径约为13纳米的纳米金。
步骤3.探针的合成(Au NPs-AgInS2 QDs-H3):取1μL 2.14μM用乙醇稀释的3-氨丙基三乙氧基硅烷APTES加到50μL AuNPs中,在室温下搅拌2小时,让AuNPs修饰上氨基,然后离心洗涤。同时取200μL 10mM的EDC跟20mM的NHS加入到100μL的AgInS2量子点中,对其羧基活化20分钟,然后离心洗涤。之后把活化好的AgInS2与AuNPs溶液混合。在37℃下孵育6小时。将孵育好的Au@AgInS2分散到300μL水溶液中。同时取200μL 10mM 的EDC跟20mM的NHS加入到100μL的Au@AgInS2孵育20分钟。把1.2μL 100mM H3 与6μL 100mM DNA1加热到95℃并保持5min加入到上述溶液中,在37℃的摇床中恒温孵育6小时,合成Au@AgInS2/DNA探针。其中所用的DNA序列为:
H3:5’-H2N-(CH2)6-TTC TAT TAC CTA GTA GCA TTC TTT CTC TTA ACT TAT TCG ACC ATA-3’
DNA1:5’-H2N-(CH2)6-TCG ATG TAC TGT GGG TAG GGC GGG-3’
本发明的目的之三是构建基于COF和AgInS2量子点的光电化学生物传感器检测双目标。
具体包括下步骤:
步骤1.目标的循环放大:将18.0μL 1.0μM的DNA H1在95℃下高温处理5分钟,然后缓慢冷却至室温,再加入18.0μL不同浓度的目标一HIV、20U外切酶三和4.0μL对应的 10×缓冲溶液,在37℃下孵育2小时,得到大量产物链S0。其中所用的DNA序列为:
H1:5’-C GAC TAT GCT TAC ACG ACT TTT CAT ATG GTC GAA CGT GTA AGC ATAGTC GGT GGA AAA TCT CTA-3’
目标一HIV:5’-ACTGCTAGAGATTTTCCACAT-3’
步骤2.双信号光电传感器的制备:本传感器在氧化铟锡(ITO)玻璃上构建,将大块ITO 玻璃切成小块矩形,然后用超纯水、丙酮、乙醇、1M NaOH(溶剂为水与乙醇,体积比1:1)、超纯水超声处理7分钟,使电极上修饰上羟基。干燥后,在小块矩形ITO玻璃上,用封口膜粘贴出正方形为0.25cm2(0.5cm×0.5cm)的区域。
在使用之前,将所有的DNA链加热到95℃并保持5min,然后缓慢冷却至室温。将8μL2mg/mL的DHNDA和TAPA迅速滴到洗净的ITO电极上,放置在真空干燥箱内常温干燥10 分钟。使其在表面上形成均匀的COF薄膜。干燥完成后,再次浸没在二氯甲烷内5min除去未反应的杂质。自然干燥后,滴涂一层APTES使其氨基功能化,在其表面上滴涂上10μL 0.5 μM带有羧基的H2-DNA,在37℃湿润状态下孵育6小时,接着加入10.0μL的MCH进行封板处理一小时。同时将5μL不同浓度的产物链S0与5μL 0.8μM的Au@AgInS2/DNA探针在37℃下孵育2h,然后把S0与探针的结合物滴涂到电极上,接着在37℃下孵育2h,使探针结合到电极上,电极干燥后进行光电信号测量(每一步电极的处理过程都需要用二次水冲洗),检测目标一HIV。所用的DNA序列:
H2:5’-HOOC-T AAG CTG ATA CGA ATG TGC-3’
如前面步骤制备修饰电极,再将最大浓度的目标一放大产物S0与信号猝灭探针连接后,在电极上孵育该连接物,检测淬灭之后的最低光电信号。再将10μL不同浓度的CEA溶液滴涂到电极上在37℃下孵育6小时。待电极干燥后进行光电信号的测量,检测目标二CEA。
附图说明:
图1是基于共价有机骨架薄膜COF和AgInS2量子点淬灭探针的光电化学传感器检测双目标原理图。
图2是共价有机骨架薄膜COF的表征:(A、B)SEM谱图,(C)光电流信号图,(D)不同时间的光电流信号图。
图3是AgInS2的表征:(A)TEM图像,(B)PL发射光谱图,(C)紫外可见吸收图。
图4是AuNPs-AgInS2 QDs-H3探针的表征:(A)TEM图像,(B)AuNPs、AgInS2、AuNPs/AgInS2 QDs、Au NPs-AgInS2 QDs-H3的紫外-可见吸收光谱图。
图5是聚丙烯凝胶电泳(PAGE)表征:循环放大及电极组装过程。
图6是生物传感器的PEC机理图:(A)COF的光电反应机理,(B)COF结合AgInS2 QDs的光电反应机理。
图7是检测HIV和CEA:(A)PEC传感器检测不同HIV目标浓度的光电流曲线:0fM,10fM, 20fM,200fM,2pM,20pM,200pM,2nM;(B)光电流变化值ΔI与HIV浓度之间的线性关系(10fM-2nM);(C)PEC传感器响应不同CEA目标浓度的光电流曲线:0fg/mL,50fg/mL, 500fg/mL,5pg/mL,50pg/mL,500pg/mL,5ng/mL,50ng/mL,0.5μg/mL;(D)光电流变化值ΔI 与CEA浓度之间的线性关系(50fg/mL-0.5μg/mL)。
具体实施方式:
实施例1.基于COF和AgInS2量子点构建双目标光电传感检测平台,实现对HIV及CEA的灵敏检测。
取DHNDA和TAPA各1mg分别溶解在含有均三甲苯,乙醇和乙酸的混合溶液中,溶液配比为250μL、250μL、50μL。
取1μL 2.14μM用乙醇稀释的APTES加入到50μLAuNPs中,在室温下搅拌2小时,让AuNPs修饰上氨基,然后离心洗涤。同时取200μL 10mM的EDC和20mM的NHS加入到 100μL的AgInS2量子点中,对其羧基活化20分钟,然后离心洗涤。之后把活化好的AgInS2与AuNPs溶液混合,在37℃下孵育6小时。将孵育好的Au@AgInS2分散到300μL的水溶液中。同时取200μL10mM的EDC与20mM的NHS加入到100μL的Au@AgInS2复合物中孵育20分钟。将1.2μL 100mM H3与6μL 100mM DNA1加热到95℃并保持5min加入到上述溶液中,在37℃的摇床中恒温孵育6小时,合成Au@AgInS2/DNA探针。
将18.0μL 1.0μM的H1在95℃下高温处理5分钟,缓慢冷却至室温,然后加入18.0μL不同浓度的目标、20U外切酶三和4.0μL对应的10×缓冲溶液,在37℃下孵育2小时,即可得到大量的产物链S0。
将8μL 2mg/mL的DHNDA和TAPA迅速滴到洗净的ITO电极上,放置在真空干燥箱内常温干燥10分钟,使其在表面上形成均匀的COF薄膜。干燥完成后,再浸没在二氯甲烷内 5min除去未反应的杂质。自然干燥后,滴涂一层APTES使其氨基功能化,在其表面修饰10 μL 0.5μM带有羧基的H2-DNA,在37℃湿润状态下孵育6小时,接着加入10.0μL的MCH 进行封板处理一小时。同时将5μL不同浓度的产物链S0与5μL 0.8μM的Au@AgInS2/DNA 探针在37℃下孵育2h。随后把所得到的产物链S0与探针的结合物滴涂到电极上,接着在 37℃下孵育2h,使探针结合到电极上,电极干燥后进行光电信号的检测。(每一步电极的处理过程都需要用二次水冲洗),对目标一HIV的浓度进行分析检测。
如前面步骤制备修饰电极,再将最大浓度的目标一放大产物S0与信号猝灭探针连接后,在电极上孵育该连接物,检测淬灭之后的最低光电信号。再将10μL不同浓度的CEA溶液滴涂到电极上在37℃下孵育6小时。待到电极干燥后进行光电信号的检测,对目标二CEA的浓度进行分析检测(每一步电极的处理过程都需要用二次水冲洗)。
实施例2.基于COF和AgInS2量子点构建双目标光电传感检测平台,实现对HIV及CEA的灵敏检测。
将“在其表面修饰10μL 0.5μM带有羧基的H2-DNA,在37℃湿润状态下孵育6小时”改为“在其表面修饰10μL 0.5μM带有羧基的H3-DNA,在37℃湿润状态下孵育8小时”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对HIV及CEA的检测的结果同实施例1。
实施例3.基于COF和AgInS2量子点构建双目标光电传感检测平台,实现对HIV及CEA的灵敏检测。
将“同时将5μL不同浓度的产物链S0与5μL 0.8μM的Au@AgInS2/DNA探针在37℃下孵育2h。”改为“同时将5μL不同浓度的产物链S0与5μL 0.8μM的Au@AgInS2/DNA 探针在37℃下孵育2.5h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感平台。对HIV及CEA的检测的结果同实施例1。
实施例4.基于COF和AgInS2量子点构建双目标光电传感检测平台,实现对HIV及CEA 的灵敏检测。
将“然后加入18.0μL不同浓度的目标、20U外切酶三和4.0μL对应的10×缓冲溶液,在37℃下孵育2小时”改为“然后加入18.0μL不同浓度的目标、20U外切酶三和4.0μL对应的10×缓冲溶液,在37℃下孵育2.5个小时”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对HIV及CEA的检测的结果同实施例1。
实施例5基于COF和AgInS2量子点构建双目标光电传感检测平台,实现对HIV及CEA的灵敏检测。
将“同时取200μL 10mM的EDC跟20mM的NHS加入到100μL的AgInS2量子点中,对其羧基活化20分钟,然后离心洗涤。”改为“同时取200μL 10mM的EDC跟20mM的NHS 加入到100μL的AgInS2量子点中,对其羧基活化30分钟,然后离心洗涤。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的生物传感器。对HIV及CEA的检测的结果同实施例1。

