WO2018150628A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2018150628A1
WO2018150628A1 PCT/JP2017/037048 JP2017037048W WO2018150628A1 WO 2018150628 A1 WO2018150628 A1 WO 2018150628A1 JP 2017037048 W JP2017037048 W JP 2017037048W WO 2018150628 A1 WO2018150628 A1 WO 2018150628A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
cleaning
static elimination
processing
Prior art date
Application number
PCT/JP2017/037048
Other languages
French (fr)
Japanese (ja)
Inventor
雄大 和食
三橋 毅
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2018150628A1 publication Critical patent/WO2018150628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.
  • a semiconductor substrate such as a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate or a photomask substrate, It is used.
  • the substrate processing apparatus If the substrate is charged in the course of a series of processing by the substrate processing apparatus, particles are likely to adhere to the substrate and the cleanliness of the substrate is lowered. In addition, the wiring pattern formed on the substrate surface may be damaged by the discharge phenomenon. In order to prevent the occurrence of these problems, in the substrate processing apparatus described in Patent Document 1, the substrate transported by the substrate transport apparatus is neutralized by an ionizer.
  • the ionizer includes a substantially cylindrical outer electrode and an inner electrode provided at the center thereof. Ions are generated by applying an AC voltage between the outer electrode and the inner electrode. The generated ions are sprayed onto the surface of the substrate held by the holding member of the substrate transfer device. Thereby, the substrate being transported is neutralized.
  • a resist solution is supplied to the substrate that has been neutralized by the ionizer, whereby a resist film is formed. Further, the developing process is performed by supplying the developer to the substrate that has been neutralized by the ionizer. JP 2000-114349 A
  • the ionizer described in Patent Document 1 can also be applied to a substrate processing apparatus including a cleaning device.
  • the cleaning apparatus for example, the substrate is cleaned by supplying a cleaning solution such as a chemical solution or pure water to the substrate.
  • a cleaning solution such as a chemical solution or pure water
  • the substrate is neutralized so as to be as close to 0 (V) as possible in order to further reduce the adhesion of particles to the substrate. Thereby, the cleanliness of the substrate after cleaning is improved.
  • the potential of the substrate charged to about 1000 (V) can be reduced to about 100 (V), but the potential of the substrate charged to about 10 (V) is reduced to 0 (V). It cannot be lowered to get closer.
  • An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of improving the cleanliness of a substrate.
  • a substrate processing apparatus includes at least one of a cleaning processing unit that performs cleaning processing on a substrate, a substrate before cleaning processing by the cleaning processing unit, and a substrate after cleaning processing by the cleaning processing unit.
  • a static elimination unit for performing the static elimination process, and the static elimination unit includes a holding unit that holds the substrate in an atmosphere containing oxygen molecules, and an emission unit that emits vacuum ultraviolet rays through the atmosphere to the substrate held by the holding unit .
  • the neutralization process of the substrate is performed by the neutralization unit at least at one time point before and after the cleaning process by the cleaning processing unit.
  • the static elimination unit the vacuum ultraviolet rays emitted from the emission unit are applied to the substrate held by the holding unit through an atmosphere containing oxygen molecules.
  • Ozone is a resonance hybrid expressed by superposition of a resonance structure with a positive charge and a resonance structure with a negative charge.
  • Each resonant structure includes covalent bonds and coordinate bonds. Since the coordinate bond is unstable, when the generated ozone comes into contact with one surface of the positively or negatively charged substrate, charge is transferred between the ozone and the substrate. In this case, the coordination bond of ozone is cut, and the potential of the substrate approaches 0 (V). In this way, the entire substrate is neutralized regardless of the charge amount and charge polarity of the substrate. As a result, the cleanliness of the substrate after the cleaning process and the charge removal process is improved.
  • the substrate processing apparatus further includes a control unit
  • the neutralization unit further includes a relative moving unit that moves at least one of the holding unit and the emitting unit relative to the other in one direction
  • the control unit May control the emitting unit and the relative moving unit so that the vacuum ultraviolet ray emitted from the emitting unit is irradiated to the substrate held by the holding unit through the atmosphere. In this case, it is not necessary to simultaneously irradiate the entire substrate with vacuum ultraviolet rays. Therefore, the enlargement of the emission part can be suppressed.
  • the control unit may control the relative moving speed of the holding unit and the emitting unit by the relative moving unit so that the substrate is irradiated with a predetermined amount of vacuum ultraviolet light.
  • the amount of vacuum ultraviolet light irradiated per unit area on the substrate is adjusted, and the amount of ozone generated on the substrate is adjusted. Adjusted.
  • the amount of vacuum ultraviolet light applied to the substrate is reduced.
  • the amount of ozone generated on the substrate can be reduced.
  • the amount of ozone generated on the substrate can be increased. Therefore, a desired amount of ozone can be uniformly supplied onto the substrate. As a result, the entire substrate can be uniformly discharged.
  • the substrate has one surface and the other surface
  • the substrate processing apparatus further includes a reversing device for reversing the one surface and the other surface of the substrate
  • the cleaning processing unit is one surface of the substrate that has not been reversed by the reversing device.
  • the other surface of the substrate inverted by the inverting device may be cleaned. In this case, the cleanliness of one surface and the other surface of the substrate can be improved.
  • the static elimination unit further includes a housing that accommodates the holding unit and the emission unit, and the housing includes first and second transport openings for transporting the substrate between the inside and the outside of the housing. You may have.
  • substrate can be carried in and carrying out with respect to a static elimination part using the 1st and 2nd conveyance opening. This improves the degree of freedom in designing the substrate transport path.
  • the substrate processing apparatus includes a first region including the first transfer device, and a second region including the cleaning processing unit and the second transfer device, and the charge removal unit includes the first transfer opening.
  • the substrate may be transferred to the first transfer device through the second transfer opening, and the substrate may be transferred to the second transfer device through the second transfer opening.
  • the substrate when the substrate is transported between the first region and the second region by the first and second transport devices, it is possible to perform a charge removal process on the substrate.
  • the first region further includes a container placement unit on which a storage container that accommodates the substrate is placed, and the first transport device includes a storage container placed on the container placement unit, a charge removal unit,
  • the second transfer device transfers the substrate between the charge removal unit and the cleaning processing unit, and the charge removal unit transfers the substrate from the first transfer device to the second transfer device.
  • the substrate may be neutralized.
  • the neutralization unit may perform the neutralization process on the substrate before being cleaned by the cleaning unit.
  • the potential of the substrate before the cleaning process approaches 0 (V).
  • a discharge phenomenon due to the charging of the substrate does not occur during the cleaning process. Therefore, it is possible to prevent a processing defect from occurring due to a part of the substrate being damaged.
  • the control unit may perform static elimination processing on the substrate after being cleaned by the cleaning processing unit. In this case, even when the substrate is charged during the cleaning process, the potential of the substrate approaches 0 (V) by performing the charge removal process on the substrate after the cleaning process. Thereby, the substrate after the cleaning process can be kept clean.
  • a substrate processing method wherein at least one of a step of performing a substrate cleaning process, a step before performing the cleaning process, and a step after performing the cleaning process is performed.
  • the step of performing the neutralization process includes a step of holding the substrate in an atmosphere containing oxygen molecules by the holding unit, and a step of emitting the vacuum ultraviolet rays from the emission unit and the vacuum ultraviolet rays emitted from the emission unit. Irradiating the substrate held by the holding portion through the atmosphere.
  • the substrate is neutralized at least at one time point before and after the cleaning process.
  • vacuum ultraviolet rays emitted from the emission unit are irradiated onto the substrate held by the holding unit through an atmosphere containing oxygen molecules.
  • ozone is generated by absorbing a part of the vacuum ultraviolet rays in an atmosphere containing oxygen molecules.
  • the cleanliness of the substrate can be improved.
  • FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment.
  • FIG. 2 is a rear view of the substrate processing apparatus of FIG. 3 is a longitudinal sectional view of the substrate processing apparatus taken along line AA in FIG.
  • FIG. 4 is a flowchart showing a basic operation flow in the substrate processing apparatus according to the first embodiment.
  • FIG. 5 is an external perspective view of the static elimination unit.
  • FIG. 6 is a side view of the static elimination unit.
  • FIG. 7 is a side view for explaining the internal structure of the static elimination unit.
  • FIG. 8 is a plan view for explaining the internal structure of the static elimination unit.
  • FIG. 9 is a front view for explaining the internal structure of the static elimination unit.
  • FIG. 10 is a plan view of the rear upper surface portion and the central upper surface portion.
  • FIG. 11 is a bottom view of the lid member.
  • FIG. 12 is an external perspective view of the static elimination unit showing a state in which the opening of the casing is opened.
  • FIG. 13A is a plan view of the ultraviolet lamp and the third nitrogen gas supply unit
  • FIG. 13B is a front view of the ultraviolet lamp and the third nitrogen gas supply unit
  • FIG. It is a bottom view of an ultraviolet lamp and a 3rd nitrogen gas supply part.
  • FIG. 14 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 15 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 16 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 14 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 17 is a side view for explaining the neutralization processing operation of the substrate in the neutralization unit.
  • FIG. 18 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 19 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 20 is a side view for explaining the substrate neutralization processing operation in the neutralization unit.
  • FIG. 21 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit.
  • FIG. 22 is a side view for explaining the illuminance measurement operation in the static elimination unit.
  • FIG. 23 is a side view for explaining the illuminance measurement operation in the static elimination unit.
  • FIG. 24 is a side view for explaining the illuminance measurement operation in the static elimination unit.
  • FIG. 24 is a side view for explaining the illuminance measurement operation in the static elimination unit.
  • FIG. 25 is a diagram for explaining the configuration of the surface cleaning unit.
  • FIG. 26 is a diagram for explaining the configuration of the back surface cleaning unit.
  • FIG. 27 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment.
  • FIG. 28 is a flowchart showing a basic operation flow in the substrate processing apparatus according to the second embodiment.
  • FIG. 29 is an external perspective view of a static elimination unit according to the second embodiment.
  • FIG. 30 is a view for explaining the configuration of the cleaning unit of the substrate processing apparatus according to the second embodiment.
  • a substrate means a semiconductor substrate, a liquid crystal display device or an FPD (Flat Panel Display) substrate such as an organic EL (Electro Luminescence) display device, an optical disk substrate, a magnetic disk substrate, or a magneto-optical disk. It refers to a substrate, a photomask substrate, a solar cell substrate, or the like.
  • FPD Full Panel Display
  • the surface of the substrate on which various patterns such as circuit patterns are formed is referred to as the front surface, and the opposite surface is referred to as the back surface.
  • the surface of the substrate directed downward is referred to as a lower surface
  • the surface of the substrate directed upward is referred to as an upper surface.
  • FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment
  • FIG. 2 is a rear view of the substrate processing apparatus 100 of FIG. 1 viewed from the direction of arrow X
  • FIG. 1 is a longitudinal sectional view of a substrate processing apparatus 100 taken along line AA of FIG.
  • the substrate processing apparatus 100 has an indexer block 10 and a processing block 11.
  • the indexer block 10 and the processing block 11 are arranged in the direction of the arrow X and adjacent to each other.
  • the indexer block 10 includes a plurality (four in this example) of carrier mounting tables 40 and a transport unit 10A.
  • the plurality of carrier platforms 40 are connected to the transport unit 10A so as to be aligned in one direction.
  • On each carrier mounting table 40 a carrier C that stores a plurality of substrates W in multiple stages is mounted.
  • the transport unit 10A is provided with an indexer robot IR and a control unit 4.
  • the indexer robot IR is configured to be movable in the direction of an arrow U (FIG. 1) perpendicular to the arrow X, and is configured to be rotatable about a vertical axis and to be vertically movable.
  • the indexer robot IR is provided with two hands IRH (FIG.
  • the control unit 4 includes a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls each component in the substrate processing apparatus 100.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the processing block 11 includes a front surface cleaning unit 11A, a back surface cleaning unit 11B, and a transport unit 11C.
  • the front surface cleaning unit 11 ⁇ / b> A is located on one side of the processing block 11, and the back surface cleaning unit 11 ⁇ / b> B is located on the other side of the processing block 11.
  • the front surface cleaning unit 11A and the back surface cleaning unit 11B face each other with the transport unit 11C interposed therebetween.
  • the surface cleaning unit 11A is provided with a plurality of (three in this example) surface cleaning units SS and one static elimination unit OWE.
  • the plurality of surface cleaning units SS and one static elimination unit OWE are stacked one above the other.
  • the back surface cleaning unit 11B is provided with a plurality (three in this example) of back surface cleaning units SSR and one static elimination unit OWE.
  • the plurality of back surface cleaning units SSR and one static elimination unit OWE are stacked one above the other. Note that each of the front surface cleaning unit 11A and the back surface cleaning unit 11B may be provided with two or more static elimination units OWE.
  • a main robot MR is provided in the transport unit 11C.
  • the main robot MR is configured to be rotatable about a vertical axis and to be vertically movable. Further, the main robot MR is provided with two hands MRH (FIG. 2) for transferring the substrate W up and down.
  • Each hand MRH is supported by an articulated arm and can advance and retreat in the horizontal direction. The articulated arm is driven independently by a drive mechanism (not shown).
  • the hand MRH holds the peripheral edge and the outer peripheral edge of the lower surface of the substrate W.
  • the reversing units RT1 and RT2 and the substrate platforms PASS1 and PASS2 are stacked one above the other.
  • the reversing unit RT1 is provided above the substrate platforms PASS1, PASS2, and the reversing unit RT2 is provided below the substrate platforms PASS1, PASS2.
  • FIG. 4 is a flowchart showing a basic operation flow in the substrate processing apparatus 100 according to the first embodiment. An outline of the operation of the substrate processing apparatus 100 will be described with reference to FIGS. The operation of each component of the substrate processing apparatus 100 described below is controlled by the control unit 4 in FIG.
  • the indexer robot IR takes out an unprocessed substrate W from any carrier C in the indexer block 10 (step S11). At this point, the surface of the substrate W is directed upward.
  • the indexer robot IR places the unprocessed substrate W taken out on the substrate platform PASS2.
  • the substrate W placed on the substrate platform PASS2 is received by the main robot MR and carried into the reversing unit RT1.
  • the reversing unit RT1 reverses the substrate W whose front surface is directed upward so that the back surface faces upward (step S12).
  • the inverted substrate W is unloaded from the reversing unit RT1 by the main robot MR, and is loaded into any static elimination unit OWE in the processing block 11.
  • the neutralization unit OWE performs a neutralization process on the unprocessed substrate W that has been carried in (step S13). Details of the charge removal process will be described later.
  • the substrate W after the charge removal process is unloaded from the charge removal unit OWE by the main robot MR, and is loaded into any one of the back surface cleaning units SSR of the back surface cleaning unit 11B. Note that the processes of steps S12 and S13 may be performed in the reverse order.
  • the back surface cleaning unit SSR performs a cleaning process on the back surface of the unprocessed substrate W (step S14).
  • the cleaning process for the back surface of the substrate W is referred to as a back surface cleaning process. Details of the back surface cleaning process will be described later.
  • the substrate W after the back surface cleaning process is unloaded from the back surface cleaning unit SSR by the main robot MR and is loaded into the reversing unit RT2.
  • the reversing unit RT2 reverses the substrate W after the back surface cleaning process with the back surface directed upward so that the front surface faces upward (step S15).
  • the inverted substrate W is unloaded from the reversing unit RT2 by the main robot MR, and is loaded into any static elimination unit OWE in the processing block 11.
  • the neutralization unit OWE performs a neutralization process on the substrate W after the back surface cleaning process (step S16).
  • the substrate W on which the charge removal process has been performed is carried out of the charge removal unit OWE by the main robot MR and carried into any one of the surface cleaning units SS of the surface cleaning unit 11A. Note that the processes of steps S15 and S16 may be performed in the reverse order.
  • the front surface cleaning unit SS performs a cleaning process on the surface of the substrate W after the back surface cleaning process (step S17).
  • the cleaning process for the surface of the substrate W is referred to as a surface cleaning process. Details of the surface cleaning process will be described later.
  • the substrate W after the surface cleaning process is unloaded from the surface cleaning unit SS by the main robot MR, and is loaded into one of the charge removal units OWE in the processing block 11.
  • the neutralization unit OWE performs a neutralization process on the substrate W after the surface cleaning process (step S18).
  • the substrate W after the charge removal process is unloaded from the charge removal unit OWE by the main robot MR and placed on the substrate platform PASS1.
  • the indexer robot IR receives the substrate W placed on the substrate platform PASS1, and stores the received processed substrate W in one of the carriers C in the indexer block 10 (step S19). As described above, the above-described series of operations is repeated for each substrate W carried into the substrate processing apparatus 100.
  • the back surface cleaning process and the front surface cleaning process for the substrate W are performed in this order, but the back surface cleaning process and the front surface cleaning process for the substrate W may be performed in reverse order.
  • the processes of steps S16 and S17 are performed after the process of step S11 and before the processes of steps S12 to S15, and the processes of steps S18 and S19 are performed after the process of step S15.
  • Ozone is a resonance hybrid expressed by superposition of a resonance structure with a positive charge and a resonance structure with a negative charge.
  • Each resonant structure includes covalent bonds and coordinate bonds. Since the coordinate bond is unstable, when the generated ozone contacts the upper surface of the positively or negatively charged substrate W, charge is transferred between the ozone and the substrate W. In this case, the coordinate bond of ozone is cut, and the potential of the substrate W approaches 0 (V). In this way, the substrate W is neutralized so that the potential approaches 0 (V) regardless of the charge amount and the charge polarity of the substrate W.
  • FIG. 5 is an external perspective view of the static elimination unit OWE
  • FIG. 6 is a side view of the static elimination unit OWE.
  • the static eliminator unit OWE includes a housing 60 having a substantially rectangular parallelepiped shape.
  • the housing 60 includes a front wall portion 61, a rear wall portion 62, one side wall portion 63, another side wall portion 64, a ceiling portion 65, and a floor portion 66.
  • the front wall portion 61 and the rear wall portion 62 face each other, the one side wall portion 63 and the other side wall portion 64 face each other, and the ceiling portion 65 and the floor portion 66 face each other.
  • the static elimination unit OWE is disposed such that the rear wall 62 faces the transport unit 11C in FIG. As shown in FIG. 5, the rear wall 62 is formed with a transport opening 62 p for transporting the substrate W between the transport unit 11 ⁇ / b> C and the housing 60.
  • An exhaust unit 70 is provided on the floor 66 of the housing 60. The exhaust unit 70 is connected to an exhaust unit 72 outside the substrate processing apparatus 100 via a pipe 71.
  • the exhaust device 72 is, for example, an exhaust facility in a factory, and performs a detoxification process for gas discharged from the housing 60.
  • the direction from the inside of the housing 60 toward the front wall portion 61 is referred to as the front of the static elimination unit OWE, as indicated by the thick dashed-dotted arrow in the predetermined drawings in FIG.
  • the direction from the inside of the body 60 toward the rear wall 62) is referred to as the rear of the static elimination unit OWE.
  • the static elimination unit OWE mainly includes a light emitting unit 300, a substrate moving unit 400, and a carry-in / carry-out unit 500 in addition to the housing 60.
  • the substrate moving part 400 includes a casing 410 having a substantially rectangular parallelepiped shape.
  • the casing 410 includes a front upper surface portion 411, a central upper surface portion 419, a rear upper surface portion 412, a lower surface portion 413, a front surface portion 414, a rear surface portion 415, one side surface portion 416 and the other side surface portion 417.
  • the one side surface portion 416 and the other side surface portion 417 are provided so as to extend in the front-rear direction and face each other.
  • a protrusion pr that extends upward at a certain height is formed at the center of the upper end of each of the side surface portion 416 and the other side surface portion 417. 5 and 6, only the protrusion pr of the other side surface portion 417 is shown among the one side surface portion 416 and the other side surface portion 417.
  • the central upper surface portion 419 is provided so as to connect the protruding portion pr of the one side surface portion 416 and the protruding portion pr of the other side surface portion 417.
  • the front upper surface portion 411 is provided at a position in front of the projecting portion pr so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417.
  • the rear upper surface portion 412 is provided at a position behind the projecting portion pr so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417.
  • the front upper surface portion 411 and the rear upper surface portion 412 have the same height.
  • the light emitting unit 300 is provided on the casing 410 so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417 and between the front upper surface portion 411 and the rear upper surface portion 412. . A part of the light emitting part 300 is located above the central upper surface part 419. Details of the light emitting unit 300 will be described later.
  • a loading / unloading unit 500 is provided behind the light emitting unit 300.
  • the carry-in / carry-out unit 500 includes a lid member 510, a lid drive unit 590, a support plate 591, and two support shafts 592.
  • the two support shafts 592 are respectively provided so as to extend in the vertical direction on both sides of the casing 410.
  • the support plate 591 is supported in a horizontal posture by the two support shafts 592. In this state, the support plate 591 is located behind the light emitting part 300 and above the rear upper surface part 412.
  • a lid driving unit 590 is attached to the lower surface of the support plate 591.
  • a lid member 510 is provided below the lid driving unit 590.
  • An opening 412 b (FIG. 6) is formed in the rear upper surface portion 412 of the casing 410.
  • the lid driving unit 590 moves the lid member 510 in the vertical direction by driving the lid member 510. Thereby, the opening 412b is closed or opened. By opening the opening 412b, it is possible to carry the substrate W into the casing 410 and carry the substrate W out of the casing 410. Details of the structure of the lid member 510 and the opening / closing operation of the opening 412b by the lid member 510 will be described later.
  • FIG. 7 is a side view for explaining the internal structure of the static elimination unit OWE
  • FIG. 8 is a plan view for explaining the internal structure of the static elimination unit OWE
  • FIG. 9 explains the internal structure of the static elimination unit OWE.
  • FIG. 7 shows the state of the static elimination unit OWE with the other side surface portion 417 (FIG. 5) removed.
  • FIG. 8 shows a state of the static elimination unit OWE from which the front upper surface portion 411 (FIG. 5) and the rear upper surface portion 412 (FIG. 5) are removed.
  • FIG. 9 the state of the static elimination unit OWE from which the front surface part 414 (FIG. 5) was removed is shown. 7 to 9, a part or all of the configuration of the light emitting unit 300 (FIG. 5) is indicated by a one-dot chain line, and the housing 60 (FIG. 5) is not shown.
  • a delivery mechanism 420 and a local transport mechanism 430 are provided in the casing 410 of the substrate moving unit 400.
  • the delivery mechanism 420 includes a plurality of lift pins 421, a pin support member 422, and a pin lift drive unit 423, and is disposed behind the light emitting unit 300.
  • a plurality of lifting pins 421 are attached to the pin support member 422 so as to extend upward.
  • the pin lifting / lowering drive unit 423 supports the pin support member 422 so as to be movable in the vertical direction. In this state, the plurality of lifting pins 421 are arranged so as to overlap the opening 412 b of the rear upper surface portion 412.
  • the delivery mechanism 420 is controlled by, for example, the control unit 4 in FIG. By operating the pin lifting / lowering drive unit 423, the upper ends of the plurality of lifting pins 421 move between a delivery position above the rear upper surface part 412 and a standby position below the local transport hand 434 described later. .
  • the local transport mechanism 430 includes a feed shaft 431, a feed shaft motor 432, two guide rails 433, a local transport hand 434, two hand support members 435, and a connecting member 439.
  • a feed shaft motor 432 is provided in the vicinity of the front surface portion 414.
  • a feed shaft 431 is provided so as to extend in the front-rear direction from the feed shaft motor 432 to the vicinity of the rear surface portion 415.
  • the feed shaft 431 is a ball screw, for example, and is connected to the rotation shaft of the feed shaft motor 432.
  • the guide rail 433 is provided so as to extend in the front-rear direction in the vicinity of the one side surface portion 416. Further, a guide rail 433 is provided so as to extend in the front-rear direction in the vicinity of the other side surface portion 417.
  • the feed shaft 431 and the two guide rails 433 are arranged so as to be parallel to each other.
  • Two hand support members 435 are provided on the two guide rails 433 so as to be movable in the front-rear direction and to extend upward.
  • the two hand support members 435 have a common height.
  • a local transport hand 434 is provided so as to connect the upper ends of the two hand support members 435.
  • the local transport hand 434 is a plate member having a substantially circular shape, and is supported by two hand support members 435.
  • a substrate W is placed on the local transport hand 434.
  • a plurality of through holes 434 h are formed in the local transport hand 434.
  • the plurality of through holes 434 h are arranged at equiangular intervals so as to surround the central portion of the local transport hand 434.
  • a plurality of lifting pins 421 of the delivery mechanism 420 can be inserted into the plurality of through holes 434h, respectively.
  • a connecting member 439 that connects the local transport hand 434 and the feed shaft 431 is provided on the lower surface of the local transport hand 434.
  • the local transport mechanism 430 is controlled by, for example, the control unit 4 in FIG.
  • the feed shaft motor 432 operates, the feed shaft 431 rotates.
  • the local transport hand 434 moves in the front-rear direction between a rear position P1 behind the light emitting unit 300 and a front position P2 ahead of the light emitting unit 300.
  • the central portions of the rear position P1 and the front position P2 are indicated by black triangle marks. 7 and 8, the local transport hand 434 and the hand support member 435 at the front position P2 are indicated by a two-dot chain line.
  • the plurality of through holes 434h are positioned on the plurality of lift pins 421 of the delivery mechanism 420 in a state where the upper ends of the plurality of lift pins 421 of the delivery mechanism 420 are at the standby position and the local transport hand 434 is at the rear position P1. Is done.
  • ozone is generated in the casing 410 due to photodissociation of oxygen molecules. Since ozone adversely affects the human body, it is not preferable that ozone is excessively generated.
  • the amount of ozone generated in the casing 410 increases as the oxygen concentration in the casing 410 increases, and decreases as the oxygen concentration in the casing 410 decreases.
  • a first nitrogen gas supply unit 450 is provided in the casing 410. As shown in FIG. 8, the first nitrogen gas supply unit 450 is configured by a tubular member whose both ends are closed, and is attached to the inner surface of the rear surface portion 415 so as to extend from one side surface portion 416 to the other side surface portion 417. .
  • a plurality of injection holes 451 are formed in a portion of the first nitrogen gas supply unit 450 facing forward.
  • the plurality of injection holes 451 are arranged so as to be arranged at substantially equal intervals from one end to the other end of the first nitrogen gas supply unit 450.
  • one end of a nitrogen gas introduction pipe 459 is connected to a portion of the first nitrogen gas supply unit 450 facing rearward.
  • the other end of the nitrogen gas introduction pipe 459 is located outside the casing 410.
  • a nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 459.
  • a gas outlet pipe 418 for discharging the atmosphere in the casing 410 to the outside of the casing 410 is provided on the front surface portion 414 of the casing 410.
  • Nitrogen gas supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 459 is injected into the casing 410 from the plurality of injection holes 451 through the internal space of the first nitrogen gas supply unit 450.
  • the atmosphere in the casing 410 is discharged from the gas outlet pipe 418 to the outside of the casing 410.
  • the atmosphere in the casing 410 is replaced with nitrogen gas, and the oxygen concentration decreases. Accordingly, excessive generation of ozone is suppressed. As a result, the amount of ozone leaking out of the casing 410 is reduced.
  • the nitrogen gas supplied into the casing 410 functions as a catalyst for a three-body reaction between oxygen atoms and oxygen molecules when ozone is generated in the charge removal process. Therefore, an appropriate amount of ozone is efficiently generated.
  • a rear position sensor S1, a front position sensor S2, an illuminance sensor S3, and an oxygen concentration sensor S4 are further provided in the casing 410.
  • the rear position sensor S1 detects whether or not the local transport hand 434 is at the rear position P1, and gives the detection result to the control unit 4 in FIG.
  • the front position sensor S2 detects whether or not the local transport hand 434 is at the forward position P2, and gives the detection result to the control unit 4 in FIG.
  • an optical sensor or the like is used as the rear position sensor S1 and the front position sensor S2.
  • the oxygen concentration sensor S4 detects the oxygen concentration in the casing 410 and gives the detection result to the control unit 4 in FIG.
  • the oxygen concentration sensor S4 a galvanic cell type oxygen sensor or a zirconia type oxygen sensor is used.
  • the illuminance sensor S3 includes a light receiving element such as a photodiode, and detects the illuminance of the light receiving surface of the light receiving element irradiated with light.
  • the illuminance is the power of light irradiated per unit area of the light receiving surface.
  • the unit of illuminance is represented by “W / m 2 ”, for example.
  • the illuminance detected by the illuminance sensor S3 is the illuminance of the substrate W when the substrate W moving between the rear position P1 and the front position P2 is irradiated with vacuum ultraviolet rays by the local transport hand 434, That is, it corresponds to the illuminance of the substrate W when the vacuum ultraviolet ray is irradiated during the charge removal process.
  • the illuminance sensor S3 is supported by the sensor lifting / lowering drive unit 441 so as to be movable in the vertical direction at a position facing a later-described emission surface 321 (FIG. 13C) of the light emitting unit 300.
  • the sensor lifting / lowering drive unit 441 is controlled by, for example, the control unit 4 of FIG.
  • a light shielding member 442 and a light shielding drive unit 443 are provided in the vicinity of the illuminance sensor S3.
  • the light shielding member 442 has a larger outer shape than the light receiving element of the illuminance sensor S3.
  • the light shielding drive unit 443 supports the light shielding member 442 so as to be movable in the front-rear direction at a position (height) between the illuminance sensor S3 and the light emitting unit 300 in the vertical direction.
  • the light shielding drive unit 443 is controlled by, for example, the control unit 4 in FIG. Details of the operations of the sensor lift drive unit 441 and the light shielding drive unit 443 will be described later.
  • FIG. 10 is a plan view of the rear upper surface portion 412 and the central upper surface portion 419
  • FIG. 11 is a bottom view of the lid member 510.
  • the opening 412 b is surrounded by the rear edge of the rear upper surface portion 412 and the front edge of the central upper surface portion 419.
  • the lid member 510 has an outer shape that is slightly larger than the opening 412b. Further, the lower surface of the lid member 510 is formed such that a region 510d (FIG. 11) having a constant width is higher than a part of the front edge excluding both ends by a certain height compared to the other regions.
  • a region 510 c (FIG. 11) having a constant width from the outer edge excluding the front edge of the lower surface of the lid member 510 contacts the upper surface of the rear upper surface portion 412.
  • the region 510 d (FIG. 11) in the lower surface of the lid member 510 is in contact with the upper surface of the central upper surface portion 419. That is, the lower surface of the lid member 510 is in contact with the region surrounding the opening 412b in the rear upper surface portion 412 and the central upper surface portion 419. Accordingly, no gap is generated between the casing 410 and the lid member 510. Therefore, the airtightness in the casing 410 is improved with a simple configuration.
  • a groove portion 510b having a substantially constant width is formed on the lower surface of the lid member 510 so as to extend along the inner edge of the region 510c.
  • a second nitrogen gas supply unit 520 is provided in the groove 510b.
  • the second nitrogen gas supply unit 520 is configured by a tubular member whose one end is closed.
  • a plurality of injection holes 511 are formed in a portion of the second nitrogen gas supply unit 520 that faces downward.
  • the plurality of injection holes 511 are arranged so as to be arranged at substantially equal intervals.
  • one end of a nitrogen gas introduction pipe 529 is connected to the other end of the second nitrogen gas supply unit 520.
  • the other end of the nitrogen gas introduction pipe 529 protrudes to the side of the lid member 510.
  • a nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 529.
  • FIG. 12 is an external perspective view of the static elimination unit OWE showing a state in which the opening 412b of the casing 410 is opened.
  • FIG. 12 only the carry-in / carry-out part 500 and its peripheral part are shown among static elimination units OWE.
  • the region 510 c (FIG. 11) on the lower surface of the lid member 510 is located above the rear upper surface portion 412 on the rear upper surface portion 412. Opposite the top surface.
  • a region 510 d (FIG. 11) on the lower surface of the lid member 510 faces the upper surface of the central upper surface portion 419 at a position above the central upper surface portion 419. In this state, nitrogen gas is supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 529.
  • the nitrogen gas supplied to the nitrogen gas introduction pipe 529 with the opening 412b opened is a plurality of injections of the second nitrogen gas supply unit 520 (FIG. 11). It is injected downward from the hole 511 (FIG. 11). Nitrogen gas injected from the plurality of injection holes 511 (FIG. 11) flows into the casing 410 through the vicinity of the inner edge of the opening 412b.
  • a flow of nitrogen gas is formed downward from the lower surface of the lid member 510 along the inner edge of the opening 412b.
  • the formed nitrogen gas flow blocks the atmosphere flow between the space below the lid member 510 and the outside of the space. Thereby, the atmosphere outside the casing 410 is prevented from entering the casing 410 through the opening 412b. In addition, ozone generated in the casing 410 is prevented from flowing out of the casing 410 through the opening 412b.
  • the light emitting unit 300 includes a casing 310, an ultraviolet lamp 320, and a third nitrogen gas supply unit 330.
  • the casing 310 is indicated by a one-dot chain line.
  • the casing 310, the ultraviolet lamp 320, and the third nitrogen gas supply unit 330 are indicated by a one-dot chain line.
  • the ultraviolet lamp 320 and the third nitrogen gas supply unit 330 are housed together with a drive circuit, wiring, connection terminals, and the like of the ultraviolet lamp 320.
  • the light emitting unit 300 is controlled by, for example, the control unit 4 in FIG.
  • the ultraviolet lamp 320 and the third nitrogen gas supply unit 330 each have a rectangular parallelepiped shape extending in one direction. As indicated by the alternate long and short dash line in FIG. 8, the longitudinal dimensions of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330 are equal to each other and are approximately equal to the distance between the one side surface 416 and the other side surface 417.
  • a xenon excimer lamp that generates vacuum ultraviolet light having a wavelength of 172 nm is used as the ultraviolet lamp 320.
  • the ultraviolet lamp 320 may be any lamp that generates vacuum ultraviolet light having a wavelength of about 120 nm to about 230 nm, and other excimer lamps or deuterium lamps may be used instead of the xenon excimer lamp.
  • FIG. 13A is a plan view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330
  • FIG. 13B is a front view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330
  • (C) is a bottom view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330.
  • a vacuum ultraviolet ray emitting surface 321 is formed on the lower surface of the ultraviolet lamp 320 so as to extend from one end portion of the ultraviolet lamp 320 to the other end portion.
  • the vacuum ultraviolet rays emitted from the ultraviolet lamp 320 have a belt-like cross section perpendicular to the traveling direction (the vertical direction in this example). Further, the length of the belt-like cross section is larger than the diameter of the substrate W.
  • the ultraviolet lamp 320 is arranged so that the belt-like vacuum ultraviolet rays emitted from the ultraviolet lamp 320 cross the moving path of the substrate W placed on the local transport hand 434 in FIG.
  • the local transport hand 434 (FIG. 8) keeps a certain distance between the rear position P1 (FIG. 8) and the front position P2 (FIG. 8) in a state where the band-shaped vacuum ultraviolet rays are emitted from the ultraviolet lamp 320 during the static elimination process.
  • the band-shaped vacuum ultraviolet rays are scanned from one end portion of the substrate W toward the other end portion. Thereby, vacuum ultraviolet rays are uniformly irradiated to all the regions on the upper surface of the substrate W with a simple configuration.
  • the energy of vacuum ultraviolet rays irradiated per unit area of the upper surface of the substrate W during static elimination processing (hereinafter referred to as exposure amount). Can be adjusted.
  • the unit of the exposure amount is represented by “J / m 2 ”, for example.
  • the amount of ozone generated increases as the amount of exposure increases, and the amount of ozone generated decreases as the amount of exposure decreases. Therefore, the amount of ozone generated on the substrate W can be adjusted by adjusting the moving speed of the local transport hand 434 (FIG. 8). As a result, the entire upper surface of the substrate W can be uniformly and appropriately neutralized.
  • a third nitrogen gas supply unit 330 is attached to the front lower end portion of the ultraviolet lamp 320.
  • the third nitrogen gas supply unit 330 has a rectangular tube shape with both ends closed.
  • a plurality of injection holes 331 are formed in a portion of the third nitrogen gas supply unit 330 facing downward.
  • the plurality of injection holes 331 are arranged so as to be arranged at substantially equal intervals from one end to the other end of the third nitrogen gas supply unit 330.
  • one end of a nitrogen gas introduction pipe 339 is connected to the front surface of the third nitrogen gas supply unit 330.
  • a nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 339.
  • nitrogen gas is supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 339.
  • the nitrogen gas supplied to the nitrogen gas introduction pipe 339 is dispersedly injected from the plurality of injection holes 331 into the casing 410 of FIG. 7 through the internal space of the third nitrogen gas supply unit 330.
  • the plurality of injection holes 331 are adjacent to the emission surface 321 of the ultraviolet lamp 320. Therefore, at the time of static elimination processing of the substrate W, the nitrogen concentration is ejected from the plurality of ejection holes 331, whereby the oxygen concentration in the path of the vacuum ultraviolet ray irradiated to the substrate W can be further reduced. Thereby, it is suppressed more that ozone is generated excessively. Further, a uniform gas flow can be formed on the substrate W by supplying the nitrogen gas in a distributed manner to the region on the substrate W irradiated with the vacuum ultraviolet rays. Therefore, ozone generated on the substrate W can be supplied uniformly over the entire top surface of the substrate W. As a result, more uniform charge removal over the entire top surface of the substrate W is possible.
  • the amount of vacuum ultraviolet light irradiated to the upper surface of the substrate W from the ultraviolet lamp 320 by the atmosphere containing oxygen molecules increases as the vacuum ultraviolet light path between the ultraviolet lamp 320 and the substrate W increases. Therefore, there is a difference in the amount of ozone generated on the substrate W according to the length of the vacuum ultraviolet ray path. For example, the amount of ozone generated increases as the path of vacuum ultraviolet light increases, and the amount of ozone generated decreases as the path of vacuum ultraviolet light decreases. Therefore, when the upper surface of the substrate W is inclined with respect to the emission surface 321 (FIG. 13C) of the ultraviolet lamp 320, there is a difference in the amount of ozone generated at a plurality of positions on the substrate W.
  • the ultraviolet lamp 320 is arranged so as to extend in a direction perpendicular to the front-rear direction (hereinafter referred to as the left-right direction) in a horizontal plane.
  • the local transport hand 434 is provided so as to connect the upper ends of the two hand support members 435.
  • the two hand support members 435 are arranged to face each other across the center of the substrate W in the left-right direction in a state where the substrate W is placed on the local transport hand 434. Since the two hand support members 435 have a common height, the height of the local transport hand 434 is constant in the left-right direction in which the two hand support members 435 are arranged.
  • the distance between the substrate W placed on the local transport hand 434 and the ultraviolet lamp 320 is kept constant.
  • the vacuum ultraviolet rays are uniformly irradiated on the entire upper surface of the substrate W during the charge removal processing of the substrate W. Therefore, variation in the amount of ozone generated at a plurality of positions on the substrate W is prevented. Thereby, more uniform charge removal is possible for the entire top surface of the substrate W.
  • the neutralization condition of the substrate W by the neutralization unit OWE includes the oxygen concentration in the casing 410 and the moving speed of the substrate W by the local transport hand 434.
  • the oxygen concentration in the casing 410 during the static elimination process is set to be lower than 1%, for example.
  • the neutralization process of the substrate W is performed when the oxygen concentration detected by the oxygen concentration sensor S4 of FIG. 7 is lower than 1%. Thereby, it is suppressed that ozone is generated excessively.
  • the oxygen concentration detected by the oxygen concentration sensor S4 in FIG. 7 is 1% or more, the neutralization process of the substrate W is not performed.
  • the exposure amount for performing the static elimination process is determined in advance for each substrate W or each type of substrate W based on the processing content of the substrate W.
  • the predetermined exposure amount is stored in the control unit 4 of FIG. 1 as a set exposure amount before the charge removal processing of the substrate W.
  • the exposure amount of the substrate W can be adjusted by controlling the moving speed of the substrate W. it can.
  • the exposure amount can be decreased by increasing the moving speed of the substrate W, and the exposure amount can be increased by decreasing the moving speed of the substrate W.
  • the illuminance sensor S3 detects in advance the illuminance of the substrate W when the vacuum ultraviolet ray is irradiated during the static elimination process by the illuminance measurement described later.
  • the set exposure amount is SA (J / m 2 ) and the length (irradiation width) parallel to the moving direction of the substrate W in the cross section of the vacuum ultraviolet ray emitted from the ultraviolet lamp 320 is EW (m). Is represented by the following formula (1).
  • V (EW ⁇ IL) / SA (1)
  • the moving speed of the substrate W is calculated by the control unit 4.
  • the substrate is moved so that the local transport hand 434 moves from the front position P2 to the rear position P1 (or from the rear position P1 to the front position P2) while the vacuum ultraviolet rays are emitted from the light emitting unit 300.
  • the unit 400 is controlled.
  • the moving speed of the substrate W is feedback-controlled so that the exposure amount of the substrate W becomes the set exposure amount based on the illuminance detected by the illuminance sensor S3. Accordingly, the moving speed of the substrate W can be feedback-controlled so that a desired amount of ozone is uniformly supplied onto the substrate W based on the exposure amount of the vacuum ultraviolet rays applied to the substrate W. As a result, it is possible to uniformly remove the entire substrate W.
  • FIGS. 14 to 21 are side views for explaining the charge removal processing operation of the substrate W in the charge removal unit OWE. 14 to 21 show the state of the static elimination unit OWE from which the casing 60 (FIG. 5) and the other side surface portion 417 (FIG. 5) are removed, as in the side view of FIG. 16 to 21, the substrate W is indicated by a hatching pattern so that each component of the substrate moving unit 400 and the substrate W can be easily identified.
  • the local transport hand 434 is in the rear position P1, and the upper ends of the plurality of lifting pins 421 are in the standby position. Further, the opening 412b of the casing 410 is in a closed state, and the ultraviolet lamp 320 is in a light-off state. Further, as shown by a thick solid line arrow in FIG. 14, nitrogen gas is supplied from the first nitrogen gas supply unit 450 into the casing 410.
  • the oxygen concentration in the casing 410 decreases. Thereby, the oxygen concentration in the casing 410 is kept lower than, for example, 1%.
  • the opening 412b is opened by raising the lid member 510 as shown in FIG.
  • nitrogen gas is supplied from the lower surface of the lid member 510 to the opening 412b by the second nitrogen gas supply unit 520 of FIG. 11 (see FIG. 12).
  • the second nitrogen gas supply unit 520 of FIG. 11 see FIG. 12
  • the several raising / lowering pin 421 of the delivery mechanism 420 is raised. Thereby, the upper ends of the plurality of lifting pins 421 move from the standby position to the delivery position.
  • a horizontal substrate W is inserted horizontally between the lid member 510 and the opening 412b by any hand MRH of the main robot MR of FIG. 421 is mounted.
  • the plurality of lifting pins 421 of the delivery mechanism 420 are lowered. Accordingly, as shown in FIG. 17, the upper ends of the plurality of lifting pins 421 move from the delivery position to the standby position, and the substrate W in a horizontal posture is moved into the casing 410 through the opening 412b. At this time, the substrate W is transferred from the plurality of lift pins 421 to the local transport hand 434.
  • the lid member 510 is lowered, the opening 412b is closed, and the supply of nitrogen gas by the second nitrogen gas supply unit 520 of FIG. 11 is stopped.
  • the local transport hand 434 is moved from the rear position P1 to the front position P2.
  • the ultraviolet lamp 320 is off, the substrate W is not irradiated with vacuum ultraviolet rays.
  • control unit 4 determines whether or not the local transport hand 434 is at the forward position P2 based on the detection result of the front position sensor S2. Further, the control unit 4 determines whether or not the oxygen concentration detected by the oxygen concentration sensor S4 is lower than 1%.
  • the ultraviolet lamp 320 When the local transport hand 434 is at the front position P2 and the oxygen concentration is lower than 1%, the ultraviolet lamp 320 is switched from the off state to the on state. Thereby, as shown by a dot pattern in FIG. 19, vacuum ultraviolet rays UV are emitted downward from the ultraviolet lamp 320. As described above, the vacuum ultraviolet ray UV has a strip-like cross section extending in the left-right direction. The length of the cross section of the vacuum ultraviolet ray UV in the direction parallel to the left-right direction is longer than the diameter of the substrate W.
  • nitrogen gas is supplied from the third nitrogen gas supply unit 330 into the casing 410.
  • the nitrogen gas supplied from the third nitrogen gas supply unit 330 collides with a part of the local transport hand 434 or a part of the substrate W and flows into a space above the substrate W.
  • the local transport hand 434 is moved from the front position P2 to the rear position P1.
  • the moving speed at this time is controlled so as to be constant at a speed calculated in advance using the above equation (1).
  • the substrate W is irradiated with vacuum ultraviolet rays UV so that the entire area of the upper surface of the substrate W is exposed with the set exposure amount, and the substrate W is discharged.
  • the opening 412b is opened by raising the lid member 510 as shown in FIG.
  • nitrogen gas is supplied from the lower surface of the lid member 510 to the opening 412b by the second nitrogen gas supply unit 520 of FIG. 11 (see FIG. 12).
  • the several raising / lowering pin 421 of the delivery mechanism 420 is raised. Accordingly, the upper ends of the plurality of lifting pins 421 move from the standby position to the delivery position, and the substrate W is transferred from the local transport hand 434 to the plurality of lifting pins 421. In this way, the horizontal substrate W is moved from the inside of the casing 410 to above the opening 412b.
  • the substrate W after the static elimination processing placed on the plurality of lifting pins 421 is taken out in the horizontal direction by any hand MRH of the main robot MR in FIG. Thereafter, the plurality of lifting pins 421 of the delivery mechanism 420 are lowered, and the lid member 510 is lowered to close the opening 412b. Further, the supply of nitrogen gas by the second nitrogen gas supply unit 520 in FIG. 11 is stopped. Thereby, the static elimination unit OWE returns to an initial state.
  • Illuminance measurement operation In order to obtain a set speed used for the neutralization processing of the substrate W, for example, every time a predetermined number of substrates W are neutralized, every lot of substrates W, or every day The illuminance measurement shown below is performed.
  • 22 to 24 are side views for explaining the illuminance measurement operation in the static elimination unit OWE. 22 to 24 show the state of the static elimination unit OWE with the casing 60 (FIG. 5) and the other side surface portion 417 (FIG. 5) removed, as in the side view of FIG.
  • the light shielding member 442 is disposed so as to cover the upper end portion of the illuminance sensor S3 as shown by a thick dotted line in FIG.
  • the illuminance sensor S3 is disposed below the moving path of the local transport hand 434.
  • the illuminance measurement is started in a state where the opening 412b of the casing 410 is closed and the oxygen concentration detected by the oxygen concentration sensor S4 is lower than 1%. In the initial state, the ultraviolet lamp 320 is off.
  • the light shielding member 442 is moved forward by the light shielding driving unit 443 as indicated by a white arrow in FIG. Thereby, the light receiving surface provided at the upper end of the illuminance sensor S3 is exposed upward.
  • the illuminance sensor S3 is raised by the sensor lift drive unit 441. At this time, the illuminance sensor S3 is positioned so that the height of the light receiving surface matches the height of the upper surface of the substrate W placed on the local transport hand 434.
  • the ultraviolet lamp 320 is switched from the off state to the on state. Thereby, as shown by a dot pattern in FIG. 24, a belt-like vacuum ultraviolet ray UV is emitted from the ultraviolet lamp 320 toward the illuminance sensor S3.
  • the illuminance sensor S3 is lowered and the ultraviolet lamp 320 is switched from the on state to the off state. Further, the light shielding member 442 is moved backward so as to cover the upper end portion of the illuminance sensor S3. Thereby, the static elimination unit OWE returns to an initial state.
  • the illuminance sensor S3 is positioned so that the height of the light receiving surface coincides with the height of the upper surface of the substrate W placed on the local transport hand 434 when measuring the illuminance. Therefore, it is possible to accurately detect the illuminance of the vacuum ultraviolet rays irradiated to the substrate W when the substrate W is neutralized.
  • the illuminance sensor S3 is disposed below the moving path of the local transport hand 434 during the charge removal processing of the substrate W. Thereby, the illuminance sensor S3 does not interfere with the substrate W during the charge removal process.
  • FIG. 25 is a diagram for explaining the configuration of the front surface cleaning unit SS
  • FIG. 26 is a diagram for explaining the configuration of the back surface cleaning unit SSR.
  • a cleaning process for the substrate W using a brush hereinafter referred to as a scrub cleaning process
  • a brush hereinafter referred to as a scrub cleaning process
  • the surface cleaning unit SS includes a spin chuck 21 for holding the substrate W horizontally and rotating the substrate W about a vertical axis passing through the center of the substrate W.
  • the spin chuck 21 is fixed to the upper end of a rotation shaft 23 that is rotated by a chuck rotation drive mechanism 22.
  • a motor 24 is provided outside the spin chuck 21.
  • the motor 24 is provided with a rotation shaft 25 extending in the vertical direction.
  • the motor 24 is further provided with a lifting drive unit (not shown).
  • the motor 24 supports the rotating shaft 25 so that it can be moved up and down and rotated about a vertical axis.
  • An arm 26 is connected to the upper end of the rotation shaft 25 so as to extend in the horizontal direction.
  • a substantially cylindrical brush cleaning tool 27 is provided at the tip of the arm 26.
  • a liquid discharge nozzle 28 for supplying a cleaning liquid or a rinsing liquid toward the surface of the substrate W held by the spin chuck 21 is provided above the spin chuck 21.
  • the substrate W whose surface is directed upward is carried into the surface cleaning unit SS.
  • the substrate W whose surface is directed upward is rotated in a horizontal posture by the spin chuck 21.
  • the cleaning liquid is supplied to the liquid discharge nozzle 28 through the supply pipe 29.
  • pure water is used as the cleaning liquid.
  • the cleaning liquid is supplied to the surface of the rotating substrate W.
  • the motor 24 and the lifting drive unit (not shown) operate, so that the brush cleaning tool 27 comes into contact with the upper surface (front surface) of the substrate W and moves from the center of the substrate W toward the outer peripheral end of the substrate W. Thereby, a scrub cleaning process is performed on the surface of the substrate W.
  • the adsorption type spin chuck 21 is used in the surface cleaning unit SS, the peripheral edge and the outer peripheral edge of the substrate W can be cleaned simultaneously. Thereafter, the brush cleaning tool 27 moves to a position outside the substrate W, and the rinsing liquid is supplied from the liquid discharge nozzle 28 to the substrate W to perform a rinsing process.
  • pure water is used as the rinse liquid.
  • the back surface cleaning unit SSR includes a mechanical chuck type spin chuck 31 that holds the outer peripheral edge of the substrate W instead of the suction type spin chuck 21 that holds the lower surface of the substrate W by vacuum suction.
  • the back surface cleaning unit SSR includes a mechanical chuck type spin chuck 31 that holds the outer peripheral edge of the substrate W instead of the suction type spin chuck 21 that holds the lower surface of the substrate W by vacuum suction.
  • the substrate W with the back surface directed upward is carried in. Therefore, the substrate W is held by the spin chuck 31 with the back surface facing upward. Therefore, a scrub cleaning process is performed on the back surface of the substrate W, and then a rinsing process is performed.
  • pure water is used as the cleaning liquid.
  • carbonated water, ozone water, hydrogen water, electrolytic ion water, or the like may be used instead of pure water, or BHF (buffer Chemical solutions such as dofluoric acid), DHF (dilute hydrofluoric acid), hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, and ammonia may be used.
  • BHF buffer Chemical solutions such as dofluoric acid
  • DHF dilute hydrofluoric acid
  • hydrofluoric acid hydrochloric acid
  • sulfuric acid nitric acid
  • phosphoric acid phosphoric acid
  • acetic acid oxalic acid
  • ammonia ammonia
  • the rinse liquid carbonated water, ozone water, hydrogen water, electrolytic ionic water, or the like may be used instead of pure water.
  • An organic solvent such as HFE (hydrofluoroether) or IPA (isopropyl alcohol) may be used.
  • the substrate W is inverted by the reversing units RT1 and RT2, and the front and back surfaces of the substrate W are respectively converted by the front surface cleaning unit SS and the back surface cleaning unit SSR. Washed.
  • the substrate W is neutralized by the neutralizing unit OWE using vacuum ultraviolet rays. Thereby, the contamination of the substrate W due to charging is suppressed, and the cleanliness of the front and back surfaces of the substrate W is improved.
  • the substrate W after the cleaning process is subjected to the discharging process by the discharging unit OWE, even when the substrate W is charged during the cleaning process of the substrate W, the potential of the substrate W after the cleaning process approaches 0 (V). Therefore, the substrate W after the cleaning process can be kept clean.
  • the upper surface of the substrate W is irradiated with vacuum ultraviolet rays emitted from the light emitting unit 300 while the local transport hand 434 on which the substrate W is placed is moved with respect to the light emitting unit 300. .
  • the local transport hand 434 on which the substrate W is placed is moved with respect to the light emitting unit 300.
  • FIG. 27 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment.
  • the substrate processing apparatus 600 according to the present embodiment includes an indexer block 610 and a processing block 611.
  • the indexer block 610 and the processing block 611 are provided so as to be aligned in one direction and adjacent to each other.
  • the indexer block 610 includes a plurality (three in this example) of carrier mounting tables 601 and a transport unit 610A.
  • the plurality of carrier platforms 601 are connected to the transport unit 610A so as to be aligned in one direction.
  • the transporter 610A is provided with an indexer robot IR and a controller 604.
  • the indexer robot IR of this example has basically the same configuration as the indexer robot IR of FIG.
  • the control unit 604 includes a computer including a CPU, ROM, and RAM, and controls each component in the substrate processing apparatus 600.
  • the processing block 611 includes one transport unit 611A, four cleaning units 620A, 620B, 620C, and 620D, one static elimination delivery unit 680, and four fluid box units 690A, 690B, 690C, and 690D.
  • the transport unit 611A is provided in the center of the processing block 611.
  • four cleaning units 620A, 620B, 620C, and 620D and a static elimination delivery unit 680 are provided so as to surround the transport unit 611A in plan view.
  • the static elimination delivery unit 680 is further provided adjacent to the transport unit 610A of the indexer block 610.
  • the four fluid box portions 690A, 690B, 690C, and 690D are provided adjacent to the corresponding cleaning portions 620A, 620B, 620C, and 620D, respectively.
  • the transport unit 611A is provided with a center robot CR.
  • the center robot CR has basically the same configuration as the main robot MR of FIG.
  • Each of the cleaning units 620A, 620B, 620C, and 620D is provided with a plurality of (for example, three) cleaning units 620.
  • the plurality of cleaning units 620 are stacked one above the other. Note that each cleaning unit 620A, 620B, 620C, 620D may be provided with only one cleaning unit 620.
  • Each cleaning unit 620 performs a cleaning process using a cleaning liquid, a rinsing process using a rinsing liquid, and a drying process.
  • the cleaning liquid include hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), hydrofluoric acid (hydrofluoric water: HF), hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and oxalic acid.
  • BHF buffered hydrofluoric acid
  • DHF dilute hydrofluoric acid
  • HF hydrofluoric acid
  • hydrochloric acid hydrochloric acid
  • sulfuric acid sulfuric acid
  • nitric acid nitric acid
  • acetic acid acetic acid
  • oxalic acid hydrochloric acid
  • an aqueous solution such as aqueous ammonia or a mixed solution thereof can be used.
  • the mixed solution examples include a mixed solution (SPM) of sulfuric acid and hydrogen peroxide solution heated to high temperature (SPM), a mixed solution of ammonia and hydrogen peroxide solution (SC1), or hydrochloric acid (HCl) and hydrogen peroxide.
  • SPM mixed solution
  • SC1 mixed solution of ammonia and hydrogen peroxide solution
  • HCl hydrochloric acid
  • SC2 hydrochloric acid
  • SC2 hydrochloric acid
  • the fluid box portions 690A, 690B, 690C, and 690D are provided with pipes and joints related to the supply of the cleaning liquid to the corresponding cleaning units 620A, 620B, 620C, and 620D and the drainage liquid from the corresponding cleaning units 620A, 620B, 620C, and 620D.
  • Houses fluid-related equipment such as valves, flow meters, regulators, pumps, temperature controllers, and processing liquid storage tanks.
  • the static elimination delivery unit 680 is located between the transport unit 610A of the indexer block 610 and the transport unit 611A of the processing block 611. As a result, the substrate W is delivered between the two transport units 610A and 611A via the static elimination delivery unit 680.
  • the neutralization delivery unit 680 is provided with a plurality of (for example, three) neutralization units OWE2.
  • the plurality of static eliminating units OWE2 are stacked in the vertical direction.
  • Each static elimination unit OWE2 performs static elimination processing on the substrate W received from the indexer robot IR in the indexer block 610, and passes it to the central robot CR in the processing block 611. Further, the static elimination unit OWE2 performs static elimination processing on the substrate W received from the center robot CR in the processing block 611, and passes it to the indexer robot IR in the indexer block 610.
  • the configuration of the static elimination unit OWE2 will be described later.
  • FIG. 28 is a flowchart showing a basic operation flow in the substrate processing apparatus 600 according to the second embodiment. An outline of the operation of the substrate processing apparatus 600 will be described with reference to FIGS. The operation of each component of the substrate processing apparatus 600 described below is controlled by the control unit 604 in FIG.
  • the indexer robot IR takes out the unprocessed substrate W from any of the carriers C in the indexer block 610 (step S21).
  • the taken out substrate W is transferred to one of the charge removal units OWE2 of the charge removal delivery unit 680.
  • the neutralization unit OWE2 performs a neutralization process on the received substrate W (step S22).
  • the substrate W after the neutralization process is delivered from the neutralization delivery unit 680 to the central robot CR.
  • the substrate W after the charge removal process received by the center robot CR is further carried into one of the plurality of cleaning units 620 of the cleaning units 620A to 620D.
  • the cleaning unit 620 into which the substrate W has been carried out performs a cleaning process, a rinsing process, and a drying process for the substrate W (step S23).
  • the substrate W that has been processed by the cleaning unit 620 is unloaded from the cleaning unit 620 by the center robot CR, and is transferred to one of the charge removal units OWE2 of the charge removal delivery unit 680.
  • the neutralization unit OWE2 performs a neutralization process on the received substrate W (step S24).
  • the substrate W after the charge removal process is delivered from the charge removal delivery unit 680 to the indexer robot IR.
  • the indexer robot IR stores the received processed substrate W in any of the carriers C in the indexer block 10 (step S25). As described above, the above-described series of operations is repeated for each substrate W carried into the substrate processing apparatus 600.
  • FIG. 29 is an external perspective view of the charge removal unit OWE2 according to the second embodiment.
  • the static elimination unit OWE2 includes a housing 60.
  • the housing 60 includes a front wall portion 61, a rear wall portion 62, one side wall portion 63, another side wall portion 64, a ceiling portion 65, and a floor portion 66.
  • the direction from the inside of the casing 60 toward the front wall 61 is referred to as the front of the static elimination unit OWE2, and the opposite direction (the casing 60).
  • the direction from the inside toward the rear wall 62) is referred to as the rear of the static elimination unit OWE2.
  • the neutralization unit OWE2 is arranged so that one side wall portion 63 faces the conveyance portion 610A of the indexer block 610 in FIG. 27 and the other side wall portion 64 faces the conveyance portion 611A of the processing block 611 in FIG.
  • transfer openings 63p and 64p are formed in the one side wall portion 63 and the other side wall portion 64, respectively.
  • the conveyance openings 63p and 64p are formed so as to sandwich the loading / unloading unit 500.
  • the lid member 510 of the carry-in / carry-out unit 500 is formed larger than the substrate W.
  • the opening 412 b (FIG. 10) formed on the upper surface of the casing 410 is also formed larger than the substrate W.
  • the substrate W transported by the indexer robot IR in FIG. 27 is transferred to the transport opening as shown by a thick dotted arrow AR1 in FIG. 29 with the opening 412b (FIG. 10) opened by the lid member 510. It is delivered to the delivery mechanism 420 (FIG. 7) through 63p and carried into the casing 410. 29, the substrate W is passed to the center robot CR in FIG. 27 by the delivery mechanism 420 (FIG. 7) in the casing 410, and is conveyed from the inside of the housing 60 to the transport opening 64p, as indicated by a thick two-dot chain line arrow AR2. And is carried out into the transport section 611A.
  • the substrate W transported by the center robot CR in FIG. 27 is transported by the transport opening 64p as shown by a thick dotted arrow AR3 in FIG. Is delivered to the delivery mechanism 420 (FIG. 7) and carried into the casing 410.
  • the substrate W is transferred to the indexer robot IR shown in FIG. 27 by the delivery mechanism 420 (FIG. 7) in the casing 410, as indicated by the thick two-dot chain line arrow AR4, and the transfer opening 63p from inside the housing 60. And is carried out into the transport section 610A.
  • FIG. 30 is a view for explaining the configuration of the cleaning unit 620 of the substrate processing apparatus 600 according to the second embodiment.
  • the cleaning unit 620 removes impurities attached to the surface of the substrate W by using the cleaning liquid supplied from the fluid box portions 690A to 690D, and dries the surface of the clean substrate W.
  • the cleaning unit 620 includes a spin chuck 621 for holding the substrate W horizontally and rotating the substrate W about a vertical axis passing through the center of the substrate W.
  • the spin chuck 621 is fixed to the upper end of the rotation shaft 623 rotated by the chuck rotation drive mechanism 622.
  • the spin chuck 621 in FIG. 30 is a mechanical chuck type spin chuck that holds the outer peripheral edge of the substrate W, but an adsorption type spin chuck that holds the lower surface of the substrate W by vacuum suction is used as the spin chuck 621. May be.
  • a first motor 630 is provided outside the spin chuck 621.
  • a first rotating shaft 631 is connected to the first motor 630.
  • a first arm 632 is connected to the first rotation shaft 631 so as to extend in the horizontal direction, and a cleaning liquid nozzle 633 is provided at the tip of the first arm 632.
  • the first rotating shaft 631 is rotated by the first motor 630 and the first arm 632 is rotated, so that the cleaning liquid nozzle 633 moves above the substrate W held by the spin chuck 621.
  • a cleaning liquid supply pipe 634 is provided so as to pass through the first motor 630, the first rotating shaft 631, and the first arm 632.
  • the cleaning liquid supply pipe 634 is connected to the fluid box portions 690A to 690D.
  • the cleaning liquid is supplied to the cleaning liquid nozzle 633 from the fluid box sections 690A to 690D through the cleaning liquid supply pipe 634. Thereby, the cleaning liquid can be supplied to the surface of the substrate W.
  • a second motor 640 is further provided outside the spin chuck 621.
  • a second rotating shaft 641 is connected to the second motor 640.
  • a second arm 642 is connected to the second rotation shaft 641 so as to extend in the horizontal direction, and a rinse liquid nozzle 643 is provided at the tip of the second arm 642.
  • the second motor 640 rotates the second rotation shaft 641 and the second arm 642 to move the rinse liquid nozzle 643 above the substrate W held by the spin chuck 621.
  • a rinse liquid supply pipe 644 is provided so as to pass through the second motor 640, the second rotation shaft 641, and the second arm 642.
  • the rinse liquid supply pipe 644 is connected to the fluid box portions 690A to 690D.
  • the rinse liquid is supplied to the rinse liquid nozzle 643 from the fluid box portions 690A to 690D through the rinse liquid supply pipe 644. Thereby, the rinse liquid can be supplied to the surface of the substrate W.
  • the cleaning liquid nozzle 633 is positioned above the substrate W during the cleaning process, and the cleaning liquid nozzle 633 is retracted to a predetermined position during the rinse process and the drying process. Further, the rinse liquid nozzle 643 is positioned above the substrate W during the rinse process, and the rinse liquid nozzle 643 is retracted to a predetermined position during the cleaning process and the drying process.
  • a cup device 650 is provided so as to surround the periphery of the spin chuck 21.
  • the cup device 650 collects the cleaning liquid used for the cleaning process and the rinse liquid used for the rinse process, and guides the recovered cleaning liquid and the rinse liquid to a circulation system or a waste system (not shown).
  • the conveyance openings 63p and 64p are formed in the one side wall 63 and the other side wall 64 of the housing 60, respectively.
  • the transfer openings 63p and 64p are used to transfer the substrate W between the inside and the outside of the housing 60, respectively.
  • the carrier of the indexer block 610 when the substrate W is transported from the carrier C of the indexer block 610 to the cleaning unit 620 of the processing block 611 and from the cleaning unit 620 of the processing block 611, the carrier of the indexer block 610 When the substrate W is transported to C, the neutralization process is performed on the substrate W by the neutralization unit OWE2. Thereby, the throughput of the substrate processing using the indexer block 610 and the processing block 611 can be improved.
  • the static elimination process is performed on each of the substrate W before the cleaning process and the substrate W after the cleaning process.
  • the invention is not limited to this.
  • the charge removal process may be performed only on the substrate W before the cleaning process, or the charge removal process may be performed only on the substrate W after the cleaning process.
  • the entire upper surface of the substrate W is irradiated with the vacuum ultraviolet rays by scanning the upper surface of the substrate W with the band-shaped vacuum ultraviolet rays. It is not limited to this.
  • the light emitting unit 300 of the static elimination units OWE and OWE2 may be configured to be able to simultaneously irradiate the entire surface of the substrate W with vacuum ultraviolet rays. It is possible to shorten the time for the static elimination processing in the static elimination units OWE and OWE2.
  • the substrate platform PASS1, PASS2 You may provide the static elimination unit OWE2 which concerns on 2nd Embodiment.
  • the substrate W when the substrate W is transported from the carrier C of the indexer block 10 to the front surface cleaning unit SS or the back surface cleaning unit SSR of the processing block 11, the substrate W can be subjected to charge removal processing.
  • the substrate W when the substrate W is transported from the front surface cleaning unit SS or the back surface cleaning unit SSR of the processing block 11 to the carrier C of the indexer block 610, the substrate W can be subjected to a discharging process by the discharging unit OWE2.
  • the neutralization delivery unit 680 is provided with the substrate platforms PASS1 and PASS2 according to the first embodiment in place of the neutralization unit OWE2, and cleaning is performed.
  • the static eliminator unit OWE according to the first embodiment may be provided in any of the units 620A to 620D.
  • the front surface and the back surface of the substrate W are cleaned using a brush, but the present invention is not limited to this.
  • the front surface cleaning unit SS and the back surface cleaning unit SSR may clean the substrate W by a soft spray method using a two-fluid nozzle instead of the brush cleaning tool 27 and the liquid discharge nozzle 28.
  • the two-fluid nozzle is a nozzle that jets a mixed fluid composed of droplets of cleaning liquid and gas onto the substrate W by mixing the cleaning liquid and pressurized gas (inert gas).
  • the upper surface of the substrate W may be cleaned using a brush, as in the first embodiment.
  • the upper surface of the substrate W may be cleaned using the two-fluid nozzle.
  • the upper surface of the substrate W is irradiated with vacuum ultraviolet rays only when the local transport hand 434 moves from the front position P2 to the rear position P1. Is not limited to this. Instead of the case where the local transport hand 434 moves from the front position P2 to the rear position P1, the upper surface of the substrate W is irradiated with vacuum ultraviolet rays only when the local transport hand 434 moves from the rear position P1 to the front position P2. Good. Further, when the local transport hand 434 moves from the rear position P1 to the front position P2, and when it moves from the front position P2 to the rear position P1, the upper surface of the substrate W may be irradiated with vacuum ultraviolet rays.
  • vacuum ultraviolet rays are used as light for separating oxygen molecules into two oxygen atoms, but the present invention is not limited to this. If the oxygen molecule can be separated into two oxygen atoms, the substrate W may be irradiated with light having a wavelength shorter than that of vacuum ultraviolet rays.
  • nitrogen gas is used to reduce the oxygen concentration in the casing 410, but the present invention is not limited to this.
  • Argon gas or helium gas may be used for casing 410 instead of nitrogen gas.
  • the lid member 510 is provided with the second nitrogen gas supply unit 520, but the second nitrogen gas supply unit 520 may not be provided.
  • the third nitrogen gas supply unit 330 is provided in the light emitting unit 300, the third nitrogen gas supply unit 330 may not be provided. In these cases, the number of parts of the static elimination units OWE and OWE2 is reduced.
  • the band-shaped vacuum ultraviolet rays are emitted from the ultraviolet lamp 320 and the local transport hand 434 moves in the horizontal direction, so that the band-like shape extends from one end to the other end of the substrate W.
  • vacuum ultraviolet rays are scanned, the present invention is not limited to this.
  • the ultraviolet lamp 320 moves in the horizontal direction above the substrate W, so that a belt-like vacuum is formed from one end portion to the other end portion of the substrate W.
  • Ultraviolet light may be scanned.
  • the amount of ozone generated on the substrate W can be adjusted by adjusting the moving speed of the ultraviolet lamp 320.
  • the front surface cleaning unit SS, the back surface cleaning unit SSR, and the cleaning unit 620 are examples of the cleaning processing unit
  • the neutralization units OWE and OWE2 are examples of the neutralization unit
  • the local transport hand 434 is the holding unit.
  • the light emission part 300 is an example of an emission part
  • the substrate processing apparatuses 100 and 600 are examples of a substrate processing apparatus.
  • the control units 4 and 604 are examples of processing units, and the feed shaft 431, the feed shaft motor 432, the two guide rails 433, the two hand support members 435, and the connecting member 439 are examples of relative movement units,
  • the reversing units RT1 and RT2 are examples of the reversing device, the casing 60 is an example of the casing, and the transport openings 63p and 64p are examples of the first and second transport openings, respectively.
  • the indexer robot IR is an example of the first transfer device
  • the indexer block 610 is an example of the first region
  • the center robot CR is an example of the second transfer device
  • the processing block 611 is the second transfer device. It is an example of a field
  • carrier C is an example of a storage container
  • carrier mounting base 601 is an example of a container mounting part.
  • the present invention can be effectively used for processing various substrates.

Abstract

This substrate treatment device includes a front surface cleaning section, a rear surface cleaning section, and a destaticizing unit. The front surface of a substrate is to be cleaned by means of a front surface cleaning unit, and the rear surface of the substrate is to be cleaned by means of a rear surface cleaning unit. A substrate to be cleaned by the front surface cleaning unit and/or a substrate having been cleaned by the front surface cleaning unit is destaticized by means of the destaticizing unit. A substrate to be cleaned by the rear surface cleaning unit and/or a substrate having been cleaned by the rear surface cleaning unit is destaticized by means of the destaticizing unit. When destaticizing the substrate by means of the destaticizing unit, the substrate is held by a holding section in an atmosphere containing oxygen molecules. The substrate held by the holding section is irradiated with vacuum ultraviolet light through the atmosphere containing oxygen molecules.

Description

基板処理装置および基板処理方法Substrate processing apparatus and substrate processing method
 本発明は、基板に所定の処理を行う基板処理装置および基板処理方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing method for performing predetermined processing on a substrate.
 半導体基板、液晶表示装置用基板、プラズマディスプレイ用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板またはフォトマスク用基板等の各種基板に種々の処理を行うために、基板処理装置が用いられている。 In order to perform various processes on various substrates such as a semiconductor substrate, a liquid crystal display substrate, a plasma display substrate, an optical disk substrate, a magnetic disk substrate, a magneto-optical disk substrate or a photomask substrate, It is used.
 基板処理装置による一連の処理の過程において基板が帯電していると、基板にパーティクルが付着しやすくなり、基板の清浄度が低下する。また、放電現象により基板表面に形成される配線パターンが破損する可能性がある。これらの不具合の発生を防止するために、特許文献1に記載された基板処理装置においては、基板搬送装置により搬送される基板がイオナイザにより除電される。 If the substrate is charged in the course of a series of processing by the substrate processing apparatus, particles are likely to adhere to the substrate and the cleanliness of the substrate is lowered. In addition, the wiring pattern formed on the substrate surface may be damaged by the discharge phenomenon. In order to prevent the occurrence of these problems, in the substrate processing apparatus described in Patent Document 1, the substrate transported by the substrate transport apparatus is neutralized by an ionizer.
 そのイオナイザは、略円筒状の外側電極とその中央部に設けられた内側電極とを含む。外側電極と内側電極との間に交流電圧が印加されることによりイオンが発生する。発生されたイオンは、基板搬送装置の保持部材により保持される基板の表面に吹き付けられる。それにより、搬送中の基板が除電される。 The ionizer includes a substantially cylindrical outer electrode and an inner electrode provided at the center thereof. Ions are generated by applying an AC voltage between the outer electrode and the inner electrode. The generated ions are sprayed onto the surface of the substrate held by the holding member of the substrate transfer device. Thereby, the substrate being transported is neutralized.
 イオナイザにより除電された基板にレジスト液が供給されることによりレジスト膜の形成処理が行われる。また、イオナイザにより除電された基板に現像液が供給されることにより現像処理が行われる。
特開2000-114349号公報
A resist solution is supplied to the substrate that has been neutralized by the ionizer, whereby a resist film is formed. Further, the developing process is performed by supplying the developer to the substrate that has been neutralized by the ionizer.
JP 2000-114349 A
 特許文献1に記載されたイオナイザは、洗浄装置を備える基板処理装置にも適用することができる。洗浄装置では、例えば、基板に薬液または純水等の洗浄液が供給されることにより基板が洗浄される。洗浄装置を備える基板処理装置においては、基板へのパーティクルの付着をより低減するために、基板はできる限り0(V)に近づくように除電されることが好ましい。それにより、洗浄後の基板の清浄度が向上する。 The ionizer described in Patent Document 1 can also be applied to a substrate processing apparatus including a cleaning device. In the cleaning apparatus, for example, the substrate is cleaned by supplying a cleaning solution such as a chemical solution or pure water to the substrate. In a substrate processing apparatus provided with a cleaning apparatus, it is preferable that the substrate is neutralized so as to be as close to 0 (V) as possible in order to further reduce the adhesion of particles to the substrate. Thereby, the cleanliness of the substrate after cleaning is improved.
 上記のイオナイザによれば、1000(V)程度に帯電する基板の電位を100(V)程度にまで低下させることができるが、10(V)程度に帯電する基板の電位を0(V)に近づくように低下させることはできない。 According to the above ionizer, the potential of the substrate charged to about 1000 (V) can be reduced to about 100 (V), but the potential of the substrate charged to about 10 (V) is reduced to 0 (V). It cannot be lowered to get closer.
 本発明の目的は、基板の清浄度を向上させることが可能な基板処理装置および基板処理方法を提供することである。 An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of improving the cleanliness of a substrate.
 (1)本発明の一局面に従う基板処理装置は、基板の洗浄処理を行う洗浄処理部と、洗浄処理部による洗浄処理前の基板および洗浄処理部による洗浄処理後の基板のうち少なくとも一方の基板の除電処理を行う除電部とを備え、除電部は、酸素分子を含む雰囲気内で基板を保持する保持部と、保持部により保持された基板に雰囲気を通して真空紫外線を出射する出射部とを含む。 (1) A substrate processing apparatus according to one aspect of the present invention includes at least one of a cleaning processing unit that performs cleaning processing on a substrate, a substrate before cleaning processing by the cleaning processing unit, and a substrate after cleaning processing by the cleaning processing unit. A static elimination unit for performing the static elimination process, and the static elimination unit includes a holding unit that holds the substrate in an atmosphere containing oxygen molecules, and an emission unit that emits vacuum ultraviolet rays through the atmosphere to the substrate held by the holding unit .
 その基板処理装置においては、洗浄処理部による洗浄処理前および洗浄処理後のうち少なくとも一方の時点で、除電部により基板の除電処理が行われる。除電部では、出射部から出射される真空紫外線が、酸素分子を含む雰囲気を通して保持部により保持された基板に照射される。 In the substrate processing apparatus, the neutralization process of the substrate is performed by the neutralization unit at least at one time point before and after the cleaning process by the cleaning processing unit. In the static elimination unit, the vacuum ultraviolet rays emitted from the emission unit are applied to the substrate held by the holding unit through an atmosphere containing oxygen molecules.
 このとき、基板上の雰囲気が真空紫外線の一部を吸収することにより、その雰囲気に含まれる酸素分子が光解離により2つの酸素原子に分解される。分解された酸素原子が周囲に存在する酸素分子と結合することによりオゾンが発生される。 At this time, when the atmosphere on the substrate absorbs a part of the vacuum ultraviolet rays, oxygen molecules contained in the atmosphere are decomposed into two oxygen atoms by photodissociation. Ozone is generated when the decomposed oxygen atoms combine with surrounding oxygen molecules.
 オゾンは、正電荷を帯びた共鳴構造と負電荷を帯びた共鳴構造との重ね合わせによって表現される共鳴混成体である。各共鳴構造は、共有結合および配位結合を含む。配位結合は不安定であるため、発生されたオゾンが正または負に帯電した基板の一面に接触すると、オゾンと基板との間で電荷の授受が行われる。この場合、オゾンの配位結合が切断されるとともに、基板の電位が0(V)に近づく。このようにして、基板の帯電量および帯電極性によらず基板の全体が除電される。これらの結果、洗浄処理および除電処理後の基板の清浄度が向上する。 Ozone is a resonance hybrid expressed by superposition of a resonance structure with a positive charge and a resonance structure with a negative charge. Each resonant structure includes covalent bonds and coordinate bonds. Since the coordinate bond is unstable, when the generated ozone comes into contact with one surface of the positively or negatively charged substrate, charge is transferred between the ozone and the substrate. In this case, the coordination bond of ozone is cut, and the potential of the substrate approaches 0 (V). In this way, the entire substrate is neutralized regardless of the charge amount and charge polarity of the substrate. As a result, the cleanliness of the substrate after the cleaning process and the charge removal process is improved.
 (2)基板処理装置は、制御部をさらに備え、除電部は、保持部および出射部のうち少なくとも一方を他方に対して一方向に相対的に移動させる相対的移動部をさらに含み、制御部は、出射部により出射される真空紫外線が雰囲気を通して保持部により保持された基板に照射されるように出射部および相対的移動部を制御してもよい。この場合、基板の全体に真空紫外線を同時に照射する必要がない。したがって、出射部の大型化を抑制することができる。 (2) The substrate processing apparatus further includes a control unit, and the neutralization unit further includes a relative moving unit that moves at least one of the holding unit and the emitting unit relative to the other in one direction, and the control unit May control the emitting unit and the relative moving unit so that the vacuum ultraviolet ray emitted from the emitting unit is irradiated to the substrate held by the holding unit through the atmosphere. In this case, it is not necessary to simultaneously irradiate the entire substrate with vacuum ultraviolet rays. Therefore, the enlargement of the emission part can be suppressed.
 (3)制御部は、予め定められた光量の真空紫外線が基板に照射されるように、相対的移動部による保持部と出射部との相対的な移動速度を制御してもよい。 (3) The control unit may control the relative moving speed of the holding unit and the emitting unit by the relative moving unit so that the substrate is irradiated with a predetermined amount of vacuum ultraviolet light.
 この場合、保持部と出射部との相対的な移動速度が制御されることにより、基板上で単位面積当たりに照射される真空紫外線の光量が調整され、基板上で発生されるオゾンの量が調整される。移動速度を高くすることにより、基板に照射される真空紫外線の光量が減少する。それにより、基板上で発生されるオゾンの量を減少させることができる。また、移動速度を低くすることにより、基板に照射される真空紫外線の光量が増加する。それにより、基板上で発生されるオゾンの量を増加させることができる。したがって、基板上に所望の量のオゾンを均一に供給することが可能になる。その結果、基板の全体を均一に除電することが可能になる。 In this case, by controlling the relative moving speed between the holding unit and the emitting unit, the amount of vacuum ultraviolet light irradiated per unit area on the substrate is adjusted, and the amount of ozone generated on the substrate is adjusted. Adjusted. By increasing the moving speed, the amount of vacuum ultraviolet light applied to the substrate is reduced. Thereby, the amount of ozone generated on the substrate can be reduced. Further, by reducing the moving speed, the amount of vacuum ultraviolet light applied to the substrate increases. Thereby, the amount of ozone generated on the substrate can be increased. Therefore, a desired amount of ozone can be uniformly supplied onto the substrate. As a result, the entire substrate can be uniformly discharged.
 (4)基板は一面および他面を有し、基板処理装置は、基板の一面と他面とを互いに反転させる反転装置をさらに備え、洗浄処理部は、反転装置により反転されていない基板の一面を洗浄可能でかつ反転装置により反転された基板の他面を洗浄可能に構成されてもよい。この場合、基板の一面および他面の清浄度を向上させることができる。 (4) The substrate has one surface and the other surface, the substrate processing apparatus further includes a reversing device for reversing the one surface and the other surface of the substrate, and the cleaning processing unit is one surface of the substrate that has not been reversed by the reversing device. And the other surface of the substrate inverted by the inverting device may be cleaned. In this case, the cleanliness of one surface and the other surface of the substrate can be improved.
 (5)除電部は、保持部および出射部を収容する筐体をさらに備え、筐体は、筐体の内部と外部との間で基板を搬送するための第1および第2の搬送開口を有してもよい。この場合、第1および第2の搬送開口を用いて除電部に対する基板の搬入および搬出を行うことができる。それにより、基板の搬送経路の設計の自由度が向上する。 (5) The static elimination unit further includes a housing that accommodates the holding unit and the emission unit, and the housing includes first and second transport openings for transporting the substrate between the inside and the outside of the housing. You may have. In this case, the board | substrate can be carried in and carrying out with respect to a static elimination part using the 1st and 2nd conveyance opening. This improves the degree of freedom in designing the substrate transport path.
 (6)基板処理装置は、第1の搬送装置を含む第1の領域と、洗浄処理部および第2の搬送装置を含む第2の領域とを有し、除電部は、第1の搬送開口を通して第1の搬送装置に対する基板の受け渡しが可能でかつ第2の搬送開口を通して第2の搬送装置に対する基板の受け渡しが可能に配置されてもよい。この場合、第1および第2の搬送装置により第1の領域と第2の領域との間で基板が搬送される際に、基板の除電処理を行うことが可能になる。 (6) The substrate processing apparatus includes a first region including the first transfer device, and a second region including the cleaning processing unit and the second transfer device, and the charge removal unit includes the first transfer opening. The substrate may be transferred to the first transfer device through the second transfer opening, and the substrate may be transferred to the second transfer device through the second transfer opening. In this case, when the substrate is transported between the first region and the second region by the first and second transport devices, it is possible to perform a charge removal process on the substrate.
 (7)第1の領域は、基板を収容する収納容器が載置される容器載置部をさらに含み、第1の搬送装置は、容器載置部に載置された収納容器と除電部との間で基板を搬送し、第2の搬送装置は、除電部と洗浄処理部との間で基板を搬送し、除電部は、第1の搬送装置から第2の搬送装置への基板の受け渡しの際および第2の搬送装置から第1の搬送装置への基板の受け渡しの際に基板の除電処理を行ってもよい。 (7) The first region further includes a container placement unit on which a storage container that accommodates the substrate is placed, and the first transport device includes a storage container placed on the container placement unit, a charge removal unit, The second transfer device transfers the substrate between the charge removal unit and the cleaning processing unit, and the charge removal unit transfers the substrate from the first transfer device to the second transfer device. At this time, and when the substrate is transferred from the second transfer device to the first transfer device, the substrate may be neutralized.
 この場合、第1の領域の収納容器から第2の領域の洗浄処理部へ基板が搬送される際、および処理領域の洗浄処理部から搬入搬出領域内の収納容器へ基板が搬送される際に、除電部により基板に除電処理が行われる。それにより、第1の領域および第2の領域を用いた基板処理のスループットを向上させることができる。 In this case, when the substrate is transported from the storage container in the first region to the cleaning processing unit in the second region, and when the substrate is transported from the cleaning processing unit in the processing region to the storage container in the loading / unloading region. The neutralization process is performed on the substrate by the neutralization unit. Thereby, the throughput of substrate processing using the first region and the second region can be improved.
 (8)除電部は、洗浄処理部により洗浄される前の基板に除電処理を行ってもよい。この場合、洗浄処理前の基板の電位が0(V)に近づく。それにより、洗浄処理時に基板の帯電に起因する放電現象が発生しない。したがって、基板の一部が破損することによる処理不良の発生が防止される。 (8) The neutralization unit may perform the neutralization process on the substrate before being cleaned by the cleaning unit. In this case, the potential of the substrate before the cleaning process approaches 0 (V). As a result, a discharge phenomenon due to the charging of the substrate does not occur during the cleaning process. Therefore, it is possible to prevent a processing defect from occurring due to a part of the substrate being damaged.
 (9)制御部は、洗浄処理部により洗浄された後の基板に除電処理を行ってもよい。この場合、洗浄処理時に基板が帯電する場合でも、洗浄処理後の基板に除電処理が行われることにより基板の電位が0(V)に近づく。それにより、洗浄処理後の基板を清浄に保つことができる。 (9) The control unit may perform static elimination processing on the substrate after being cleaned by the cleaning processing unit. In this case, even when the substrate is charged during the cleaning process, the potential of the substrate approaches 0 (V) by performing the charge removal process on the substrate after the cleaning process. Thereby, the substrate after the cleaning process can be kept clean.
 (10)本発明の他の局面に従う基板処理方法は、基板の洗浄処理を行うステップと、洗浄処理を行うステップの前および洗浄処理を行うステップの後のうち少なくとも一方の時点で、基板の除電処理を行うステップとを含み、除電処理を行うステップは、酸素分子を含む雰囲気内で基板を保持部により保持するステップと、真空紫外線を出射部から出射させるとともに出射部により出射される真空紫外線を上記の雰囲気を通して保持部により保持された基板に照射するステップとを含む。 (10) According to another aspect of the present invention, there is provided a substrate processing method, wherein at least one of a step of performing a substrate cleaning process, a step before performing the cleaning process, and a step after performing the cleaning process is performed. The step of performing the neutralization process includes a step of holding the substrate in an atmosphere containing oxygen molecules by the holding unit, and a step of emitting the vacuum ultraviolet rays from the emission unit and the vacuum ultraviolet rays emitted from the emission unit. Irradiating the substrate held by the holding portion through the atmosphere.
 その基板処理方法においては、洗浄処理前および洗浄処理後のうち少なくとも一方の時点で、基板の除電処理が行われる。除電処理においては、出射部から出射される真空紫外線が、酸素分子を含む雰囲気を通して保持部により保持された基板に照射される。このとき、真空紫外線の一部が酸素分子を含む雰囲気に吸収されることにより、オゾンが発生される。 In the substrate processing method, the substrate is neutralized at least at one time point before and after the cleaning process. In the charge removal process, vacuum ultraviolet rays emitted from the emission unit are irradiated onto the substrate held by the holding unit through an atmosphere containing oxygen molecules. At this time, ozone is generated by absorbing a part of the vacuum ultraviolet rays in an atmosphere containing oxygen molecules.
 発生されたオゾンが正または負に帯電した基板の一面に接触すると、オゾンと基板との間で電荷の授受が行われる。この場合、オゾンの配位結合が切断されるとともに、基板の電位が0(V)に近づく。このようにして、基板の帯電量および帯電極性によらず基板の全体が除電される。これらの結果、洗浄処理および除電処理後の基板の清浄度が向上する。 When the generated ozone comes into contact with one surface of a positively or negatively charged substrate, charge is transferred between the ozone and the substrate. In this case, the coordination bond of ozone is cut, and the potential of the substrate approaches 0 (V). In this way, the entire substrate is neutralized regardless of the charge amount and charge polarity of the substrate. As a result, the cleanliness of the substrate after the cleaning process and the charge removal process is improved.
 本発明によれば、基板の清浄度を向上させることが可能になる。 According to the present invention, the cleanliness of the substrate can be improved.
図1は第1の実施の形態に係る基板処理装置の構成を示す平面図である。FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment. 図2は図1の基板処理装置を矢印Xの方向から見た背面図である。FIG. 2 is a rear view of the substrate processing apparatus of FIG. 図3は図1のA-A線における基板処理装置の縦断面図である。3 is a longitudinal sectional view of the substrate processing apparatus taken along line AA in FIG. 図4は第1の実施の形態に係る基板処理装置における基本的な動作の流れを示すフローチャートである。FIG. 4 is a flowchart showing a basic operation flow in the substrate processing apparatus according to the first embodiment. 図5は除電ユニットの外観斜視図である。FIG. 5 is an external perspective view of the static elimination unit. 図6は除電ユニットの側面図である。FIG. 6 is a side view of the static elimination unit. 図7は除電ユニットの内部構造を説明するための側面図である。FIG. 7 is a side view for explaining the internal structure of the static elimination unit. 図8は除電ユニットの内部構造を説明するための平面図である。FIG. 8 is a plan view for explaining the internal structure of the static elimination unit. 図9は除電ユニットの内部構造を説明するための正面図である。FIG. 9 is a front view for explaining the internal structure of the static elimination unit. 図10は後上面部および中央上面部の平面図である。FIG. 10 is a plan view of the rear upper surface portion and the central upper surface portion. 図11は蓋部材の下面図である。FIG. 11 is a bottom view of the lid member. 図12はケーシングの開口部が開放されている状態を示す除電ユニットの外観斜視図である。FIG. 12 is an external perspective view of the static elimination unit showing a state in which the opening of the casing is opened. 図13(a)は紫外線ランプおよび第3の窒素ガス供給部の平面図であり、図13(b)は紫外線ランプおよび第3の窒素ガス供給部の正面図であり、図13(c)は紫外線ランプおよび第3の窒素ガス供給部の下面図である。FIG. 13A is a plan view of the ultraviolet lamp and the third nitrogen gas supply unit, FIG. 13B is a front view of the ultraviolet lamp and the third nitrogen gas supply unit, and FIG. It is a bottom view of an ultraviolet lamp and a 3rd nitrogen gas supply part. 図14は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 14 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図15は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 15 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図16は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 16 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図17は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 17 is a side view for explaining the neutralization processing operation of the substrate in the neutralization unit. 図18は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 18 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図19は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 19 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図20は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 20 is a side view for explaining the substrate neutralization processing operation in the neutralization unit. 図21は除電ユニットにおける基板の除電処理動作を説明するための側面図である。FIG. 21 is a side view for explaining the operation of neutralizing the substrate in the neutralization unit. 図22は除電ユニットにおける照度測定動作を説明するための側面図である。FIG. 22 is a side view for explaining the illuminance measurement operation in the static elimination unit. 図23は除電ユニットにおける照度測定動作を説明するための側面図である。FIG. 23 is a side view for explaining the illuminance measurement operation in the static elimination unit. 図24は除電ユニットにおける照度測定動作を説明するための側面図である。FIG. 24 is a side view for explaining the illuminance measurement operation in the static elimination unit. 図25は表面洗浄ユニットの構成を説明するための図である。FIG. 25 is a diagram for explaining the configuration of the surface cleaning unit. 図26は裏面洗浄ユニットの構成を説明するための図である。FIG. 26 is a diagram for explaining the configuration of the back surface cleaning unit. 図27は第2の実施の形態に係る基板処理装置の構成を示す平面図である。FIG. 27 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment. 図28は第2の実施の形態に係る基板処理装置における基本的な動作の流れを示すフローチャートである。FIG. 28 is a flowchart showing a basic operation flow in the substrate processing apparatus according to the second embodiment. 図29は第2の実施の形態に係る除電ユニットの外観斜視図である。FIG. 29 is an external perspective view of a static elimination unit according to the second embodiment. 図30は第2の実施の形態に係る基板処理装置の洗浄ユニットの構成を説明するための図である。FIG. 30 is a view for explaining the configuration of the cleaning unit of the substrate processing apparatus according to the second embodiment.
 本発明の実施の形態に係る基板処理装置および基板処理方法について図面を参照しながら説明する。なお、以下の説明において、基板とは、半導体基板、液晶表示装置もしくは有機EL(Electro Luminescence)表示装置等のFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板または太陽電池用基板等をいう。また、以下の説明では、回路パターン等の各種パターンが形成される基板の面を表面と呼び、その反対側の面を裏面と呼ぶ。また、下方に向けられた基板の面を下面と呼び、上方に向けられた基板の面を上面と呼ぶ。 A substrate processing apparatus and a substrate processing method according to an embodiment of the present invention will be described with reference to the drawings. In the following description, a substrate means a semiconductor substrate, a liquid crystal display device or an FPD (Flat Panel Display) substrate such as an organic EL (Electro Luminescence) display device, an optical disk substrate, a magnetic disk substrate, or a magneto-optical disk. It refers to a substrate, a photomask substrate, a solar cell substrate, or the like. In the following description, the surface of the substrate on which various patterns such as circuit patterns are formed is referred to as the front surface, and the opposite surface is referred to as the back surface. Further, the surface of the substrate directed downward is referred to as a lower surface, and the surface of the substrate directed upward is referred to as an upper surface.
 [1]第1の実施の形態
 (1)基板処理装置の構成
 第1の実施の形態に係る基板処理装置においては、主として基板の表面および裏面がブラシを用いて物理的に洗浄される。このとき、基板の表面には、膜が形成されていてもよいし、膜が形成されていなくてもよい。図1は第1の実施の形態に係る基板処理装置の構成を示す平面図であり、図2は図1の基板処理装置100を矢印Xの方向から見た背面図であり、図3は図1のA-A線における基板処理装置100の縦断面図である。
[1] First Embodiment (1) Configuration of Substrate Processing Apparatus In the substrate processing apparatus according to the first embodiment, the front and back surfaces of the substrate are mainly physically cleaned using a brush. At this time, a film may or may not be formed on the surface of the substrate. FIG. 1 is a plan view showing the configuration of the substrate processing apparatus according to the first embodiment, FIG. 2 is a rear view of the substrate processing apparatus 100 of FIG. 1 viewed from the direction of arrow X, and FIG. 1 is a longitudinal sectional view of a substrate processing apparatus 100 taken along line AA of FIG.
 図1に示すように、基板処理装置100は、インデクサブロック10および処理ブロック11を有する。インデクサブロック10および処理ブロック11は、矢印Xの方向に並ぶとともに互いに隣り合うように設けられている。 As shown in FIG. 1, the substrate processing apparatus 100 has an indexer block 10 and a processing block 11. The indexer block 10 and the processing block 11 are arranged in the direction of the arrow X and adjacent to each other.
 インデクサブロック10は、複数(本例では4つ)のキャリア載置台40および搬送部10Aを含む。複数のキャリア載置台40は、一方向に並ぶように搬送部10Aに接続されている。各キャリア載置台40上には、複数枚の基板Wを多段に収納するキャリアCが載置される。搬送部10Aには、インデクサロボットIRおよび制御部4が設けられている。インデクサロボットIRは、矢印Xに垂直な矢印U(図1)の方向に移動可能に構成されるとともに、鉛直軸の周りで回転可能かつ上下方向に昇降可能に構成されている。インデクサロボットIRには、基板Wを受け渡すための2つのハンドIRH(図3)が上下に設けられている。各ハンドIRHは、多関節型アームにより支持され、水平方向に進退可能となっている。多関節型アームは、図示しない駆動機構により独立に駆動される。また、ハンドIRHは、基板Wの下面の周縁部および外周端部を保持する。制御部4は、CPU(中央演算処理装置)、ROM(リードオンリメモリ)およびRAM(ランダムアクセスメモリ)を含むコンピュータ等からなり、基板処理装置100内の各構成部を制御する。 The indexer block 10 includes a plurality (four in this example) of carrier mounting tables 40 and a transport unit 10A. The plurality of carrier platforms 40 are connected to the transport unit 10A so as to be aligned in one direction. On each carrier mounting table 40, a carrier C that stores a plurality of substrates W in multiple stages is mounted. The transport unit 10A is provided with an indexer robot IR and a control unit 4. The indexer robot IR is configured to be movable in the direction of an arrow U (FIG. 1) perpendicular to the arrow X, and is configured to be rotatable about a vertical axis and to be vertically movable. The indexer robot IR is provided with two hands IRH (FIG. 3) for transferring the substrate W up and down. Each hand IRH is supported by an articulated arm and can advance and retreat in the horizontal direction. The articulated arm is driven independently by a drive mechanism (not shown). The hand IRH holds the peripheral edge and the outer peripheral edge of the lower surface of the substrate W. The control unit 4 includes a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and controls each component in the substrate processing apparatus 100.
 図2に示すように、処理ブロック11は、表面洗浄部11A、裏面洗浄部11Bおよび搬送部11Cを含む。表面洗浄部11Aは処理ブロック11の一方の側面側に位置し、裏面洗浄部11Bは処理ブロック11の他方の側面側に位置する。表面洗浄部11Aおよび裏面洗浄部11Bは、搬送部11Cを挟んで互いに対向する。 As shown in FIG. 2, the processing block 11 includes a front surface cleaning unit 11A, a back surface cleaning unit 11B, and a transport unit 11C. The front surface cleaning unit 11 </ b> A is located on one side of the processing block 11, and the back surface cleaning unit 11 </ b> B is located on the other side of the processing block 11. The front surface cleaning unit 11A and the back surface cleaning unit 11B face each other with the transport unit 11C interposed therebetween.
 表面洗浄部11Aには、複数(本例では3つ)の表面洗浄ユニットSSおよび1つの除電ユニットOWEが設けられる。複数の表面洗浄ユニットSSおよび1つの除電ユニットOWEは上下に積層配置されている。裏面洗浄部11Bには、複数(本例では3つ)の裏面洗浄ユニットSSRおよび1つの除電ユニットOWEが設けられる。複数の裏面洗浄ユニットSSRおよび1つの除電ユニットOWEは上下に積層配置されている。なお、表面洗浄部11Aおよび裏面洗浄部11Bの各々には、2以上の除電ユニットOWEが設けられてもよい。 The surface cleaning unit 11A is provided with a plurality of (three in this example) surface cleaning units SS and one static elimination unit OWE. The plurality of surface cleaning units SS and one static elimination unit OWE are stacked one above the other. The back surface cleaning unit 11B is provided with a plurality (three in this example) of back surface cleaning units SSR and one static elimination unit OWE. The plurality of back surface cleaning units SSR and one static elimination unit OWE are stacked one above the other. Note that each of the front surface cleaning unit 11A and the back surface cleaning unit 11B may be provided with two or more static elimination units OWE.
 搬送部11Cには、メインロボットMRが設けられている。メインロボットMRは、鉛直軸の周りで回転可能かつ上下方向に昇降可能に構成されている。また、メインロボットMRには、基板Wを受け渡すための2つのハンドMRH(図2)が上下に設けられている。各ハンドMRHは、多関節型アームにより支持され、水平方向に進退可能となっている。多関節型アームは、図示しない駆動機構により独立に駆動される。また、ハンドMRHは基板Wの下面の周縁部および外周端部を保持する。 A main robot MR is provided in the transport unit 11C. The main robot MR is configured to be rotatable about a vertical axis and to be vertically movable. Further, the main robot MR is provided with two hands MRH (FIG. 2) for transferring the substrate W up and down. Each hand MRH is supported by an articulated arm and can advance and retreat in the horizontal direction. The articulated arm is driven independently by a drive mechanism (not shown). The hand MRH holds the peripheral edge and the outer peripheral edge of the lower surface of the substrate W.
 図3に示すように、インデクサブロック10の搬送部10Aと処理ブロック11の搬送部11Cとの間には、反転ユニットRT1,RT2および基板載置部PASS1,PASS2が上下に積層配置されている。反転ユニットRT1は基板載置部PASS1,PASS2の上方に設けられており、反転ユニットRT2は基板載置部PASS1,PASS2の下方に設けられている。 As shown in FIG. 3, between the transport unit 10A of the indexer block 10 and the transport unit 11C of the processing block 11, the reversing units RT1 and RT2 and the substrate platforms PASS1 and PASS2 are stacked one above the other. The reversing unit RT1 is provided above the substrate platforms PASS1, PASS2, and the reversing unit RT2 is provided below the substrate platforms PASS1, PASS2.
 (2)基板処理装置の動作の概要
 本実施の形態に係る基板処理装置100においては、基板Wの表面および裏面がそれぞれ表面洗浄ユニットSSおよび裏面洗浄ユニットSSRにより洗浄される。図4は、第1の実施の形態に係る基板処理装置100における基本的な動作の流れを示すフローチャートである。基板処理装置100の動作の概要について図1~図4を参照しながら説明する。なお、以下に説明する基板処理装置100の各構成要素の動作は、図1の制御部4により制御される。
(2) Outline of Operation of Substrate Processing Apparatus In substrate processing apparatus 100 according to the present embodiment, the front and back surfaces of substrate W are cleaned by front surface cleaning unit SS and back surface cleaning unit SSR, respectively. FIG. 4 is a flowchart showing a basic operation flow in the substrate processing apparatus 100 according to the first embodiment. An outline of the operation of the substrate processing apparatus 100 will be described with reference to FIGS. The operation of each component of the substrate processing apparatus 100 described below is controlled by the control unit 4 in FIG.
 最初に、インデクサロボットIRは、インデクサブロック10内のいずれかのキャリアCから未処理の基板Wを取り出す(ステップS11)。この時点では、基板Wの表面が上方に向けられている。インデクサロボットIRは、取り出した未処理の基板Wを基板載置部PASS2に載置する。基板載置部PASS2に載置された基板Wは、メインロボットMRにより受け取られ、反転ユニットRT1に搬入される。反転ユニットRT1は、表面が上方に向けられた基板Wを、裏面が上方を向くように反転する(ステップS12)。反転後の基板Wは、メインロボットMRにより反転ユニットRT1から搬出され、処理ブロック11のいずれかの除電ユニットOWEに搬入される。 First, the indexer robot IR takes out an unprocessed substrate W from any carrier C in the indexer block 10 (step S11). At this point, the surface of the substrate W is directed upward. The indexer robot IR places the unprocessed substrate W taken out on the substrate platform PASS2. The substrate W placed on the substrate platform PASS2 is received by the main robot MR and carried into the reversing unit RT1. The reversing unit RT1 reverses the substrate W whose front surface is directed upward so that the back surface faces upward (step S12). The inverted substrate W is unloaded from the reversing unit RT1 by the main robot MR, and is loaded into any static elimination unit OWE in the processing block 11.
 除電ユニットOWEは、搬入された未処理の基板Wの除電処理を行う(ステップS13)。除電処理の詳細は後述する。除電処理後の基板Wは、メインロボットMRにより除電ユニットOWEから搬出され、裏面洗浄部11Bのいずれかの裏面洗浄ユニットSSRに搬入される。なお、上記のステップS12,S13の処理は逆の順で行われてもよい。 The neutralization unit OWE performs a neutralization process on the unprocessed substrate W that has been carried in (step S13). Details of the charge removal process will be described later. The substrate W after the charge removal process is unloaded from the charge removal unit OWE by the main robot MR, and is loaded into any one of the back surface cleaning units SSR of the back surface cleaning unit 11B. Note that the processes of steps S12 and S13 may be performed in the reverse order.
 裏面洗浄ユニットSSRは、未処理の基板Wの裏面の洗浄処理を行う(ステップS14)。以下、基板Wの裏面の洗浄処理を裏面洗浄処理と呼ぶ。裏面洗浄処理の詳細は後述する。裏面洗浄処理後の基板Wは、メインロボットMRにより裏面洗浄ユニットSSRから搬出され、反転ユニットRT2に搬入される。 The back surface cleaning unit SSR performs a cleaning process on the back surface of the unprocessed substrate W (step S14). Hereinafter, the cleaning process for the back surface of the substrate W is referred to as a back surface cleaning process. Details of the back surface cleaning process will be described later. The substrate W after the back surface cleaning process is unloaded from the back surface cleaning unit SSR by the main robot MR and is loaded into the reversing unit RT2.
 反転ユニットRT2は、裏面が上方に向けられた裏面洗浄処理後の基板Wを、表面が上方を向くように反転する(ステップS15)。反転後の基板Wは、メインロボットMRにより反転ユニットRT2から搬出され、処理ブロック11のいずれかの除電ユニットOWEに搬入される。 The reversing unit RT2 reverses the substrate W after the back surface cleaning process with the back surface directed upward so that the front surface faces upward (step S15). The inverted substrate W is unloaded from the reversing unit RT2 by the main robot MR, and is loaded into any static elimination unit OWE in the processing block 11.
 除電ユニットOWEは、裏面洗浄処理後の基板Wの除電処理を行う(ステップS16)。除電処理が行われた基板Wは、メインロボットMRにより除電ユニットOWEから搬出され、表面洗浄部11Aのいずれかの表面洗浄ユニットSSに搬入される。なお、上記のステップS15,S16の処理は逆の順で行われてもよい。 The neutralization unit OWE performs a neutralization process on the substrate W after the back surface cleaning process (step S16). The substrate W on which the charge removal process has been performed is carried out of the charge removal unit OWE by the main robot MR and carried into any one of the surface cleaning units SS of the surface cleaning unit 11A. Note that the processes of steps S15 and S16 may be performed in the reverse order.
 表面洗浄ユニットSSは、裏面洗浄処理後の基板Wの表面の洗浄処理を行う(ステップS17)。以下、基板Wの表面の洗浄処理を表面洗浄処理と呼ぶ。表面洗浄処理の詳細は後述する。表面洗浄処理後の基板Wは、メインロボットMRにより表面洗浄ユニットSSから搬出され、処理ブロック11のいずれかの除電ユニットOWEに搬入される。 The front surface cleaning unit SS performs a cleaning process on the surface of the substrate W after the back surface cleaning process (step S17). Hereinafter, the cleaning process for the surface of the substrate W is referred to as a surface cleaning process. Details of the surface cleaning process will be described later. The substrate W after the surface cleaning process is unloaded from the surface cleaning unit SS by the main robot MR, and is loaded into one of the charge removal units OWE in the processing block 11.
 除電ユニットOWEは、表面洗浄処理後の基板Wの除電処理を行う(ステップS18)。除電処理後の基板Wは、メインロボットMRにより除電ユニットOWEから搬出され、基板載置部PASS1に載置される。インデクサロボットIRは、基板載置部PASS1に載置された基板Wを受け取り、受け取った処理済みの基板Wをインデクサブロック10内のいずれかのキャリアC内に収納する(ステップS19)。このように、基板処理装置100に搬入される基板Wごとに上記の一連の動作が繰り返される。 The neutralization unit OWE performs a neutralization process on the substrate W after the surface cleaning process (step S18). The substrate W after the charge removal process is unloaded from the charge removal unit OWE by the main robot MR and placed on the substrate platform PASS1. The indexer robot IR receives the substrate W placed on the substrate platform PASS1, and stores the received processed substrate W in one of the carriers C in the indexer block 10 (step S19). As described above, the above-described series of operations is repeated for each substrate W carried into the substrate processing apparatus 100.
 なお、本実施の形態では、基板Wの裏面洗浄処理および表面洗浄処理がこの順で行われるが、基板Wの裏面洗浄処理および表面洗浄処理が逆の順で行われてもよい。この場合、上記のステップS11の処理後ステップS12~S15の処理前にステップS16,S17の処理が行われ、ステップS15の処理後にステップS18,S19の処理が行われる。 In the present embodiment, the back surface cleaning process and the front surface cleaning process for the substrate W are performed in this order, but the back surface cleaning process and the front surface cleaning process for the substrate W may be performed in reverse order. In this case, the processes of steps S16 and S17 are performed after the process of step S11 and before the processes of steps S12 to S15, and the processes of steps S18 and S19 are performed after the process of step S15.
 (3)除電ユニット
 まず、本実施の形態に係る除電ユニットOWEによる除電処理の概略を説明する。除電ユニットOWEにおいては、酸素分子を含む雰囲気内に配置される基板Wの上面に波長約120nm以上約230nm以下の真空紫外線が照射される。このとき、基板Wの上面上の雰囲気が真空紫外線の一部を吸収することにより、その雰囲気に含まれる酸素分子が光解離により2つの酸素原子に分解される。分解された酸素原子が周囲に存在する酸素分子と結合することによりオゾンが発生される。
(3) Static elimination unit First, the outline of the static elimination process by the static elimination unit OWE which concerns on this Embodiment is demonstrated. In the static elimination unit OWE, vacuum ultraviolet rays having a wavelength of about 120 nm or more and about 230 nm or less are irradiated on the upper surface of the substrate W arranged in an atmosphere containing oxygen molecules. At this time, the atmosphere on the upper surface of the substrate W absorbs part of the vacuum ultraviolet rays, whereby oxygen molecules contained in the atmosphere are decomposed into two oxygen atoms by photodissociation. Ozone is generated when the decomposed oxygen atoms combine with surrounding oxygen molecules.
 オゾンは、正電荷を帯びた共鳴構造と負電荷を帯びた共鳴構造との重ね合わせによって表現される共鳴混成体である。各共鳴構造は、共有結合および配位結合を含む。配位結合は不安定であるため、生成されたオゾンが正または負に帯電した基板Wの上面に接触すると、オゾンと基板Wとの間で電荷の授受が行われる。この場合、オゾンの配位結合が切断されるとともに、基板Wの電位が0(V)に近づく。このようにして、基板Wの帯電量および帯電極性によらず、電位が0(V)に近づくように基板Wが除電される。 Ozone is a resonance hybrid expressed by superposition of a resonance structure with a positive charge and a resonance structure with a negative charge. Each resonant structure includes covalent bonds and coordinate bonds. Since the coordinate bond is unstable, when the generated ozone contacts the upper surface of the positively or negatively charged substrate W, charge is transferred between the ozone and the substrate W. In this case, the coordinate bond of ozone is cut, and the potential of the substrate W approaches 0 (V). In this way, the substrate W is neutralized so that the potential approaches 0 (V) regardless of the charge amount and the charge polarity of the substrate W.
 続いて、除電ユニットOWEの構成の詳細を説明する。図5は除電ユニットOWEの外観斜視図であり、図6は除電ユニットOWEの側面図である。図5および図6に一点鎖線で示すように、除電ユニットOWEは略直方体形状を有する筐体60を含む。筐体60は、前壁部61、後壁部62、一側壁部63、他側壁部64、天井部65および床部66を有する。前壁部61および後壁部62は互いに対向し、一側壁部63および他側壁部64は互いに対向し、天井部65および床部66は互いに対向する。 Subsequently, details of the configuration of the static elimination unit OWE will be described. FIG. 5 is an external perspective view of the static elimination unit OWE, and FIG. 6 is a side view of the static elimination unit OWE. 5 and 6, the static eliminator unit OWE includes a housing 60 having a substantially rectangular parallelepiped shape. The housing 60 includes a front wall portion 61, a rear wall portion 62, one side wall portion 63, another side wall portion 64, a ceiling portion 65, and a floor portion 66. The front wall portion 61 and the rear wall portion 62 face each other, the one side wall portion 63 and the other side wall portion 64 face each other, and the ceiling portion 65 and the floor portion 66 face each other.
 除電ユニットOWEは、後壁部62が図1の搬送部11Cに向くように配置される。図5に示すように、後壁部62には、搬送部11C内と筐体60内との間で基板Wを搬送するための搬送開口62pが形成されている。また、筐体60の床部66には、排気部70が設けられている。排気部70は配管71を介して基板処理装置100の外部の排気装置72に接続される。排気装置72は、例えば工場内の排気設備であり、筐体60から排出される気体の無害化処理等を行う。 The static elimination unit OWE is disposed such that the rear wall 62 faces the transport unit 11C in FIG. As shown in FIG. 5, the rear wall 62 is formed with a transport opening 62 p for transporting the substrate W between the transport unit 11 </ b> C and the housing 60. An exhaust unit 70 is provided on the floor 66 of the housing 60. The exhaust unit 70 is connected to an exhaust unit 72 outside the substrate processing apparatus 100 via a pipe 71. The exhaust device 72 is, for example, an exhaust facility in a factory, and performs a detoxification process for gas discharged from the housing 60.
 以下の説明では、図5以降の所定の図に太い一点鎖線の矢印で示すように、筐体60の内部から前壁部61に向かう方向を除電ユニットOWEの前方と呼び、その逆方向(筐体60の内部から後壁部62に向かう方向)を除電ユニットOWEの後方と呼ぶ。 In the following description, the direction from the inside of the housing 60 toward the front wall portion 61 is referred to as the front of the static elimination unit OWE, as indicated by the thick dashed-dotted arrow in the predetermined drawings in FIG. The direction from the inside of the body 60 toward the rear wall 62) is referred to as the rear of the static elimination unit OWE.
 除電ユニットOWEは、筐体60に加えて主として光出射部300、基板移動部400および搬入搬出部500から構成される。基板移動部400は、略直方体形状を有するケーシング410を含む。ケーシング410は、前上面部411、中央上面部419、後上面部412、下面部413、前面部414、後面部415、一方側面部416および他方側面部417を含む。 The static elimination unit OWE mainly includes a light emitting unit 300, a substrate moving unit 400, and a carry-in / carry-out unit 500 in addition to the housing 60. The substrate moving part 400 includes a casing 410 having a substantially rectangular parallelepiped shape. The casing 410 includes a front upper surface portion 411, a central upper surface portion 419, a rear upper surface portion 412, a lower surface portion 413, a front surface portion 414, a rear surface portion 415, one side surface portion 416 and the other side surface portion 417.
 一方側面部416および他方側面部417は、前後方向に延びるとともに互いに対向するように設けられている。一方側面部416および他方側面部417の上端部中央には一定高さ上方に延びる突出部prが形成されている。図5および図6では、一方側面部416および他方側面部417のうち他方側面部417の突出部prのみが示される。 The one side surface portion 416 and the other side surface portion 417 are provided so as to extend in the front-rear direction and face each other. On the other hand, a protrusion pr that extends upward at a certain height is formed at the center of the upper end of each of the side surface portion 416 and the other side surface portion 417. 5 and 6, only the protrusion pr of the other side surface portion 417 is shown among the one side surface portion 416 and the other side surface portion 417.
 中央上面部419は、一方側面部416の突出部prと他方側面部417の突出部prとをつなぐように設けられる。前上面部411は、突出部prよりも前方の位置で、一方側面部416の上端部と他方側面部417の上端部とをつなぐように設けられる。後上面部412は、突出部prよりも後方の位置で、一方側面部416の上端部と他方側面部417の上端部とをつなぐように設けられる。前上面部411および後上面部412の高さは互いに等しい。 The central upper surface portion 419 is provided so as to connect the protruding portion pr of the one side surface portion 416 and the protruding portion pr of the other side surface portion 417. The front upper surface portion 411 is provided at a position in front of the projecting portion pr so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417. The rear upper surface portion 412 is provided at a position behind the projecting portion pr so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417. The front upper surface portion 411 and the rear upper surface portion 412 have the same height.
 一方側面部416の上端部と他方側面部417の上端部とをつなぐようにかつ前上面部411と後上面部412との間に位置するように、ケーシング410上に光出射部300が設けられる。光出射部300の一部は中央上面部419の上方に位置する。光出射部300の詳細は後述する。 The light emitting unit 300 is provided on the casing 410 so as to connect the upper end portion of the one side surface portion 416 and the upper end portion of the other side surface portion 417 and between the front upper surface portion 411 and the rear upper surface portion 412. . A part of the light emitting part 300 is located above the central upper surface part 419. Details of the light emitting unit 300 will be described later.
 光出射部300の後方に搬入搬出部500が設けられる。図6に示すように、搬入搬出部500は、蓋部材510、蓋駆動部590、支持板591および2つの支持軸592を含む。図6では、2つの支持軸592のうち一方の支持軸592のみが示される。2つの支持軸592は、ケーシング410の両側部で上下方向に延びるようにそれぞれ設けられる。2つの支持軸592により支持板591が水平姿勢で支持される。この状態で、支持板591は光出射部300の後方かつ後上面部412の上方に位置する。支持板591の下面に蓋駆動部590が取り付けられる。蓋駆動部590の下方に蓋部材510が設けられる。 A loading / unloading unit 500 is provided behind the light emitting unit 300. As shown in FIG. 6, the carry-in / carry-out unit 500 includes a lid member 510, a lid drive unit 590, a support plate 591, and two support shafts 592. In FIG. 6, only one of the two support shafts 592 is shown. The two support shafts 592 are respectively provided so as to extend in the vertical direction on both sides of the casing 410. The support plate 591 is supported in a horizontal posture by the two support shafts 592. In this state, the support plate 591 is located behind the light emitting part 300 and above the rear upper surface part 412. A lid driving unit 590 is attached to the lower surface of the support plate 591. A lid member 510 is provided below the lid driving unit 590.
 ケーシング410の後上面部412には開口部412b(図6)が形成されている。蓋駆動部590は、蓋部材510を駆動することにより蓋部材510を上下方向に移動させる。それにより、開口部412bが閉塞されまたは開放される。開口部412bが開放されることにより、ケーシング410内への基板Wの搬入およびケーシング410からの基板Wの搬出が可能となる。蓋部材510の構造および蓋部材510による開口部412bの開閉動作の詳細は後述する。 An opening 412 b (FIG. 6) is formed in the rear upper surface portion 412 of the casing 410. The lid driving unit 590 moves the lid member 510 in the vertical direction by driving the lid member 510. Thereby, the opening 412b is closed or opened. By opening the opening 412b, it is possible to carry the substrate W into the casing 410 and carry the substrate W out of the casing 410. Details of the structure of the lid member 510 and the opening / closing operation of the opening 412b by the lid member 510 will be described later.
 図7は除電ユニットOWEの内部構造を説明するための側面図であり、図8は除電ユニットOWEの内部構造を説明するための平面図であり、図9は除電ユニットOWEの内部構造を説明するための正面図である。 FIG. 7 is a side view for explaining the internal structure of the static elimination unit OWE, FIG. 8 is a plan view for explaining the internal structure of the static elimination unit OWE, and FIG. 9 explains the internal structure of the static elimination unit OWE. FIG.
 図7では、他方側面部417(図5)が取り外された除電ユニットOWEの状態が示される。図8では、前上面部411(図5)および後上面部412(図5)が取り外された除電ユニットOWEの状態が示される。図9では、前面部414(図5)が取り外された除電ユニットOWEの状態が示される。また、図7~図9では、光出射部300(図5)の構成の一部または全部が一点鎖線で示されるとともに、筐体60(図5)の図示が省略される。 FIG. 7 shows the state of the static elimination unit OWE with the other side surface portion 417 (FIG. 5) removed. FIG. 8 shows a state of the static elimination unit OWE from which the front upper surface portion 411 (FIG. 5) and the rear upper surface portion 412 (FIG. 5) are removed. In FIG. 9, the state of the static elimination unit OWE from which the front surface part 414 (FIG. 5) was removed is shown. 7 to 9, a part or all of the configuration of the light emitting unit 300 (FIG. 5) is indicated by a one-dot chain line, and the housing 60 (FIG. 5) is not shown.
 図7に示すように、基板移動部400のケーシング410内には、受渡機構420およびローカル搬送機構430が設けられる。受渡機構420は、複数の昇降ピン421、ピン支持部材422およびピン昇降駆動部423を含み、光出射部300よりも後方に配置される。 As shown in FIG. 7, a delivery mechanism 420 and a local transport mechanism 430 are provided in the casing 410 of the substrate moving unit 400. The delivery mechanism 420 includes a plurality of lift pins 421, a pin support member 422, and a pin lift drive unit 423, and is disposed behind the light emitting unit 300.
 ピン支持部材422に複数の昇降ピン421がそれぞれ上方に延びるように取り付けられる。ピン昇降駆動部423は、ピン支持部材422を上下方向に移動可能に支持する。この状態で、複数の昇降ピン421は、後上面部412の開口部412bに重なるように配置される。受渡機構420は、例えば図1の制御部4により制御される。ピン昇降駆動部423が動作することにより、複数の昇降ピン421の上端部が、後上面部412よりも上方の受渡位置と後述するローカル搬送ハンド434よりも下方の待機位置との間を移動する。 A plurality of lifting pins 421 are attached to the pin support member 422 so as to extend upward. The pin lifting / lowering drive unit 423 supports the pin support member 422 so as to be movable in the vertical direction. In this state, the plurality of lifting pins 421 are arranged so as to overlap the opening 412 b of the rear upper surface portion 412. The delivery mechanism 420 is controlled by, for example, the control unit 4 in FIG. By operating the pin lifting / lowering drive unit 423, the upper ends of the plurality of lifting pins 421 move between a delivery position above the rear upper surface part 412 and a standby position below the local transport hand 434 described later. .
 図8に示すように、ローカル搬送機構430は、送り軸431、送り軸モータ432、2つのガイドレール433、ローカル搬送ハンド434、2つのハンド支持部材435および連結部材439を含む。 As shown in FIG. 8, the local transport mechanism 430 includes a feed shaft 431, a feed shaft motor 432, two guide rails 433, a local transport hand 434, two hand support members 435, and a connecting member 439.
 ケーシング410内においては、前面部414の近傍に送り軸モータ432が設けられる。送り軸モータ432から後面部415の近傍にかけて前後方向に延びるように送り軸431が設けられる。送り軸431は、例えばボールねじであり、送り軸モータ432の回転軸に接続される。 In the casing 410, a feed shaft motor 432 is provided in the vicinity of the front surface portion 414. A feed shaft 431 is provided so as to extend in the front-rear direction from the feed shaft motor 432 to the vicinity of the rear surface portion 415. The feed shaft 431 is a ball screw, for example, and is connected to the rotation shaft of the feed shaft motor 432.
 一方側面部416の近傍で前後方向に延びるようにガイドレール433が設けられる。また、他方側面部417の近傍で前後方向に延びるようにガイドレール433が設けられる。送り軸431および2つのガイドレール433は互いに平行となるように配置される。 The guide rail 433 is provided so as to extend in the front-rear direction in the vicinity of the one side surface portion 416. Further, a guide rail 433 is provided so as to extend in the front-rear direction in the vicinity of the other side surface portion 417. The feed shaft 431 and the two guide rails 433 are arranged so as to be parallel to each other.
 2つのガイドレール433上に2つのハンド支持部材435がそれぞれ前後方向に移動可能にかつ上方に延びるように設けられる。2つのハンド支持部材435は共通の高さを有する。2つのハンド支持部材435の上端部をつなぐようにローカル搬送ハンド434が設けられる。ローカル搬送ハンド434は、略円形状を有する板部材であり、2つのハンド支持部材435により支持される。ローカル搬送ハンド434上には基板Wが載置される。 Two hand support members 435 are provided on the two guide rails 433 so as to be movable in the front-rear direction and to extend upward. The two hand support members 435 have a common height. A local transport hand 434 is provided so as to connect the upper ends of the two hand support members 435. The local transport hand 434 is a plate member having a substantially circular shape, and is supported by two hand support members 435. A substrate W is placed on the local transport hand 434.
 ローカル搬送ハンド434には、複数の貫通孔434hが形成される。複数の貫通孔434hは、ローカル搬送ハンド434の中心部を取り囲むように等角度間隔で配置される。複数の貫通孔434hには、受渡機構420の複数の昇降ピン421がそれぞれ挿入可能である。また、ローカル搬送ハンド434の下面には、ローカル搬送ハンド434と送り軸431とを連結する連結部材439が設けられる。 A plurality of through holes 434 h are formed in the local transport hand 434. The plurality of through holes 434 h are arranged at equiangular intervals so as to surround the central portion of the local transport hand 434. A plurality of lifting pins 421 of the delivery mechanism 420 can be inserted into the plurality of through holes 434h, respectively. A connecting member 439 that connects the local transport hand 434 and the feed shaft 431 is provided on the lower surface of the local transport hand 434.
 ローカル搬送機構430は、例えば図1の制御部4により制御される。送り軸モータ432が動作することにより送り軸431が回転する。それにより、ローカル搬送ハンド434が光出射部300よりも後方の後方位置P1と光出射部300よりも前方の前方位置P2との間で前後方向に移動する。図7以降の所定の図では、後方位置P1および前方位置P2の中心部が黒い三角印で示される。なお、図7および図8では、前方位置P2にあるときのローカル搬送ハンド434およびハンド支持部材435が二点鎖線で示される。 The local transport mechanism 430 is controlled by, for example, the control unit 4 in FIG. When the feed shaft motor 432 operates, the feed shaft 431 rotates. Accordingly, the local transport hand 434 moves in the front-rear direction between a rear position P1 behind the light emitting unit 300 and a front position P2 ahead of the light emitting unit 300. In the predetermined drawings after FIG. 7, the central portions of the rear position P1 and the front position P2 are indicated by black triangle marks. 7 and 8, the local transport hand 434 and the hand support member 435 at the front position P2 are indicated by a two-dot chain line.
 受渡機構420の複数の昇降ピン421の上端部が待機位置にありかつローカル搬送ハンド434が後方位置P1にある状態で、複数の貫通孔434hが受渡機構420の複数の昇降ピン421上にそれぞれ位置決めされる。 The plurality of through holes 434h are positioned on the plurality of lift pins 421 of the delivery mechanism 420 in a state where the upper ends of the plurality of lift pins 421 of the delivery mechanism 420 are at the standby position and the local transport hand 434 is at the rear position P1. Is done.
 基板Wの除電処理時には、ケーシング410内で酸素分子の光解離に起因してオゾンが発生される。オゾンは人体に悪影響を与えるため、オゾンが過剰に発生することは好ましくない。ケーシング410内でのオゾンの発生量は、ケーシング410内の酸素濃度が高いほど増加し、ケーシング410内の酸素濃度が低いほど低下する。そこで、ケーシング410内の酸素濃度を低下させるために、ケーシング410内に第1の窒素ガス供給部450が設けられる。図8に示すように、第1の窒素ガス供給部450は、両端部が閉塞された管状部材により構成され、一方側面部416から他方側面部417に延びるように後面部415の内面に取り付けられる。 During the charge removal treatment of the substrate W, ozone is generated in the casing 410 due to photodissociation of oxygen molecules. Since ozone adversely affects the human body, it is not preferable that ozone is excessively generated. The amount of ozone generated in the casing 410 increases as the oxygen concentration in the casing 410 increases, and decreases as the oxygen concentration in the casing 410 decreases. In order to reduce the oxygen concentration in the casing 410, a first nitrogen gas supply unit 450 is provided in the casing 410. As shown in FIG. 8, the first nitrogen gas supply unit 450 is configured by a tubular member whose both ends are closed, and is attached to the inner surface of the rear surface portion 415 so as to extend from one side surface portion 416 to the other side surface portion 417. .
 図9に示すように、第1の窒素ガス供給部450のうち前方を向く部分には、複数の噴射孔451が形成されている。複数の噴射孔451は、第1の窒素ガス供給部450の一端部から他端部にかけて略等間隔で並ぶように配置される。また、図7および図8に示すように、第1の窒素ガス供給部450のうち後方を向く部分に、窒素ガス導入管459の一端部が接続される。窒素ガス導入管459の他端部はケーシング410の外側に位置する。窒素ガス導入管459の他端部には、図示しない窒素ガス供給系が接続される。 As shown in FIG. 9, a plurality of injection holes 451 are formed in a portion of the first nitrogen gas supply unit 450 facing forward. The plurality of injection holes 451 are arranged so as to be arranged at substantially equal intervals from one end to the other end of the first nitrogen gas supply unit 450. As shown in FIGS. 7 and 8, one end of a nitrogen gas introduction pipe 459 is connected to a portion of the first nitrogen gas supply unit 450 facing rearward. The other end of the nitrogen gas introduction pipe 459 is located outside the casing 410. A nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 459.
 ケーシング410の前面部414には、ケーシング410内の雰囲気をケーシング410の外部に排出するための気体導出管418が設けられている。窒素ガス供給系から窒素ガス導入管459に供給される窒素ガスは、第1の窒素ガス供給部450の内部空間を通って複数の噴射孔451からケーシング410内に噴射される。このとき、ケーシング410内の雰囲気が気体導出管418からケーシング410の外部に排出される。それにより、ケーシング410内の雰囲気が窒素ガスにより置換され、酸素濃度が低下する。したがって、オゾンが過剰に発生されることが抑制される。その結果、ケーシング410の外部に漏れ出るオゾンの量が低減される。 A gas outlet pipe 418 for discharging the atmosphere in the casing 410 to the outside of the casing 410 is provided on the front surface portion 414 of the casing 410. Nitrogen gas supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 459 is injected into the casing 410 from the plurality of injection holes 451 through the internal space of the first nitrogen gas supply unit 450. At this time, the atmosphere in the casing 410 is discharged from the gas outlet pipe 418 to the outside of the casing 410. Thereby, the atmosphere in the casing 410 is replaced with nitrogen gas, and the oxygen concentration decreases. Accordingly, excessive generation of ozone is suppressed. As a result, the amount of ozone leaking out of the casing 410 is reduced.
 また、ケーシング410内に供給される窒素ガスは、除電処理におけるオゾンの発生時に酸素原子と酸素分子との三体反応の触媒として機能する。したがって、適切な量のオゾンが効率よく発生される。 Further, the nitrogen gas supplied into the casing 410 functions as a catalyst for a three-body reaction between oxygen atoms and oxygen molecules when ozone is generated in the charge removal process. Therefore, an appropriate amount of ozone is efficiently generated.
 ここで、図5に示すように、筐体60においては、気体導出管418からケーシング410の外部に排出されるオゾンが、排気部70および配管71を通して排気装置72に送られる。したがって、除電処理によって発生するオゾンが除電ユニットOWEの周辺に拡散することが防止される。 Here, as shown in FIG. 5, in the housing 60, ozone discharged from the gas outlet pipe 418 to the outside of the casing 410 is sent to the exhaust device 72 through the exhaust unit 70 and the pipe 71. Therefore, the ozone generated by the charge removal process is prevented from diffusing around the charge removal unit OWE.
 図7に示すように、ケーシング410内には、さらに後位置センサS1、前位置センサS2、照度センサS3および酸素濃度センサS4が設けられる。後位置センサS1は、ローカル搬送ハンド434が後方位置P1にあるか否かを検出し、検出結果を図1の制御部4に与える。前位置センサS2は、ローカル搬送ハンド434が前方位置P2にあるか否かを検出し、検出結果を図1の制御部4に与える。後位置センサS1および前位置センサS2としては、例えば光学式のセンサ等が用いられる。 As shown in FIG. 7, a rear position sensor S1, a front position sensor S2, an illuminance sensor S3, and an oxygen concentration sensor S4 are further provided in the casing 410. The rear position sensor S1 detects whether or not the local transport hand 434 is at the rear position P1, and gives the detection result to the control unit 4 in FIG. The front position sensor S2 detects whether or not the local transport hand 434 is at the forward position P2, and gives the detection result to the control unit 4 in FIG. For example, an optical sensor or the like is used as the rear position sensor S1 and the front position sensor S2.
 酸素濃度センサS4は、ケーシング410内の酸素濃度を検出し、検出結果を図1の制御部4に与える。酸素濃度センサS4としては、ガルバニ電池式酸素センサまたはジルコニア式酸素センサ等が用いられる。 The oxygen concentration sensor S4 detects the oxygen concentration in the casing 410 and gives the detection result to the control unit 4 in FIG. As the oxygen concentration sensor S4, a galvanic cell type oxygen sensor or a zirconia type oxygen sensor is used.
 照度センサS3は、フォトダイオード等の受光素子を含み、光が照射される受光素子の受光面の照度を検出する。ここで、照度とは、受光面の単位面積当たりに照射される光の仕事率である。照度の単位は、例えば「W/m」で表される。本実施の形態では、照度センサS3により検出される照度は、ローカル搬送ハンド434により後方位置P1と前方位置P2との間を移動する基板Wに真空紫外線が照射されるときの基板Wの照度、すなわち除電処理時において真空紫外線が照射されるときの基板Wの照度に相当する。また、照度センサS3は、光出射部300の後述する出射面321(図13(c))に対向する位置で、センサ昇降駆動部441により上下方向に移動可能に支持される。センサ昇降駆動部441は、例えば図1の制御部4により制御される。 The illuminance sensor S3 includes a light receiving element such as a photodiode, and detects the illuminance of the light receiving surface of the light receiving element irradiated with light. Here, the illuminance is the power of light irradiated per unit area of the light receiving surface. The unit of illuminance is represented by “W / m 2 ”, for example. In the present embodiment, the illuminance detected by the illuminance sensor S3 is the illuminance of the substrate W when the substrate W moving between the rear position P1 and the front position P2 is irradiated with vacuum ultraviolet rays by the local transport hand 434, That is, it corresponds to the illuminance of the substrate W when the vacuum ultraviolet ray is irradiated during the charge removal process. In addition, the illuminance sensor S3 is supported by the sensor lifting / lowering drive unit 441 so as to be movable in the vertical direction at a position facing a later-described emission surface 321 (FIG. 13C) of the light emitting unit 300. The sensor lifting / lowering drive unit 441 is controlled by, for example, the control unit 4 of FIG.
 図8および図9に示すように、照度センサS3の近傍には、遮光部材442および遮光駆動部443が設けられる。遮光部材442は、照度センサS3の受光素子よりも大きい外形を有する。遮光駆動部443は、上下方向における照度センサS3と光出射部300との間の位置(高さ)で、遮光部材442を前後方向に移動可能に支持する。遮光駆動部443は、例えば図1の制御部4により制御される。センサ昇降駆動部441および遮光駆動部443の動作の詳細は後述する。 8 and 9, a light shielding member 442 and a light shielding drive unit 443 are provided in the vicinity of the illuminance sensor S3. The light shielding member 442 has a larger outer shape than the light receiving element of the illuminance sensor S3. The light shielding drive unit 443 supports the light shielding member 442 so as to be movable in the front-rear direction at a position (height) between the illuminance sensor S3 and the light emitting unit 300 in the vertical direction. The light shielding drive unit 443 is controlled by, for example, the control unit 4 in FIG. Details of the operations of the sensor lift drive unit 441 and the light shielding drive unit 443 will be described later.
 次に、図5のケーシング410の後上面部412、中央上面部419および搬入搬出部500の蓋部材510の構成について説明する。図10は後上面部412および中央上面部419の平面図であり、図11は蓋部材510の下面図である。 Next, the configuration of the rear upper surface portion 412, the central upper surface portion 419, and the lid member 510 of the carry-in / carry-out portion 500 will be described. FIG. 10 is a plan view of the rear upper surface portion 412 and the central upper surface portion 419, and FIG. 11 is a bottom view of the lid member 510.
 図10に示すように、後上面部412および中央上面部419を上方から見た場合に、開口部412bは後上面部412の後縁および中央上面部419の前縁により取り囲まれる。蓋部材510は、開口部412bよりもやや大きい外形を有する。また、蓋部材510の下面は、両端部を除く前縁の一部から一定幅の領域510d(図11)が他の領域に比べて一定高さ分高くなるように形成されている。 As shown in FIG. 10, when the rear upper surface portion 412 and the central upper surface portion 419 are viewed from above, the opening 412 b is surrounded by the rear edge of the rear upper surface portion 412 and the front edge of the central upper surface portion 419. The lid member 510 has an outer shape that is slightly larger than the opening 412b. Further, the lower surface of the lid member 510 is formed such that a region 510d (FIG. 11) having a constant width is higher than a part of the front edge excluding both ends by a certain height compared to the other regions.
 蓋部材510により開口部412bが閉塞される場合には、蓋部材510の下面のうち前縁を除く外縁から一定幅の領域510c(図11)が、後上面部412の上面に当接する。また、蓋部材510の下面のうち領域510d(図11)が、中央上面部419の上面に当接する。すなわち、後上面部412および中央上面部419のうち開口部412bを取り囲む領域に蓋部材510の下面が接触する。それにより、ケーシング410と蓋部材510との間に隙間が生じない。したがって、簡単な構成でケーシング410内の密閉性が向上する。 When the opening 412 b is closed by the lid member 510, a region 510 c (FIG. 11) having a constant width from the outer edge excluding the front edge of the lower surface of the lid member 510 contacts the upper surface of the rear upper surface portion 412. In addition, the region 510 d (FIG. 11) in the lower surface of the lid member 510 is in contact with the upper surface of the central upper surface portion 419. That is, the lower surface of the lid member 510 is in contact with the region surrounding the opening 412b in the rear upper surface portion 412 and the central upper surface portion 419. Accordingly, no gap is generated between the casing 410 and the lid member 510. Therefore, the airtightness in the casing 410 is improved with a simple configuration.
 図11に示すように、蓋部材510の下面には、領域510cの内縁に沿って延びるように略一定幅の溝部510bが形成されている。溝部510b内に第2の窒素ガス供給部520が設けられる。第2の窒素ガス供給部520は、一端部が閉塞された管状部材により構成される。第2の窒素ガス供給部520のうち下方を向く部分には、複数の噴射孔511が形成されている。複数の噴射孔511は、略等間隔で並ぶように配置される。また、第2の窒素ガス供給部520の他端部に、窒素ガス導入管529の一端部が接続されている。窒素ガス導入管529の他端部は蓋部材510の側方に突出している。窒素ガス導入管529の他端部には、図示しない窒素ガス供給系が接続される。 As shown in FIG. 11, a groove portion 510b having a substantially constant width is formed on the lower surface of the lid member 510 so as to extend along the inner edge of the region 510c. A second nitrogen gas supply unit 520 is provided in the groove 510b. The second nitrogen gas supply unit 520 is configured by a tubular member whose one end is closed. A plurality of injection holes 511 are formed in a portion of the second nitrogen gas supply unit 520 that faces downward. The plurality of injection holes 511 are arranged so as to be arranged at substantially equal intervals. In addition, one end of a nitrogen gas introduction pipe 529 is connected to the other end of the second nitrogen gas supply unit 520. The other end of the nitrogen gas introduction pipe 529 protrudes to the side of the lid member 510. A nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 529.
 図12は、ケーシング410の開口部412bが開放されている状態を示す除電ユニットOWEの外観斜視図である。図12では、除電ユニットOWEのうち搬入搬出部500およびその周辺部のみが示される。 FIG. 12 is an external perspective view of the static elimination unit OWE showing a state in which the opening 412b of the casing 410 is opened. In FIG. 12, only the carry-in / carry-out part 500 and its peripheral part are shown among static elimination units OWE.
 図12に示すように、蓋部材510により開口部412bが開放される場合には、蓋部材510の下面の領域510c(図11)が、後上面部412の上方の位置で後上面部412の上面に対向する。また、蓋部材510の下面の領域510d(図11)が、中央上面部419の上方の位置で中央上面部419の上面に対向する。この状態で、窒素ガス供給系から窒素ガス導入管529に窒素ガスが供給される。 As shown in FIG. 12, when the opening 412 b is opened by the lid member 510, the region 510 c (FIG. 11) on the lower surface of the lid member 510 is located above the rear upper surface portion 412 on the rear upper surface portion 412. Opposite the top surface. A region 510 d (FIG. 11) on the lower surface of the lid member 510 faces the upper surface of the central upper surface portion 419 at a position above the central upper surface portion 419. In this state, nitrogen gas is supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 529.
 図12に太い実線の矢印で示すように、開口部412bが開放された状態で窒素ガス導入管529に供給される窒素ガスは、第2の窒素ガス供給部520(図11)の複数の噴射孔511(図11)から下方に噴射される。複数の噴射孔511(図11)から噴射される窒素ガスは、開口部412bの内縁近傍を通ってケーシング410内に流れる。 As indicated by a thick solid arrow in FIG. 12, the nitrogen gas supplied to the nitrogen gas introduction pipe 529 with the opening 412b opened is a plurality of injections of the second nitrogen gas supply unit 520 (FIG. 11). It is injected downward from the hole 511 (FIG. 11). Nitrogen gas injected from the plurality of injection holes 511 (FIG. 11) flows into the casing 410 through the vicinity of the inner edge of the opening 412b.
 この場合、開口部412bの内縁部に沿うように蓋部材510の下面から下方に向かう窒素ガスの流れが形成される。形成された窒素ガスの流れは、蓋部材510の下方の空間とその空間の外方との間で雰囲気の流れを遮断する。それにより、ケーシング410の外部の雰囲気が開口部412bを通してケーシング410内に進入することが防止される。また、ケーシング410内で発生されたオゾンが開口部412bを通してケーシング410外へ流出することが抑制される。 In this case, a flow of nitrogen gas is formed downward from the lower surface of the lid member 510 along the inner edge of the opening 412b. The formed nitrogen gas flow blocks the atmosphere flow between the space below the lid member 510 and the outside of the space. Thereby, the atmosphere outside the casing 410 is prevented from entering the casing 410 through the opening 412b. In addition, ozone generated in the casing 410 is prevented from flowing out of the casing 410 through the opening 412b.
 次に、光出射部300の構成について説明する。図7~図9に示すように、光出射部300は、ケーシング310、紫外線ランプ320および第3の窒素ガス供給部330を含む。図7および図9では、ケーシング310が一点鎖線で示される。図8では、ケーシング310、紫外線ランプ320および第3の窒素ガス供給部330が一点鎖線で示される。ケーシング310内には、紫外線ランプ320および第3の窒素ガス供給部330とともに、紫外線ランプ320の駆動回路、配線および接続端子等が収容される。光出射部300は、例えば図1の制御部4により制御される。 Next, the configuration of the light emitting unit 300 will be described. As shown in FIGS. 7 to 9, the light emitting unit 300 includes a casing 310, an ultraviolet lamp 320, and a third nitrogen gas supply unit 330. 7 and 9, the casing 310 is indicated by a one-dot chain line. In FIG. 8, the casing 310, the ultraviolet lamp 320, and the third nitrogen gas supply unit 330 are indicated by a one-dot chain line. In the casing 310, the ultraviolet lamp 320 and the third nitrogen gas supply unit 330 are housed together with a drive circuit, wiring, connection terminals, and the like of the ultraviolet lamp 320. The light emitting unit 300 is controlled by, for example, the control unit 4 in FIG.
 紫外線ランプ320および第3の窒素ガス供給部330は、それぞれ一方向に延びる直方体形状を有する。図8に一点鎖線で示すように、紫外線ランプ320および第3の窒素ガス供給部330の長手方向の寸法は、互いに等しくかつ一方側面部416と他方側面部417との間の距離とほぼ等しい。 The ultraviolet lamp 320 and the third nitrogen gas supply unit 330 each have a rectangular parallelepiped shape extending in one direction. As indicated by the alternate long and short dash line in FIG. 8, the longitudinal dimensions of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330 are equal to each other and are approximately equal to the distance between the one side surface 416 and the other side surface 417.
 本例では、紫外線ランプ320として、波長172nmの真空紫外線を発生するキセノンエキシマランプが用いられる。なお、紫外線ランプ320は、波長約120nm以上約230nm以下の真空紫外線を発生するランプであればよく、キセノンエキシマランプに代えて他のエキシマランプまたは重水素ランプ等が用いられてもよい。 In this example, a xenon excimer lamp that generates vacuum ultraviolet light having a wavelength of 172 nm is used as the ultraviolet lamp 320. The ultraviolet lamp 320 may be any lamp that generates vacuum ultraviolet light having a wavelength of about 120 nm to about 230 nm, and other excimer lamps or deuterium lamps may be used instead of the xenon excimer lamp.
 図13(a)は紫外線ランプ320および第3の窒素ガス供給部330の平面図であり、図13(b)は紫外線ランプ320および第3の窒素ガス供給部330の正面図であり、図13(c)は紫外線ランプ320および第3の窒素ガス供給部330の下面図である。 13A is a plan view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330, and FIG. 13B is a front view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330. (C) is a bottom view of the ultraviolet lamp 320 and the third nitrogen gas supply unit 330. FIG.
 図13(c)に示すように、紫外線ランプ320の下面には、紫外線ランプ320の一端部から他端部に延びるように真空紫外線の出射面321が形成されている。紫外線ランプ320の点灯時には、出射面321から下方に向かって真空紫外線が出射される。紫外線ランプ320から出射される真空紫外線は、進行方向(本例では上下方向)に直交する帯状断面を有する。また、帯状断面の長さは、基板Wの直径よりも大きい。 As shown in FIG. 13C, a vacuum ultraviolet ray emitting surface 321 is formed on the lower surface of the ultraviolet lamp 320 so as to extend from one end portion of the ultraviolet lamp 320 to the other end portion. When the ultraviolet lamp 320 is turned on, vacuum ultraviolet rays are emitted downward from the emission surface 321. The vacuum ultraviolet rays emitted from the ultraviolet lamp 320 have a belt-like cross section perpendicular to the traveling direction (the vertical direction in this example). Further, the length of the belt-like cross section is larger than the diameter of the substrate W.
 紫外線ランプ320は、その紫外線ランプ320から出射される帯状の真空紫外線が図8のローカル搬送ハンド434に載置される基板Wの移動経路を横切るように配置される。この場合、除電処理時に紫外線ランプ320から帯状の真空紫外線が出射された状態でローカル搬送ハンド434(図8)が後方位置P1(図8)と前方位置P2(図8)との間を一定の移動速度で移動することにより、基板Wの一端部から他端部に向かって帯状の真空紫外線が走査される。それにより、簡単な構成で、基板Wの上面の全ての領域に対して真空紫外線が均一に照射される。 The ultraviolet lamp 320 is arranged so that the belt-like vacuum ultraviolet rays emitted from the ultraviolet lamp 320 cross the moving path of the substrate W placed on the local transport hand 434 in FIG. In this case, the local transport hand 434 (FIG. 8) keeps a certain distance between the rear position P1 (FIG. 8) and the front position P2 (FIG. 8) in a state where the band-shaped vacuum ultraviolet rays are emitted from the ultraviolet lamp 320 during the static elimination process. By moving at the moving speed, the band-shaped vacuum ultraviolet rays are scanned from one end portion of the substrate W toward the other end portion. Thereby, vacuum ultraviolet rays are uniformly irradiated to all the regions on the upper surface of the substrate W with a simple configuration.
 また、この場合、ローカル搬送ハンド434(図8)の移動速度を調整することにより、除電処理時に基板Wの上面の単位面積当たりに照射される真空紫外線のエネルギー(以下、露光量と呼ぶ。)を調整することが可能になる。なお、露光量の単位は、例えば「J/m」で表される。 Further, in this case, by adjusting the moving speed of the local transport hand 434 (FIG. 8), the energy of vacuum ultraviolet rays irradiated per unit area of the upper surface of the substrate W during static elimination processing (hereinafter referred to as exposure amount). Can be adjusted. The unit of the exposure amount is represented by “J / m 2 ”, for example.
 露光量に応じて基板W上で発生されるオゾンの量に差が生じる。例えば、露光量が大きいほどオゾンの発生量が増加し、露光量が小さいほどオゾンの発生量が低下する。したがって、ローカル搬送ハンド434(図8)の移動速度を調整することにより、基板W上で発生されるオゾンの量を調整することができる。その結果、基板Wの上面全体を均一かつ適切に除電することができる。 A difference occurs in the amount of ozone generated on the substrate W according to the exposure amount. For example, the amount of ozone generated increases as the amount of exposure increases, and the amount of ozone generated decreases as the amount of exposure decreases. Therefore, the amount of ozone generated on the substrate W can be adjusted by adjusting the moving speed of the local transport hand 434 (FIG. 8). As a result, the entire upper surface of the substrate W can be uniformly and appropriately neutralized.
 図13(a)~(c)に示すように、紫外線ランプ320の前面下端部に第3の窒素ガス供給部330が取り付けられる。第3の窒素ガス供給部330は、両端部が閉塞された角筒形状を有する。 As shown in FIGS. 13A to 13C, a third nitrogen gas supply unit 330 is attached to the front lower end portion of the ultraviolet lamp 320. The third nitrogen gas supply unit 330 has a rectangular tube shape with both ends closed.
 図13(b),(c)に示すように、第3の窒素ガス供給部330のうち下方を向く部分には、複数の噴射孔331が形成されている。複数の噴射孔331は、第3の窒素ガス供給部330の一端部から他端部にかけて略等間隔で並ぶように配置される。また、第3の窒素ガス供給部330の前面に、窒素ガス導入管339の一端部が接続されている。窒素ガス導入管339の他端部には、図示しない窒素ガス供給系が接続される。 As shown in FIGS. 13B and 13C, a plurality of injection holes 331 are formed in a portion of the third nitrogen gas supply unit 330 facing downward. The plurality of injection holes 331 are arranged so as to be arranged at substantially equal intervals from one end to the other end of the third nitrogen gas supply unit 330. In addition, one end of a nitrogen gas introduction pipe 339 is connected to the front surface of the third nitrogen gas supply unit 330. A nitrogen gas supply system (not shown) is connected to the other end of the nitrogen gas introduction pipe 339.
 基板Wの除電処理時には、窒素ガス供給系から窒素ガス導入管339に窒素ガスが供給される。窒素ガス導入管339に供給される窒素ガスは、第3の窒素ガス供給部330の内部空間を通って複数の噴射孔331から図7のケーシング410内に分散的に噴射される。 At the time of static elimination processing of the substrate W, nitrogen gas is supplied from the nitrogen gas supply system to the nitrogen gas introduction pipe 339. The nitrogen gas supplied to the nitrogen gas introduction pipe 339 is dispersedly injected from the plurality of injection holes 331 into the casing 410 of FIG. 7 through the internal space of the third nitrogen gas supply unit 330.
 図13(c)に示すように、複数の噴射孔331は、紫外線ランプ320の出射面321に隣り合う。そのため、基板Wの除電処理時には、複数の噴射孔331から窒素ガスが噴射されることにより、基板Wに照射される真空紫外線の経路の酸素濃度をより低下させることができる。それにより、オゾンが過剰に発生されることがより抑制される。また、真空紫外線が照射される基板W上の領域に分散的に窒素ガスが供給されることにより、基板W上に均一な気体の流れを形成することができる。したがって、基板W上で発生されるオゾンを基板Wの上面全体に渡って均一に供給することができる。その結果、基板Wの上面全体のより均一な除電が可能になる。 As shown in FIG. 13C, the plurality of injection holes 331 are adjacent to the emission surface 321 of the ultraviolet lamp 320. Therefore, at the time of static elimination processing of the substrate W, the nitrogen concentration is ejected from the plurality of ejection holes 331, whereby the oxygen concentration in the path of the vacuum ultraviolet ray irradiated to the substrate W can be further reduced. Thereby, it is suppressed more that ozone is generated excessively. Further, a uniform gas flow can be formed on the substrate W by supplying the nitrogen gas in a distributed manner to the region on the substrate W irradiated with the vacuum ultraviolet rays. Therefore, ozone generated on the substrate W can be supplied uniformly over the entire top surface of the substrate W. As a result, more uniform charge removal over the entire top surface of the substrate W is possible.
 また、真空紫外線が照射される基板W上の領域に窒素ガスが供給されるので、供給された窒素ガスが上記の三体反応の触媒として機能しやすい。したがって、適切な量のオゾンを効率よく発生させることができる。 In addition, since nitrogen gas is supplied to the region on the substrate W irradiated with vacuum ultraviolet rays, the supplied nitrogen gas easily functions as a catalyst for the above three-body reaction. Therefore, an appropriate amount of ozone can be generated efficiently.
 紫外線ランプ320から基板Wの上面に照射される真空紫外線が酸素分子を含む雰囲気に吸収される量は、紫外線ランプ320と基板Wとの間の真空紫外線の経路が大きくなるにつれて大きくなる。そのため、真空紫外線の経路の長さに応じて基板W上で発生されるオゾンの量に差が生じる。例えば、真空紫外線の経路が長いほどオゾンの発生量が増加し、真空紫外線の経路が短いほどオゾンの発生量が低下する。したがって、紫外線ランプ320の出射面321(図13(c))に対して基板Wの上面が傾斜していると、基板W上の複数の位置で発生するオゾンの量に差が生じる。 The amount of vacuum ultraviolet light irradiated to the upper surface of the substrate W from the ultraviolet lamp 320 by the atmosphere containing oxygen molecules increases as the vacuum ultraviolet light path between the ultraviolet lamp 320 and the substrate W increases. Therefore, there is a difference in the amount of ozone generated on the substrate W according to the length of the vacuum ultraviolet ray path. For example, the amount of ozone generated increases as the path of vacuum ultraviolet light increases, and the amount of ozone generated decreases as the path of vacuum ultraviolet light decreases. Therefore, when the upper surface of the substrate W is inclined with respect to the emission surface 321 (FIG. 13C) of the ultraviolet lamp 320, there is a difference in the amount of ozone generated at a plurality of positions on the substrate W.
 本実施の形態では、紫外線ランプ320は水平面内で前後方向に直交する方向(以下、左右方向と呼ぶ。)に延びるように配置される。また、ローカル搬送ハンド434は、図9に示されるように、2つのハンド支持部材435の上端部をつなぐように設けられる。2つのハンド支持部材435は、ローカル搬送ハンド434に基板Wが載置された状態で、左右方向において基板Wの中心を挟んで対向するように配置される。2つのハンド支持部材435は共通の高さを有するので、2つのハンド支持部材435が並ぶ左右方向では、ローカル搬送ハンド434の高さが一定となる。 In the present embodiment, the ultraviolet lamp 320 is arranged so as to extend in a direction perpendicular to the front-rear direction (hereinafter referred to as the left-right direction) in a horizontal plane. Further, as shown in FIG. 9, the local transport hand 434 is provided so as to connect the upper ends of the two hand support members 435. The two hand support members 435 are arranged to face each other across the center of the substrate W in the left-right direction in a state where the substrate W is placed on the local transport hand 434. Since the two hand support members 435 have a common height, the height of the local transport hand 434 is constant in the left-right direction in which the two hand support members 435 are arranged.
 これらより、左右方向においては、ローカル搬送ハンド434に載置される基板Wと紫外線ランプ320との間の距離が一定に維持される。それにより、基板Wの除電処理時に、基板Wの上面の全体に均一に真空紫外線が照射される。したがって、基板W上の複数の位置で発生されるオゾンの量にばらつきが生じることが防止される。それにより、基板Wの上面全体についてより均一な除電が可能になる。 Thus, in the left-right direction, the distance between the substrate W placed on the local transport hand 434 and the ultraviolet lamp 320 is kept constant. Thereby, the vacuum ultraviolet rays are uniformly irradiated on the entire upper surface of the substrate W during the charge removal processing of the substrate W. Therefore, variation in the amount of ozone generated at a plurality of positions on the substrate W is prevented. Thereby, more uniform charge removal is possible for the entire top surface of the substrate W.
 (4)除電条件
 本実施の形態において、除電ユニットOWEによる基板Wの除電条件には、ケーシング410内の酸素濃度およびローカル搬送ハンド434による基板Wの移動速度が含まれる。
(4) Neutralization Condition In the present embodiment, the neutralization condition of the substrate W by the neutralization unit OWE includes the oxygen concentration in the casing 410 and the moving speed of the substrate W by the local transport hand 434.
 除電処理中のケーシング410内の酸素濃度は例えば1%よりも低くなるように設定される。この場合、図7の酸素濃度センサS4により検出される酸素濃度が1%よりも低いときに基板Wの除電処理が行われる。それにより、オゾンが過剰に発生されることが抑制される。本実施の形態では、図7の酸素濃度センサS4により検出される酸素濃度が1%以上であると、基板Wの除電処理は行われない。 The oxygen concentration in the casing 410 during the static elimination process is set to be lower than 1%, for example. In this case, the neutralization process of the substrate W is performed when the oxygen concentration detected by the oxygen concentration sensor S4 of FIG. 7 is lower than 1%. Thereby, it is suppressed that ozone is generated excessively. In the present embodiment, if the oxygen concentration detected by the oxygen concentration sensor S4 in FIG. 7 is 1% or more, the neutralization process of the substrate W is not performed.
 除電処理を行うための露光量は基板Wの処理内容に基づいて基板Wごとまたは基板Wの種類ごとに予め定められている。予め定められた露光量は、基板Wの除電処理前に設定露光量として図1の制御部4に記憶される。 The exposure amount for performing the static elimination process is determined in advance for each substrate W or each type of substrate W based on the processing content of the substrate W. The predetermined exposure amount is stored in the control unit 4 of FIG. 1 as a set exposure amount before the charge removal processing of the substrate W.
 上記のように、基板Wの一端部から他端部に帯状の真空紫外線を一定の速度で走査する場合には、基板Wの移動速度を制御することにより基板Wの露光量を調整することができる。例えば、基板Wの移動速度を高くすることにより露光量を減少させることができ、基板Wの移動速度を低くすることにより露光量を増加させることができる。ここで、基板Wの露光量と基板Wに照射される真空紫外線の照度と基板Wの移動速度との間には一定の関係が存在する。 As described above, when the belt-shaped vacuum ultraviolet ray is scanned from one end portion to the other end portion of the substrate W at a constant speed, the exposure amount of the substrate W can be adjusted by controlling the moving speed of the substrate W. it can. For example, the exposure amount can be decreased by increasing the moving speed of the substrate W, and the exposure amount can be increased by decreasing the moving speed of the substrate W. Here, there is a certain relationship between the exposure amount of the substrate W, the illuminance of the vacuum ultraviolet rays applied to the substrate W, and the moving speed of the substrate W.
 そこで、本実施の形態では、後述する照度測定により、除電処理時において真空紫外線が照射されるときの基板Wの照度が、除電処理前に予め照度センサS3により検出される。この場合、設定露光量を得るために必要な基板Wの移動速度V(m/sec)は、照度センサS3により検出される照度をIL(W/m(=J/sec・m))とし、設定露光量をSA(J/m)とし、紫外線ランプ320から出射される真空紫外線の断面の基板Wの移動方向に平行な長さ(照射幅)をEW(m)とした場合に、次式(1)で表される。 Therefore, in this embodiment, the illuminance sensor S3 detects in advance the illuminance of the substrate W when the vacuum ultraviolet ray is irradiated during the static elimination process by the illuminance measurement described later. In this case, the moving speed V (m / sec) of the substrate W necessary for obtaining the set exposure amount is determined by the illuminance detected by the illuminance sensor S3 as IL (W / m 2 (= J / sec · m 2 )). When the set exposure amount is SA (J / m 2 ) and the length (irradiation width) parallel to the moving direction of the substrate W in the cross section of the vacuum ultraviolet ray emitted from the ultraviolet lamp 320 is EW (m). Is represented by the following formula (1).
 V=(EW×IL)/SA …(1)
 上記の式(1)に基づいて、基板Wの移動速度が制御部4により算出される。光出射部300から真空紫外線が出射された状態で、ローカル搬送ハンド434が前方位置P2から後方位置P1(または後方位置P1から前方位置P2)に算出された移動速度で移動するように、基板移動部400が制御される。
V = (EW × IL) / SA (1)
Based on the above formula (1), the moving speed of the substrate W is calculated by the control unit 4. The substrate is moved so that the local transport hand 434 moves from the front position P2 to the rear position P1 (or from the rear position P1 to the front position P2) while the vacuum ultraviolet rays are emitted from the light emitting unit 300. The unit 400 is controlled.
 このように、照度センサS3により検出された照度に基づいて基板Wの露光量が設定露光量となるように基板Wの移動速度がフィードバック制御される。それにより、基板Wに照射される真空紫外線の露光量に基づいて所望の量のオゾンが基板W上に均一に供給されるように基板Wの移動速度をフィードバック制御することが可能になる。それにより、基板Wの全体を均一に除電することが可能になる。 As described above, the moving speed of the substrate W is feedback-controlled so that the exposure amount of the substrate W becomes the set exposure amount based on the illuminance detected by the illuminance sensor S3. Accordingly, the moving speed of the substrate W can be feedback-controlled so that a desired amount of ozone is uniformly supplied onto the substrate W based on the exposure amount of the vacuum ultraviolet rays applied to the substrate W. As a result, it is possible to uniformly remove the entire substrate W.
 (5)除電処理動作
 図14~図21は、除電ユニットOWEにおける基板Wの除電処理動作を説明するための側面図である。図14~図21では、図7の側面図と同様に、筐体60(図5)および他方側面部417(図5)が取り外された除電ユニットOWEの状態が示される。図16~図21では、基板移動部400の各構成要素と基板Wとを識別しやすいように、基板Wがハッチングパターンで示される。
(5) Charge Removal Processing Operation FIGS. 14 to 21 are side views for explaining the charge removal processing operation of the substrate W in the charge removal unit OWE. 14 to 21 show the state of the static elimination unit OWE from which the casing 60 (FIG. 5) and the other side surface portion 417 (FIG. 5) are removed, as in the side view of FIG. 16 to 21, the substrate W is indicated by a hatching pattern so that each component of the substrate moving unit 400 and the substrate W can be easily identified.
 初期状態においては、図14に示すように、ローカル搬送ハンド434は後方位置P1にあり、複数の昇降ピン421の上端部は待機位置にある。また、ケーシング410の開口部412bは閉塞された状態にあり、紫外線ランプ320は消灯状態にある。さらに、図14に太い実線の矢印で示すように、第1の窒素ガス供給部450からケーシング410内に窒素ガスが供給される。 In the initial state, as shown in FIG. 14, the local transport hand 434 is in the rear position P1, and the upper ends of the plurality of lifting pins 421 are in the standby position. Further, the opening 412b of the casing 410 is in a closed state, and the ultraviolet lamp 320 is in a light-off state. Further, as shown by a thick solid line arrow in FIG. 14, nitrogen gas is supplied from the first nitrogen gas supply unit 450 into the casing 410.
 第1の窒素ガス供給部450からケーシング410内に窒素ガスが供給されることにより、ケーシング410内の酸素濃度が低下する。それにより、ケーシング410内の酸素濃度が例えば1%よりも低く保持される。 When the nitrogen gas is supplied from the first nitrogen gas supply unit 450 into the casing 410, the oxygen concentration in the casing 410 decreases. Thereby, the oxygen concentration in the casing 410 is kept lower than, for example, 1%.
 ケーシング410内に基板Wを搬入するために、図15に示すように、蓋部材510が上昇されることにより開口部412bが開放される。このとき、図11の第2の窒素ガス供給部520により蓋部材510の下面から開口部412bに窒素ガスが供給される(図12参照)。それにより、上記のようにケーシング410の外部の雰囲気が開口部412bを通してケーシング410内に進入することが防止される。また、受渡機構420の複数の昇降ピン421が上昇される。それにより、複数の昇降ピン421の上端部が待機位置から受渡位置まで移動する。 In order to carry the substrate W into the casing 410, the opening 412b is opened by raising the lid member 510 as shown in FIG. At this time, nitrogen gas is supplied from the lower surface of the lid member 510 to the opening 412b by the second nitrogen gas supply unit 520 of FIG. 11 (see FIG. 12). This prevents the atmosphere outside the casing 410 from entering the casing 410 through the opening 412b as described above. Moreover, the several raising / lowering pin 421 of the delivery mechanism 420 is raised. Thereby, the upper ends of the plurality of lifting pins 421 move from the standby position to the delivery position.
 次に、図16に示すように、図1のメインロボットMRのいずれかのハンドMRHにより水平姿勢の基板Wが蓋部材510と開口部412bとの間に水平方向に挿入され、複数の昇降ピン421上に載置される。続いて、受渡機構420の複数の昇降ピン421が下降される。それにより、図17に示すように、複数の昇降ピン421の上端部が受渡位置から待機位置まで移動し、水平姿勢の基板Wが開口部412bを通してケーシング410内に移動される。このとき、複数の昇降ピン421からローカル搬送ハンド434に基板Wが渡される。また、蓋部材510が下降されることにより開口部412bが閉塞されるとともに、図11の第2の窒素ガス供給部520による窒素ガスの供給が停止される。 Next, as shown in FIG. 16, a horizontal substrate W is inserted horizontally between the lid member 510 and the opening 412b by any hand MRH of the main robot MR of FIG. 421 is mounted. Subsequently, the plurality of lifting pins 421 of the delivery mechanism 420 are lowered. Accordingly, as shown in FIG. 17, the upper ends of the plurality of lifting pins 421 move from the delivery position to the standby position, and the substrate W in a horizontal posture is moved into the casing 410 through the opening 412b. At this time, the substrate W is transferred from the plurality of lift pins 421 to the local transport hand 434. Further, when the lid member 510 is lowered, the opening 412b is closed, and the supply of nitrogen gas by the second nitrogen gas supply unit 520 of FIG. 11 is stopped.
 次に、図18に白抜きの矢印で示すように、ローカル搬送ハンド434が後方位置P1から前方位置P2に移動される。このとき、紫外線ランプ320は消灯状態にあるので、基板Wに真空紫外線は照射されない。 Next, as shown by the white arrow in FIG. 18, the local transport hand 434 is moved from the rear position P1 to the front position P2. At this time, since the ultraviolet lamp 320 is off, the substrate W is not irradiated with vacuum ultraviolet rays.
 その後、前位置センサS2の検出結果に基づいてローカル搬送ハンド434が前方位置P2にあるか否かが図1の制御部4により判定される。また、酸素濃度センサS4により検出される酸素濃度が1%よりも低いか否かが制御部4により判定される。 Thereafter, it is determined by the control unit 4 in FIG. 1 whether or not the local transport hand 434 is at the forward position P2 based on the detection result of the front position sensor S2. Further, the control unit 4 determines whether or not the oxygen concentration detected by the oxygen concentration sensor S4 is lower than 1%.
 ローカル搬送ハンド434が前方位置P2にありかつ酸素濃度が1%よりも低くなると、紫外線ランプ320が消灯状態から点灯状態に切り替えられる。それにより、図19にドットパターンで示すように、紫外線ランプ320から下方に真空紫外線UVが出射される。真空紫外線UVは、上記のように、左右方向に延びる帯状の断面を有する。左右方向に平行な方向における真空紫外線UVの断面の長さは、基板Wの直径よりも長い。 When the local transport hand 434 is at the front position P2 and the oxygen concentration is lower than 1%, the ultraviolet lamp 320 is switched from the off state to the on state. Thereby, as shown by a dot pattern in FIG. 19, vacuum ultraviolet rays UV are emitted downward from the ultraviolet lamp 320. As described above, the vacuum ultraviolet ray UV has a strip-like cross section extending in the left-right direction. The length of the cross section of the vacuum ultraviolet ray UV in the direction parallel to the left-right direction is longer than the diameter of the substrate W.
 また、第3の窒素ガス供給部330からケーシング410内に窒素ガスが供給される。第3の窒素ガス供給部330から供給される窒素ガスは、ローカル搬送ハンド434の一部または基板Wの一部に衝突し、基板Wの上方の空間に流れる。 Further, nitrogen gas is supplied from the third nitrogen gas supply unit 330 into the casing 410. The nitrogen gas supplied from the third nitrogen gas supply unit 330 collides with a part of the local transport hand 434 or a part of the substrate W and flows into a space above the substrate W.
 続いて、図20に白抜きの矢印で示すように、ローカル搬送ハンド434が前方位置P2から後方位置P1に移動される。このときの移動速度は、予め上記の式(1)を用いて算出された速度で一定となるように制御される。それにより、基板Wの上面の全ての領域が設定露光量で露光されるように、基板W上に真空紫外線UVが照射され、基板Wが除電される。 Subsequently, as indicated by a white arrow in FIG. 20, the local transport hand 434 is moved from the front position P2 to the rear position P1. The moving speed at this time is controlled so as to be constant at a speed calculated in advance using the above equation (1). As a result, the substrate W is irradiated with vacuum ultraviolet rays UV so that the entire area of the upper surface of the substrate W is exposed with the set exposure amount, and the substrate W is discharged.
 その後、後位置センサS1の検出結果に基づいてローカル搬送ハンド434が後方位置P1にあるか否かが図1の制御部4により判定される。ローカル搬送ハンド434が後方位置P1にあると、紫外線ランプ320が点灯状態から消灯状態に切り替えられる。また、第3の窒素ガス供給部330による窒素ガスの供給が停止される。このときの除電ユニットOWEの状態は、図17の例と同じである。 Thereafter, based on the detection result of the rear position sensor S1, whether or not the local transport hand 434 is at the rear position P1 is determined by the control unit 4 of FIG. When the local transport hand 434 is at the rear position P1, the ultraviolet lamp 320 is switched from the on state to the off state. Further, the supply of nitrogen gas by the third nitrogen gas supply unit 330 is stopped. The state of the static elimination unit OWE at this time is the same as the example of FIG.
 次に、ケーシング410内から基板Wを搬出するために、図21に示すように、蓋部材510が上昇されることにより開口部412bが開放される。このとき、図11の第2の窒素ガス供給部520により蓋部材510の下面から開口部412bに窒素ガスが供給される(図12参照)。また、受渡機構420の複数の昇降ピン421が上昇される。それにより、複数の昇降ピン421の上端部が待機位置から受渡位置まで移動し、ローカル搬送ハンド434から複数の昇降ピン421に基板Wが渡される。このようにして、水平姿勢の基板Wがケーシング410内から開口部412bの上方に移動される。 Next, in order to carry the substrate W out of the casing 410, the opening 412b is opened by raising the lid member 510 as shown in FIG. At this time, nitrogen gas is supplied from the lower surface of the lid member 510 to the opening 412b by the second nitrogen gas supply unit 520 of FIG. 11 (see FIG. 12). Moreover, the several raising / lowering pin 421 of the delivery mechanism 420 is raised. Accordingly, the upper ends of the plurality of lifting pins 421 move from the standby position to the delivery position, and the substrate W is transferred from the local transport hand 434 to the plurality of lifting pins 421. In this way, the horizontal substrate W is moved from the inside of the casing 410 to above the opening 412b.
 複数の昇降ピン421上に載置された除電処理後の基板Wが、図1のメインロボットMRのいずれかのハンドMRHにより水平方向に取り出される。その後、受渡機構420の複数の昇降ピン421が下降されるとともに、蓋部材510が下降されることにより開口部412bが閉塞される。また、図11の第2の窒素ガス供給部520による窒素ガスの供給が停止される。それにより、除電ユニットOWEは初期状態に戻る。 The substrate W after the static elimination processing placed on the plurality of lifting pins 421 is taken out in the horizontal direction by any hand MRH of the main robot MR in FIG. Thereafter, the plurality of lifting pins 421 of the delivery mechanism 420 are lowered, and the lid member 510 is lowered to close the opening 412b. Further, the supply of nitrogen gas by the second nitrogen gas supply unit 520 in FIG. 11 is stopped. Thereby, the static elimination unit OWE returns to an initial state.
 (6)照度測定動作
 基板Wの除電処理に用いられる設定速度を得るために、例えば予め定められた数の基板Wが除電処理されるごとに、基板Wのロットごとに、または1日ごとに、以下に示す照度測定が行われる。
(6) Illuminance measurement operation In order to obtain a set speed used for the neutralization processing of the substrate W, for example, every time a predetermined number of substrates W are neutralized, every lot of substrates W, or every day The illuminance measurement shown below is performed.
 図22~図24は、除電ユニットOWEにおける照度測定動作を説明するための側面図である。図22~図24では、図7の側面図と同様に、筐体60(図5)および他方側面部417(図5)が取り外された除電ユニットOWEの状態が示される。 22 to 24 are side views for explaining the illuminance measurement operation in the static elimination unit OWE. 22 to 24 show the state of the static elimination unit OWE with the casing 60 (FIG. 5) and the other side surface portion 417 (FIG. 5) removed, as in the side view of FIG.
 除電ユニットOWEにおいては、照度測定が行われない間は、図22に太い点線で示すように、照度センサS3の上端部を覆うように遮光部材442が配置される。それにより、基板Wへの真空紫外線の照射時(除電処理時)には照度センサS3の受光素子に光が入射しない。したがって、照度センサS3の劣化が抑制され、照度センサS3の長寿命化が実現される。また、照度センサS3は、ローカル搬送ハンド434の移動経路よりも下方に配置される。 In the static elimination unit OWE, while the illuminance measurement is not performed, the light shielding member 442 is disposed so as to cover the upper end portion of the illuminance sensor S3 as shown by a thick dotted line in FIG. As a result, no light is incident on the light receiving element of the illuminance sensor S3 when the substrate W is irradiated with vacuum ultraviolet rays (at the time of charge removal). Therefore, the deterioration of the illuminance sensor S3 is suppressed, and the life of the illuminance sensor S3 is extended. Further, the illuminance sensor S3 is disposed below the moving path of the local transport hand 434.
 照度測定は、ケーシング410の開口部412bが閉塞されるとともに酸素濃度センサS4により検出される酸素濃度が1%よりも低い状態で開始される。初期状態において、紫外線ランプ320は消灯状態にある。 The illuminance measurement is started in a state where the opening 412b of the casing 410 is closed and the oxygen concentration detected by the oxygen concentration sensor S4 is lower than 1%. In the initial state, the ultraviolet lamp 320 is off.
 照度測定が開始されると、図22に白抜きの矢印で示すように、遮光駆動部443により遮光部材442が前方に移動される。それにより、照度センサS3の上端部に設けられた受光面が上方に露出する。 When the illuminance measurement is started, the light shielding member 442 is moved forward by the light shielding driving unit 443 as indicated by a white arrow in FIG. Thereby, the light receiving surface provided at the upper end of the illuminance sensor S3 is exposed upward.
 次に、図23に白抜きの矢印で示すように、センサ昇降駆動部441により照度センサS3が上昇される。このとき、照度センサS3は、受光面の高さがローカル搬送ハンド434に載置される基板Wの上面の高さに一致するように位置決めされる。 Next, as indicated by a white arrow in FIG. 23, the illuminance sensor S3 is raised by the sensor lift drive unit 441. At this time, the illuminance sensor S3 is positioned so that the height of the light receiving surface matches the height of the upper surface of the substrate W placed on the local transport hand 434.
 次に、紫外線ランプ320が消灯状態から点灯状態に切り替えられる。それにより、図24にドットパターンで示すように、紫外線ランプ320から照度センサS3に向かって帯状の真空紫外線UVが出射される。 Next, the ultraviolet lamp 320 is switched from the off state to the on state. Thereby, as shown by a dot pattern in FIG. 24, a belt-like vacuum ultraviolet ray UV is emitted from the ultraviolet lamp 320 toward the illuminance sensor S3.
 紫外線ランプ320から出射される真空紫外線UVの一部が、照度センサS3の受光素子に入射する。それにより、除電処理において真空紫外線が照射されるときの基板Wの照度が検出される。照度の検出結果は、図1の制御部4に与えられる。 Part of the vacuum ultraviolet ray UV emitted from the ultraviolet lamp 320 enters the light receiving element of the illuminance sensor S3. Thereby, the illuminance of the substrate W when the vacuum ultraviolet ray is irradiated in the charge removal process is detected. The detection result of the illuminance is given to the control unit 4 in FIG.
 その後、照度センサS3が下降されるとともに紫外線ランプ320が点灯状態から消灯状態に切り替えられる。また、照度センサS3の上端部を覆うように遮光部材442が後方に移動される。それにより、除電ユニットOWEが初期状態に戻る。 Thereafter, the illuminance sensor S3 is lowered and the ultraviolet lamp 320 is switched from the on state to the off state. Further, the light shielding member 442 is moved backward so as to cover the upper end portion of the illuminance sensor S3. Thereby, the static elimination unit OWE returns to an initial state.
 上記のように、照度センサS3は、照度測定時に受光面の高さがローカル搬送ハンド434に載置される基板Wの上面の高さに一致するように位置決めされる。したがって、基板Wの除電時に基板Wに照射される真空紫外線の照度を正確に検出することができる。 As described above, the illuminance sensor S3 is positioned so that the height of the light receiving surface coincides with the height of the upper surface of the substrate W placed on the local transport hand 434 when measuring the illuminance. Therefore, it is possible to accurately detect the illuminance of the vacuum ultraviolet rays irradiated to the substrate W when the substrate W is neutralized.
 また、照度センサS3は、基板Wの除電処理時には、ローカル搬送ハンド434の移動経路よりも下方に配置される。それにより、除電処理時に照度センサS3が基板Wに干渉しない。 Further, the illuminance sensor S3 is disposed below the moving path of the local transport hand 434 during the charge removal processing of the substrate W. Thereby, the illuminance sensor S3 does not interfere with the substrate W during the charge removal process.
 (7)表面洗浄ユニットおよび裏面洗浄ユニット
 図25は表面洗浄ユニットSSの構成を説明するための図であり、図26は裏面洗浄ユニットSSRの構成を説明するための図である。図25の表面洗浄ユニットSSによる表面洗浄処理、および図26の裏面洗浄ユニットSSRによる裏面洗浄処理には、ブラシを用いた基板Wの洗浄処理(以下、スクラブ洗浄処理と呼ぶ。)とブラシを用いないリンス処理とが含まれる。
(7) Front surface cleaning unit and back surface cleaning unit FIG. 25 is a diagram for explaining the configuration of the front surface cleaning unit SS, and FIG. 26 is a diagram for explaining the configuration of the back surface cleaning unit SSR. In the front surface cleaning process by the front surface cleaning unit SS in FIG. 25 and the back surface cleaning process by the back surface cleaning unit SSR in FIG. 26, a cleaning process for the substrate W using a brush (hereinafter referred to as a scrub cleaning process) and a brush are used. Not including rinse treatment.
 まず、図25を用いて表面洗浄ユニットSSの詳細について説明する。図25に示すように、表面洗浄ユニットSSは、基板Wを水平に保持するとともに基板Wの中心を通る鉛直軸の周りで基板Wを回転させるためのスピンチャック21を備える。スピンチャック21は、チャック回転駆動機構22によって回転される回転軸23の上端に固定されている。 First, details of the surface cleaning unit SS will be described with reference to FIG. As shown in FIG. 25, the surface cleaning unit SS includes a spin chuck 21 for holding the substrate W horizontally and rotating the substrate W about a vertical axis passing through the center of the substrate W. The spin chuck 21 is fixed to the upper end of a rotation shaft 23 that is rotated by a chuck rotation drive mechanism 22.
 スピンチャック21の外方には、モータ24が設けられている。モータ24には、鉛直方向に延びる回動軸25が設けられている。モータ24には、さらに図示しない昇降駆動部が設けられている。モータ24は、回動軸25を昇降可能かつ鉛直軸の周りで回転可能に支持する。回動軸25の上端部には、アーム26が水平方向に延びるように連結されている。アーム26の先端に略円筒形状のブラシ洗浄具27が設けられている。また、スピンチャック21の上方には、スピンチャック21により保持された基板Wの表面に向けて洗浄液またはリンス液を供給するための液吐出ノズル28が設けられている。 A motor 24 is provided outside the spin chuck 21. The motor 24 is provided with a rotation shaft 25 extending in the vertical direction. The motor 24 is further provided with a lifting drive unit (not shown). The motor 24 supports the rotating shaft 25 so that it can be moved up and down and rotated about a vertical axis. An arm 26 is connected to the upper end of the rotation shaft 25 so as to extend in the horizontal direction. A substantially cylindrical brush cleaning tool 27 is provided at the tip of the arm 26. Further, a liquid discharge nozzle 28 for supplying a cleaning liquid or a rinsing liquid toward the surface of the substrate W held by the spin chuck 21 is provided above the spin chuck 21.
 表面洗浄ユニットSSには表面が上方に向けられた基板Wが搬入される。基板Wの表面洗浄時には、表面が上方に向けられた基板Wがスピンチャック21により水平姿勢で回転される。また、供給管29を通して液吐出ノズル28に洗浄液が供給される。本例では、洗浄液として純水が用いられる。これにより、回転する基板Wの表面に洗浄液が供給される。この状態で、モータ24および図示しない昇降駆動部が動作することによりブラシ洗浄具27が基板Wの上面(表面)に接触し、基板Wの中心から基板Wの外周端部に向かって移動する。それにより、基板Wの表面に対してスクラブ洗浄処理が行われる。なお、表面洗浄ユニットSSにおいては吸着式のスピンチャック21を用いているため、基板Wの周縁部および外周端部も同時に洗浄することができる。その後、ブラシ洗浄具27が基板Wの外方の位置まで移動するとともに、液吐出ノズル28から基板Wにリンス液が供給され、リンス処理が行われる。本例では、リンス液として純水が用いられる。 The substrate W whose surface is directed upward is carried into the surface cleaning unit SS. When cleaning the surface of the substrate W, the substrate W whose surface is directed upward is rotated in a horizontal posture by the spin chuck 21. Further, the cleaning liquid is supplied to the liquid discharge nozzle 28 through the supply pipe 29. In this example, pure water is used as the cleaning liquid. Thereby, the cleaning liquid is supplied to the surface of the rotating substrate W. In this state, the motor 24 and the lifting drive unit (not shown) operate, so that the brush cleaning tool 27 comes into contact with the upper surface (front surface) of the substrate W and moves from the center of the substrate W toward the outer peripheral end of the substrate W. Thereby, a scrub cleaning process is performed on the surface of the substrate W. In addition, since the adsorption type spin chuck 21 is used in the surface cleaning unit SS, the peripheral edge and the outer peripheral edge of the substrate W can be cleaned simultaneously. Thereafter, the brush cleaning tool 27 moves to a position outside the substrate W, and the rinsing liquid is supplied from the liquid discharge nozzle 28 to the substrate W to perform a rinsing process. In this example, pure water is used as the rinse liquid.
 次に、図26を用いて、裏面洗浄ユニットSSRが図25の表面洗浄ユニットSSと異なる点を説明する。図26に示すように、裏面洗浄ユニットSSRは、基板Wの下面を真空吸着により保持する吸着式のスピンチャック21の代わりに、基板Wの外周端部を保持するメカチャック式のスピンチャック31を備える。スクラブ洗浄処理およびリンス処理を行う場合に、基板Wの下面の周縁部および外周端部がスピンチャック31上の複数の回転式保持ピン32により保持される。この状態で、基板Wは水平姿勢で回転される。 Next, the difference between the back surface cleaning unit SSR and the front surface cleaning unit SS of FIG. 25 will be described with reference to FIG. As shown in FIG. 26, the back surface cleaning unit SSR includes a mechanical chuck type spin chuck 31 that holds the outer peripheral edge of the substrate W instead of the suction type spin chuck 21 that holds the lower surface of the substrate W by vacuum suction. Prepare. When performing the scrub cleaning process and the rinsing process, the peripheral edge and the outer peripheral edge of the lower surface of the substrate W are held by a plurality of rotary holding pins 32 on the spin chuck 31. In this state, the substrate W is rotated in a horizontal posture.
 裏面洗浄ユニットSSRにおいては、裏面が上方に向けられた状態の基板Wが搬入される。そのため、基板Wは裏面が上方に向けられた状態で上記のスピンチャック31により保持される。したがって、基板Wの裏面に対して、スクラブ洗浄処理が行われ、その後リンス処理が行われる。 In the back surface cleaning unit SSR, the substrate W with the back surface directed upward is carried in. Therefore, the substrate W is held by the spin chuck 31 with the back surface facing upward. Therefore, a scrub cleaning process is performed on the back surface of the substrate W, and then a rinsing process is performed.
 上記の例では、洗浄液として純水を用いる例を説明したが、洗浄液としては、純水に代えて、炭酸水、オゾン水、水素水または電解イオン水等を用いてもよいし、BHF(バッファードフッ酸)、DHF(希フッ酸)、フッ酸、塩酸、硫酸、硝酸、リン酸、酢酸、シュウ酸およびアンモニア等の薬液を用いてもよい。 In the above example, pure water is used as the cleaning liquid. However, as the cleaning liquid, carbonated water, ozone water, hydrogen water, electrolytic ion water, or the like may be used instead of pure water, or BHF (buffer Chemical solutions such as dofluoric acid), DHF (dilute hydrofluoric acid), hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, and ammonia may be used.
 また、上記の例では、リンス液として純水を用いる例を説明したが、リンス液としては、純水に代えて、炭酸水、オゾン水、水素水または電解イオン水等を用いてもよいし、HFE(ハイドロフルオロエーテル)またはIPA(イソプロピルアルコール)等の有機溶剤を用いてもよい。 In the above example, an example in which pure water is used as the rinse liquid has been described. However, as the rinse liquid, carbonated water, ozone water, hydrogen water, electrolytic ionic water, or the like may be used instead of pure water. An organic solvent such as HFE (hydrofluoroether) or IPA (isopropyl alcohol) may be used.
 (8)第1の実施の形態の効果
 上記の基板処理装置100においては、基板Wが反転ユニットRT1,RT2により反転され、基板Wの表面および裏面が表面洗浄ユニットSSおよび裏面洗浄ユニットSSRによりそれぞれ洗浄される。また、基板Wが除電ユニットOWEにより真空紫外線を用いて除電される。それにより、帯電に起因する基板Wの汚染が抑制され、基板Wの表面および裏面の清浄度が向上する。
(8) Effects of the First Embodiment In the substrate processing apparatus 100 described above, the substrate W is inverted by the reversing units RT1 and RT2, and the front and back surfaces of the substrate W are respectively converted by the front surface cleaning unit SS and the back surface cleaning unit SSR. Washed. In addition, the substrate W is neutralized by the neutralizing unit OWE using vacuum ultraviolet rays. Thereby, the contamination of the substrate W due to charging is suppressed, and the cleanliness of the front and back surfaces of the substrate W is improved.
 上記のように、洗浄処理前の基板Wに除電ユニットOWEによる除電処理が行われる場合、洗浄処理前の基板Wの電位が0(V)に近づく。それにより、基板Wの洗浄処理時に基板Wの帯電に起因する放電現象が発生しない。したがって、基板Wの一部が破損することによる処理不良の発生が防止される。 As described above, when the neutralization process by the neutralization unit OWE is performed on the substrate W before the cleaning process, the potential of the substrate W before the cleaning process approaches 0 (V). Thereby, the discharge phenomenon resulting from the charging of the substrate W does not occur during the cleaning process of the substrate W. Therefore, it is possible to prevent a processing defect from occurring due to a part of the substrate W being damaged.
 また、洗浄処理後の基板Wに除電ユニットOWEによる除電処理が行われる場合、基板Wの洗浄処理時に基板Wが帯電する場合でも、洗浄処理後の基板Wの電位が0(V)に近づく。したがって、洗浄処理後の基板Wを清浄に保つことができる。 In addition, when the substrate W after the cleaning process is subjected to the discharging process by the discharging unit OWE, even when the substrate W is charged during the cleaning process of the substrate W, the potential of the substrate W after the cleaning process approaches 0 (V). Therefore, the substrate W after the cleaning process can be kept clean.
 上記の除電ユニットOWEにおいては、基板Wが載置されるローカル搬送ハンド434が光出射部300に対して移動されつつ、光出射部300により出射される真空紫外線が基板Wの上面に照射される。このような構成により、除電処理時に基板Wの全体に真空紫外線を同時に照射する必要がない。したがって、光出射部300の大型化を抑制することができる。 In the static eliminator unit OWE, the upper surface of the substrate W is irradiated with vacuum ultraviolet rays emitted from the light emitting unit 300 while the local transport hand 434 on which the substrate W is placed is moved with respect to the light emitting unit 300. . With such a configuration, it is not necessary to simultaneously irradiate the entire substrate W with vacuum ultraviolet rays during the charge removal process. Therefore, the enlargement of the light emitting unit 300 can be suppressed.
 [2]第2の実施の形態
 以下、第2の実施の形態に係る基板処理装置について、第1の実施の形態に係る基板処理装置100とは異なる点を説明する。
[2] Second Embodiment Hereinafter, differences of the substrate processing apparatus according to the second embodiment from the substrate processing apparatus 100 according to the first embodiment will be described.
 (1)基板処理装置の構成および動作の概略
 第2の実施の形態に係る基板処理装置においては、主として基板Wの上面(表面または裏面)が例えば薬液からなる洗浄液を用いて化学的に洗浄される。このとき、基板Wの表面には、膜が形成されていてもよいし、膜が形成されていなくてもよい。図27は第2の実施の形態に係る基板処理装置の構成を示す平面図である。図27に示すように、本実施の形態に係る基板処理装置600は、インデクサブロック610および処理ブロック611を有する。インデクサブロック610および処理ブロック611は、一方向に並ぶとともに互いに隣り合うように設けられている。
(1) Outline of Configuration and Operation of Substrate Processing Apparatus In the substrate processing apparatus according to the second embodiment, the upper surface (front surface or back surface) of the substrate W is mainly chemically cleaned using a cleaning liquid made of, for example, a chemical solution. The At this time, a film may or may not be formed on the surface of the substrate W. FIG. 27 is a plan view showing the configuration of the substrate processing apparatus according to the second embodiment. As shown in FIG. 27, the substrate processing apparatus 600 according to the present embodiment includes an indexer block 610 and a processing block 611. The indexer block 610 and the processing block 611 are provided so as to be aligned in one direction and adjacent to each other.
 インデクサブロック610は、複数(本例では3つ)のキャリア載置台601および搬送部610Aを含む。複数のキャリア載置台601は一方向に並ぶように搬送部610Aに接続されている。各キャリア載置台40上には、キャリアCが載置される。搬送部610Aには、インデクサロボットIRおよび制御部604が設けられている。本例のインデクサロボットIRは、図1のインデクサロボットIRと基本的に同じ構成を有する。制御部604は、CPU、ROMおよびRAMを含むコンピュータ等からなり、基板処理装置600内の各構成部を制御する。 The indexer block 610 includes a plurality (three in this example) of carrier mounting tables 601 and a transport unit 610A. The plurality of carrier platforms 601 are connected to the transport unit 610A so as to be aligned in one direction. On each carrier mounting table 40, a carrier C is mounted. The transporter 610A is provided with an indexer robot IR and a controller 604. The indexer robot IR of this example has basically the same configuration as the indexer robot IR of FIG. The control unit 604 includes a computer including a CPU, ROM, and RAM, and controls each component in the substrate processing apparatus 600.
 処理ブロック611は、1つの搬送部611A、4つの洗浄部620A,620B,620C,620D、1つの除電受渡部680および4つの流体ボックス部690A,690B,690C,690Dを含む。 The processing block 611 includes one transport unit 611A, four cleaning units 620A, 620B, 620C, and 620D, one static elimination delivery unit 680, and four fluid box units 690A, 690B, 690C, and 690D.
 搬送部611Aは、処理ブロック611の中央部に設けられる。処理ブロック611においては、平面視で搬送部611Aを取り囲むように、4つの洗浄部620A,620B,620C,620Dおよび除電受渡部680が設けられている。除電受渡部680は、さらにインデクサブロック610の搬送部610Aに隣り合うように設けられている。4つの流体ボックス部690A,690B,690C,690Dは、対応する洗浄部620A,620B,620C,620Dにそれぞれ隣り合うように設けられている。 The transport unit 611A is provided in the center of the processing block 611. In the processing block 611, four cleaning units 620A, 620B, 620C, and 620D and a static elimination delivery unit 680 are provided so as to surround the transport unit 611A in plan view. The static elimination delivery unit 680 is further provided adjacent to the transport unit 610A of the indexer block 610. The four fluid box portions 690A, 690B, 690C, and 690D are provided adjacent to the corresponding cleaning portions 620A, 620B, 620C, and 620D, respectively.
 搬送部611Aには、センターロボットCRが設けられている。センターロボットCRは、図1のメインロボットMRと基本的に同じ構成を有する。洗浄部620A,620B,620C,620Dの各々には、複数(例えば3つ)の洗浄ユニット620が設けられる。複数の洗浄ユニット620は上下に積層配置されている。なお、各洗浄部620A,620B,620C,620Dには、1つの洗浄ユニット620のみが設けられてもよい。 The transport unit 611A is provided with a center robot CR. The center robot CR has basically the same configuration as the main robot MR of FIG. Each of the cleaning units 620A, 620B, 620C, and 620D is provided with a plurality of (for example, three) cleaning units 620. The plurality of cleaning units 620 are stacked one above the other. Note that each cleaning unit 620A, 620B, 620C, 620D may be provided with only one cleaning unit 620.
 各洗浄ユニット620では、洗浄液を用いた洗浄処理、リンス液を用いたリンス処理および乾燥処理が行われる。本実施の形態では、洗浄液としては、例えばフッ酸、バッファードフッ酸(BHF)、希フッ酸(DHF)、フッ酸(フッ化水素水:HF)、塩酸、硫酸、硝酸、酢酸、シュウ酸もしくはアンモニア水等の水溶液、またはそれらの混合溶液を用いることができる。また、混合溶液としては、例えば高温に加熱された硫酸と過酸化水素水との混合液(SPM)、アンモニアと過酸化水素水との混合溶液(SC1)、または塩酸(HCl)と過酸化水素水との混合液(SC2)を用いることができる。リンス液としては、純水、炭酸水、オゾン水、水素水または電解イオン水等を用いることができる。あるいは、リンス液としては、HFE(ハイドロフルオロエーテル)またはIPA(イソプロピルアルコール)等の有機溶剤を用いることもできる。洗浄ユニット620の構成については後述する。 Each cleaning unit 620 performs a cleaning process using a cleaning liquid, a rinsing process using a rinsing liquid, and a drying process. In this embodiment, examples of the cleaning liquid include hydrofluoric acid, buffered hydrofluoric acid (BHF), dilute hydrofluoric acid (DHF), hydrofluoric acid (hydrofluoric water: HF), hydrochloric acid, sulfuric acid, nitric acid, acetic acid, and oxalic acid. Alternatively, an aqueous solution such as aqueous ammonia or a mixed solution thereof can be used. Examples of the mixed solution include a mixed solution (SPM) of sulfuric acid and hydrogen peroxide solution heated to high temperature (SPM), a mixed solution of ammonia and hydrogen peroxide solution (SC1), or hydrochloric acid (HCl) and hydrogen peroxide. A mixed solution with water (SC2) can be used. As the rinse liquid, pure water, carbonated water, ozone water, hydrogen water, electrolytic ion water, or the like can be used. Alternatively, an organic solvent such as HFE (hydrofluoroether) or IPA (isopropyl alcohol) can also be used as the rinsing liquid. The configuration of the cleaning unit 620 will be described later.
 各流体ボックス部690A,690B,690C,690Dは、対応する洗浄部620A,620B,620C,620Dへの洗浄液の供給および対応する洗浄部620A,620B,620C,620Dからの排液等に関する配管、継ぎ手、バルブ、流量計、レギュレータ、ポンプ、温度調節器、処理液貯留タンク等の流体関連機器を収納する。 The fluid box portions 690A, 690B, 690C, and 690D are provided with pipes and joints related to the supply of the cleaning liquid to the corresponding cleaning units 620A, 620B, 620C, and 620D and the drainage liquid from the corresponding cleaning units 620A, 620B, 620C, and 620D. Houses fluid-related equipment such as valves, flow meters, regulators, pumps, temperature controllers, and processing liquid storage tanks.
 除電受渡部680は、インデクサブロック610の搬送部610Aと処理ブロック611の搬送部611Aとの間に位置する。これにより、2つの搬送部610A,611Aの間では、除電受渡部680を介して基板Wの受け渡しが行われる。除電受渡部680には、複数(例えば3つ)の除電ユニットOWE2が設けられる。複数の除電ユニットOWE2は上下に積層配置されている。 The static elimination delivery unit 680 is located between the transport unit 610A of the indexer block 610 and the transport unit 611A of the processing block 611. As a result, the substrate W is delivered between the two transport units 610A and 611A via the static elimination delivery unit 680. The neutralization delivery unit 680 is provided with a plurality of (for example, three) neutralization units OWE2. The plurality of static eliminating units OWE2 are stacked in the vertical direction.
 各除電ユニットOWE2は、インデクサブロック610のインデクサロボットIRから受け取った基板Wに除電処理を施し、処理ブロック611のセンターロボットCRに渡す。また、除電ユニットOWE2は、処理ブロック611のセンターロボットCRから受け取った基板Wに除電処理を施し、インデクサブロック610のインデクサロボットIRに渡す。除電ユニットOWE2の構成については後述する。 Each static elimination unit OWE2 performs static elimination processing on the substrate W received from the indexer robot IR in the indexer block 610, and passes it to the central robot CR in the processing block 611. Further, the static elimination unit OWE2 performs static elimination processing on the substrate W received from the center robot CR in the processing block 611, and passes it to the indexer robot IR in the indexer block 610. The configuration of the static elimination unit OWE2 will be described later.
 上記の基板処理装置600における基本的な動作を説明する。図28は、第2の実施の形態に係る基板処理装置600における基本的な動作の流れを示すフローチャートである。基板処理装置600の動作の概要について図27および図28を参照しながら説明する。なお、以下に説明する基板処理装置600の各構成要素の動作は、図27の制御部604により制御される。 The basic operation of the substrate processing apparatus 600 will be described. FIG. 28 is a flowchart showing a basic operation flow in the substrate processing apparatus 600 according to the second embodiment. An outline of the operation of the substrate processing apparatus 600 will be described with reference to FIGS. The operation of each component of the substrate processing apparatus 600 described below is controlled by the control unit 604 in FIG.
 最初に、インデクサロボットIRは、インデクサブロック610内のいずれかのキャリアCから未処理の基板Wを取り出す(ステップS21)。取り出された基板Wは、除電受渡部680のいずれかの除電ユニットOWE2に渡される。除電ユニットOWE2は、受け取った基板Wの除電処理を行う(ステップS22)。除電処理後の基板Wは、除電受渡部680からセンターロボットCRに渡される。 First, the indexer robot IR takes out the unprocessed substrate W from any of the carriers C in the indexer block 610 (step S21). The taken out substrate W is transferred to one of the charge removal units OWE2 of the charge removal delivery unit 680. The neutralization unit OWE2 performs a neutralization process on the received substrate W (step S22). The substrate W after the neutralization process is delivered from the neutralization delivery unit 680 to the central robot CR.
 センターロボットCRにより受け取られた除電処理後の基板Wは、さらに洗浄部620A~620Dの複数の洗浄ユニット620のいずれかに搬入される。基板Wが搬入された洗浄ユニット620は、基板Wの洗浄処理、リンス処理および乾燥処理を行う(ステップS23)。洗浄ユニット620による処理後の基板Wは、センターロボットCRにより当該洗浄ユニット620から搬出され、除電受渡部680のいずれかの除電ユニットOWE2に渡される。 The substrate W after the charge removal process received by the center robot CR is further carried into one of the plurality of cleaning units 620 of the cleaning units 620A to 620D. The cleaning unit 620 into which the substrate W has been carried out performs a cleaning process, a rinsing process, and a drying process for the substrate W (step S23). The substrate W that has been processed by the cleaning unit 620 is unloaded from the cleaning unit 620 by the center robot CR, and is transferred to one of the charge removal units OWE2 of the charge removal delivery unit 680.
 除電ユニットOWE2は、受け取った基板Wの除電処理を行う(ステップS24)。除電処理後の基板Wは、除電受渡部680からインデクサロボットIRに渡される。インデクサロボットIRは、受け取った処理済みの基板Wをインデクサブロック10内のいずれかのキャリアC内に収納する(ステップS25)。このように、基板処理装置600に搬入される基板Wごとに上記の一連の動作が繰り返される。 The neutralization unit OWE2 performs a neutralization process on the received substrate W (step S24). The substrate W after the charge removal process is delivered from the charge removal delivery unit 680 to the indexer robot IR. The indexer robot IR stores the received processed substrate W in any of the carriers C in the indexer block 10 (step S25). As described above, the above-described series of operations is repeated for each substrate W carried into the substrate processing apparatus 600.
 (2)除電ユニット
 第2の実施の形態に係る除電ユニットOWE2の構成について、第1の実施の形態に係る図5の除電ユニットOWEとは異なる点を説明する。図29は、第2の実施の形態に係る除電ユニットOWE2の外観斜視図である。
(2) Static elimination unit About the structure of static elimination unit OWE2 which concerns on 2nd Embodiment, a different point from the static elimination unit OWE of FIG. 5 which concerns on 1st Embodiment is demonstrated. FIG. 29 is an external perspective view of the charge removal unit OWE2 according to the second embodiment.
 図29に示すように、除電ユニットOWE2は筐体60を含む。筐体60は、前壁部61、後壁部62、一側壁部63、他側壁部64、天井部65および床部66を有する。除電ユニットOWE2についても、第1の実施の形態に係る除電ユニットOWEと同様に、筐体60の内部から前壁部61に向かう方向を除電ユニットOWE2の前方と呼び、その逆方向(筐体60の内部から後壁部62に向かう方向)を除電ユニットOWE2の後方と呼ぶ。 As shown in FIG. 29, the static elimination unit OWE2 includes a housing 60. The housing 60 includes a front wall portion 61, a rear wall portion 62, one side wall portion 63, another side wall portion 64, a ceiling portion 65, and a floor portion 66. Regarding the static elimination unit OWE2, as in the static elimination unit OWE according to the first embodiment, the direction from the inside of the casing 60 toward the front wall 61 is referred to as the front of the static elimination unit OWE2, and the opposite direction (the casing 60). The direction from the inside toward the rear wall 62) is referred to as the rear of the static elimination unit OWE2.
 除電ユニットOWE2は、一側壁部63が図27のインデクサブロック610の搬送部610Aに向くように、かつ他側壁部64が図27の処理ブロック611の搬送部611Aに向くように配置される。 The neutralization unit OWE2 is arranged so that one side wall portion 63 faces the conveyance portion 610A of the indexer block 610 in FIG. 27 and the other side wall portion 64 faces the conveyance portion 611A of the processing block 611 in FIG.
 ここで、除電ユニットOWE2においては、後壁部62に図5の搬送開口62pが形成されない代わりに、一側壁部63および他側壁部64に、それぞれ搬送開口63p,64pが形成されている。搬送開口63p,64pは、搬入搬出部500を挟むように形成される。 Here, in the static elimination unit OWE2, instead of forming the transfer opening 62p of FIG. 5 in the rear wall portion 62, transfer openings 63p and 64p are formed in the one side wall portion 63 and the other side wall portion 64, respectively. The conveyance openings 63p and 64p are formed so as to sandwich the loading / unloading unit 500.
 また、本例の除電ユニットOWE2においては、搬入搬出部500の蓋部材510が基板Wよりも大きく形成される。ケーシング410の上面に形成される開口部412b(図10)も、基板Wよりも大きく形成される。 In the static eliminator unit OWE2 of this example, the lid member 510 of the carry-in / carry-out unit 500 is formed larger than the substrate W. The opening 412 b (FIG. 10) formed on the upper surface of the casing 410 is also formed larger than the substrate W.
 それにより、蓋部材510により開口部412b(図10)が開かれた状態で、図29に太い点線の矢印AR1で示すように、図27のインデクサロボットIRにより搬送される基板Wが、搬送開口63pを通して受渡機構420(図7)に渡され、ケーシング410内に搬入される。また、図29に太い二点鎖線の矢印AR2で示すように、基板Wがケーシング410内の受渡機構420(図7)により図27のセンターロボットCRに渡され、筐体60内から搬送開口64pを通して搬送部611A内に搬出される。 As a result, the substrate W transported by the indexer robot IR in FIG. 27 is transferred to the transport opening as shown by a thick dotted arrow AR1 in FIG. 29 with the opening 412b (FIG. 10) opened by the lid member 510. It is delivered to the delivery mechanism 420 (FIG. 7) through 63p and carried into the casing 410. 29, the substrate W is passed to the center robot CR in FIG. 27 by the delivery mechanism 420 (FIG. 7) in the casing 410, and is conveyed from the inside of the housing 60 to the transport opening 64p, as indicated by a thick two-dot chain line arrow AR2. And is carried out into the transport section 611A.
 さらに、蓋部材510により開口部412b(図10)が開かれた状態で、図29に太い点線の矢印AR3で示すように、図27のセンターロボットCRにより搬送される基板Wが、搬送開口64pを通して受渡機構420(図7)に渡され、ケーシング410内に搬入される。また、図29に太い二点鎖線の矢印AR4で示すように、基板Wがケーシング410内の受渡機構420(図7)により図27のインデクサロボットIRに渡され、筐体60内から搬送開口63pを通して搬送部610A内に搬出される。 Further, in the state where the opening 412b (FIG. 10) is opened by the lid member 510, the substrate W transported by the center robot CR in FIG. 27 is transported by the transport opening 64p as shown by a thick dotted arrow AR3 in FIG. Is delivered to the delivery mechanism 420 (FIG. 7) and carried into the casing 410. 29, the substrate W is transferred to the indexer robot IR shown in FIG. 27 by the delivery mechanism 420 (FIG. 7) in the casing 410, as indicated by the thick two-dot chain line arrow AR4, and the transfer opening 63p from inside the housing 60. And is carried out into the transport section 610A.
 (3)洗浄ユニット
 図30は第2の実施の形態に係る基板処理装置600の洗浄ユニット620の構成を説明するための図である。洗浄ユニット620は、流体ボックス部690A~690Dから供給される洗浄液を用いて基板Wの表面に付着した不純物を洗浄処理により除去し、清浄な基板Wの表面を乾燥させる。
(3) Cleaning Unit FIG. 30 is a view for explaining the configuration of the cleaning unit 620 of the substrate processing apparatus 600 according to the second embodiment. The cleaning unit 620 removes impurities attached to the surface of the substrate W by using the cleaning liquid supplied from the fluid box portions 690A to 690D, and dries the surface of the clean substrate W.
 図30に示すように、洗浄ユニット620は、基板Wを水平に保持するとともに基板Wの中心を通る鉛直軸の周りで基板Wを回転させるためのスピンチャック621を備える。スピンチャック621は、チャック回転駆動機構622によって回転される回転軸623の上端に固定されている。なお、図30のスピンチャック621は基板Wの外周端部を保持するメカチャック式のスピンチャックであるが、スピンチャック621として基板Wの下面を真空吸着により保持する吸着式のスピンチャックが用いられてもよい。 30, the cleaning unit 620 includes a spin chuck 621 for holding the substrate W horizontally and rotating the substrate W about a vertical axis passing through the center of the substrate W. The spin chuck 621 is fixed to the upper end of the rotation shaft 623 rotated by the chuck rotation drive mechanism 622. The spin chuck 621 in FIG. 30 is a mechanical chuck type spin chuck that holds the outer peripheral edge of the substrate W, but an adsorption type spin chuck that holds the lower surface of the substrate W by vacuum suction is used as the spin chuck 621. May be.
 スピンチャック621の外方には、第1のモータ630が設けられている。第1のモータ630には、第1の回動軸631が接続されている。また、第1の回動軸631には、第1のアーム632が水平方向に延びるように連結され、第1のアーム632の先端に洗浄液ノズル633が設けられている。 A first motor 630 is provided outside the spin chuck 621. A first rotating shaft 631 is connected to the first motor 630. A first arm 632 is connected to the first rotation shaft 631 so as to extend in the horizontal direction, and a cleaning liquid nozzle 633 is provided at the tip of the first arm 632.
 第1のモータ630により第1の回動軸631が回転するとともに第1のアーム632が回動し、洗浄液ノズル633がスピンチャック621により保持された基板Wの上方に移動する。 The first rotating shaft 631 is rotated by the first motor 630 and the first arm 632 is rotated, so that the cleaning liquid nozzle 633 moves above the substrate W held by the spin chuck 621.
 第1のモータ630、第1の回動軸631および第1のアーム632の内部を通るように洗浄液供給管634が設けられている。洗浄液供給管634は流体ボックス部690A~690Dに接続されている。洗浄液ノズル633には、流体ボックス部690A~690Dから洗浄液供給管634を通して洗浄液が供給される。それにより、基板Wの表面へ洗浄液を供給することができる。 A cleaning liquid supply pipe 634 is provided so as to pass through the first motor 630, the first rotating shaft 631, and the first arm 632. The cleaning liquid supply pipe 634 is connected to the fluid box portions 690A to 690D. The cleaning liquid is supplied to the cleaning liquid nozzle 633 from the fluid box sections 690A to 690D through the cleaning liquid supply pipe 634. Thereby, the cleaning liquid can be supplied to the surface of the substrate W.
 また、スピンチャック621の外方に、さらに第2のモータ640が設けられている。第2のモータ640には、第2の回動軸641が接続されている。また、第2の回動軸641には、第2のアーム642が水平方向に延びるように連結され、第2のアーム642の先端にリンス液ノズル643が設けられている。 Further, a second motor 640 is further provided outside the spin chuck 621. A second rotating shaft 641 is connected to the second motor 640. A second arm 642 is connected to the second rotation shaft 641 so as to extend in the horizontal direction, and a rinse liquid nozzle 643 is provided at the tip of the second arm 642.
 第2のモータ640により第2の回動軸641が回転するとともに第2のアーム642が回動し、リンス液ノズル643がスピンチャック621により保持された基板Wの上方に移動する。 The second motor 640 rotates the second rotation shaft 641 and the second arm 642 to move the rinse liquid nozzle 643 above the substrate W held by the spin chuck 621.
 第2のモータ640、第2の回動軸641および第2のアーム642の内部を通るようにリンス液供給管644が設けられている。リンス液供給管644は流体ボックス部690A~690Dに接続されている。リンス液ノズル643には、流体ボックス部690A~690Dからリンス液供給管644を通してリンス液が供給される。それにより、基板Wの表面へリンス液を供給することができる。 A rinse liquid supply pipe 644 is provided so as to pass through the second motor 640, the second rotation shaft 641, and the second arm 642. The rinse liquid supply pipe 644 is connected to the fluid box portions 690A to 690D. The rinse liquid is supplied to the rinse liquid nozzle 643 from the fluid box portions 690A to 690D through the rinse liquid supply pipe 644. Thereby, the rinse liquid can be supplied to the surface of the substrate W.
 洗浄処理時において洗浄液ノズル633は基板Wの上方に位置し、リンス処理時および乾燥処理時において洗浄液ノズル633は所定の位置に退避される。また、リンス処理時においてリンス液ノズル643は基板Wの上方に位置し、洗浄処理時および乾燥処理時においてリンス液ノズル643は所定の位置に退避される。 The cleaning liquid nozzle 633 is positioned above the substrate W during the cleaning process, and the cleaning liquid nozzle 633 is retracted to a predetermined position during the rinse process and the drying process. Further, the rinse liquid nozzle 643 is positioned above the substrate W during the rinse process, and the rinse liquid nozzle 643 is retracted to a predetermined position during the cleaning process and the drying process.
 スピンチャック21の周囲を取り囲むようにカップ装置650が設けられている。カップ装置650は、洗浄処理に用いられた洗浄液およびリンス処理に用いられたリンス液を回収し、回収した洗浄液およびリンス液を図示しない循環系または廃棄系に導く。 A cup device 650 is provided so as to surround the periphery of the spin chuck 21. The cup device 650 collects the cleaning liquid used for the cleaning process and the rinse liquid used for the rinse process, and guides the recovered cleaning liquid and the rinse liquid to a circulation system or a waste system (not shown).
 (4)第2の実施の形態の効果
 上記の除電ユニットOWE2においては、筐体60の一側壁部63および他側壁部64にそれぞれ搬送開口63p,64pが形成されている。搬送開口63p,64pは、それぞれ筐体60の内部と外部との間で基板Wを搬送するために用いられる。それにより、除電ユニットOWE2を通る基板Wの搬送経路の設計の自由度が向上する。
(4) Effects of Second Embodiment In the static eliminator unit OWE2, the conveyance openings 63p and 64p are formed in the one side wall 63 and the other side wall 64 of the housing 60, respectively. The transfer openings 63p and 64p are used to transfer the substrate W between the inside and the outside of the housing 60, respectively. Thereby, the freedom degree of the design of the conveyance path | route of the board | substrate W which passes along static elimination unit OWE2 improves.
 本実施の形態に係る基板処理装置600においては、インデクサブロック610のキャリアCから処理ブロック611の洗浄ユニット620へ基板Wが搬送される際、および処理ブロック611の洗浄ユニット620からインデクサブロック610のキャリアCへ基板Wが搬送される際に、除電ユニットOWE2により基板Wに除電処理が行われる。それにより、インデクサブロック610および処理ブロック611を用いた基板処理のスループットを向上させることができる。 In the substrate processing apparatus 600 according to the present embodiment, when the substrate W is transported from the carrier C of the indexer block 610 to the cleaning unit 620 of the processing block 611 and from the cleaning unit 620 of the processing block 611, the carrier of the indexer block 610 When the substrate W is transported to C, the neutralization process is performed on the substrate W by the neutralization unit OWE2. Thereby, the throughput of the substrate processing using the indexer block 610 and the processing block 611 can be improved.
 [3]他の実施の形態
 (1)上記実施の形態に係る基板処理装置100,600においては、洗浄処理前の基板Wおよび洗浄処理後の基板Wの各々に除電処理が行われるが、本発明はこれに限定されない。基板処理装置100,600においては、例えば洗浄処理前の基板Wにのみ除電処理が行われてもよいし、洗浄処理後の基板Wにのみ除電処理が行われてもよい。
[3] Other Embodiments (1) In the substrate processing apparatuses 100 and 600 according to the above-described embodiments, the static elimination process is performed on each of the substrate W before the cleaning process and the substrate W after the cleaning process. The invention is not limited to this. In the substrate processing apparatuses 100 and 600, for example, the charge removal process may be performed only on the substrate W before the cleaning process, or the charge removal process may be performed only on the substrate W after the cleaning process.
 (2)上記実施の形態に係る除電ユニットOWE,OWE2においては、帯状の真空紫外線が基板Wの上面上を走査されることにより基板Wの上面全体に真空紫外線が照射されるが、本発明はこれに限定されない。除電ユニットOWE,OWE2の光出射部300は、基板Wの一面全体に真空紫外線を同時に照射可能に構成されてもよい。除電ユニットOWE,OWE2における除電処理の時間を短くすることができる。 (2) In the static eliminator units OWE and OWE2 according to the above embodiment, the entire upper surface of the substrate W is irradiated with the vacuum ultraviolet rays by scanning the upper surface of the substrate W with the band-shaped vacuum ultraviolet rays. It is not limited to this. The light emitting unit 300 of the static elimination units OWE and OWE2 may be configured to be able to simultaneously irradiate the entire surface of the substrate W with vacuum ultraviolet rays. It is possible to shorten the time for the static elimination processing in the static elimination units OWE and OWE2.
 (3)第1の実施の形態に係る基板処理装置100においては、処理ブロック11の表面洗浄部11Aおよび裏面洗浄部11Bにそれぞれ除電ユニットOWEを設ける代わりに、基板載置部PASS1,PASS2にそれぞれ第2の実施の形態に係る除電ユニットOWE2を設けてもよい。この場合、インデクサブロック10のキャリアCから処理ブロック11の表面洗浄ユニットSSまたは裏面洗浄ユニットSSRへ基板Wが搬送される際に除電ユニットOWE2により基板Wに除電処理を行うことができる。また、処理ブロック11の表面洗浄ユニットSSまたは裏面洗浄ユニットSSRからインデクサブロック610のキャリアCへ基板Wが搬送される際に、除電ユニットOWE2により基板Wに除電処理を行うことができる。 (3) In the substrate processing apparatus 100 according to the first embodiment, instead of providing the charge removal unit OWE in the front surface cleaning unit 11A and the back surface cleaning unit 11B of the processing block 11, respectively, the substrate platform PASS1, PASS2 You may provide the static elimination unit OWE2 which concerns on 2nd Embodiment. In this case, when the substrate W is transported from the carrier C of the indexer block 10 to the front surface cleaning unit SS or the back surface cleaning unit SSR of the processing block 11, the substrate W can be subjected to charge removal processing. Further, when the substrate W is transported from the front surface cleaning unit SS or the back surface cleaning unit SSR of the processing block 11 to the carrier C of the indexer block 610, the substrate W can be subjected to a discharging process by the discharging unit OWE2.
 (4)第2の実施の形態に係る基板処理装置600においては、除電受渡部680に、除電ユニットOWE2に代えて第1の実施の形態に係る基板載置部PASS1,PASS2を設けるとともに、洗浄部620A~620Dのいずれかに第1の実施の形態に係る除電ユニットOWEを設けてもよい。 (4) In the substrate processing apparatus 600 according to the second embodiment, the neutralization delivery unit 680 is provided with the substrate platforms PASS1 and PASS2 according to the first embodiment in place of the neutralization unit OWE2, and cleaning is performed. The static eliminator unit OWE according to the first embodiment may be provided in any of the units 620A to 620D.
 (5)第1の実施の形態に係る表面洗浄ユニットSSおよび裏面洗浄ユニットSSRにおいては、基板Wの表面および裏面がブラシを用いて洗浄されるが、本発明はこれに限定されない。表面洗浄ユニットSSおよび裏面洗浄ユニットSSRは、ブラシ洗浄具27および液吐出ノズル28に代えて、二流体ノズルを用いたソフトスプレー方式により基板Wを洗浄してもよい。二流体ノズルは、洗浄液と加圧された気体(不活性ガス)とを混合することにより、洗浄液の液滴および気体からなる混合流体を基板Wに噴射するノズルである。 (5) In the front surface cleaning unit SS and the back surface cleaning unit SSR according to the first embodiment, the front surface and the back surface of the substrate W are cleaned using a brush, but the present invention is not limited to this. The front surface cleaning unit SS and the back surface cleaning unit SSR may clean the substrate W by a soft spray method using a two-fluid nozzle instead of the brush cleaning tool 27 and the liquid discharge nozzle 28. The two-fluid nozzle is a nozzle that jets a mixed fluid composed of droplets of cleaning liquid and gas onto the substrate W by mixing the cleaning liquid and pressurized gas (inert gas).
 (6)第2の実施の形態に係る洗浄ユニット620においては、第1の実施の形態と同様に、基板Wの上面がブラシを用いて洗浄されてもよい。または、基板Wの上面が上記の二流体ノズルを用いて洗浄されてもよい。 (6) In the cleaning unit 620 according to the second embodiment, the upper surface of the substrate W may be cleaned using a brush, as in the first embodiment. Alternatively, the upper surface of the substrate W may be cleaned using the two-fluid nozzle.
 (7)上記実施の形態に係る除電ユニットOWE,OWE2においては、ローカル搬送ハンド434が前方位置P2から後方位置P1に移動する場合にのみ基板Wの上面に真空紫外線が照射されるが、本発明はこれに限定されない。ローカル搬送ハンド434が前方位置P2から後方位置P1に移動する場合に代えて、ローカル搬送ハンド434が後方位置P1から前方位置P2に移動する場合にのみ基板Wの上面に真空紫外線が照射されてもよい。また、ローカル搬送ハンド434が後方位置P1から前方位置P2に移動する場合および前方位置P2から後方位置P1に移動する場合に基板Wの上面に真空紫外線が照射されてもよい。 (7) In the static eliminator units OWE and OWE2 according to the above embodiment, the upper surface of the substrate W is irradiated with vacuum ultraviolet rays only when the local transport hand 434 moves from the front position P2 to the rear position P1. Is not limited to this. Instead of the case where the local transport hand 434 moves from the front position P2 to the rear position P1, the upper surface of the substrate W is irradiated with vacuum ultraviolet rays only when the local transport hand 434 moves from the rear position P1 to the front position P2. Good. Further, when the local transport hand 434 moves from the rear position P1 to the front position P2, and when it moves from the front position P2 to the rear position P1, the upper surface of the substrate W may be irradiated with vacuum ultraviolet rays.
 (8)上記実施の形態では、酸素分子を2つの酸素原子に分離させるための光として真空紫外線が用いられるが、本発明はこれに限定されない。酸素分子を2つの酸素原子に分離させることが可能であれば、真空紫外線よりも短い波長を有する光を基板W上に照射してもよい。 (8) In the above embodiment, vacuum ultraviolet rays are used as light for separating oxygen molecules into two oxygen atoms, but the present invention is not limited to this. If the oxygen molecule can be separated into two oxygen atoms, the substrate W may be irradiated with light having a wavelength shorter than that of vacuum ultraviolet rays.
 (9)上記実施の形態では、ケーシング410内の酸素濃度を低くするために窒素ガスが用いられるが、本発明はこれに限定されない。ケーシング410には窒素ガスに代えてアルゴンガスまたはヘリウムガス等が用いられてもよい。  (9) In the above embodiment, nitrogen gas is used to reduce the oxygen concentration in the casing 410, but the present invention is not limited to this. Argon gas or helium gas may be used for casing 410 instead of nitrogen gas. *
 (10)上記実施の形態では、蓋部材510に第2の窒素ガス供給部520が設けられるが、第2の窒素ガス供給部520は設けられなくてもよい。また、光出射部300に第3の窒素ガス供給部330が設けられるが、第3の窒素ガス供給部330は設けられなくてもよい。これらの場合、除電ユニットOWE,OWE2の部品点数が低減される。 (10) In the above embodiment, the lid member 510 is provided with the second nitrogen gas supply unit 520, but the second nitrogen gas supply unit 520 may not be provided. Moreover, although the third nitrogen gas supply unit 330 is provided in the light emitting unit 300, the third nitrogen gas supply unit 330 may not be provided. In these cases, the number of parts of the static elimination units OWE and OWE2 is reduced.
 (11)上記実施の形態では、紫外線ランプ320により帯状の真空紫外線が出射された状態でローカル搬送ハンド434が水平方向に移動することにより、基板Wの一端部から他端部に向かって帯状の真空紫外線が走査されるが、本発明はこれに限定されない。基板Wが固定された載置台上に載置された状態で、基板Wの上方の位置を紫外線ランプ320が水平方向に移動することにより基板Wの一端部から他端部に向かって帯状の真空紫外線が走査されてもよい。この場合、紫外線ランプ320の移動速度を調整することにより、基板W上で発生されるオゾンの量を調整することができる。 (11) In the above embodiment, the band-shaped vacuum ultraviolet rays are emitted from the ultraviolet lamp 320 and the local transport hand 434 moves in the horizontal direction, so that the band-like shape extends from one end to the other end of the substrate W. Although vacuum ultraviolet rays are scanned, the present invention is not limited to this. In a state where the substrate W is mounted on a fixed mounting table, the ultraviolet lamp 320 moves in the horizontal direction above the substrate W, so that a belt-like vacuum is formed from one end portion to the other end portion of the substrate W. Ultraviolet light may be scanned. In this case, the amount of ozone generated on the substrate W can be adjusted by adjusting the moving speed of the ultraviolet lamp 320.
 [4]請求項の各構成要素と実施の形態の各部との対応関係
 以下、請求項の各構成要素と実施の形態の各構成要素との対応の例について説明するが、本発明は下記の例に限定されない。
[4] Correspondence relationship between each constituent element of claim and each part of embodiment The following describes an example of the correspondence between each constituent element of the claim and each constituent element of the embodiment. It is not limited to examples.
 上記実施の形態においては、表面洗浄ユニットSS、裏面洗浄ユニットSSRおよび洗浄ユニット620が洗浄処理部の例であり、除電ユニットOWE,OWE2が除電部の例であり、ローカル搬送ハンド434が保持部の例であり、光出射部300が出射部の例であり、基板処理装置100,600が基板処理装置の例である。 In the above embodiment, the front surface cleaning unit SS, the back surface cleaning unit SSR, and the cleaning unit 620 are examples of the cleaning processing unit, the neutralization units OWE and OWE2 are examples of the neutralization unit, and the local transport hand 434 is the holding unit. It is an example, the light emission part 300 is an example of an emission part, and the substrate processing apparatuses 100 and 600 are examples of a substrate processing apparatus.
 また、制御部4,604が処理部の例であり、送り軸431、送り軸モータ432、2つのガイドレール433、2つのハンド支持部材435および連結部材439が相対的移動部の例であり、反転ユニットRT1,RT2が反転装置の例であり、筐体60が筐体の例であり、搬送開口63p,64pがそれぞれ第1および第2の搬送開口の例である。 The control units 4 and 604 are examples of processing units, and the feed shaft 431, the feed shaft motor 432, the two guide rails 433, the two hand support members 435, and the connecting member 439 are examples of relative movement units, The reversing units RT1 and RT2 are examples of the reversing device, the casing 60 is an example of the casing, and the transport openings 63p and 64p are examples of the first and second transport openings, respectively.
 また、インデクサロボットIRが第1の搬送装置の例であり、インデクサブロック610が第1の領域の例であり、センターロボットCRが第2の搬送装置の例であり、処理ブロック611が第2の領域の例であり、キャリアCが収納容器の例であり、キャリア載置台601が容器載置部の例である。 Further, the indexer robot IR is an example of the first transfer device, the indexer block 610 is an example of the first region, the center robot CR is an example of the second transfer device, and the processing block 611 is the second transfer device. It is an example of a field, carrier C is an example of a storage container, and carrier mounting base 601 is an example of a container mounting part.
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の構成要素を用いることもできる。 As each constituent element in the claims, various other constituent elements having configurations or functions described in the claims can be used.
 本発明は、種々の基板の処理に有効に利用することができる。
 
The present invention can be effectively used for processing various substrates.

Claims (10)

  1. 基板の洗浄処理を行う洗浄処理部と、
     前記洗浄処理部による洗浄処理前の基板および前記洗浄処理部による洗浄処理後の基板のうち少なくとも一方の基板の除電処理を行う除電部とを備え、
     前記除電部は、
     酸素分子を含む雰囲気内で基板を保持する保持部と、
     前記保持部により保持された基板に前記雰囲気を通して真空紫外線を出射する出射部とを含む、基板処理装置。
    A cleaning processing unit for cleaning the substrate;
    A neutralization unit that performs neutralization processing of at least one of the substrate before the cleaning processing by the cleaning processing unit and the substrate after the cleaning processing by the cleaning processing unit,
    The static eliminator is
    A holding unit for holding the substrate in an atmosphere containing oxygen molecules;
    A substrate processing apparatus comprising: an emission unit that emits vacuum ultraviolet rays through the atmosphere to the substrate held by the holding unit.
  2. 制御部をさらに備え、
     前記除電部は、前記保持部および前記出射部のうち少なくとも一方を他方に対して一方向に相対的に移動させる相対的移動部をさらに含み、
     前記制御部は、前記出射部により出射される真空紫外線が前記雰囲気を通して前記保持部により保持された基板に照射されるように前記出射部および前記相対的移動部を制御する、請求項1記載の基板処理装置。
    A control unit;
    The static eliminator further includes a relative moving part that moves at least one of the holding part and the emitting part relative to the other in one direction,
    2. The control unit according to claim 1, wherein the control unit controls the emission unit and the relative movement unit so that vacuum ultraviolet rays emitted from the emission unit are irradiated to the substrate held by the holding unit through the atmosphere. Substrate processing equipment.
  3. 前記制御部は、予め定められた光量の真空紫外線が基板に照射されるように、前記相対的移動部による前記保持部と前記出射部との相対的な移動速度を制御する、請求項2記載の基板処理装置。 The said control part controls the relative moving speed of the said holding | maintenance part and the said output part by the said relative movement part so that the vacuum ultraviolet rays of the predetermined light quantity may be irradiated to a board | substrate. Substrate processing equipment.
  4. 基板は一面および他面を有し、
     前記基板処理装置は、
     基板の前記一面と前記他面とを互いに反転させる反転装置をさらに備え、
     前記洗浄処理部は、前記反転装置により反転されていない基板の前記一面を洗浄可能でかつ前記反転装置により反転された基板の前記他面を洗浄可能に構成された、請求項1~3のいずれか一項に記載の基板処理装置。
    The substrate has one side and the other side;
    The substrate processing apparatus includes:
    Further comprising a reversing device for reversing the one side and the other side of the substrate,
    4. The cleaning unit according to claim 1, wherein the cleaning unit is configured to be able to clean the one surface of the substrate that has not been reversed by the reversing device and to be able to clean the other surface of the substrate that has been reversed by the reversing device. The substrate processing apparatus according to claim 1.
  5. 前記除電部は、前記保持部および前記出射部を収容する筐体をさらに備え、
     前記筐体は、前記筐体の内部と外部との間で基板を搬送するための第1および第2の搬送開口を有する、請求項1~3のいずれか一項に記載の基板処理装置。
    The static elimination unit further includes a housing that houses the holding unit and the emission unit,
    The substrate processing apparatus according to any one of claims 1 to 3, wherein the housing includes first and second transport openings for transporting a substrate between the inside and the outside of the housing.
  6. 第1の搬送装置を含む第1の領域と、
     前記洗浄処理部および第2の搬送装置を含む第2の領域とを有し、
     前記除電部は、前記第1の搬送開口を通して前記第1の搬送装置に対する基板の受け渡しが可能でかつ前記第2の搬送開口を通して前記第2の搬送装置に対する基板の受け渡しが可能に配置される、請求項5記載の基板処理装置。
    A first region including a first transport device;
    A second region including the cleaning processing unit and the second transport device,
    The static eliminator is arranged so that a substrate can be delivered to the first transport device through the first transport opening and a substrate can be delivered to the second transport device through the second transport opening. The substrate processing apparatus according to claim 5.
  7. 前記第1の領域は、基板を収容する収納容器が載置される容器載置部をさらに含み、
     前記第1の搬送装置は、前記容器載置部に載置された収納容器と前記除電部との間で基板を搬送し、
     前記第2の搬送装置は、前記除電部と前記洗浄処理部との間で基板を搬送し、
     前記除電部は、前記第1の搬送装置から前記第2の搬送装置への基板の受け渡しの際および前記第2の搬送装置から前記第1の搬送装置への基板の受け渡しの際に基板の除電処理を行う、請求項6記載の基板処理装置。
    The first region further includes a container placement portion on which a storage container that accommodates a substrate is placed;
    The first transport device transports a substrate between a storage container placed on the container placement unit and the charge removal unit,
    The second transport device transports a substrate between the charge removal unit and the cleaning processing unit,
    The neutralization unit neutralizes the substrate when the substrate is transferred from the first transfer device to the second transfer device and when the substrate is transferred from the second transfer device to the first transfer device. The substrate processing apparatus according to claim 6, wherein the processing is performed.
  8. 前記除電部は、前記洗浄処理部により洗浄される前の基板に前記除電処理を行う、請求項1~7のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 7, wherein the static elimination unit performs the static elimination processing on the substrate before being cleaned by the cleaning processing unit.
  9. 前記制御部は、前記洗浄処理部により洗浄された後の基板に前記除電処理を行う、請求項1~8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the control unit performs the static elimination processing on the substrate after being cleaned by the cleaning processing unit.
  10. 基板の洗浄処理を行うステップと、
     前記洗浄処理を行うステップの前および前記洗浄処理を行うステップの後のうち少なくとも一方の時点で、基板の除電処理を行うステップとを含み、
     前記除電処理を行うステップは、
     酸素分子を含む雰囲気内で基板を保持部により保持するステップと、
     真空紫外線を出射部から出射させるとともに前記出射部により出射される真空紫外線を前記雰囲気を通して前記保持部により保持された基板に照射するステップとを含む、基板処理方法。
     
    Performing a substrate cleaning process;
    Performing a charge removal process on the substrate at at least one time point before the step of performing the cleaning process and after the step of performing the cleaning process,
    The step of performing the charge removal process includes:
    Holding the substrate by the holding unit in an atmosphere containing oxygen molecules;
    Irradiating the substrate held by the holding unit with the vacuum ultraviolet ray emitted from the emitting unit and emitting the vacuum ultraviolet ray emitted from the emitting unit through the atmosphere.
PCT/JP2017/037048 2017-02-14 2017-10-12 Substrate treatment device and substrate treatment method WO2018150628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017025349A JP6810631B2 (en) 2017-02-14 2017-02-14 Substrate processing equipment and substrate processing method
JP2017-025349 2017-02-14

Publications (1)

Publication Number Publication Date
WO2018150628A1 true WO2018150628A1 (en) 2018-08-23

Family

ID=63170178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/037048 WO2018150628A1 (en) 2017-02-14 2017-10-12 Substrate treatment device and substrate treatment method

Country Status (3)

Country Link
JP (1) JP6810631B2 (en)
TW (1) TWI660795B (en)
WO (1) WO2018150628A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020507B2 (en) * 2020-04-28 2022-02-16 信越半導体株式会社 Cleaning method for semiconductor wafers
JP2023111564A (en) * 2022-01-31 2023-08-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179198A (en) * 1999-12-28 2001-07-03 Ushio Inc Dry cleaning device
JP2001293443A (en) * 2000-04-11 2001-10-23 Shimada Phys & Chem Ind Co Ltd Device and method for cleaning substrate
JP2011204944A (en) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW505959B (en) * 2000-07-19 2002-10-11 Tokyo Electron Ltd Apparatus for processing substrate and apparatus for forming thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179198A (en) * 1999-12-28 2001-07-03 Ushio Inc Dry cleaning device
JP2001293443A (en) * 2000-04-11 2001-10-23 Shimada Phys & Chem Ind Co Ltd Device and method for cleaning substrate
JP2011204944A (en) * 2010-03-26 2011-10-13 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TWI660795B (en) 2019-06-01
JP2018133414A (en) 2018-08-23
JP6810631B2 (en) 2021-01-06
TW201841693A (en) 2018-12-01

Similar Documents

Publication Publication Date Title
JP6655418B2 (en) Substrate processing apparatus and substrate processing method
JP5371854B2 (en) Substrate processing apparatus and substrate processing method
JP5773316B2 (en) Substrate processing equipment and substrate processing method
KR19980081033A (en) Washing and drying processing apparatus, substrate processing apparatus and substrate processing method
JP6495707B2 (en) Exposure apparatus and substrate processing apparatus
CN110875177A (en) Substrate processing apparatus and method
US8635968B2 (en) Substrate processing apparatus and substrate processing method
WO2018150628A1 (en) Substrate treatment device and substrate treatment method
KR102375576B1 (en) Substrate processing apparatus and substrate processing method
KR101295791B1 (en) substrate processing apparatus and substrate processing method
JP2008277480A (en) Substrate transfer treatment method and apparatus
US11167326B2 (en) Substrate processing apparatus and nozzle unit
TWI808489B (en) Substrate processing apparatus and substrate processing method
KR102660152B1 (en) Substrate processing apparatus and substrate processing method
JP3145576B2 (en) Surface treatment equipment
KR102162260B1 (en) Guide pin, unit for supporting photo mask with the guide pin, and apparatus for cleaning photo mask with the guide pin
KR102225958B1 (en) A Substrate processing apparatus and method
JPH10270529A (en) Device and method for carrying substrate
KR101053820B1 (en) Apparatus for manufacturing touch panel and method for manufacturing touch panel using the same
JP2022061415A (en) Substrate processing apparatus and substrate processing method
KR20190050788A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897068

Country of ref document: EP

Kind code of ref document: A1