WO2018151291A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018151291A1
WO2018151291A1 PCT/JP2018/005705 JP2018005705W WO2018151291A1 WO 2018151291 A1 WO2018151291 A1 WO 2018151291A1 JP 2018005705 W JP2018005705 W JP 2018005705W WO 2018151291 A1 WO2018151291 A1 WO 2018151291A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
torsion bar
torsion
handle
torque
Prior art date
Application number
PCT/JP2018/005705
Other languages
English (en)
French (fr)
Inventor
澤田 英樹
有紀恵 藤原
亮 皆木
孝義 菅原
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to US16/479,269 priority Critical patent/US10807636B2/en
Priority to BR112019014968-6A priority patent/BR112019014968B1/pt
Priority to CN201880007914.7A priority patent/CN110225858B/zh
Priority to EP18754413.5A priority patent/EP3572303A4/en
Priority to JP2018568652A priority patent/JP6590090B2/ja
Publication of WO2018151291A1 publication Critical patent/WO2018151291A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column

Definitions

  • the present invention relates to an assist mode for controlling a motor that applies an assist force to a steering system when a driver steers the steering system of the vehicle, and a motor according to a target steering angle that is given from the vehicle as needed when the vehicle travels autonomously.
  • An electric power steering apparatus having an automatic mode for controlling the steering angle, in particular, using the angle information of the motor downstream from the torque sensor, and estimating the steering wheel angle using a secondary or higher-order resonance filter that matches the frequency response when released.
  • the present invention relates to an electric power steering apparatus that performs accurate manual input determination.
  • a column shaft (steering shaft, handle shaft) 2 of a handle (steering wheel) 1 is a reduction gear 3, universal joints 4 a and 4 b, and a pinion rack mechanism 5.
  • the tie rods 6a and 6b are connected to the steering wheels 8L and 8R via the hub units 7a and 7b.
  • the column shaft 2 is provided with a torque sensor 10 for detecting the steering torque of the handle 1 and a rudder angle sensor 14 for detecting the steering angle ⁇ h, and a motor 20 for assisting the steering force of the handle 1 is provided with a deceleration mechanism.
  • a reduction gear reduction ratio 1 / N
  • the control unit (ECU) 100 that controls the electric power steering apparatus is supplied with electric power from the battery 13 and also receives an ignition key signal via the ignition key 11.
  • the control unit 100 calculates a current command value of an assist (steering assistance) command based on the steering torque Tr detected by the torque sensor 10 and the vehicle speed Vs detected by the vehicle speed sensor 12, and compensates the current command value.
  • the current supplied to the motor 20 is controlled by the voltage control command value Vref subjected to.
  • the steering angle sensor 14 for detecting the steering angle ⁇ h is not essential and may not be provided.
  • the control unit 100 is connected to a CAN (Controller Area Network) 40 that transmits and receives various types of vehicle information, and the vehicle speed Vs can also be received from the CAN 40.
  • the control unit 100 can also be connected to a non-CAN 41 that exchanges communications, analog / digital signals, radio waves, and the like other than the CAN 40.
  • control unit 100 is mainly composed of a CPU (including an MPU, MCU, etc.). General functions executed by a program inside the CPU are shown in FIG. The configuration is as shown.
  • the function and operation of the control unit 100 will be described with reference to FIG. 2.
  • the steering torque Tr from the torque sensor 10 and the vehicle speed Vs from the vehicle speed sensor 12 are input to the current command value calculation unit 101, and the current command value calculation unit 101.
  • the calculated current command value Iref1 is added to the compensation signal CM from the compensation unit 110 for improving characteristics in the adding unit 102A, and the added current command value Iref2 is limited to the maximum value in the current limiting unit 103.
  • the current command value Irefm whose maximum value is limited is input to the subtraction unit 102B, and the motor current detection value Im is subtracted.
  • the duty 20 is input and the duty is calculated, and the motor 20 is PWM driven via the inverter 107 with the PWM signal for which the duty is calculated.
  • the motor current value Im of the motor 20 is detected by the motor current detector 108, and is subtracted and fed back to the subtraction unit 102B. Further, an electrical angle signal ⁇ e of the motor 20 is acquired from a rotation sensor 20A such as a resolver connected to the motor 20.
  • the compensation unit 110 adds the detected or estimated self-aligning torque (SAT) 113 to the inertia compensation value 112 by the addition unit 114, and further adds the convergence control value 111 to the addition result by the addition unit 115.
  • the addition result is input as a compensation signal CM to the adding unit 102A to improve the characteristics.
  • ADAS Advanced Driver Assistance System
  • ADAS is a system developed to improve the safety and convenience in consideration of the future of the automobile society. It detects the risk of accidents caused by unforeseeable situations and side-by-side driving, and prevents accidents in advance. Or it will be for mitigation.
  • operations such as “recognition”, “judgment”, and “operation” are required.
  • ADAS is Provide support.
  • hand ON / OFF (Hands-ON / OFF) detection technology it is becoming increasingly important.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-337181 (Patent Document 1) and Japanese Patent Application Laid-Open No. 11-208498 (Patent Document 2).
  • the automatic steering device disclosed in Patent Document 1 includes a mechanism for releasing automatic steering when a torsion torque Tt applied between an automatic steering input point and a handle is equal to or greater than a predetermined value. Is not released by mistake.
  • FIG. 3 shows a general configuration in the case where the torsion torque Tt related to the torsion bar is detected to determine manual input.
  • the column shaft 2 is provided with a torque sensor unit 200 for detecting the torsion torque Tt. Yes.
  • the torsion bar 201 disposed in the torque sensor unit 200 is used, and the torsion of the input side column shaft (IS) 2A and the output side column shaft (OS) 2B via the torsion bar 201 is stub shaft 202, aluminum A voltage formed in the coil 204 formed by the sleeve 203 or the like and wound around the outer peripheral surface of the aluminum sleeve 203 is detected as a torsion torque Tt.
  • the handle 1 side is the input side column shaft (IS) 2A
  • the pinion side is the output side column shaft (OS) 2B
  • the output side column shaft 2B is connected to the worm and worm with respect to the torsion bar 201 arranged in the torque sensor unit 200.
  • a reduction gear (reduction ratio 1 / N (N> 1.0)) 3 formed of a wheel is provided.
  • the worm wheel attached to the output side column shaft 2B is driven to rotate at a reduction ratio of 1 / N by a worm connected to the output shaft of the motor 20, and the motor 20 is controlled by a control unit (ECU) 100.
  • ECU control unit
  • the automatic steering device disclosed in Patent Document 2 accurately detects manual steering by a driver during automatic steering and reliably cancels automatic steering, so that the torsion torque Tt generated in the column shaft 2 and the steering wheel 1
  • the release of automatic steering is determined based on the difference from the torque Ti required to rotationally accelerate the inertia moment Ih to the steering angular acceleration ⁇ h ′′.
  • the handle 1 is opened, when the input-side column shaft 2A is rotated by an angle theta O of the reduction gear 3 side by the motor 20, the handle 1 is in the inertia If it is overcome and rotated by an angle ⁇ h, the following equation 1 is established, where Kh is the torsional rigidity (spring constant) of the input side column shaft 2A and Ih is the moment of inertia of the handle 1.
  • the torsion torque Tt can be estimated by detecting the rotational angular acceleration ⁇ h ′′ of the handle 1. Then, when the automatic steering is being performed, the driver uses the automatic steering force. When the handle 1 is rotated against this, a torsion torque Tt is generated in the input side column shaft 2A.
  • the torsion torque Tt generated in the column shaft (steering shaft) is detected, and the steering torque Ti is calculated from the steering angular acceleration ⁇ ′′ and the inertia moment Ih of the steering wheel 1.
  • the comparison (Tt-Ti) is performed, and then the automatic steering operation of the steering is canceled or set as necessary, so that the portion corresponding to the inertia moment Ih is upstream of the assisted load side. Since it is obtained by information (determined by tuning work), there is a problem that it is easily affected by noise related to the free vibration system due to the spring constant Kh, etc. Second order differentiation is necessary to obtain the angular acceleration ⁇ ” There is a problem of increasing noise. If differentiation is performed at the steering change point, noise becomes particularly large.
  • the present invention has been made based on the above-described circumstances, and the object of the present invention is to avoid the influence of disturbances without causing an increase in cost and without being affected by noise associated with the free vibration system due to a spring constant or the like. It is an object of the present invention to provide an electric power steering apparatus that can accurately determine a manual input (hand ON / OFF) in a situation where no power is received. When the steering is held with both hands or one hand, the hand is ON (with manual input), and when the steering is not being held, the hand is OFF (without manual input).
  • the present invention includes a torsion bar on a column shaft connected to a handle, drives and controls a motor that applies assist torque to a vehicle steering mechanism by a current command value via a speed reduction mechanism, and switches between an assist mode and an automatic mode.
  • the object of the present invention is to provide a torsion bar torsion angle calculation unit for obtaining a torsion bar torsion angle based on torque information about the torsion bar, and a predetermined arithmetic expression from an electric angle signal of the motor.
  • An output side column shaft relative angle generation unit that outputs an output side relative angle
  • an actual handle angle calculation unit that calculates an actual handle angle based on the torsion bar torsion angle and the output side relative angle
  • the output side relative angle A resonance filter for obtaining an estimated handle angle in a released state, and the actual handle angle Deviation angle of the estimated steering wheel angle of the fine the hands-off state is achieved by and a hand ON / OFF determination unit determines hand ON when the time becomes a predetermined angle or more has continued for the predetermined period of time one or more.
  • the object of the present invention is to determine whether the hand ON / OFF determination unit determines hand OFF when the time during which the deviation angle is smaller than the predetermined angle continues for a predetermined time 2 or more after the determination of the hand ON.
  • the torque information related to the torsion bar is the column shaft angle related to the handle or the torsion torque related to the torsion bar, or the torsion bar torsion angle calculation unit inputs the torsion torque and
  • the torsion bar torsion angle calculating unit that calculates the torsion bar torsion angle by dividing by a spring constant, or the torsion bar torsion angle calculating unit includes a torque sensor detection input side column angle and a torque sensor detection output side column.
  • the torsion bar torsion angle generation unit that generates the torsion bar torsion angle, or the output side column shaft relative angle generation unit performs an anti-rollover process on the electrical angle signal,
  • the output side relative angle is output, or the predetermined calculation formula is a calculation formula that multiplies the electrical angle signal by the number of pole pairs of the motor and the reduction ratio of the reduction mechanism, or
  • the resonance filter reproduces the resonance of the handle when the steering is turned from the output side column shaft in an actual machine, and the estimated handle angle in the released state obtained by inputting the output side column angle is the actual handle angle.
  • the resonance filter is a second-order or higher-order LPF (low-pass filter). By it is more effectively achieved.
  • the handle angle is estimated by a resonance filter that matches the frequency response when released. Since hand ON / OFF is determined based on a comparison (difference) with the actual handle angle, it is possible to accurately determine hand input without being affected by noise associated with the free vibration system including the resonance of the handle. It can be performed. In the present invention, since the second order differentiation is not performed, the determination is simple and is not easily affected by noise.
  • an assist mode for controlling a motor that applies an assisting force to the steering system, and when the vehicle autonomously travels from the vehicle
  • an electric power steering apparatus having an automatic mode for controlling a motor according to a given target steering angle
  • there is a technique for detecting whether the driver is holding the steering (hand ON / OFF or manual input) In the detection, it is becoming more and more important to improve detection accuracy that is not affected by disturbance noise.
  • the present invention proposes a method for determining by an angle system that does not use differentiation, instead of the hand ON / OFF determination that has been conventionally determined by a torque system.
  • the angle information of the assist motor of the EPS downstream from the torque sensor is used, and the handle angle is determined by a resonance filter (for example, a second-order or higher-order LPF (low-pass filter)) designed in accordance with the frequency response at hand release.
  • a resonance filter for example, a second-order or higher-order LPF (low-pass filter)
  • LPF low-pass filter
  • the hand when the steering is gripped with both hands or one hand, the hand is turned on (with manual input), and when the steering is not gripped, the hand is turned off (without manual input).
  • the handle ON / OFF is accurately determined without being affected by noise related to the free vibration system due to torsional rigidity including handle resonance. I am doing so.
  • FIG. 5 is a mechanism diagram showing the relationship between the torsion bar 23, the handle angle ⁇ h, and the output side column angle ⁇ c.
  • FIG. 12 shows the characteristics when the hand is touched to the handle 1, and the characteristics are increased ( ⁇ t 1), the steered state (t 1 to t 2), the switch back (t 2 to t 3), and the steered state (t 3 to).
  • the actual handle angle (input side column angle) when the output side column angle ⁇ c is changed is shown.
  • FIG. 13 shows characteristics when the hand 1 is not touched, for example, turning right ( ⁇ t1), holding state (t1 to t2), turning left (t2 to t3), holding state (t3 to t3).
  • the difference in characteristics between FIGS. 12 and 13 is caused by the torsion bar twist angle ⁇ d of the torsion bar vibration, and it is possible to determine whether the handle is released (hand OFF) or touched (hand ON).
  • a Hall IC sensor 21 as an angle sensor and a 20 ° rotor sensor 22 as a torque sensor input side rotor are mounted on the input side column shaft 2A on the handle 1 side of the column shaft 2 provided with the torsion bar 23.
  • the Hall IC sensor 21 outputs an AS_IS angle ⁇ n with a cycle of 296 °.
  • the 20 ° rotor sensor 22 mounted on the handle 1 side of the torsion bar 23 outputs the input side column angle signals ⁇ h1 (TS_IS angle 1) and ⁇ h2 (TS_IS angle 2) with a cycle of 20 °, and the input side column angle signal.
  • ⁇ h1 is input to the angle calculation unit 50.
  • a torque sensor output side rotor 40 ° rotor sensor 24 is mounted on the output side column shaft 2B of the column shaft 2, and output side column angle signals ⁇ c1 (TS_OS angle 1) and ⁇ c2 are output from the 40 ° rotor sensor 24. (TS_OS angle 2) is output, and the output side column angle signal ⁇ c1 is input to the angle calculation unit 50. Both the input side column angle signal ⁇ h1 and the output side column angle signal ⁇ c1 are calculated by the angle calculator 50, and the torque sensor detection input side column angle ⁇ th and the torque sensor detection output side column angle ⁇ tc are output.
  • the configuration of the manual input determination unit of the present invention can be applied to a case where the torsion torque Tt is directly detected from the configuration of FIG. 3 and a case where the torsion torque Tt is obtained from the configuration of FIG.
  • a torsion bar torsion angle generator 120 for generating a torsion bar torsion angle ⁇ d by inputting a torque sensor detection input side column angle ⁇ th and a torque sensor detection output side column angle ⁇ tc, and an electric angle signal ⁇ e of the motor from the rotation sensor 20A.
  • the output side (OS) relative angle generation unit 150 that inputs and outputs the output side (OS) relative angle ⁇ t, and the actual handle that outputs the actual handle angle ⁇ hr by adding the torsion bar twist angle ⁇ d and the output side relative angle ⁇ t
  • An addition unit 121 as an angle calculation unit, a resonance filter 140 that inputs an output-side relative angle ⁇ t and outputs an estimated handle angle ⁇ he in a released state, and a deviation angle ⁇ de by subtracting the estimated handle angle ⁇ he from the actual handle angle ⁇ hr
  • a subtraction unit 122 for determining the hand ON / OFF determination unit 130 for determining hand ON / OFF based on the deviation angle ⁇ de. It is.
  • ) can determine the torsion bar twist angle ⁇ d from the twist torque Tt detected by the torque sensor unit 200 shown in FIG.
  • the configuration in this case is shown in FIG. 8, and the torsion bar torsion angle ⁇ d is obtained by inputting the detected torsion torque Tt to the torsion bar torsion angle calculation unit 120A and calculating the following equation (8).
  • the side relative angle ⁇ t is output.
  • the resonance filter 140 for obtaining the estimated handle angle ⁇ he in the hand-off state uses the data obtained by reproducing the resonance of the handle 1 by turning the steering from the output side column shaft 2B in the actual machine, and the handle side angle ⁇ h that is the input side column angle and the output side column
  • the frequency response is taken from the measurement result of the angle ⁇ c, and the resonance filter is designed according to the frequency response.
  • a Bode diagram showing a characteristic example of the resonance filter 140 is a characteristic B (solid line) in FIG. 9, and the gain of the resonance filter 140 is flat up to around 3 Hz, and a general secondary LPF (dashed line characteristic A around 10 Hz). ) And is slightly lower than a general second-order LPF (dashed characteristic A) at about 20 Hz or less.
  • the phase of the resonance filter 140 is less than a general second-order LPF (dashed line characteristic A) at about 20 Hz or less, and is less than a general second-order LPF (dashed line characteristic A) at about 20 Hz or less.
  • the delay is getting bigger. That is, with a bench test device that simulates an actual machine or an actual vehicle, while the ECU is energized, the handle 1 is left untouched (actually, the universal joint 4a in FIG. 1 is released). Then, the output side column shaft 2B is rotated to measure the handle angle ⁇ h and the output side column angle ⁇ c.
  • a handle angle ⁇ h is obtained by obtaining a torsion angle ⁇ d (a torsion angle ⁇ d is directly obtained by a torque sensor) from the torsion torque Tt and adding it to the output side column angle ⁇ c (see Expression 6).
  • the handle angle ⁇ h includes handle resonance. Since the ideal filter result ⁇ he (estimated handle angle in the hand-off state) with the output side column angle ⁇ c input for the measurement at hand release should be the handle angle ⁇ h, a secondary filter must be used to reproduce the resonance. I need it.
  • the designed resonance filter 140 is adjusted so that the estimated handle angle ⁇ he in the released state matches the handle angle ⁇ h of the actual machine data, resulting in the characteristics shown in FIG.
  • the waveform of the actual output side column angle ⁇ c is shown in FIG. 12 and FIG. 13, while the actual handle angle ⁇ hr shows a vibration waveform at the steering change point or the like.
  • the estimated handle angle ⁇ he released from the resonance filter 140 is also removed by the resonance filter 140 designed by tuning and input to the subtraction unit 122.
  • the configuration of the hand ON / OFF determination unit 130 is, for example, as shown in FIG. 10, and the deviation angle ⁇ de obtained by the subtraction unit 122 is input to the absolute value conversion unit 131, and the deviation angle
  • the angle comparison unit 132 outputs an angle establishment signal AE.
  • the angle establishment signal AE is input to the establishment time comparison unit 133 and the non-establishment time comparison unit 134.
  • the establishment time comparison unit 133 determines the hand ON when the angle establishment signal AE continues for a predetermined time threshold T1 or more.
  • DS1 is output, and the determination signal DS1 is output through the OR circuit 135 as a hand-ON determination signal DS.
  • the failure time comparison unit 134 outputs a determination signal DS2 indicating hand OFF when the failure state of Formula 10 continues for a preset time threshold value T2, and the determination signal DS2 is the OR circuit 135. Then, it is output as a hand-off determination signal DS.
  • the purpose of holding the hand ON state for a certain period of time is when there is no difference in angle between the input side and the output side even when the driver touches the steering wheel (for example, the road surface is good and the vehicle is running on a straight line) This is because it is necessary not to determine that the hand is OFF when the hand is released.
  • the deviation angle ⁇ de is converted into an absolute value and compared with one angle threshold value ⁇ th. However, it may be compared with a positive / negative angle threshold value ⁇ ⁇ th without converting into an absolute value.
  • the torque sensor detection input side column angle ⁇ th and the torque sensor detection output side column angle ⁇ tc are input to the torsion bar torsion angle generation unit 120 (step S10), and the torsion bar torsion angle generation unit 120 generates the torsion bar torsion angle ⁇ d.
  • the torsion bar twist angle ⁇ d is input to the adding unit 121.
  • the torsion torque Tt shown in FIG. 3 is input
  • the torsion torque Tt is input to the torsion bar torsion angle calculation unit 120A
  • the torsion bar torsion angle calculation unit 120A calculates the torsion bar torsion angle ⁇ d. .
  • the motor electrical angle ⁇ e is input to the output side relative angle generation unit 110 (step S12), and the output side relative angle generation unit 110 generates the output side relative angle ⁇ t (step S13), and adds the output side relative angle ⁇ t.
  • the adding unit 121 calculates the actual handle angle ⁇ hr by adding the torsion bar twist angle ⁇ d and the output side relative angle ⁇ t (step S14), and the resonance filter 140 processes the output side relative angle ⁇ t to estimate the handle angle ⁇ he. (Step S15) and input to the subtractor 122, respectively.
  • the subtractor 122 subtracts the estimated handle angle ⁇ he in the released state from the actual handle angle ⁇ hr to calculate the deviation angle ⁇ de (step S16) and inputs it to the handle ON / OFF determination unit 130.
  • the absolute value converting unit 131 obtains the absolute value
  • the establishment time comparison unit 133 outputs the determination signal DS1 when the angle establishment signal AE continues for the time threshold T1 or more (step S24), and the determination signal DS1 is output through the OR circuit 135 as the determination signal DS (step S25). ).
  • the failure time comparison unit 134 determines whether or not the failure state of Equation 9 continues for the time threshold value T2 after the hand ON determination (step S26), and a determination signal when the failure status becomes equal to or greater than the time threshold value T2.
  • DS2 is output (step S27), and the determination signal DS2 is output as the determination signal DS through the OR circuit 135 (step S28).
  • FIG. 12 is a table test apparatus or the like simulating an actual machine or an actual vehicle, and the estimated handle angle ⁇ he, the actual handle angle ⁇ hr, and the output side when the ECU is energized and the handle is touched (hand ON)
  • An example of the waveform of the column angle ⁇ c is shown. The time is increased up to the time t1, the time t1 to t2 is in the steered state, the time t2 to t3 is turned back, and the time t3 and later is in the steered state.
  • FIG. 13 shows a waveform example of each angle when the hand is not touched on the handle on the same time scale as FIG. 12 (hand OFF).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

【課題】自由振動系に絡むノイズの影響を受けずに、外乱の影響を受けない状況で精度良く手入力を判定することができる電動パワーステアリング装置を提供する。 【解決手段】車両の操舵機構にアシストトルクを付与するモータを駆動制御すると共に、アシストモードと自動モードを切り替える機能を有する電動パワーステアリング装置において、トルク情報に基づいてトーションバー捩れ角を求めるトーションバー捩れ角算出部と、モータの電気角信号から出力側相対角度を出力する出力側コラム軸相対角度生成部と、トーションバー捩れ角及び出力側相対角度に基づいて実ハンドル角度を求める実ハンドル角度算出部と、出力側相対角度から手放し状態の推定ハンドル角度を求める共振フィルタと、実ハンドル角度及び推定ハンドル角度の偏差角度が所定角度以上となる時間が所定時間1以上継続したときにハンドONを判定するハンドON/OFF判定部とを具備する。

Description

電動パワーステアリング装置
 本発明は、車両の操舵系を運転者が操舵するに際して、操舵系にアシスト力を付与するモータを制御するアシストモードと、車両が自律走行するに際して車両から随時与えられる目標操舵角に応じてモータを制御する自動モードとを有する電動パワーステアリング装置に関し、特にトルクセンサより下流にあるモータの角度情報を利用し、手放し時の周波数応答に合わせた2次以上の共振フィルタを用いてハンドル角度を推定し、手放し状態の推定ハンドル角度と実ハンドル角度との比較を行うことでハンドON/OFF判定(ステアリングの片手(hand)把持(ON)若しくは両手(hands)把持(ON)と、ステアリングを把持していない状態(OFF)との判定)を行い、ハンドルの共振を含めた自由振動系に絡むノイズの影響を受けることなく、精度の良い手入力の判定を行う電動パワーステアリング装置に関する。
 電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル(ステアリングホイール)1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の操舵トルクを検出するトルクセンサ10及び操舵角θhを検出する舵角センサ14が設けられており、ハンドル1の操舵力を補助するモータ20が、減速機構としての減速ギア(減速比1/N)3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)100には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット100は、トルクセンサ10で検出された操舵トルクTrと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。なお、操舵角θhを検出する舵角センサ14は必須のものではなく、配設されていなくても良い。
 コントロールユニット100には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット100には、CAN40以外の通信、アナログ/デジタル信号、電波等を授受する非CAN41も接続可能である。
 このような電動パワーステアリング装置において、コントロールユニット100は主としてCPU(MPUやMCU等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
 図2を参照してコントロールユニット100の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTr及び車速センサ12からの車速Vsは電流指令値演算部101に入力され、電流指令値演算部101は操舵トルクTr及び車速Vsに基づいてアシストマップ等を用いて電流指令値Iref1を演算する。演算された電流指令値Iref1は加算部102Aで、特性を改善するための補償部110からの補償信号CMと加算され、加算された電流指令値Iref2が電流制限部103で最大値を制限され、最大値を制限された電流指令値Irefmが減算部102Bに入力され、モータ電流検出値Imを減算される。
 減算部102Bでの減算結果である偏差ΔI(=Irefm-Im)はPI制御部105でPI(比例積分)等の電流制御をされ、電流制御された電圧制御指令値VrefがPWM制御部106に入力されてDutyを演算され、Dutyを演算されたPWM信号でインバータ107を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器108で検出され、減算部102Bに減算入力されてフィードバックされる。また、モータ20に連結されたレゾルバ等の回転センサ20Aから、モータ20の電気角信号θeを取得する。
 補償部110は、検出若しくは推定されたセルフアライニングトルク(SAT)113を加算部114で慣性補償値112と加算し、その加算結果に更に加算部115で収れん性制御値111を加算し、その加算結果を補償信号CMとして加算部102Aに入力し、特性改善を実施する。
 このような電動パワーステアリング装置において、先進運転支援システム(ADAS:Advanced Driver Assistance System)は、車載向けアプリケーションの中で最も急速な成長を遂げている分野の一つである。ADASは車社会の将来を考えて、安全性と利便性を向上させるために開発されたシステムで、見通しの悪い状況や、わき見運転などによって事故が起こる危険性を検知し、事故を未然に防止若しくは軽減するためのものとなる。車両を運転するためには「認知」、「判断」、「操作」といった動作が必要になるが、その一連の動作に対して安全を確保するということに重点をおいて、ADASが運転者の支援を行う。将来の自動運転技術に繋がる技術として、運転者がステアリングを把持しているかの手入力の判断、つまりハンドON/OFF(Hands-ON/OFF)の検出技術があるが、その検出精度の向上が益々重要になってきている。
 従来のハンドON/OFFの検出技術として、例えば特開平8-337181号公報(特許文献1)及び特開平11-208498号公報(特許文献2)に開示されたものがある。特許文献1に開示された自動操舵装置は、自動操舵入力点とハンドルとの間にかかる捩れトルクTtが所定値以上であるときに自動操舵が解除される機構を備えたものであり、自動操舵が誤って解除されないようにしている。
 トーションバーに関連する捩れトルクTtを検出して、手入力を判定する場合の一般的な構成は図3であり、コラム軸2に捩れトルクTtを検出するためのトルクセンサ部200が設けられている。トルクセンサ部200に配置されているトーションバー201を用いた構成であり、トーションバー201を介した入力側コラム軸(IS)2Aと出力側コラム軸(OS)2Bの捩れをスタブシャフト202、アルミ製スリーブ203等により形成し、アルミ製スリーブ203の外周面に巻回されているコイル204に誘起される電圧を捩れトルクTtとして検出する。トルクセンサ部200に配置されているトーショッバー201に対してハンドル1側が入力側コラム軸(IS)2Aであり、ピニオン側が出力側コラム軸(OS)2Bであり、出力側コラム軸2Bにウォーム及びウォームホイールで成る減速ギア(減速比1/N(N>1.0))3が設けられている。出力側コラム軸2Bに取付けられているウォームホイールは、モータ20の出力軸に連結されているウォームにより減速比1/Nで駆動回転され、モータ20はコントロールユニット(ECU)100で制御される。
 このような構造で、トルク検出値が所定値T0以上であっても、コラム軸2の回転角加速度θ”が所定値Aより大きい場合には、自動操舵が解除されない構成としている。また、特許文献2に開示された自動操舵装置は、自動操舵中の運転者による手動操舵を正確に検出して自動操舵を確実に解除するため、コラム軸2に発生する捩れトルクTtと、ハンドル1の慣性モーメントIhを操舵角加速度θh”まで回転加速するために要するトルクTiとの差に基づいて、自動操舵の解除を判定している。
 即ち、図4に示すモデル図を参照して説明すると、ハンドル1が開放され、モータ20により入力側コラム軸2Aが減速ギア3側から角度θOだけ回転駆動されたとき、ハンドル1が慣性に打ち勝って角度θhだけ回転したとすると、入力側コラム軸2Aの捩れ剛性(バネ定数)をKh、ハンドル1の慣性モーメントをIhとすると、下記数1が成立する。
 (数1)
Ih×θh”+Kh(θh-θO)=0
ただし、θh”は、角度θhの二階微分値である回転角加速度である。
 
この場合に、入力側コラム軸2Aにかかる捩れトルクTtは、下記数2で表わされる。
 (数2)
Tt=Kh×(θO-h)
上記数1及び数2より、下記数3が成立する。
 (数3)
Tt=Ih×θh”
 
 数3で表されるように、捩れトルクTtはハンドル1の回転角加速度θh”を検出することにより推定できることになる。そして、自動操舵が行われているときに、運転者が自動操舵力に抗してハンドル1を回転させると、入力側コラム軸2Aに捩れトルクTtが発生する。この捩れトルクTtは、ハンドル1の慣性モーメントIhを回転角加速度θh”まで加速するために要するトルクTi(=Ih×θh”)と、運転者による手動操舵トルクTdとの和になるので、下記数4が成立する。
 (数4)
Tt=Ti+Td=Ih×θh”+Td
 
 上記数4から明らかなように、入力側コラム軸2Aの捩れトルクTtと、ハンドル1を回転加速するために要するトルクTiとの差(Tt-Ti)は、運転者による手動操舵トルクTdに等しいので、下記数5が成立する。
 (数5)
Tt-Ti=Tt-Ih×θh”=Td
 
従って、上記トルク差(Tt-Ti)を求めることによって、自動操舵中における運転者の手動操舵(手入力)の有無を判断することができる。
特開平8-337181号公報 特開11-208498号公報
 特許文献1及び特許文献2に開示された自動操舵装置では、コラム軸(ステアリングシャフト)に発生する捩れトルクTtを検出し、操舵角加速度θ”とハンドル1の慣性モーメントIhから操舵中トルクTiを求めて比較(Tt-Ti)を実施する。その後、必要に応じてステアリングの自動操舵運転を解除又は設定を行う。従って、慣性モーメントIhに相当する部分は、アシストされる負荷側より上流側の情報(チューニング作業で決定)で求められるので、バネ定数Kh等による自由振動系に絡むノイズの影響を受け易くなる問題がある。角加速度θ”を求めるために2階微分が必要であり、非常にノイズ多くなる問題がある。操舵の変化点で微分すれば、特にノイズが大きくなる。
 また、特許文献1及び特許文献2に開示された自動操舵装置では手入力をトルク検出値(捩れトルク)で判定しており、コラム軸角度で行う手法については全く言及していない。
 更に、ハンドルにタッチセンサを設けて手入力を検出する手法もあるが、タッチセンサの取付けにコストがかかると共に、手袋などの装着や環境によって検出精度が低下してしまう問題がある。
 本発明は上述のような事情に基づいてなされたものであり、本発明の目的は、コストアップを生じることなく、バネ定数等による自由振動系に絡むノイズの影響を受けずに、外乱の影響を受けない状況で精度良く手入力(ハンドON/OFF)を判定することができる電動パワーステアリング装置を提供することにある。ステアリングを両手若しくは片手で把持した場合をハンドON(手入力有り)とし、ステアリングを把持していない場合をハンドOFF(手入力無し)としている。
 本発明は、ハンドルに連結されたコラム軸にトーションバーを備え、減速機構を介し、電流指令値により車両の操舵機構にアシストトルクを付与するモータを駆動制御すると共に、アシストモードと自動モードを切り替える機能を有する電動パワーステアリング装置に関し、本発明の上記目的は、前記トーションバーに関するトルク情報に基づいてトーションバー捩れ角を求めるトーションバー捩れ角算出部と、前記モータの電気角信号から所定演算式を用いて出力側相対角度を出力する出力側コラム軸相対角度生成部と、前記トーションバー捩れ角及び前記出力側相対角度に基づいて実ハンドル角度を求める実ハンドル角度算出部と、前記出力側相対角度から手放し状態の推定ハンドル角度を求める共振フィルタと、前記実ハンドル角度及び前記手放し状態の推定ハンドル角度の偏差角度が所定角度以上となる時間が所定時間1以上継続したときにハンドONを判定するハンドON/OFF判定部とを具備することにより達成される。
 また、本発明の上記目的は、前記ハンドON/OFF判定部が、前記ハンドONの判定後、前記偏差角度が前記所定角度より小さい時間が所定時間2以上継続したときにハンドOFFを判定することにより、或いは前記トーションバーに関するトルク情報が、前記ハンドルに関するコラム軸角度又は前記トーションバーに関する捩れトルクであることにより、或いは前記トーションバー捩れ角算出部が、前記捩れトルクを入力し、前記トーションバーのバネ定数で除算することにより前記トーションバー捩れ角を演算するトーションバー捩れ角演算部であることにより、或いは前記トーションバー捩れ角算出部が、トルクセンサ検出入力側コラム角度及びトルクセンサ検出出力側コラム角度を入力し、前記トーションバーのバネ定数を用いて前記トーションバー捩れ角を生成するトーションバー捩れ角生成部であることにより、或いは前記出力側コラム軸相対角度生成部は、前記電気角信号をアンチロールオーバー処理して後に、前記所定演算式によって前記出力側相対角度を出力するようになっていることにより、或いは前記所定演算式が、前記電気角信号に前記モータの極対数、前記減速機構の減速比を乗算する演算式であることにより、或いは前記共振フィルタは、実機で出力側コラム軸からステアリングが回されたときの前記ハンドルの共振を再現し、前記出力側コラム角度を入力して得た前記手放し状態の推定ハンドル角度が前記実ハンドル角度とほぼ同一となる特性となっていることにより、或いは前記共振フィルタが、2次以上のLPF(ローパスフィルタ)であることにより、より効果的に達成される。
 本発明の電動パワーステアリング装置によれば、トルクセンサより下流にあるモータの角度情報若しくはトルク検出値(捩れトルク)を利用し、手放し時の周波数応答に合わせた共振フィルタによりハンドル角度を推定し、実ハンドル角度との比較(差)に基づいてハンドON/OFFの判定を行っているので、ハンドルの共振を含めた自由振動系に絡むノイズの影響を受けることなく、精度の良い手入力の判定を行うことができる。本発明では2階微分を行うことはないので、判定が簡易であり、ノイズの影響も受け難い。
電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 コラム式ステアリングのステアリングシャフト(コラム軸)の機構を示す図である。 ステアリングシャフト(コラム軸)にかかる力を解析するためのモデル図である。 トーションバーとハンドル角度、出力側コラム角度の関係を示す機構図である。 センサの装着例及びコラム角度、ハンドル角度の関係を示す図である。 本発明に係る手入力判定部の構成例を示すブロック図である。 捩れトルクを入力する場合の構成例の一部を示すブロック図である。 本発明に用いる共振フィルタの特性例を示すボード線図である。 ハンドON/OFF判定部の構成例を示すブロック図である。 本発明の動作例を示すフローチャートである。 ハンドルに触れている場合の操舵系角度特性の一例を示すタイムチャートである。 ハンドルに触れていない場合の操舵系角度特性の一例を示すタイムチャートである。
 ハンドルが接続されたコラム軸にトーションバーを備えた車両の操舵系を運転者が操舵するに際して、操舵系にアシスト力を付与するモータを制御するアシストモードと、車両が自律走行するに際して車両から随時与えられる目標操舵角に応じてモータを制御する自動モードとを有する電動パワーステアリング装置において、運転者がステアリングを把持しているかの判断(ハンドON/OFF若しくは手入力)の検出技術があるが、その検出において、外乱ノイズの影響を受けない検出精度の向上が益々重要になってきている。
 本発明では、従来トルク系で判定していたハンドON/OFF判定に代え、微分を用いない角度系で判定する手法を提案する。具体的にはトルクセンサより下流にあるEPSのアシストモータの角度情報を利用し、手放し時の周波数応答に合わせて設計された共振フィルタ(例えば2次以上のLPF(ローパスフィルタ))によりハンドル角度を推定し、コラム軸に関する角度情報若しくは捩れトルクとモータの電気角信号とから算出された実ハンドル角度と、手放し状態で推定された推定ハンドル角度との偏差角度に基づき、角度閾値及び時間閾値との2段階の比較を行うことでハンドルON/OFFの判定、つまり手入力の判定を行う。本発明では、ステアリングを両手若しくは片手で把持した場合をハンドON(手入力有り)とし、ステアリングを把持していない場合をハンドOFF(手入力無し)としている。微分演算を伴うモータ角速度やモータ角加速度などを用いずとも、ハンドルの共振を含めた捩れ剛性等による自由振動系に絡むノイズの影響を受けずに、精度の良いハンドルON/OFFの判定を行うようにしている。
 本発明は、操舵系を図1のユニバーサルジョイント4aから切り離した状態で出力側コラム軸2Bを回す(角度を与える)と、ハンドル1に手を触れている場合とハンドル1に手を触れていない場合とで、入力側コラム軸2Aに現れる振動特性が異なる現象に基づいている。図5は、トーションバー23とハンドル角度θh、出力側コラム角度θcの関係を示す機構図であり、トーションバー捩れ角をθdとすると、下記数6が成立する。
 (数6)
  θh=θc+θd
 
 そして、図12は、ハンドル1に手を触れている場合の特性を、切増し(~t1)、保舵状態(t1~t2)、切戻し(t2~t3)、保舵状態(t3~)について、出力側コラム角度θcを変化させたときの実ハンドル角度(入力側コラム角度)を示している。同様に図13は、ハンドル1に手を触れていない場合の特性を、例えば右切り(~t1)、保舵状態(t1~t2)、左切り(t2~t3)、保舵状態(t3~)について、出力側コラム角度θcを変化させたときの実ハンドル角度(入力側コラム角度)を示している。図12及び図13の特性の相違は、トーションバー振動のトーションバー捩れ角θdに起因しており、ハンドルの手放し(ハンドOFF)若しくは手触れ(ハンドON)を判定することができる。
 以下に、本発明の実施の形態を、図面を参照して詳細に説明する。
 先ず、角度情報を用いて判定する場合の各種センサの配設関係を図6に示して説明する。
 トーションバー23を備えたコラム軸2のハンドル1側の入力側コラム軸2Aには、角度センサとしてのホールICセンサ21及びトルクセンサ入力側ロータの20°ロータセンサ22が装着されている。ホールICセンサ21は296°周期のAS_IS角度θnを出力する。トーションバー23よりもハンドル1側に装着された20°ロータセンサ22は、20°周期の入力側コラム角度信号θh1(TS_IS角度1)及びθh2(TS_IS角度2)を出力し、入力側コラム角度信号θh1は角度演算部50に入力される。また、コラム軸2の出力側コラム軸2Bには、トルクセンサ出力側ロータの40°ロータセンサ24が装着されており、40°ロータセンサ24から出力側コラム角度信号θc1(TS_OS角度1)及びθc2(TS_OS角度2)が出力され、出力側コラム角度信号θc1は角度演算部50に入力される。入力側コラム角度信号θh1及び出力側コラム角度信号θc1は共に角度演算部50で絶対角度が演算され、トルクセンサ検出入力側コラム角度θth及びトルクセンサ検出出力側コラム角度θtcが出力される。
 トルクセンサ検出入力側コラム角度θth及びトルクセンサ検出出力側コラム角度θtcから捩れトルクTtを求める場合には、トーションバー23のバネ定数をKhとすると、下記数7より求めることができる。
 (数7)
  Tt=Kh(θth-θtc)
 
 また、トルク検出値から捩れトルクTtを求めて判定する場合には、前述した図3の構成から捩れトルクTtを直接求める。
 本発明の手入力判定部の構成は、図3の構成から捩れトルクTtを直接検出する場合と、図6の構成から捩れトルクTtを求める場合とに適用できる。先ず、図6の構成から捩れトルクTtを求める場合の実施形態を図7に示して説明する。
 トルクセンサ検出入力側コラム角度θth及びトルクセンサ検出出力側コラム角度θtcを入力してトーションバー捩れ角θdを生成するトーションバー捩れ角生成部120と、回転センサ20Aからのモータの電気角信号θeを入力して出力側(OS)相対角度θtを出力する出力側(OS)相対角度生成部150と、トーションバー捩れ角θd及び出力側相対角度θtを加算して実ハンドル角度θhrを出力する実ハンドル角度算出部としての加算部121と、出力側相対角度θtを入力して手放し状態の推定ハンドル角度θheを出力する共振フィルタ140と、実ハンドル角度θhrから推定ハンドル角度θheを減算して偏差角度θdeを求める減算部122と、偏差角度θdeに基づいてハンドON/OFFを判定するハンドON/OFF判定部130とで構成されている。
 トーションバー捩れ角生成部120は、本例では図6に示すトルクセンサ検出入力側コラム角度θth及びトルクセンサ検出出力側コラム角度θtcに基づいてトーションバー捩れ角θdを求めている(θd=θth-θtc若しくはθd=|θth-θtc|)が、図3に示すトルクセンサ部200で検出された捩れトルクTtからトーションバー捩れ角θdを求めることができる。この場合の構成は図8であり、検出された捩れトルクTtをトーションバー捩れ角演算部120Aに入力し、下記数8を演算してトーションバー捩れ角θdを求める。
 (数8)
  θd=Tt/Kh
 
 また、出力側相対角度生成部110はモータ電気角スケールでアンチロールオーバー処理(波形処理(例えば鋸波の角度信号を連続的な角度信号に処理する))を行い、下記数9に基づいて出力側相対角度θtを出力する。
 (数9)
  θt=θe×1/極対数×減速比
  但し、極対数はモータの極対数、減速比は減速機構の減速比である。
 
 なお、出力側からのチューニングに当たっては、ユニットに存在する摩擦、モータのロストルク、モータ軸のスプライン部のガタ、慣性、入力側ベアリングの予圧などが関連する。
 手放し状態の推定ハンドル角度θheを求める共振フィルタ140は、実機で出力側コラム軸2Bからステアリングを回してハンドル1の共振を再現したデータを用い、入力側コラム角度であるハンドル角度θhと出力側コラム角度θcの測定結果から周波数応答を取り、それに合わせた共振フィルタに設計されている。共振フィルタ140の特性例を示すボード線図は図9の特性B(実線)であり、共振フィルタ140のゲインは3Hz近辺まで平坦で、10Hz近辺で一般的な2次のLPF(破線の特性A)よりも凸状に大きくなっており、約20Hz以下で一般的な2次のLPF(破線の特性A)より少し低下している。また、共振フィルタ140の位相は、約20Hz以下で一般的な2次のLPF(破線の特性A)よりも遅れが小さく、約20Hz以下で一般的な2次のLPF(破線の特性A)よりも遅れが大きくなっている。即ち、実機若しくは実車を模擬した台上試験装置等で、ECUに通電をした状態で、ハンドル1には一切手を触れない手放し状態で、(実際には図1のユニバーサルジョイント4aの部分を離して手入力を与えることにより)出力側コラム軸2Bを回し、ハンドル角度θh及び出力側コラム角度θcの測定を行う。捩れトルクTtから捩れ角θd(トルクセンサにより捩れ角θdは直接求まる)を求め、出力側コラム角度θcに加算することでハンドル角度θhが求まる(数6参照)。フィルタの設計では、上記実機若しくは実車を模擬した台上試験装置等の実機データの出力側コラム角度θcとハンドル角度θhを用いる。このハンドル角度θhには、ハンドルの共振も含まれる。手放しでの測定のため、出力側コラム角度θcを入力した理想のフィルタ結果θhe(手放し状態の推定ハンドル角度)はハンドル角度θhになるべきなので、共振を再現させるためには、2次のフィルタが必要になる。設計した共振フィルタ140は、手放し状態の推定ハンドル角度θheを実機データのハンドル角度θhに合わせるように調整しており、結果的に図9の特性となる。
 実出力側コラム角度θcの波形は図12及び図13に示されており、これに対して実ハンドル角度θhrは操舵の変化点等で振動波形がみられる。共振フィルタ140からの手放し状態の推定ハンドル角度θheは、チューニングにより設計された共振フィルタ140によりノイズも除去され、減算部122に入力される。
 ハンドON/OFF判定部130の構成は例えば図10に示すようになっており、減算部122で求められた偏差角度θdeは絶対値化部131に入力され、絶対値化された偏差角度|θde|は角度比較部132に入力され、予め設定されている角度閾値θthと比較される。即ち、下記数10が成立するか否かが判定される。
 (数10)
  |θhr-θhc|=|θde| ≧ θth
 
 上記数10が成立する場合、角度比較部132は角度成立信号AEを出力する。角度成立信号AEは成立時間比較部133及び不成立時間比較部134に入力され、成立時間比較部133は角度成立信号AEが予め設定されている時間閾値T1以上継続したときにハンドONを示す判定信号DS1を出力し、判定信号DS1はOR回路135を経てハンドONの判断信号DSとして出力される。また、不成立時間比較部134はハンドON判定後、数10の不成立状態が予め設定されている時間閾値T2だけ継続した場合、ハンドOFFを示す判定信号DS2を出力し、判定信号DS2はOR回路135を経てハンドOFFの判断信号DSとして出力される。ハンドON状態を一定時間保持する目的は、運転者がハンドルに触れている場合でも、入力側と出力側の角度差が出ない場合(例えば路面状態が良く、直線を走行中など)や瞬間的な手放しなどのときに、ハンドOFFとして判定しないようにする必要があるためである。
 なお、図10の例では偏差角度θdeを絶対値化して1つの角度閾値θthと比較しているが、絶対値化することなく正負の角度閾値±θthと比較するようにしても良い。
 このような構成において、その動作例を図11のフローチャートを参照して説明する。
 先ず、トルクセンサ検出入力側コラム角度θth及びトルクセンサ検出出力側コラム角度θtcをトーションバー捩れ角生成部120に入力し(ステップS10)、トーションバー捩れ角生成部120はトーションバー捩れ角θdを生成する(ステップS11)。トーションバー捩れ角θdは加算部121に入力される。なお、図3に示す捩れトルクTtを入力する図8の場合には、捩れトルクTtをトーションバー捩れ角演算部120Aに入力し、トーションバー捩れ角演算部120Aはトーションバー捩れ角θdを演算する。
 また、モータ電気角θeを出力側相対角度生成部110に入力し(ステップS12)、出力側相対角度生成部110は出力側相対角度θtを生成し(ステップS13)、出力側相対角度θtを加算部121及び共振フィルタ140に入力する。次いで、加算部121はトーションバー捩れ角θd及び出力側相対角度θtを加算して実ハンドル角度θhrを演算し(ステップS14)、共振フィルタ140は出力側相対角度θtを処理して推定ハンドル角度θheを演算し(ステップS15)、それぞれ減算部122に入力する。減算部122は実ハンドル角度θhrから手放し状態の推定ハンドル角度θheを減算して偏差角度θdeを演算し(ステップS16)、ハンドルON/OFF判定部130に入力する。
 ハンドルON/OFF判定部130では、先ず絶対値化部131で偏差角度θdeの絶対値|θde|を求め(ステップS20)、角度比較部132において数9が成立するか否かを判定する(ステップS21)。数9が成立しない場合には上記ステップS20にリターンし、数9が成立すれば角度比較部132は角度成立信号AEを出力する(ステップS22)。角度成立信号AEは成立時間比較部133に入力され、その継続時間が時間閾値T1と比較される(ステップS23)。成立時間比較部133は、角度成立信号AEが時間閾値T1以上継続したときに判定信号DS1を出力し(ステップS24)、判定信号DS1はOR回路135を経て判断信号DSが出力される(ステップS25)。また、不成立時間比較部134はハンドON判定後、数9の不成立状態が時間閾値T2だけ継続したか否かを判定し(ステップS26)、不成立状態が時間閾値T2以上となったときに判定信号DS2を出力し(ステップS27)、判定信号DS2はOR回路135を経て判断信号DSとして出力される(ステップS28)。
 図12は、実機若しくは実車を模擬した台上試験装置等で、ECUに通電をした状態で、ハンドルに手を触れた状態(ハンドON)での推定ハンドル角度θhe、実ハンドル角度θhr及び出力側コラム角度θcの波形例を示しており、時点t1までが切増し、時点t1~t2が保舵状態、時点t2~t3が切戻し、時点t3以降が保舵状態を示している。図13は、図12と同じ時間スケールでのハンドルに手を触れていない状態(ハンドOFF)での各角度の波形例を示している。
1         ハンドル(ステアリングホイール)
2         コラム軸(ハンドル軸)
2A        入力側コラム軸(IS)
2B        出力側コラム軸(OS)
20        モータ
23、201    トーションバー
100       コントロールユニット
120       入出力(IS/OS)差角度生成部
130       ハンドON/OFF判定部
140       共振フィルタ
150       出力側(OS)相対角度生成部
200       トルクセンサ部

Claims (9)

  1. ハンドルに連結されたコラム軸にトーションバーを備え、減速機構を介し、電流指令値により車両の操舵機構にアシストトルクを付与するモータを駆動制御すると共に、アシストモードと自動モードを切り替える機能を有する電動パワーステアリング装置において、
    前記トーションバーに関するトルク情報に基づいてトーションバー捩れ角を求めるトーションバー捩れ角算出部と、
    前記モータの電気角信号から所定演算式を用いて出力側相対角度を出力する出力側コラム軸相対角度生成部と、
    前記トーションバー捩れ角及び前記出力側相対角度に基づいて実ハンドル角度を求める実ハンドル角度算出部と、
    前記出力側相対角度から手放し状態の推定ハンドル角度を求める共振フィルタと、
    前記実ハンドル角度及び前記手放し状態の推定ハンドル角度の偏差角度が所定角度以上となる時間が所定時間1以上継続したときにハンドONを判定するハンドON/OFF判定部と、
    を具備したことを特徴とする電動パワーステアリング装置。
  2. 前記ハンドON/OFF判定部が、前記ハンドONの判定後、前記偏差角度が前記所定角度より小さい時間が所定時間2以上継続したときにハンドOFFを判定する請求項1に記載の電動パワーステアリング制御装置。
  3. 前記トーションバーに関するトルク情報が、前記ハンドルに関するコラム軸角度又は前記トーションバーに関する捩れトルクである請求項1又は2に記載の電動パワーステアリング制御装置。
  4. 前記トーションバー捩れ角算出部が、前記捩れトルクを入力し、前記トーションバーのバネ定数で除算することにより前記トーションバー捩れ角を演算するトーションバー捩れ角演算部である請求項3に記載の電動パワーステアリング制御装置。
  5. 前記トーションバー捩れ角算出部が、トルクセンサ検出入力側コラム角度及びトルクセンサ検出出力側コラム角度を入力し、前記トーションバーのバネ定数を用いて前記トーションバー捩れ角を生成するトーションバー捩れ角生成部である請求項3に記載の電動パワーステアリング装置。
  6. 前記出力側コラム軸相対角度生成部は、前記電気角信号をアンチロールオーバー処理して後に、前記所定演算式によって前記出力側相対角度を出力するようになっている請求項1乃至5のいずれかに記載の電動パワーステアリング装置。
  7. 前記所定演算式が、前記電気角信号に前記モータの極対数、前記減速機構の減速比を乗算する演算式である請求項6に記載の電動パワーステアリング装置。
  8. 前記共振フィルタは、
    実機で出力側コラム軸からステアリングが回されたときの前記ハンドルの共振を再現し、前記出力側コラム角度を入力して得た前記手放し状態の推定ハンドル角度が前記実ハンドル角度とほぼ同一となる特性となっている請求項1乃至7のいずれかに記載の電動パワーステアリング装置。
  9. 前記共振フィルタが、2次以上のLPFである請求項8に記載の電動パワーステアリング装置。
PCT/JP2018/005705 2017-02-20 2018-02-19 電動パワーステアリング装置 WO2018151291A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/479,269 US10807636B2 (en) 2017-02-20 2018-02-19 Electric power steering apparatus
BR112019014968-6A BR112019014968B1 (pt) 2017-02-20 2018-02-19 Aparelho de direção elétrica
CN201880007914.7A CN110225858B (zh) 2017-02-20 2018-02-19 电动助力转向装置
EP18754413.5A EP3572303A4 (en) 2017-02-20 2018-02-19 ELECTRIC POWER STEERING APPARATUS
JP2018568652A JP6590090B2 (ja) 2017-02-20 2018-02-19 電動パワーステアリング装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017029394 2017-02-20
JP2017-029394 2017-02-20

Publications (1)

Publication Number Publication Date
WO2018151291A1 true WO2018151291A1 (ja) 2018-08-23

Family

ID=63169360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005705 WO2018151291A1 (ja) 2017-02-20 2018-02-19 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10807636B2 (ja)
EP (1) EP3572303A4 (ja)
JP (1) JP6590090B2 (ja)
CN (1) CN110225858B (ja)
WO (1) WO2018151291A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907592A (zh) * 2019-05-08 2020-11-10 现代自动车株式会社 用于检测方向盘的手移开状态的系统及方法
JP2020192862A (ja) * 2019-05-27 2020-12-03 日本精工株式会社 電動パワーステアリング装置
WO2021111643A1 (ja) * 2019-12-06 2021-06-10 日立Astemo株式会社 保舵判定装置、ステアリング制御装置、及びステアリング装置
WO2021111644A1 (ja) * 2019-12-06 2021-06-10 日立Astemo株式会社 保舵判定装置、ステアリング制御装置、及びステアリング装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115052803A (zh) * 2020-02-07 2022-09-13 Zf腓特烈斯哈芬股份公司 转向系统
US11472479B2 (en) 2020-07-13 2022-10-18 Nsk Ltd. Hands-off detection device and steering device
CN112623022B (zh) * 2020-12-18 2022-11-22 浙江合众新能源汽车有限公司 一种驾驶员脱手状态下抑制方向盘摆动的方法
JP2023017224A (ja) * 2021-07-26 2023-02-07 トヨタ自動車株式会社 車両用空調装置
CN114394151B (zh) * 2021-12-15 2024-05-07 重庆大学 一种智能汽车的人机共驾转向控制方法及其转向系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337181A (ja) 1995-06-13 1996-12-24 Nissan Motor Co Ltd 車両の自動操舵装置
JPH1178953A (ja) * 1997-09-13 1999-03-23 Honda Motor Co Ltd 車両用操舵装置
JPH11208498A (ja) 1998-01-27 1999-08-03 Nissan Motor Co Ltd 車両用自動操舵装置
JP2016074356A (ja) * 2014-10-08 2016-05-12 株式会社ジェイテクト 車両用操舵装置
JP2016088383A (ja) * 2014-11-07 2016-05-23 富士重工業株式会社 車両の走行制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8930079B2 (en) * 2009-10-22 2015-01-06 GM Global Technology Operations LLC Systems and methods for driver intervention in an automatic steering system
WO2012093679A1 (ja) * 2011-01-07 2012-07-12 本田技研工業株式会社 電動パワーステアリング装置
JP5751241B2 (ja) * 2012-11-13 2015-07-22 株式会社豊田中央研究所 車両操舵装置及びプログラム
JP6107928B2 (ja) * 2013-03-08 2017-04-05 日本精工株式会社 電動パワーステアリング装置
CN105246764B (zh) * 2014-01-29 2017-06-23 日本精工株式会社 电动助力转向装置
DE102014006094B4 (de) * 2014-04-26 2024-02-01 Werner Bernzen Auswertung von Lenkradwinkeländerungen eines Lenkrades eines Fahrzeuges
EP3254933B1 (en) * 2015-02-04 2019-08-14 NSK Ltd. Electric power steering device
JP6341149B2 (ja) * 2015-07-07 2018-06-13 トヨタ自動車株式会社 車両の運転支援装置
US10160484B2 (en) * 2015-07-31 2018-12-25 GM Global Technology Operations LLC Enhanced steering wheel hold detection by a hybrid method
CN105774898B (zh) * 2016-03-24 2019-04-09 奇瑞汽车股份有限公司 电动助力转向系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337181A (ja) 1995-06-13 1996-12-24 Nissan Motor Co Ltd 車両の自動操舵装置
JPH1178953A (ja) * 1997-09-13 1999-03-23 Honda Motor Co Ltd 車両用操舵装置
JPH11208498A (ja) 1998-01-27 1999-08-03 Nissan Motor Co Ltd 車両用自動操舵装置
JP2016074356A (ja) * 2014-10-08 2016-05-12 株式会社ジェイテクト 車両用操舵装置
JP2016088383A (ja) * 2014-11-07 2016-05-23 富士重工業株式会社 車両の走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3572303A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907592A (zh) * 2019-05-08 2020-11-10 现代自动车株式会社 用于检测方向盘的手移开状态的系统及方法
JP2020192862A (ja) * 2019-05-27 2020-12-03 日本精工株式会社 電動パワーステアリング装置
JP7199644B2 (ja) 2019-05-27 2023-01-06 日本精工株式会社 電動パワーステアリング装置
WO2021111643A1 (ja) * 2019-12-06 2021-06-10 日立Astemo株式会社 保舵判定装置、ステアリング制御装置、及びステアリング装置
WO2021111644A1 (ja) * 2019-12-06 2021-06-10 日立Astemo株式会社 保舵判定装置、ステアリング制御装置、及びステアリング装置
JP2021091255A (ja) * 2019-12-06 2021-06-17 株式会社ショーワ 保舵判定装置、ステアリング制御装置、及びステアリング装置
JP2021091256A (ja) * 2019-12-06 2021-06-17 株式会社ショーワ 保舵判定装置、ステアリング制御装置、及びステアリング装置

Also Published As

Publication number Publication date
JPWO2018151291A1 (ja) 2019-11-07
US20190382048A1 (en) 2019-12-19
EP3572303A4 (en) 2020-03-25
EP3572303A1 (en) 2019-11-27
BR112019014968A2 (pt) 2020-04-07
CN110225858A (zh) 2019-09-10
US10807636B2 (en) 2020-10-20
CN110225858B (zh) 2019-12-20
JP6590090B2 (ja) 2019-10-16

Similar Documents

Publication Publication Date Title
JP6590090B2 (ja) 電動パワーステアリング装置
JP6519695B2 (ja) 電動パワーステアリング装置
JP6477938B2 (ja) 電動パワーステアリング装置
JP6365711B2 (ja) 電動パワーステアリング装置
JP6065016B2 (ja) 電動パワーステアリング装置
JP5994962B1 (ja) 車両用舵角検出装置及びそれを搭載した電動パワーステアリング装置
JP6702513B2 (ja) 車両用操向装置
JPWO2020100411A1 (ja) 車両用操向装置
JP5045061B2 (ja) 電動パワーステアリング装置のチューニング方法
WO2020213285A1 (ja) 車両用操向装置
JP7222309B2 (ja) 車両用操向装置
JP2021070340A (ja) 車両用操向装置
JP2020185819A (ja) 車両用操向装置
JPWO2020012689A1 (ja) 車両用操向装置
WO2020183838A1 (ja) 車両用操向装置
JP2021123288A (ja) 車両用操向装置
JP2014177246A (ja) 電動パワーステアリング装置およびプログラム
JP2008265524A (ja) 電動パワーステアリング装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18754413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018568652

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019014968

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018754413

Country of ref document: EP

Effective date: 20190821

ENP Entry into the national phase

Ref document number: 112019014968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190719