Claims (1)

1.一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及其检测双目标应用,其特征是:ITO电极表面原位生成2D COF有机骨架薄膜,产生强而稳定的光电PEC信号;通过在Au纳米粒子上负载大量AgInS2量子点,构建了一种放大的AuNPs-AgInS2猝灭探针;经过目标HIV诱导的循环扩增过程产生大量DNA S0,S0通过DNA杂交将AuNPs-AgInS2QDs探针修饰到电极上,猝灭PEC信号,实现对目标HIV的灵敏检测;再通过目标CEA与适体特异性结合,使AuNPs-AgInS2QDs淬灭探针脱离电极,实现COF膜的PEC信号“on”,检测目标CEA;该生物传感器灵敏、快速、准确地同时检测双目标HIV及CEA,有效避免了假阳性和假阴性,在癌症疾病的早期预防和检测方面具有广阔的应用前景;其特征方法由下列步骤组成:
步骤1.合成COF有机薄膜:取DHNDA和TAPA各1mg分别溶解在含有均三甲苯、乙醇和乙酸的混合溶液中,溶液配比为250μL、250μL、50μL;两种溶液按照1:1混合,然后迅速把混合溶液滴到ITO电极上,在真空常温下干燥10分钟,再浸没在二氯甲烷五分钟除去未反应的杂质;
步骤2.探针的合成以及目标循环放大过程:取1μL 2.14μM 3-氨丙基三乙氧基硅烷加到50μL AuNPs中,在室温下搅拌2小时,让AuNPs修饰上氨基,然后离心洗涤;同时取200μL10mM的EDC跟20mM的NHS加入到100μL的AgInS2量子点中,对其羧基活化20分钟,然后离心洗涤;之后把活化好的AgInS2与AuNPs溶液混合,在37℃下孵育6小时;将孵育好的Au@AgInS2分散到300μL水溶液中;同时取200μL 10mM的EDC跟20mM的NHS加入到100μL的Au@AgInS2孵育20分钟;把1.2μL 100mM H3与6μL 100mM DNA1加热到95℃并保持5min加入到上述溶液中,在37℃的摇床中恒温孵育6小时,合成Au@AgInS2/DNA探针;
将18.0μL 1.0μM的DNA H1在95℃下高温处理5分钟,然后缓慢冷却至室温,再加入18.0μL不同浓度的目标一HIV、20U外切酶三和4.0μL对应的10×缓冲溶液,在37℃下孵育2小时,得到大量产物链S0;
步骤3.双目标光电生物传感器的制备及其应用:将8μL 2mg/mL的DHNDA和TAPA迅速滴到洗净的ITO电极上,放置在真空干燥箱内常温干燥10分钟;使其在表面上形成均匀的COF薄膜;干燥完成后,再次浸没在二氯甲烷内5min除去未反应的杂质;自然干燥后,滴涂一层APTES使其氨基功能化,在其表面滴10μL 0.5μM带有羧基的H2-DNA,在37℃湿润状态下孵育6小时,接着加入10.0μL的MCH进行封板处理一小时;同时将5μL不同浓度的产物链S0与5μL0.8μM的Au@AgInS2/DNA探针在37℃下孵育2h,然后把S0与探针的结合物滴涂到电极上,接着在37℃下孵育2h,使探针结合到电极上,电极干燥后进行光电信号测量,检测目标一HIV;
如前面步骤制备修饰电极,再将最大浓度的目标一放大产物S0与信号猝灭探针连接后,在电极上孵育该连接物,检测淬灭之后的最低光电信号;再将10μL不同浓度的CEA溶液滴涂到电极上在37℃下孵育6小时;待电极干燥后进行光电信号的测量,检测目标二CEA。
CN202211078313.XA 2022-09-05 2022-09-05 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用 Pending CN115494135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211078313.XA CN115494135A (zh) 2022-09-05 2022-09-05 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211078313.XA CN115494135A (zh) 2022-09-05 2022-09-05 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用

Publications (1)

Publication Number Publication Date
CN115494135A true CN115494135A (zh) 2022-12-20

Family

ID=84468232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211078313.XA Pending CN115494135A (zh) 2022-09-05 2022-09-05 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用

Country Status (1)

Country Link
CN (1) CN115494135A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046860A (zh) * 2023-02-10 2023-05-02 青岛科技大学 一种基于ZnIn2S4/ZnS量子点增敏Cu-MOF的光电化学传感器及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812543A (zh) * 2010-05-06 2010-08-25 天津朝海科技有限公司 一种检测人类免疫缺陷病毒的试剂盒
CN103048314A (zh) * 2012-10-25 2013-04-17 宁波大学 一种负载量子点包被纳米金介孔材料构建的电化学发光免疫传感器及对hiv的检测方法
CA2992537A1 (en) * 2015-07-17 2017-01-26 Xiaoshan Zhu Composites and compositions for therapeutic use and methods of making and using the same
US20170168042A1 (en) * 2015-12-09 2017-06-15 The Florida State University Research Foundation, Inc. Controlling the architecture, coordination, and reactivity of nanoparticle coating utilizing an amino acid central scaffold
US20180133345A1 (en) * 2016-11-15 2018-05-17 Nanoco Technologies Ltd. Nano-Devices for Detection and Treatment of Cancer
CN108982483A (zh) * 2018-08-21 2018-12-11 青岛科技大学 一种基于Walker DNA和放大技术的电化学发光生物传感器及其制法和应用
CN111812183A (zh) * 2020-07-27 2020-10-23 山东理工大学 一种分子内光电化学传感器的制备方法及应用
CN113008875A (zh) * 2021-03-05 2021-06-22 青岛科技大学 一种基于三维D NA-CdSe量子点纳米网敏化SnO2的光电生物传感器及应用
US20210247351A1 (en) * 2019-12-05 2021-08-12 Board Of Regents, The University Of Texas System Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer
US20210301202A1 (en) * 2020-03-31 2021-09-30 Samsung Display Co., Ltd. Quantum dot, method of preparing quantum dot, optical member including quantum dot, and electronic device including quantum dot

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812543A (zh) * 2010-05-06 2010-08-25 天津朝海科技有限公司 一种检测人类免疫缺陷病毒的试剂盒
CN103048314A (zh) * 2012-10-25 2013-04-17 宁波大学 一种负载量子点包被纳米金介孔材料构建的电化学发光免疫传感器及对hiv的检测方法
CA2992537A1 (en) * 2015-07-17 2017-01-26 Xiaoshan Zhu Composites and compositions for therapeutic use and methods of making and using the same
US20170168042A1 (en) * 2015-12-09 2017-06-15 The Florida State University Research Foundation, Inc. Controlling the architecture, coordination, and reactivity of nanoparticle coating utilizing an amino acid central scaffold
US20180133345A1 (en) * 2016-11-15 2018-05-17 Nanoco Technologies Ltd. Nano-Devices for Detection and Treatment of Cancer
CN108982483A (zh) * 2018-08-21 2018-12-11 青岛科技大学 一种基于Walker DNA和放大技术的电化学发光生物传感器及其制法和应用
US20210247351A1 (en) * 2019-12-05 2021-08-12 Board Of Regents, The University Of Texas System Gold nanoparticle aggregation-induced quantitative photothermal biosensing using a thermometer
US20210301202A1 (en) * 2020-03-31 2021-09-30 Samsung Display Co., Ltd. Quantum dot, method of preparing quantum dot, optical member including quantum dot, and electronic device including quantum dot
CN111812183A (zh) * 2020-07-27 2020-10-23 山东理工大学 一种分子内光电化学传感器的制备方法及应用
CN113008875A (zh) * 2021-03-05 2021-06-22 青岛科技大学 一种基于三维D NA-CdSe量子点纳米网敏化SnO2的光电生物传感器及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JING LI等: "Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles", 《BIOSENSORS AND BIOELECTRONICS》, vol. 126, 3 October 2018 (2018-10-03), pages 332 - 338, XP085574338, DOI: 10.1016/j.bios.2018.09.096 *
YING QIN等: "Iron Single-Atom Catalysts Boost Photoelectrochemical Detection by Integrating Interfacial Oxygen Reduction and Enzyme-Mimicking Activity", 《ACS NANO》, vol. 16, 11 February 2022 (2022-02-11), pages 2997 - 3007 *
李红坤等: "P-55:基于Ag+与CdTe 量子点离子交换技术以及多重循环放大反应 光电检测腺苷的研究", 《第十一届全国化学生物学学术会议》, 18 November 2019 (2019-11-18) *
赵宇等: "P-101:三向DNA 连接结构与酶联动放大相结合,通过智能DNA 步 行器对microRNA 进行超灵敏电化学发光检测", 《第十一届全国化学生物学学术会议》, 18 November 2019 (2019-11-18) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046860A (zh) * 2023-02-10 2023-05-02 青岛科技大学 一种基于ZnIn2S4/ZnS量子点增敏Cu-MOF的光电化学传感器及应用

Similar Documents

Publication Publication Date Title
Jin et al. Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors
Luo et al. Coreactant-free dual amplified electrochemiluminescent biosensor based on conjugated polymer dots for the ultrasensitive detection of microRNA
Tian et al. Copper (II) oxide nanozyme based electrochemical cytosensor for high sensitive detection of circulating tumor cells in breast cancer
CN110438200B (zh) 一种基于双信号放大的用于重金属铅离子检测的生物传感器
Kim et al. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications
Shi et al. Photoelectrochemical biosensing platforms for tumor marker detection
Nie et al. High sensitivity surface plasmon resonance biosensor for detection of microRNA based on gold nanoparticles-decorated molybdenum sulfide
Chen et al. Polydopamine-sensitized WS2/black-TiO2 heterojunction for histone acetyltransferase detection with enhanced visible-light-driven photoelectrochemical activity
CN110376260B (zh) 检测前列腺特异性抗原的光电化学适体传感器的制备方法
Zhong et al. Synthesizing anode electrochemiluminescent self-catalyzed carbon dots-based nanocomposites and its application in sensitive ECL biosensor for microRNA detection
Ma et al. Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers
Gao et al. Electrochemiluminescent aptasensor based on β-cyclodextrin/graphitic carbon nitride composite for highly selective and ultrasensitive assay of platelet derived growth factor BB
Fu et al. A LAMP-based ratiometric electrochemical sensing for ultrasensitive detection of Group B Streptococci with improved stability and accuracy
You et al. Carbon dot capped gold nanoflowers for electrochemiluminescent aptasensor of thrombin
Kitte et al. Plasmon-enhanced nitrogen vacancy-rich carbon nitride electrochemiluminescence aptasensor for highly sensitive detection of miRNA
CN107543852A (zh) 一种基于功能化金属有机框架材料的电致化学发光传感器
Li et al. Electrochemiluminescence aptasensor based on cascading amplification of nicking endonuclease-assisted target recycling and rolling circle amplifications for mucin 1 detection
Li et al. Photoelectrochemical biosensor for highly sensitive detection of microRNA based on duplex-specific nuclease-triggered signal amplification
Li et al. Photoelectrochemical biosensor based on BiVO4/Ag2S heterojunction coupled with Exo III-assisted silver nanoclusters amplification for tumor suppressor gene P53
CN115494135A (zh) 一种基于COF薄膜和AgInS2量子点的光电化学生物传感器及检测双目标应用
Wang et al. Fluorescent/electrochemical dual-signal response biosensing strategy mediated by DNAzyme-ferrocene-triggered click chemistry for simultaneous rapid screening and quantitative detection of Vibrio parahaemolyticus
Hai et al. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes
Xie et al. Sensitive SERS detection of SARS-CoV‑2 spike protein based on Y‑shaped-aptasensor and AuNPs/COFs composites
Su et al. Signal-on electrochemical aptasensor based on RGO-AuNPs and exonuclease-III with assistance of external probe for Hg2+ determination in shellfish
Fan et al. A near-infrared-II fluorescence anisotropy strategy for separation-free detection of adenosine triphosphate in complex media

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination