CN110438200B - 一种基于双信号放大的用于重金属铅离子检测的生物传感器 - Google Patents

一种基于双信号放大的用于重金属铅离子检测的生物传感器 Download PDF

Info

Publication number
CN110438200B
CN110438200B CN201910737382.9A CN201910737382A CN110438200B CN 110438200 B CN110438200 B CN 110438200B CN 201910737382 A CN201910737382 A CN 201910737382A CN 110438200 B CN110438200 B CN 110438200B
Authority
CN
China
Prior art keywords
ptca
thi
heavy metal
ultrapure water
metal lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910737382.9A
Other languages
English (en)
Other versions
CN110438200A (zh
Inventor
何俊琳
于超
马一丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201910737382.9A priority Critical patent/CN110438200B/zh
Publication of CN110438200A publication Critical patent/CN110438200A/zh
Application granted granted Critical
Publication of CN110438200B publication Critical patent/CN110438200B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Nanotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及重金属铅离子检测的电化学传感器的制备方法及应用,属于电化学检测技术领域。其特征在于:首先合成得到NG‑PTCA纳米材料,然后将HAuCl4通过Thi还原为金纳米粒子(AuNPs)并修饰在NG‑PTCA纳米材料,得到NG‑PTCA‑Thi‑Au纳米复合物,再将发夹状DNA信号探针与该复合材料混合,制得生物信号探针;构建传感器前,在Pb2+存在下体外切割8‑17 DNAzyme;然后通过金沉积电极,固定发夹状DNA捕获探针;引入被切割片段S1后,开启了催化发夹组装过程并固定了生物信号探针,从而实现了双信号大检测重金属铅离子,该传感器成功的用于环境中铅离子的检测。本发明的优点在于灵敏度高,特异性强,检测方便。本发明为铅离子检测技术的研发提供实验依据,为环境中铅离子的监测提供新思路和新技术平台。

Description

一种基于双信号放大的用于重金属铅离子检测的生物传感器
技术领域:
本发明涉及一种在环境中定量检测重金属铅离子的电化学传感器的制备方法及应用,尤其是基于催化发夹组装和修饰硫堇和金纳米粒子的苝-3,4,9,10-四甲酸分散的氮掺杂石墨烯被作为信号探针制备的双信号放大生物传感器,并利用8-17 DNAzyme特异催化功能用于检测重金属铅离子,属于电化学检测领域。
背景技术:
铅离子(Pb2+)被认为是一种重金属污染物,对人类和生态系统的可持续性构成威胁。它可以在体内积聚,并引起各种疾病,包括神经,生殖,心血管等方面的疾病。即使低剂量的Pb2+也具有强烈的毒性,影响婴儿和儿童的成长,智力发育。美国环境保护署(EPA)已将饮用水中Pb2+的最大污染水平降至72.4nM。因此,监测低浓度Pb2+具有重要意义。传统检测Pb2+的方法包括原子吸收光谱法(AAS),原子荧光光谱法(AFS)和电感耦合等离子体质谱法(ICP-MS),它们已被广泛用于分析和检测Pb2+。然而,这些方法复杂的设备或样品制备限制了它的广泛应用。因此,有必要开发一种方便且高度灵敏检测和分析Pb2+的方法。
近年来,电化学方法由于灵敏度高,选择性好,成本低,响应时间短而备受关注。然而,许多研究致力开发高灵敏度的电化学传感器。比如基于催化发夹组装(CHA)的信号放大策略由于其操作简单和无酶策略被广泛应用。在CHA过程中,具有发夹捕获探针互补序列的单链DNA(ssDNA)通过打开和杂交两个发夹探针触发此过程,同时释放ssDNA以启动下一个循环。在这种情况下,CHA通过循环ssDNA并有效放大电流响应来增强灵敏度。此外,各种具有优异性能的纳米材料也已应用于信号放大策略,以提高传感器的性能。本课题组开发了结合前两种提到的放大策略,实现双信号放大,有效提高传感器的灵敏度。
氮掺杂石墨烯(NG)是在石墨烯中掺杂氮,被认为是具有良好导电性和高比表面积的候选材料,可用作纳米材料负载的平台。然而,NG分散性差并易聚集,这限制了它在生物传感器中的应用。报道过的提高NG分散性的文献是通过添加NaOH调节NG溶液的pH至碱性,但这可能会破坏其结构及降低电子传导性。为了避免以上问题,本实验使用苝-3,4,9,10-四甲酸(PTCA),它是一种具有丰富多羧酸位点的水溶性苝衍生物,具有大的比表面积,优异的稳定性和理想的导电性。通过π-π堆积和疏水相互作用修饰NG来提高其分散性,且不破坏NG的共轭π-体系。从而使得到的NG-PTCA显示出高分散性和优异的导电性。此外,NG-PTCA的活性位点和有效区域也增加,可以通过π-π堆积充分负载电活性物质硫堇(Thi),同时有利于金纳米颗粒(AuNPs)的生长。Thi作为电活性材料用于后续的电化学检测,也作为还原剂用于还原HAuCl4为AuNPs。本课题组成功设计了NG-PTCA-Thi-Au纳米复合材料并通过Au-S共价键组装发夹信号探针(H2),获得新的NG-PTCA-Thi-Au-H2纳米复合材料(示踪标记),并应用于电化学检测中的信号产生和放大。
脱氧核酶(DNAzyme)是通过体外选择的各种催化DNA序列,其对特定底物具有高催化活性。目前发现的大部分DNAzyme都以金属离子为辅因子,且其活性具有RNA切割作用的金属离子特异性。由于其特异性,已经制造了以Mg2+、Pb2+、Zn2+、Mn2+等作为辅因子的电化学传感器。8-17 DNAzyme是一种依赖Pb2+的脱氧核酶,它具有Pb2+特异性切割位点,由底物链(S)和催化链(C)组成,被认为是Pb2+的识别元件,已被广泛用于基于各种信号转导策略来检测Pb2+。一般来说,一些策略将8-17DNAzyme固定在电极表面或用荧光基团或氧化还原活性基团修饰它来检测Pb2+,这可能会限制检测灵敏度或破坏DNAzyme的催化活性。因此,本文将8-17DNAzyme在体外进行切割,其显着优点是可以消除其他修饰材料或固定在电极表面对8-17DNAzyme产生的不必要干扰。从而最大程度地保持了8-17DNAzyme的活性。在体外切割后,引入8-17DNAzyme切割的底物片段(S1)作为ssDNA开启双重信号放大策略。
基于上述策略,本实验设计了一种基于NG-PTCA-Thi-Au联合CHA双信号放大策略的高特异性、高灵敏度的信号生物传感器,用于检测Pb2+。总之,在Pb2+存在下,8-17DNAzyme的底物链S在切割位点被切割成两个片段,被切割片段S1可以触发CHA过程。在CHA过程中,S1通过杂交反应打开发夹捕获探针(H1),暴露H1的隐藏序列,其打开H2以形成H1-S1-H2复合物杂交。然后,该过程释放S1以启动下一个循环并实现信号放大。因此,由于H1和H2的杂交,许多示踪标记锚定在电极上,进一步从示踪标记上的Thi产生显着放大的电化学信号。因此,实现了基于NG-PTCA-Thi-Au和CHA的双信号放大以检测痕量的Pb2+。更重要的是,这种制备的Pb2+传感器在检测实际样品时表现出极佳的灵敏度和特异性,表明应用于环境水样中检测Pb2+的潜力。
本项目建立了一种新型分析方法检测铅离子,为铅离子检测技术的研发提供实验依据,为环境中铅离子的监测提供新思路和新技术平台。
发明内容:
1.本发明的目的是构建基于双信号放大的用于重金属铅离子检测的生物传感器,为铅离子检测技术的研发提供实验依据,为环境中铅离子的监测提供新思路和新技术平台。其特征包括以下步骤:
(1)8-17 DNAzyme的制备与切割
(2)苝-3,4,9,10-四甲酸分散的氮掺杂石墨烯(NG-PTCA)被修饰硫堇(Thi)和金纳米粒子(AuNPs)后组装发夹信号DNA所形成的的信号检测探针(NG-PTCA-Thi-Au-H2)的制备;
(3)建立电化学生物传感器,测定重金属铅离子,绘制标准曲线。
2.本发明所述8-17 DNAzyme制备与切割的过程具体包括以下步骤,其特征包括以下步骤:
(1)8-17 DNAzyme的制备:
首先将底物链(2μM)在95℃水浴中加热5分钟,然后缓慢冷却至室温。接下来,将相同体积的催化链(2μM)与底物链混合并在65℃水浴中孵育10分钟。使水浴缓慢冷却至室温以确保其杂交形成1μM8-17 DNAzyme。
(2)8-17 DNAzyme的切割:
将不同浓度的Pb2+加入到5μL 8-17 DNAzyme中,并在37℃培养箱中反应40分钟,8-17 DNAzyme的催化中心可以捕获Pb2+,并与8-17 DNAzyme碱基配位形成8-17 DNAzyme-Pb2+复合物结构。然后,8-17 DNAzyme在rA切割位点有效地催化了切割反应,将底物链S切割成两个片段。被切割的片段(S1)与H1的部分序列互补,并能基于碱基互补配对进行杂交。
3.本发明所述苝-3,4,9,10-四甲酸分散的氮掺杂石墨烯(NG-PTCA)被修饰硫堇(Thi)和金纳米粒子(AuNPs)后组装发夹信号DNA所形成的的信号检测探针(NG-PTCA-Thi-Au-H2)的制备过程具体包括以下步骤,其特征包括以下步骤:
(1)PTCA纳米材料的制备:
首先将500mg PTCDA溶在50ml1M NaOH水溶液中,然后在80℃下水解PTCDA 1小时。当黄绿色溶液中出现红色沉淀时,将1M盐酸缓慢滴加到上述混合物中并最终保持pH为弱酸性。随后,通过12000rpm离心收集红色沉淀并利用冷冻干燥器干燥收集,得到产物PTCA。
(2)NG-PTCA纳米复合材料的制备:
首先将10mg NG与2mg PTCA溶在10mL超纯水中并超声2小时。然后,将溶液在环境温度下连续搅拌5小时并过夜。最后,将混合物离心并用超纯水洗涤三次。在60℃下真空干燥后收集,得到产物NG-PTCA。
(3)NG-PTCA-Thi-Au纳米复合物的制备:
为了一步合成NG-PTCA-Thi-AuNPs纳米复合材料,NG-PTCA溶液首先超声40分钟。然后将Thi(0.5mM)和1%的HAuCl4溶液按Thi/HAuCl4=5∶2的摩尔比加入到NG-PTCA溶液(1mg mL-1)中,在室温(RT)和黑暗条件下剧烈搅拌12小时。然后通过9000rpm离心15分钟收集所得纳米复合材料再用超纯水洗涤三次。最后,将沉淀溶解在2mL水中,并将其保存在4℃环境下。
(4)NG-PTCA-Thi-Au-H2复合物的制备:
发夹信号DNA H2在95℃水浴中加热5分钟,逐渐冷却至室温以形成茎环结构。将1mL NG-PTCA-Thi-Au纳米复合物分散和在200μL 5′-SH标记的H2混合在一起,同时温和搅拌12小时,通过Au-S共价键将H2充分固定在纳米复合材料的表面上。然后离心并用超纯水清洗获得信号检测探针NG-PTCA-Thi-Au-H2。最后,将信号检测探针分散在1.0mL PBS(pH7.4)中并保存在4℃冰箱备用。
4.根据权利要求1所述的建立电化学生物传感器,测定重金属铅离子,绘制标准曲线,其特征在于包括以下步骤:
(1)在构建传感器之前,将2μM 5′-SH标记的捕获探针H1在95℃下加热5分钟。然后,将溶液缓慢冷却至室温以形成茎环结构;
(2)分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
(3)干燥后的电极在恒电压(-0.2V)下用1%HAuCl4溶液沉积30s,最终形成均匀的AuNPs层,并用超纯水清洗;
(4)清洗并干燥后的电极用0.5mM MCH封闭30分钟并用超纯水冲洗干净;
(5)干燥后,在电极表面滴加10μL 2μM发夹结构的捕获探针H1,并在37℃下孵育1个小时;
(6)超纯水冲洗并干燥后,将制备好的电极滴加10μL不同浓度Pb2+切割的DNAzyme片段(S1),并在37℃下孵育2个小时。
(7)将上步修饰的电极用超纯水冲洗并干燥后,在其表面滴加10μL NG-PTCA-Thi-AuNPs-H2,并在37℃孵育2个小时,用超纯水清洗并干燥。
(8)制备的生物传感器在5mL 0.1M PBS(pH 7.4)中在室温下用方波伏安法(SWV)检测Thi产生的电流响应信号。
(9)根据所得电流变化值与重金属铅离子浓度呈线性关系,绘制工作曲线。
与现有技术相比,本发明的基于双信号放大的用于重金属铅离子检测的生物传感器,其突出的特点是:
(1)通过利用8-17 DNAzyme的特异催化功能,确保生物传感器用于重金属铅离子检测时特异性;
(2)引入催化发夹组装机制(CHA),通过循环利用单链DNA(ssDNA)来有效放大电流信号响应,从而提高生物传感器的灵敏度;
(3)将基于NG-PTCA-Thi-Au的纳米复合材料作为信号探针引入到电化学DNA生物传感器的制备中,提高了生物分子的固载量,进一步提高了电化学信号,从而实现了CHA联合NG-PTCA-Thi-Au的双重信号放大;
(3)本方法制备的电化学生物传感器可为重金属铅离子提供新的定量检测方法,旨在为铅离子检测技术的研发提供实验依据,为环境中铅离子的监测提供新思路和新技术平台。
(4)使用完全相同的纳米材料和CHA双重放大机制,利用8-17 DNAzyme的特异催化功能,只需通过改变DNAzyme的类型即可实现多种金属离子检测的特异性,高灵敏检测,另外,此方法简便,快速,便于实现商品化,从而推进重金属离子检测的发展。
附图说明:
图1为本发明的电化学生物传感器的构建示意图。
图2为本发明的信号探针不同合成步骤的扫描电镜图,EDS图和XPS图。
图3为本发明的电化学生物传感器在检测重金属铅离子时得到的方波伏特安培电流与浓度的线性关系,以及传感器的特异性。
具体实施方式:
下面结合具体实施例对本发明进行进一步阐述,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1
步骤1.在构建传感器之前,将2μM 5′-SH标记的捕获探针H1在95℃下加热5分钟。然后,将溶液缓慢冷却至室温以形成茎环结构;
步骤2.分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
步骤3.干燥后的电极在恒电压(-0.2V)下用1%HAuCl4溶液沉积30s,最终形成均匀的AuNPs层,并用超纯水清洗;
步骤4.清洗并干燥后的电极用0.5mM MCH封闭30分钟并用超纯水冲洗干净;
步骤5.干燥后,在电极表面滴加10μL 2μM发夹结构的捕获探针H1,并在37℃下孵育1个小时;
步骤6.超纯水冲洗并干燥后,将制备好的电极滴加10μL不同浓度Pb2+切割的DNAzyme片段(S1),并在37℃下孵育2个小时
步骤7.制备的生物传感器在5mL 0.1M PBS(pH 7.4)中在室温下用方波伏安法(SWV)检测Thi产生的电流响应信号;
步骤8.根据所得电流变化值与重金属铅离子浓度呈线性关系,绘制工作曲线;测定结果表明铅离子浓度在1pM-1000nM范围内成线性关系,线性相关系数为0.99901,检测限为0.42pM。
步骤9.将本发明上述传感器于4℃保存,间断检测传感器电流响应,储存28天后电流响应仍为初始电流的88.4%,表示传感器具有良好的稳定性;
步骤10.本发明取同一批次制备的生物传感器5支,在相同条件下对100nM的铅离子浓度分别进行测定,每一支电极测定3次,结果响应电流的相对标准偏差少于2.8%,说明传感器差异小,传感器重现性良好。
步骤11.将本发明上述传感器用于检测铅离子,干扰离子,结果干扰离子电流响应相对于目标铅离子显得微不足道,说明传感器的特异性好,可以很好区分目标检测物。
步骤12.根据所得电流变化值与重金属铅离子浓度呈线性关系,绘制工作曲线;测定结果表明铅离子浓度在5pM-1000nM范围内成线性关系,线性相关系数为0.9993,检测限为0.2pM。
步骤13.将本发明上述传感器于4℃保存,间断检测传感器电流响应,储存28天后电流响应仍为初始电流的86.0%,表示传感器具有良好的稳定性;
步骤14.本发明取同一批次制备的生物传感器5支,在相同条件下对1000nM的铅离子浓度分别进行测定,每一支电极测定3次,结果响应电流的相对标准偏差少于3.27%,说明传感器差异小,传感器重现性良好。
步骤15.将本发明上述传感器用于检测铅离子,干扰离子,结果干扰离子电流响应远低于铅离子电流响应,说明传感器的特异性好,可以很好区分目标检测物。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提条件下,还可以做出若干改进,这些改进也应视为本发明的保护范围。
Figure ISA0000187385720000011

Claims (4)

1.一种基于双信号放大的用于重金属铅离子检测的生物传感器,其特征在于,
包括以下原料:
1)8-17 DNAzyme;
2)苝-3,4,9,10-四甲酸分散的氮掺杂石墨烯NG-PTCA经硫堇Thi和金纳米粒子AuNPs修饰后组装发夹信号DNA H2所形成的信号检测探针NG-PTCA-Thi-Au-H2;
3)经5′-SH标记的具有茎环结构的捕获探针H1;
所述8-17 DNAzyme可捕获不同浓度的Pb2+以形成8-17 DNAzyme-Pb2+复合物,且其8-17DNAzyme在Pb2+存在下底物链S在切割位点被切割成两个片段,被切割的片段S1可与捕获探针H1的部分序列互补,并能基于碱基互补配对进行杂交,以打开茎环结构的捕获探针H1,并打开H2以形成H1-S1-H2复合物杂交,并在H1-S1-H2复合物杂交过程中释放S1以启动下一个循环并实现信号放大。
2.根据权利要求1所述的基于双信号放大的用于重金属铅离子检测的生物传感器,其特征在于,所述NG-PTCA-Thi-Au-H2复合物的制备方法如下:
(1)PTCA纳米材料的制备:
首先将500mg PTCDA溶在50ml 1M NaOH水溶液中,然后在80℃下水解PTCDA 1小时,当黄绿色溶液中出现红色沉淀时,将1M盐酸缓慢滴加到上述混合物中并最终保持pH为弱酸性,随后,通过12000rpm离心收集红色沉淀并利用冷冻干燥器干燥收集,得到产物PTCA;
(2)NG-PTCA纳米复合材料的制备:
首先将10mg NG与2mg PTCA溶在10mL超纯水中并超声2小时后,将溶液在环境温度下连续搅拌5小时并过夜,最后,将混合物离心并用超纯水洗涤三次,在60℃下真空干燥后收集,得到产物NG-PTCA;
(3)NG-PTCA-Thi-Au纳米复合物的制备:
将NG-PTCA溶液超声40分钟,然后将0.5mM的Thi和1%的HAuCl4溶液按Thi/HAuCl4=5∶2的摩尔比加入到1mg/mL的NG-PTCA溶液中,在室温和黑暗条件下剧烈搅拌12小时,然后通过9000rpm离心15分钟收集所得纳米复合材料再用超纯水洗涤三次,最后,将沉淀溶解在2mL水中,并将其保存在4℃环境下备用;
(4)NG-PTCA-Thi-Au-H2复合物的制备:
发夹信号DNA H2在95℃水浴中加热5分钟,逐渐冷却至室温以形成茎环结构,将1mLNG-PTCA-Thi-Au纳米复合物分散和在200μL的5′-SH标记的H2混合在一起,同时温和搅拌12小时,通过Au-S共价键将H2充分固定在纳米复合材料的表面上,然后离心并用超纯水清洗获得信号检测探针NG-PTCA-Thi-Au-H2,最后,将信号检测探针分散在pH 7.4的1.0mL PBS中并保存在4℃冰箱备用。
3.根据权利要求1或2所述的一种基于双信号放大的用于重金属铅离子检测的生物传感器的使用方法,其特征在于:
1)8-17 DNAzyme的制备与切割
首先将2μM底物链在95℃水浴中加热5分钟,然后缓慢冷却至室温,接下来,将相同体积的2μM催化链与底物链混合并在65℃水浴中孵育10分钟,使水浴缓慢冷却至室温以确保其杂交形成1μM的8-17 DNAzyme;将不同浓度的Pb2+加入到5μL 8-17 DNAzyme中,并在37℃培养箱中反应40分钟,8-17 DNAzyme的催化中心可以捕获Pb2+,并与8-17 DNAzyme碱基配位形成8-17 DNAzyme-Pb2+复合物结构,然后,在Pb2+存在下,8-17 DNAzyme在rA切割位点有效地催化了切割反应,将底物链S切割成两个片段,被切割的片段S1与H1的部分序列互补,并能基于碱基互补配对进行杂交;
2)所述信号检测探针NG-PTCA-Thi-Au-H2的制备;
3)建立电化学生物传感器,测定重金属铅离子,绘制标准曲线。
4.根据权利要求3所述的使用方法,其特征在于:
所述建立电化学生物传感器,测定重金属铅离子,绘制标准曲线,包括如下步骤:
(1)在构建传感器之前,将2μM 5′-SH标记的捕获探针H1在95℃下加热5分钟,然后,将溶液缓慢冷却至室温以形成茎环结构;
(2)分别用0.3和0.05μm的Al2O3粉末将电极抛光成镜面,然后分别按超纯水、无水乙醇、超纯水的顺序超声电极各5min,室温干燥备用;
(3)干燥后的电极在-0.2V的恒电压下用1%HAuCl4溶液沉积30s,最终形成均匀的AuNPs层,并用超纯水清洗;
(4)清洗并干燥后的电极用0.5mM MCH封闭30分钟并用超纯水冲洗干净;
(5)干燥后,在电极表面滴加10μL 2μM发夹结构的捕获探针H1,并在37℃下孵育1个小时;
(6)超纯水冲洗并干燥后,将制备好的电极滴加10μL不同浓度Pb2+切割的DNAzyme片段S1,并在37℃下孵育2个小时;
(7)将上步修饰的电极用超纯水冲洗并干燥后,在其表面滴加10μL NG-PTCA-Thi-AuNPs-H2,并在37℃孵育2个小时,用超纯水清洗并干燥;
(8)制备的生物传感器在5mL,0.1M,pH 7.4的PBS中在室温下用方波伏安法检测Thi产生的电流响应信号;
(9)根据所得电流变化值与重金属铅离子浓度呈线性关系,绘制工作曲线。
CN201910737382.9A 2019-08-09 2019-08-09 一种基于双信号放大的用于重金属铅离子检测的生物传感器 Active CN110438200B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910737382.9A CN110438200B (zh) 2019-08-09 2019-08-09 一种基于双信号放大的用于重金属铅离子检测的生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910737382.9A CN110438200B (zh) 2019-08-09 2019-08-09 一种基于双信号放大的用于重金属铅离子检测的生物传感器

Publications (2)

Publication Number Publication Date
CN110438200A CN110438200A (zh) 2019-11-12
CN110438200B true CN110438200B (zh) 2023-03-31

Family

ID=68434421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910737382.9A Active CN110438200B (zh) 2019-08-09 2019-08-09 一种基于双信号放大的用于重金属铅离子检测的生物传感器

Country Status (1)

Country Link
CN (1) CN110438200B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849951B (zh) * 2019-11-27 2022-08-02 安徽师范大学 氮掺杂石墨烯-硫堇-金纳米电化学传感器的应用
CN111239214B (zh) * 2020-03-25 2021-05-25 吉林大学 三电极型Pb(II)和Cu(II)电化学传感器、制备方法及其应用
CN111398396B (zh) * 2020-05-22 2022-06-17 河南工业大学 一种用于重金属Hg2+和Pb2+同时检测的电化学传感器制备方法
CN111398395B (zh) * 2020-05-22 2022-06-24 河南工业大学 一种用于呕吐毒素检测的双信号电化学适体传感器制备方法
CN111534571B (zh) * 2020-05-25 2022-10-11 长江师范学院 一种用于铅离子检测的cha-sers生物传感器及其制备方法和应用
CN112986361B (zh) * 2021-04-27 2022-02-01 上海执诚生物科技有限公司 基于金-石墨烯量子点的电化学生物传感器在检测细胞中ctDNA中的应用
CN113156122B (zh) * 2021-04-29 2023-07-04 重庆医科大学 一种检测外泌体pd-l1的荧光传感器及其制备与应用
CN113899800B (zh) * 2021-10-15 2024-05-28 山东理工大学 一种检测水中铅的电化学发光适配体传感器制备方法
CN114624304B (zh) * 2021-12-09 2023-09-19 重庆医科大学国际体外诊断研究院 基于铈银纳米花和分支DNAzyme步行器的miRNA电化学传感器
CN115248240B (zh) * 2022-03-01 2024-04-30 宁波大学 一种基于DNAzyme的双通道电化学方法及其在铅离子检测中的应用研究
CN114577880B (zh) * 2022-03-15 2024-02-20 河南工业大学 一种基于金纳米材料及树枝状dna纳米结构的阻抗型适体传感器检测铅离子
CN115032254B (zh) * 2022-06-28 2024-02-02 河南工业大学 一种基于磁分离技术介导的双模生物传感器检测铅离子的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621493A (zh) * 2017-09-06 2018-01-23 重庆医科大学 一种用于重金属铅污染物检测的电化学传感器制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107621493A (zh) * 2017-09-06 2018-01-23 重庆医科大学 一种用于重金属铅污染物检测的电化学传感器制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy;Wen Yun等;《Biosensors andBioelectronics》;20160122;第80卷;第187-193页 *
Manganese porphyrin decorated on DNA networks as quencher and mimicking enzyme for construction of ultrasensitive photoelectrochemistry aptasensor;Liaojing Huang等;《Biosensors and Bioelectronics》;20171224;第104卷;第21-26页 *

Also Published As

Publication number Publication date
CN110438200A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN110438200B (zh) 一种基于双信号放大的用于重金属铅离子检测的生物传感器
Xavier et al. Emerging trends in sensors based on carbon nitride materials
Khonsari et al. Recent trends in electrochemiluminescence aptasensors and their applications
Rezaei et al. An enzyme-free electrochemical biosensor for simultaneous detection of two hemophilia A biomarkers: Combining target recycling with quantum dots-encapsulated metal-organic frameworks for signal amplification
Fu et al. Au nanoparticles on two-dimensional MoS 2 nanosheets as a photoanode for efficient photoelectrochemical miRNA detection
An et al. Porous gold nanocages: High atom utilization for thiolated aptamer immobilization to well balance the simplicity, sensitivity, and cost of disposable aptasensors
Xu et al. A difunctional DNA–AuNP dendrimer coupling DNAzyme with intercalators for femtomolar detection of nucleic acids
Xu et al. An ultrasensitive electrochemical method for detection of Ag+ based on cyclic amplification of exonuclease III activity on cytosine–Ag+–cytosine
Gan et al. A review: nanomaterials applied in graphene-based electrochemical biosensors
Jian et al. Electrochemiluminescence based detection of microRNA by applying an amplification strategy and Hg (II)-triggered disassembly of a metal organic frameworks functionalized with ruthenium (II) tris (bipyridine)
Song et al. Untrasensitive photoelectrochemical sensor for microRNA detection with DNA walker amplification and cation exchange reaction
Negahdary et al. Electrochemical nanobiosensors equipped with peptides: a review
Yang et al. A stepwise recognition strategy for the detection of telomerase activity via direct electrochemical analysis of metal–organic frameworks
Wang et al. Highly efficient quenching of electrochemiluminescence from CdS nanocrystal film based on biocatalytic deposition
Huang et al. Metal–organic framework detectives meet infectious pathogens: A powerful tool against pandemics
Jiang et al. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF–N-(4-aminobutyl)-N-ethylisoluminol/Ti3C2T x composite and duplex-specific nuclease-assisted signal amplification
Hou et al. Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure
Liang et al. DNAzyme-driven bipedal DNA walker and catalytic hairpin assembly multistage signal amplified electrochemical biosensor based on porous AuNPs@ Zr-MOF for detection of Pb2+
Li et al. Photoelectrochemical monitoring of miRNA based on Au NPs@ g-C3N4 coupled with exonuclease-involved target cycle amplification
Wang et al. A highly sensitive photoelectrochemical aptsensor based on photocathode CuInS2 for the detection of tobramycin
La Electrochemical, electrochemiluminescent and photoelectrochemical immunosensors for procalcitonin detection: a review
CN110274948B (zh) 一种基于三螺旋分子开关超灵敏测定lps双放大ecl生物传感器及其应用
Zhou et al. Dual signal amplified electrochemical aptasensor based on PEI-functionalized GO and ROP for highly sensitive detection of cTnI
Zhang et al. A sandwich-like electrochemiluminescent biosensor for the detection of concanavalin A based on a C 60–reduced graphene oxide nanocomposite and glucose oxidase functionalized hollow gold nanospheres
Chen et al. Recent developments in electrochemical, electrochemiluminescent, photoelectrochemical methods for the detection of caspase-3 activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant