WO2018149208A1 - 一种快速升温热重分析仪 - Google Patents

一种快速升温热重分析仪 Download PDF

Info

Publication number
WO2018149208A1
WO2018149208A1 PCT/CN2017/112772 CN2017112772W WO2018149208A1 WO 2018149208 A1 WO2018149208 A1 WO 2018149208A1 CN 2017112772 W CN2017112772 W CN 2017112772W WO 2018149208 A1 WO2018149208 A1 WO 2018149208A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal mesh
temperature
inverted
shaped copper
mesh reactor
Prior art date
Application number
PCT/CN2017/112772
Other languages
English (en)
French (fr)
Inventor
罗光前
曹良
邹仁杰
方园
毛正江
李艺铭
李显
姚洪
袁浩然
陈勇
Original Assignee
华中科技大学
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学, 中国科学院广州能源研究所 filed Critical 华中科技大学
Publication of WO2018149208A1 publication Critical patent/WO2018149208A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Definitions

  • the invention belongs to the field of measuring instruments, and more particularly to a thermogravimetric analyzer.
  • thermogravimetric analyzer is an instrument that uses the thermogravimetric method to detect the mass-temperature relationship of a substance. When the measured substance has evaporation, pyrolysis, gasification, oxidation, etc. during heating, the mass of the substance to be measured changes.
  • An important feature of the thermogravimetric method is its strong quantitative ability to accurately determine the mass change and rate of change of a substance.
  • thermogravimetric analysis techniques still have certain limitations.
  • thermogravimetric analyzer used in the laboratory can only reach a heating rate of up to 100K/min, which is quite different from the heating rate of the material in the actual industrial process, and cannot meet the needs of some research.
  • the heating rate is 1000-10000 K/s, which is far from the heating rate of the thermogravi.
  • the heating rate will be deviated. Due to the large volume of the furnace, the higher the temperature, the greater the heat loss of the furnace, resulting in a lower heating rate. This requires feedback adjustment of the sample temperature to correct the sample. The temperature is adjusted and adjusted.
  • thermogravimetric analyzer heats the sample by furnace radiation and convection heat transfer. By adjusting the temperature of the whole furnace, the temperature of the sample is controlled. The adjustment process is very slow, and the heating rate cannot be guaranteed. Sexuality has a great interference with the experimental results.
  • thermogravimetric analyzers use helium as the reactor, the stacking effect of the sample is severe (causing uneven temperature distribution, local temperature overshoot) High), long gas residence time is also one of the causes of secondary reactions.
  • a secondary reaction between the gaseous products produced by the reaction or between the gaseous product and the sample is liable to occur, causing a change in the concentration of the gaseous product, causing measurement errors.
  • thermogravimetric analyzers used in laboratories still have the following problems:
  • thermogravimetric analyzer can only reach 100K/min, which can not simulate some actual industrial processes, which is not conducive to the in-depth discussion of the chemical reaction mechanism, which has great limitations.
  • the secondary reaction is significant and difficult to control and avoid.
  • the secondary reaction will greatly interfere with the accuracy of the measurement results.
  • the present invention provides a rapid temperature rising thermogravimetric analyzer, which aims to overcome the problems of slow heating rate, slow temperature regulation and serious secondary reaction in the existing thermogravimetric technology. It has the advantages of fast heating rate, precise temperature control and small secondary reaction.
  • thermogravimetric analyzer which comprises a susceptor, an electronic analytical balance, a porous support tube, a heating device, a temperature control system, a glass cover and data acquisition and analysis.
  • a rapid temperature rising thermogravimetric analyzer which comprises a susceptor, an electronic analytical balance, a porous support tube, a heating device, a temperature control system, a glass cover and data acquisition and analysis.
  • the base includes a balance chamber, a bottom adjustment stud and a support boss, the balance chamber is hollow, the bottom adjustment stud is disposed on an inner bottom surface of the balance chamber, and the support boss is located above the balance chamber Receiving through the platform chamber, in addition, the support boss is provided with a routing channel;
  • the electronic analytical balance is disposed in the balance chamber and is received by the bottom adjustment stud;
  • the porous support circular tube is vertically disposed, and passes through the support boss and the balance chamber, and is received by the electronic analytical balance, the side wall of the porous support circular tube has a plurality of through holes;
  • the heating device comprises an inverted U-shaped copper tube, a metal mesh reactor and an electrode, the two ends of the inverted U-shaped copper tube rest on the support boss and the inner cavity thereof and the support boss a wire channel is connected, the metal mesh reactor is received by the porous support tube, the electrode is mounted on the inverted U-shaped copper tube and is connected to the metal mesh reactor through a connecting wire, in addition, The electrode is further connected to the temperature control system through a power supply wire for supplying power to the metal mesh reactor, the power supply wire passing through the support boss from the routing channel of the support boss, and Openings in the inner cavity and side walls of the inverted U-shaped copper tube pass through the inverted U-shaped copper tube;
  • the temperature control system includes a thermocouple, a signal line, and a temperature controller, the thermocouple being fixedly mounted on top of the inverted U-shaped copper tube, connected to the temperature controller through the signal line, and A routing channel of the support boss from the signal line passes through the support boss, and passes through the inverted U-shaped copper tube from an opening in the inner cavity and the side wall of the inverted U-shaped copper tube.
  • the temperature controller connects the electrodes through the power supply wire;
  • the glass cover receives and covers the porous support tube, the metal mesh reactor and the inverted U-shaped copper tube through the support boss, the side wall of the glass cover is provided with an air inlet and the top is provided with an exhaust mouth;
  • the data acquisition and analysis device is connected to the electronic analytical balance and the temperature controller, respectively.
  • the metal mesh reactor is formed by folding 2 to 4 metal meshes.
  • the screw is fixedly connected to the top screw hole of the porous support tube.
  • a mica sheet is disposed between the metal mesh reactor and the porous support tube.
  • the temperature controller compares with the set temperature value according to the temperature signal measured by the thermocouple to form a feedback signal, thereby controlling the current on the metal mesh reactor to change the heating power, and further to the metal The temperature of the net reactor is adjusted and corrected.
  • the number of the thermocouples is two, wherein the temperature measuring end of one thermocouple is located above the center of the metal mesh reactor, and the temperature measuring end of the other thermocouple is located above the edge of the metal mesh reactor.
  • a sealing ring is disposed at a joint of the glass cover and the support boss.
  • the metal mesh reactor is in direct contact with the particles, and the sample particles are heated by heat conduction and heat radiation as a main method, which can greatly increase the heating rate, and can achieve a heating rate of 10 -1 - 10 3 K/s span adjustment between five orders of magnitude.
  • the sample is in a single-layer tiling state in the metal mesh reactor, which reduces the stacking effect and makes the temperature of each part of the sample uniform.
  • reaction zone is arranged with two pairs of thermocouples, which are almost close to the reactor surface, and the experimental temperature measurement is more accurate.
  • Figure 1 is a schematic structural view of the structure of the present invention
  • 2(a) and 2(b) are respectively a cross-sectional view and a plan view of a support boss in the present invention
  • Figure 3 is a schematic view showing the structure of a porous support circular tube in the present invention.
  • FIG. 4 is a schematic structural view of an inverted U-shaped copper tube according to the present invention.
  • Figure 5 is a schematic view showing the arrangement of a sample and a thermocouple on a metal mesh reactor in the present invention
  • Figure 6 is a schematic view showing the structure of a glass cover in the present invention.
  • a rapid temperature rising thermogravimetric analyzer includes a susceptor 1, an electronic analytical balance 2, a porous support tube 3, a heating device 4, a temperature control system 5, a glass cover 6, and data acquisition analysis.
  • a susceptor 1 an electronic analytical balance 2
  • a porous support tube 3 a heating device 4
  • a temperature control system 5 a glass cover 6
  • data acquisition analysis. Device wherein
  • the base 1 includes a balance chamber 1-2, a bottom adjustment stud 1-1 and a support boss 1-3, the balance chamber 1-2 is hollow, and the bottom adjustment stud 1-1 is disposed in the balance chamber 1
  • the support boss 1-3 is located above the balance chamber 1-2 and is received by the platform chamber. Further, the support boss 1-3 is provided with a routing channel;
  • the electronic analytical balance 2 is disposed in the balance chamber 1-2 and is received by the bottom adjusting stud 1-1;
  • the porous support tube 3 is arranged vertically, which passes through the support boss 1-3 and the balance chamber 1-2 and is received by the electronic analytical balance 2, the side wall of the porous support tube 3 Having a plurality of through holes;
  • the heating device 4 includes an inverted U-shaped copper tube 4-1, a metal mesh reactor 4-4, and an electrode, and both ends of the inverted U-shaped copper tube 4-1 rest on the support boss 1-3 And the inner cavity thereof is in communication with the routing channel of the supporting boss 1-3, the metal mesh reactor 4-4 is received by the porous supporting circular tube 3, and the electrode is mounted on the inverted U-shaped copper Connected to the metal mesh reactor 4-4 via a connecting wire, and further connected to the temperature control system 5 via a power supply wire 4-2 for use in the metal mesh reactor 4 4 power supply heating, the power supply wire 4-2 passes through the support boss 1-3 from the routing channel of the support boss 1-3, and from the inner cavity of the inverted U-shaped copper tube 4-1 And an opening in the side wall passing through the inverted U-shaped copper tube;
  • the temperature control system 5 includes a thermocouple, a signal line 5-4, and a temperature controller 5-3, and the thermocouple is fixedly mounted on the top of the inverted U-shaped copper tube 4-1, which passes through the signal line 5 -4 is connected to the temperature controller 5-3, and the routing path of the support boss 1-3 from the signal line 5-4 passes through the support boss 1-3 and is poured from the The inner cavity of the U-shaped copper tube 4-1 and the opening on the side wall pass through the inverted U-shaped copper tube, and the temperature controller 5-3 connects the electrode through the power supply wire 4-2;
  • the glass cover 6 receives and covers the porous support tube 3, the metal mesh reactor 4-4 and the inverted U-shaped copper tube 4-1 through the support boss 1-3, and the side wall of the glass cover 6 Set with air inlet and And the top is provided with an exhaust port 6-3;
  • the data acquisition and analysis device 7 is connected to the electronic analytical balance 2 and the temperature controller 5-3, respectively.
  • the metal mesh reactor 4-4 is formed by folding 2 to 4 metal meshes.
  • the screw is fixedly connected to the top screw hole of the porous support tube 3.
  • a mica sheet is disposed between the metal mesh reactor 4-4 and the porous support tube 3.
  • the temperature controller 5-3 compares with the set temperature value according to the temperature signal measured by the thermocouple to form a feedback signal, thereby controlling the current on the metal mesh reactor 4-4 to change the heating.
  • the power is adjusted for the temperature of the metal mesh reactor 4-4.
  • thermocouples are two, wherein the temperature measuring end of one thermocouple is located above the center of the metal mesh reactor 4-4, and the temperature measuring end of the other thermocouple is located at the edge of the metal mesh reactor 4-4. Above.
  • a sealing ring 6-1 is disposed at a joint of the glass cover 6 and the support boss 1-3.
  • the base includes four bottom adjustment studs 1-1, a balance chamber 1-2, and support bosses 1-3.
  • the bottom adjusting stud 1-1 has a height of 50 mm and a flat surface, and the height can be adjusted so that the balance can be level on the uneven surface.
  • the balance chamber 1-2 is a rectangular parallelepiped structure having a cavity inside, a circular opening at the top of the balance chamber, and a protective gas inlet at the lower end side of the balance chamber.
  • the support boss 1-3 includes an upper boss and a lower boss located above the balance chamber 1-2.
  • a circular support frame passage 1-3-2 is provided in the middle of the support boss 1-3 to connect the circular opening at the top of the balance chamber.
  • the routing channels on the supporting bosses 1-3 are symmetrically arranged first internal circuit channels 1-3-1A and second internal circuit channels 1-3-1B, and one end opening of the routing channel is located at the upper convex
  • the top end of the table is located at the side of the lower stage boss.
  • the porous supporting circular tube 3 is a cylindrical cylinder, and a plurality of rectangular through holes are arranged around the hole to ensure the first air inlet 6-2A and the second side from the glass cover 6 during the experiment.
  • the purge flow through the inlet 6-2B is uniform.
  • the top of the porous support circular tube is circumferentially symmetrically designed with a first screw hole structure 3-1 and a second screw hole structure 3-2 for fixing the metal mesh reactor 4-3 with the screw.
  • the outer diameter of the porous support tube 3 is slightly smaller than the diameter of the circular support frame passage 1-3-2 in the middle of the support boss 1-3.
  • the heating device 4 includes an inverted U-shaped copper tube 4-1, a wire 4-2, and an electrode and metal mesh reactor 4-4.
  • the electrode includes an electrode anode 4-3A and an electrode cathode 4-3B.
  • the inverted U-shaped copper tube 4-1 is a hollow structure, and the inverted U-shaped copper tube first end 4-1A and the second end 4-1B are respectively associated with the first internal line channel 1-3-1A and the second
  • the inner line passage 1-3-1B is in communication and the two ends are fixed to the upper stage boss.
  • the power supply wire passes through the first internal circuit channel 1-3-1A and the second internal circuit channel 1-3-1B, enters the inside of the inverted U-shaped copper tube 4-1, and is first from the middle of the inverted U-shaped copper tube
  • the opening 4-1C and the second opening 4-1D are extended to be connected to the electrodes of the first screw 3-1 and the second screw 3-2 fixed to the top end of the porous support tube 3.
  • the electrode anode 4-3A and the electrode cathode 4-3B are connected to the metal mesh reactor 4-4 by a connecting wire to supply power.
  • the metal mesh reactor 4-4 is formed by folding 2 to 4 layers of metal mesh, and the first screw hole 3-1 and the second screw hole 3-2 at the top of the porous support tube 3 by screws and the porous support tube 3. The connection is fixed.
  • a circular region having a diameter of 2-3 cm is drawn in the middle of the metal mesh reactor 4-4 as a reaction zone, and the reactants are laid flat in the reaction zone.
  • the temperature control system 5 includes a first thermocouple 5-2A and a second thermocouple 5-2B, a temperature controller 5-3, and a signal line 5-4.
  • thermocouple 5-2A and the second thermocouple 5-2B are fixed to the curved portion 5-1 of the inverted U-shaped copper tube 4-1, and the top of the inverted U-shaped copper tube 4-1 is two. Open a hole 4-1E and 4-1F on each side.
  • the inverted U-shaped copper tube 4-1 is a hollow structure connected to the line channel and fixed on the upper stage boss.
  • a first side hole 4-1E and a second side hole 4-1F are respectively opened on both sides of the top of the thermocouple fixing rod, and the first thermocouple 5-2A and the second thermocouple 5-2B are protruded from the two holes.
  • the signal line passes through the line channel and enters the inside of the inverted U-shaped copper tube 4-1, and extends from the first side hole 4-1E and the second side hole 4-1F of the top of the inverted U-shaped copper tube 4-1.
  • Out connected to the first thermocouple 5-2A and the second thermocouple 5-2B, and the other end of the signal line is connected to the temperature controller 5-3.
  • thermocouple 5-2A and the second thermocouple 5-2B are disposed above the metal mesh reactor 4-4, and a thermocouple temperature measuring end 5-2C is located in the metal mesh reactor 4.
  • the temperature of the reaction zone was measured above the center of -4, and the temperature of the other thermocouple end 5-2D was measured above the edge of the metal mesh reactor 4-4 to measure the edge temperature of the reaction zone.
  • the temperature controller 5-3 is connected to the heating device by wires.
  • the temperature controller 5-3 compares the temperature signals measured by the first thermocouple 5-2A and the second thermocouple 5-2B with the set temperature value to form a feedback signal, and controls the heating device 4 Current, change heating power, adjust temperature.
  • the lower half of the cover glass 6 is cylindrical and the top is hemispherical.
  • the outer diameter of the lower half of the glass cover 6 coincides with the outer diameter of the upper boss of the support boss 1-3, and is placed on the upper boss, and the sealing ring 6-1 is disposed at the contact.
  • the side of the glass cover is provided with a first air inlet 6-2A and a second air inlet 6-2B, and the top end is provided with an air outlet 6-3, and the lower end of the air outlet 6-3 is set to be inverted Funnel shape.
  • the data acquisition and analysis system 7 includes a data transmission line and a computer 7-1; through the data transmission line, the electronic analysis balance 2, the temperature controller 5-3 is connected to the computer 7-1 The weight signal of the electronic analytical balance 2 and the temperature signal of the temperature controller 5-3 are transmitted to the computer 7-1.
  • the isothermal combustion experiment was performed on the coal particle sample by using the above variable heating rate thermogravimetric analyzer.
  • the specific steps are as follows:
  • thermogravimetric analyzer Places the thermogravimetric analyzer on a test bench with a flat surface and adjust the bottom of the pad. The studs are placed so that the balance is level.
  • the power supply wire 4-2 and the signal wire 5-4 are extended from the first internal circuit channel 1-3-1A and the second internal circuit channel 1-3-1B, and then the hollow inverted U-shaped copper tube 4-1 is installed. , the power supply wire 4-2 and the signal wire 5-4 are extended along the inverted U-shaped copper pipe 4-1, and the first central opening 4-1C and the second central opening of the inverted U-shaped copper pipe 4-1 are opened.
  • the wire is taken out at 4-1D, the wire 4-2 is connected to the electrode fixed to the top end screw of the support rod 3, and the signal line 5-4 is taken out from the first side hole 4-1E and the second side hole 4-1F, and then The signal line 5-4 is connected to the thermocouple, the thermocouple temperature measuring end is arranged above the metal mesh reactor 4-4, and a thermocouple temperature measuring end 5-2C is located above the center of the metal mesh reactor to measure the reaction zone. At the temperature, another thermocouple temperature measuring end 5-2D is located above the edge of the metal mesh reactor 4-4 to measure the edge temperature of the reaction zone, and then the inverted U-shaped copper tube 4-1 is fixed.
  • the metal mesh reactor 4-4 is folded to press the metal mesh reactor 4-4 against the coal sample particles, and the two nuts of the fixed metal mesh reactor 4-4 are tightened. In the process of tightening the two nuts of the fixed metal mesh reactor 4-4, it is necessary to first tighten the nut and press the two nuts into the metal mesh reactor 4-4. Then slowly tighten them one by one, and do not tighten each nut one by one.
  • step 3 Repeat the process of arranging the electrode lead and the thermocouple in step 3), and arrange the electrode lead and the thermocouple.
  • the first air inlet 6-2A is connected to oxygen.
  • the first air inlet 6-2B is connected to argon.
  • the oxygen valve is closed first, and the argon valve is opened. Argon.
  • the oxygen valve is opened, and oxygen is introduced to burn the coal sample at a flow rate of 50 mL/min.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种快速升温热重分析仪,包括基座(1)、电子分析天平(2)、多孔支撑圆管(3)、加热装置(4)、温度控制系统(5)、玻璃罩(6)和数据采集分析装置(7),基座(1)包括天平室(1-2)、垫底调整螺柱(1-1)和支撑凸台(1-3),电子分析天平(2)设置于所述天平室(1-2)内;加热装置(4)包括倒U型铜管(4-1)、金属网反应器(4-4)和电极;温度控制系统(5)包括热电偶、信号线(5-4)和温度控制器(5-3);玻璃罩(6)通过所述支撑凸台(1-3)承接并罩住所述多孔支撑圆管(3)、金属网反应器(4-4)和倒U型铜管(4-1);所述数据采集分析装置(7)分别与所述电子分析天平(2)和所述温度控制器连接(5-3)。采用金属网反应器(4-4)作为加热装置,金属网反应器(4-4)与颗粒直接接触,以热传导和热辐射为主要方式对样品颗粒进行加热,可以极大提高加热速率。

Description

一种快速升温热重分析仪 [技术领域]
本发明属于测量仪器领域,更具体地,涉及一种热重分析仪。
[背景技术]
热重分析仪是一种利用热重法检测物质质量—温度变化关系的仪器。当被测物质在加热过程中有蒸发、热解、气化、氧化等反应时,被测的物质质量就会发生变化。热重法的重要特点是定量性强,能准确地测定物质的质量变化及变化的速率。然而,热重法分析技术仍存在一定的局限性。
首先,目前实验室用的热重分析仪,加热速率最高只能达到100K/min,与实际工业过程中物质的升温速率有较大差异,无法满足某些研究的需要。例如,对于粉煤炉的锅炉中,燃料喷入锅炉炉膛后,升温速率达到1000-10000K/s,这与热重的升温速率相距甚远。其次,热重实际运行过程中,升温速率会出现偏差,由于炉膛体积较大,随着温度越高,炉体散热损失越大,导致升温速率降低,这就需要对样品温度进行反馈调节校正样品温度进行反馈调节校正,然而,目前热重分析仪都是通过炉膛辐射及对流传热对样品进行升温,通过调整整体大炉膛的温度控制样品温度,其调节过程十分迟缓,无法保证升温速率的准确性,对实验结果有极大的干扰。
再次,当需要使用热重联用技术,通过联接气体分析仪同步测量气体产物时,由于目前热重分析仪大多使用坩埚作为反应器,样品的堆积效应严重(导致温度分布不均,局部温度过高),气体停留时间长也是导致二次反应的原因之一。对于某些化学反应,反应生成的气态产物之间或气态产物与样品之间容易发生二次反应,使得气态产物浓度发生改变,造成测量误差。
综上所述,目前实验室用的热重分析仪还存在以下问题:
1)目前的热重分析仪的加热速率最高只能达到100K/min,无法模拟某些实际的工业过程,不利于深入探讨化学反应机理,存在很大的局限性。
2)通过炉膛辐射传热对样品进行升温,炉膛体积大,温度信号反馈调节过程迟缓,无法精准地控制升温速率。
3)对于某些反应过程,二次反应显著,并且很难控制和避免,当需要对气体产物进行同步分析时,二次反应将对测量结果的准确性造成极大干扰。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种快速升温热重分析仪,其目的在于克服现有热重技术中存在着加热速率慢、温度调节迟缓以及二次反应严重等问题,具有升温速率快,温度控制精准以及二次反应影响小等优点。
为实现上述目的,按照本发明,提供了一种快速升温热重分析仪,其特征在于,包括基座、电子分析天平、多孔支撑圆管、加热装置、温度控制系统、玻璃罩和数据采集分析装置,其中,
所述基座包括天平室、垫底调整螺柱和支撑凸台,所述天平室中空,所述垫底调整螺柱设置在天平室的内底面上,所述支撑凸台位于所述天平室上方并通过所述平台室承接,此外,所述支撑凸台上设置有走线通道;
所述电子分析天平设置于所述天平室内并通过所述垫底调整螺柱承接;
所述多孔支撑圆管竖直设置,其穿过所述支撑凸台和所述天平室后通过所述电子分析天平承接,所述多孔支撑圆管的侧壁具有多个通孔;
所述加热装置包括倒U型铜管、金属网反应器和电极,所述倒U型铜管的两个端部搁置在所述支撑凸台上并且其内腔与所述支撑凸台的走线通道连通,所述金属网反应器通过所述多孔支撑圆管承接,所述电极安装在所述倒U型铜管上并且通过连接导线与所述金属网反应器连接,此外,所 述电极还通过供电导线连接所述温度控制系统,以用于对所述金属网反应器供电加热,所述供电导线从所述支撑凸台的走线通道穿过所述支撑凸台,并从所述倒U型铜管的内腔和侧壁上的开口穿过所述倒倒U型铜管;
所述温度控制系统包括热电偶、信号线和温度控制器,所述热电偶固定安装在所述倒U型铜管的顶部,其通过所述信号线与所述温度控制器连接,并且所述从信号线所述支撑凸台的走线通道穿过所述支撑凸台,并从所述倒U型铜管的内腔和侧壁上的开口穿过所述倒倒U型铜管,所述温度控制器通过所述供电导线连接所述电极;
所述玻璃罩通过所述支撑凸台承接并罩住所述多孔支撑圆管、金属网反应器和倒U型铜管,所述玻璃罩的侧壁设置有进气口并且其顶部设置有排气口;
所述数据采集分析装置分别与所述电子分析天平和所述温度控制器连接。
优选地,所述金属网反应器为2~4层金属网折叠而成。通过螺钉与所述多孔支撑圆管顶部螺孔连接固定。
优选地,所述金属网反应器与所述多孔支撑圆管之间设置有云母薄片。
优选地,所述温度控制器根据所述热电偶测得的温度信号,与设定的温度值进行比较,形成反馈信号,从而控制金属网反应器上的电流,以改变加热功率,进而对金属网反应器的温度进行调整校正。
优选地,所述热电偶的数量为两根,其中一根热电偶的测温端位于金属网反应器中央上方,另一支热电偶的测温端位于金属网反应器边缘上方。
优选地,所述玻璃罩与所述支撑凸台的接合处设置有密封圈。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
1)采用金属网反应器作为加热装置,金属网反应器与颗粒直接接触,以热传导和热辐射为主要方式对样品颗粒进行加热,可以极大提高加热速 率,可以实现加热速率在10-1-103K/s五个数量级之间跨越式调节。
2)通过改变金属网的电流对加热功率进行控制,进而调节升温速率,缩短了调节时间,提高温控的准确性。
3)样品在金属网反应器中呈单层平铺状态,减少了固体颗粒直接的相互接触,同时,反应气流高速通过反应层并带走气体产物,显著降低了固固之间或者气固之间的二次反应(气体停留时间长,气体之间也有二次反应)。
4)样品在金属网反应器中呈单层平铺状态,降低了堆积效应,使得样品各部分温度一致。
5)反应区域布置有两对热电偶,且都几乎贴近于反应器表面,实验温度测量更加精确。
[附图说明]
图1为本发明的结构示意结构图;
图2(a)、图2(b)分别为本发明中支撑凸台的剖视图和俯视图;
图3为本发明中多孔支撑圆管的结构示意图;
图4为本发明中倒U型铜管的结构示意图;
图5为本发明中金属网反应器上样品和热电偶布置示意图;
图6为本发明中玻璃罩结构示意图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参照各附图,一种快速升温热重分析仪,包括基座1、电子分析天平2、多孔支撑圆管3、加热装置4、温度控制系统5、玻璃罩6和数据采集分析 装置,其中,
所述基座1包括天平室1-2、垫底调整螺柱1-1和支撑凸台1-3,所述天平室1-2中空,所述垫底调整螺柱1-1设置在天平室1-2的内底面上,所述支撑凸台1-3位于所述天平室1-2上方并通过所述平台室承接,此外,所述支撑凸台1-3上设置有走线通道;
所述电子分析天平2设置于所述天平室1-2内并通过所述垫底调整螺柱1-1承接;
所述多孔支撑圆管3竖直设置,其穿过所述支撑凸台1-3和所述天平室1-2后通过所述电子分析天平2承接,所述多孔支撑圆管3的侧壁具有多个通孔;
所述加热装置4包括倒U型铜管4-1、金属网反应器4-4和电极,所述倒U型铜管4-1的两个端部搁置在所述支撑凸台1-3上并且其内腔与所述支撑凸台1-3的走线通道连通,所述金属网反应器4-4通过所述多孔支撑圆管3承接,所述电极安装在所述倒U型铜管上并且通过连接导线与所述金属网反应器4-4连接,此外,所述电极还通过供电导线4-2连接所述温度控制系统5,以用于对所述金属网反应器4-4供电加热,所述供电导线4-2从所述支撑凸台1-3的走线通道穿过所述支撑凸台1-3,并从所述倒U型铜管4-1的内腔和侧壁上的开口穿过所述倒倒U型铜管;
所述温度控制系统5包括热电偶、信号线5-4和温度控制器5-3,所述热电偶固定安装在所述倒U型铜管4-1的顶部,其通过所述信号线5-4与所述温度控制器5-3连接,并且所述从信号线5-4所述支撑凸台1-3的走线通道穿过所述支撑凸台1-3,并从所述倒U型铜管4-1的内腔和侧壁上的开口穿过所述倒倒U型铜管,所述温度控制器5-3通过所述供电导线4-2连接所述电极;
所述玻璃罩6通过所述支撑凸台1-3承接并罩住所述多孔支撑圆管3、金属网反应器4-4和倒U型铜管4-1,所述玻璃罩6的侧壁设置有进气口并 且其顶部设置有排气口6-3;
所述数据采集分析装置7分别与所述电子分析天平2和所述温度控制器5-3连接。
进一步,所述金属网反应器4-4为2~4层金属网折叠而成。通过螺钉与所述多孔支撑圆管3顶部螺孔连接固定。
进一步,所述金属网反应器4-4与所述多孔支撑圆管3之间设置有云母薄片。
进一步,所述温度控制器5-3根据所述热电偶测得的温度信号,与设定的温度值进行比较,形成反馈信号,从而控制金属网反应器4-4上的电流,以改变加热功率,进而对金属网反应器4-4的温度进行调整校正。
进一步,所述热电偶的数量为两根,其中一根热电偶的测温端位于金属网反应器4-4中央上方,另一支热电偶的测温端位于金属网反应器4-4边缘上方。
进一步,所述玻璃罩6与所述支撑凸台1-3的接合处设置有密封圈6-1。
参照图1,所述基座包括4个垫底调整螺柱1-1、天平室1-2和支撑凸台1-3。
所述垫底调整螺柱1-1高度为50mm,表面平整,可以调节高度,使得天平可以在不平整表面上保持水平。
参照图1和图2,所述天平室1-2是长方体结构,内部为空腔,天平室顶部为圆形开口,天平室下端侧面设置有保护气进口。
所述支撑凸台1-3包括上级凸台和下级凸台,位于在天平室1-2上方。
参照图2,所述支撑凸台1-3中间有圆形支撑架通道1-3-2,连接所述天平室顶部圆形开口。
所述支撑凸台1-3上的走线通道为对称布置的第一内部线路通道1-3-1A和第二内部线路通道1-3-1B,所述走线通道的一端开口位于上级凸台的顶端面,另一端开口位于下级凸台的侧面。
参照图1,所述多孔支撑圆管3为圆筒柱体,其周围设置有很多矩形排列的通孔,以保证实验过程中从玻璃罩6两侧第一进气口6-2A和第二进气口6-2B通入的吹扫气流均匀。
参照图3所述多孔支撑圆管顶部沿圆周对称设计有第一螺孔结构3-1和第二螺孔结构3-2,用来与螺钉配合固定金属网反应器4-3。所述多孔支撑圆管3的外径略小于上述支撑凸台1-3中间的圆形支撑架通道1-3-2的孔径。
参照图1和图4,所述加热装置4包括倒U型铜管4-1、导线4-2和电极和金属网反应器4-4,电极包括电极阳极4-3A和电极阴极4-3B,所述倒U型铜管4-1为中空结构,倒U型铜管第一端4-1A和第二端4-1B分别与所述第一内部线路通道1-3-1A和第二内部线路通道1-3-1B连通并且这两个端部固定在所述上级凸台上。
所述供电导线通过所述第一内部线路通道1-3-1A和第二内部线路通道1-3-1B,进入倒U型铜管4-1内部,从倒U型铜管中部的第一开孔4-1C和第二开孔4-1D伸出,与固定于多孔支撑圆管3顶端的第一螺钉3-1和第二螺钉3-2的电极连接。
所述电极阳极4-3A和电极阴极4-3B通过连接导线与金属网反应器4-4连接来供电。
参照图1,所述金属网反应器4-4为2至4层金属网折叠而成,通过螺钉与所述多孔支撑圆管3顶部第一螺孔3-1和第二螺孔3-2连接固定。
参照图5,金属网反应器4-4中部划出直径2-3cm的圆形区域作为反应区,反应物平铺于此反应区。
参照图1,所述温度控制系统5包括第一热电偶5-2A和第二热电偶5-2B、温度控制器5-3以及信号线5-4。
参照图1和图4,第一热电偶5-2A和第二热电偶5-2B固定在倒U型铜管4-1的弧形部5-1,倒U型铜管4-1顶部两侧分别开一孔4-1E和4-1F, 倒U型铜管4-1为中空结构,与线路通道相连,固定在所述上级凸台上。
所述热电偶固定杆顶部两侧分别开第一侧孔4-1E和第二侧孔4-1F,第一热电偶5-2A和第二热电偶5-2B由此两孔伸出。
所述信号线通过线路通道,进入倒U型铜管4-1内部,从所述倒U型铜管4-1顶部所开第一侧孔4-1E和第二侧孔4-1F处伸出,与第一热电偶5-2A和第二热电偶5-2B连接,所述信号线另一端与温度控制器5-3相连。
参照图5,所述第一热电偶5-2A和第二热电偶5-2B布置在所述金属网反应器4-4上方,一支热电偶测温端5-2C位于金属网反应器4-4中央上方测量反应区温度,另一支热电偶测温端5-2D位于金属网反应器4-4边缘上方测量反应区边缘温度。
参照图1,所述温度控制器5-3与所述加热装置通过导线相连。所述温度控制器5-3根据所述第一热电偶5-2A和第二热电偶5-2B测得的温度信号,与设定的温度值进行比较,形成反馈信号,控制加热装置4的电流,改变加热功率,对温度进行调整。
参照图1和图6,所述玻璃罩6下半部分为圆柱形,顶部为半球形。所述玻璃罩6下半部分的圆柱外径与所述支撑凸台1-3的上级凸台外径一致,放置在上级凸台上,接触处布置有密封圈6-1。
参照图6,所述玻璃罩侧面设置有第一进气口6-2A和第二进气口6-2B,顶端设置有一个出气口6-3,所述出气口6-3下端设置为倒漏斗形。
参照图1,所述数据采集分析系统7包括数据传输线和电脑7-1;通过所述数据传输线,将所述电子分析天平2、所述温度控制器5-3与所述电脑7-1连接,将所述电子分析天平2的重量信号和所述温度控制器5-3的温度信号传输给电脑7-1。
利用上述可变加热速率热重分析仪对煤颗粒样品进行等温燃烧实验,具体步骤如下:
1)把该热重分析仪装置放置在表面平整水平的实验台上,调节垫底调 整螺柱,使天平处于水平状态。
2)取出清洁的支撑杆3自上而下竖直插入支撑凸台1-3的圆形支撑架通道1-3-21-3-2中,将固定金属网反器4-4的第一螺钉3-1和第二3-2拧下,选取洁净的金属网片(本次实验选用200目线网,对应的粒径为100μm-200μm)折叠后用多孔支撑圆管3顶部第一螺钉3-1和第二3-2拧紧固定。本实验优选50μm直径的热电偶丝。
3)把供电导线4-2和信号线5-4由第一内部线路通道1-3-1A和第二内部线路通道1-3-1B伸入,然后安装中空倒U型铜管4-1,将供电导线4-2和信号线5-4顺着倒U型铜管4-1伸入,在倒U型铜管4-1的第一中部开孔4-1C和第二中部开孔4-1D处将导线引出,将导线4-2与固定于支撑杆3顶端螺钉的电极相连,将信号线5-4由第一侧孔4-1E和第二侧孔4-1F引出,然后把信号线5-4与热电偶相接,热电偶测温端布置在所述金属网反应器4-4上方,一支热电偶测温端5-2C位于金属网反应器中央上方测量反应区温度,另一支热电偶测温端5-2D位于金属网反应器4-4边缘上方测量反应区边缘温度,然后将倒U型铜管4-1固定好。
4)盖上玻璃罩6,启动电源,打开电子分析天平2,等待电子分析天平2读数稳定,清零电子分析天平2读数。
5)编写反应升温程序,启动天平,进行空白实验。
6)用电子分析天平2称取30mg经过筛选的粒径100μm-200μm之间的煤样颗粒。
7)待空白实验完成,热重装置冷却到常温后,取下玻璃罩,松开固定金属网的螺母,将折叠的金属网反应器4-4摊开,把称好的煤样颗粒样品8平铺于金属网反应器4-4中部直径2-3cm的反应区。
8)将金属网反应器4-4折叠以使金属网反应器4-4压紧煤样颗粒,拧紧固定金属网反应器4-4的2个螺母。在拧紧固定金属网反应器4-4的2个螺母的过程中,要注意先稍稍拧螺母使2个螺母都压好金属网反应器4-4, 然后再慢慢一一拧紧,切不可将每个螺母一次逐个拧紧。
9)重复步骤3)中的布置电极导线和热电偶的过程,布置好电极导线和热电偶。
10)盖上玻璃罩,连接好各气体管路,第一进气口6-2A接氧气,第一进气口6-2B接氩气,先关上氧气的阀门,打开氩气阀门,通入氩气。
11)通过电脑设定升温程序,以100℃/s的速度加热至600℃后保持20分钟。
12)待温度稳定在600℃后打开氧气阀门,通入氧气使煤样燃烧,流量为50mL/min。
13)待煤样燃尽,热重曲线基本保持稳定时,终止数据采集,保存数据。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

  1. 一种快速升温热重分析仪,其特征在于,包括基座、电子分析天平、多孔支撑圆管、加热装置、温度控制系统、玻璃罩和数据采集分析装置,其中,
    所述基座包括天平室、垫底调整螺柱和支撑凸台,所述天平室中空,所述垫底调整螺柱设置在天平室的内底面上,所述支撑凸台位于所述天平室上方并通过所述平台室承接,此外,所述支撑凸台上设置有走线通道;
    所述电子分析天平设置于所述天平室内并通过所述垫底调整螺柱承接;
    所述多孔支撑圆管竖直设置,其穿过所述支撑凸台和所述天平室后通过所述电子分析天平承接,所述多孔支撑圆管的侧壁具有多个通孔;
    所述加热装置包括倒U型铜管、金属网反应器和电极,所述倒U型铜管的两个端部搁置在所述支撑凸台上并且其内腔与所述支撑凸台的走线通道连通,所述金属网反应器通过所述多孔支撑圆管承接,所述电极安装在所述倒U型铜管上并且通过连接导线与所述金属网反应器连接,此外,所述电极还通过供电导线连接所述温度控制系统,以用于对所述金属网反应器供电加热,所述供电导线从所述支撑凸台的走线通道穿过所述支撑凸台,并从所述倒U型铜管的内腔和侧壁上的开口穿过所述倒倒U型铜管;
    所述温度控制系统包括热电偶、信号线和温度控制器,所述热电偶固定安装在所述倒U型铜管的顶部,其通过所述信号线与所述温度控制器连接,并且所述从信号线所述支撑凸台的走线通道穿过所述支撑凸台,并从所述倒U型铜管的内腔和侧壁上的开口穿过所述倒倒U型铜管,所述温度控制器通过所述供电导线连接所述电极;
    所述玻璃罩通过所述支撑凸台承接并罩住所述多孔支撑圆管、金属网反应器和倒U型铜管,所述玻璃罩的侧壁设置有进气口并且其顶部设置有 排气口;
    所述数据采集分析装置分别与所述电子分析天平和所述温度控制器连接。
  2. 根据权利要求1所述的一种快速升温热重分析仪,其特征在于,所述金属网反应器为2~4层金属网折叠而成。通过螺钉与所述多孔支撑圆管顶部螺孔连接固定。
  3. 根据权利要求1所述的一种快速升温热重分析仪,其特征在于,所述金属网反应器与所述多孔支撑圆管之间设置有云母薄片。
  4. 根据权利要求1所述的一种快速升温热重分析仪,其特征在于,所述温度控制器根据所述热电偶测得的温度信号,与设定的温度值进行比较,形成反馈信号,从而控制金属网反应器上的电流,以改变加热功率,进而对金属网反应器的温度进行调整校正。
  5. 根据权利要求1所述的一种快速升温热重分析仪,其特征在于,所述热电偶的数量为两根,其中一根热电偶的测温端位于金属网反应器中央上方,另一支热电偶的测温端位于金属网反应器边缘上方。
  6. 根据权利要求1所述的一种快速升温热重分析仪,其特征在于,所述玻璃罩与所述支撑凸台的接合处设置有密封圈。
PCT/CN2017/112772 2017-02-14 2017-11-24 一种快速升温热重分析仪 WO2018149208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710077975.8 2017-02-14
CN201710077975.8A CN106769606A (zh) 2017-02-14 2017-02-14 一种快速升温热重分析仪

Publications (1)

Publication Number Publication Date
WO2018149208A1 true WO2018149208A1 (zh) 2018-08-23

Family

ID=58956658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112772 WO2018149208A1 (zh) 2017-02-14 2017-11-24 一种快速升温热重分析仪

Country Status (2)

Country Link
CN (1) CN106769606A (zh)
WO (1) WO2018149208A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824874A (zh) * 2022-09-26 2023-03-21 南京航空航天大学 直接光热重高精度分析仪及其工作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106769606A (zh) * 2017-02-14 2017-05-31 华中科技大学 一种快速升温热重分析仪
CN108007809B (zh) * 2017-12-08 2020-08-07 中国科学院广州能源研究所 一种快速升温宽量程热重分析仪
CN108956360B (zh) * 2018-04-11 2020-07-14 华中科技大学 基于光热快速升温的磁悬浮热天平
CN108956361B (zh) * 2018-04-11 2020-07-14 华中科技大学 基于光热快速升温的磁悬浮热天平测量方法
CN109541009A (zh) * 2018-11-15 2019-03-29 中国科学院广州能源研究所 一种丝网急速加热和快速质谱气固相分析仪
CN110470559A (zh) * 2019-05-15 2019-11-19 华北电力大学(保定) 一种固体高温高压化学反应动力学参数获取方法与装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243674A (ja) * 2001-02-22 2002-08-28 Ricoh Co Ltd 熱分析装置
JP3852848B2 (ja) * 2004-05-21 2006-12-06 株式会社リガク 熱分析装置
CN105183039A (zh) * 2015-10-14 2015-12-23 华中科技大学 一种电阻丝网反应器温度控制系统
CN105954137A (zh) * 2016-06-20 2016-09-21 华中科技大学 一种原位快速采样热重分析仪
CN205691449U (zh) * 2016-06-20 2016-11-16 华中科技大学 一种原位快速采样热重分析仪
CN106290700A (zh) * 2016-09-28 2017-01-04 华中科技大学 一种流化床内气固反应实时工况测量系统
CN106769606A (zh) * 2017-02-14 2017-05-31 华中科技大学 一种快速升温热重分析仪
CN206523393U (zh) * 2017-02-14 2017-09-26 华中科技大学 一种快速升温热重分析仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109446B (zh) * 2009-12-25 2013-01-09 中国科学院过程工程研究所 控制热天平分析仪反应气窜流的方法及加压热天平分析仪
CN103760057A (zh) * 2013-12-02 2014-04-30 中国东方电气集团有限公司 一种基于Labview的升温速率可控的丝网反应器
CN103831062B (zh) * 2014-04-09 2015-10-28 中国东方电气集团有限公司 一种升温速率可控的电加热丝网反应器结构
CN106053280B (zh) * 2016-06-12 2019-09-03 东南大学 一种可实现热态在线称重的微型固定床反应装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243674A (ja) * 2001-02-22 2002-08-28 Ricoh Co Ltd 熱分析装置
JP3852848B2 (ja) * 2004-05-21 2006-12-06 株式会社リガク 熱分析装置
CN105183039A (zh) * 2015-10-14 2015-12-23 华中科技大学 一种电阻丝网反应器温度控制系统
CN105954137A (zh) * 2016-06-20 2016-09-21 华中科技大学 一种原位快速采样热重分析仪
CN205691449U (zh) * 2016-06-20 2016-11-16 华中科技大学 一种原位快速采样热重分析仪
CN106290700A (zh) * 2016-09-28 2017-01-04 华中科技大学 一种流化床内气固反应实时工况测量系统
CN106769606A (zh) * 2017-02-14 2017-05-31 华中科技大学 一种快速升温热重分析仪
CN206523393U (zh) * 2017-02-14 2017-09-26 华中科技大学 一种快速升温热重分析仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115824874A (zh) * 2022-09-26 2023-03-21 南京航空航天大学 直接光热重高精度分析仪及其工作方法
CN115824874B (zh) * 2022-09-26 2023-09-29 南京航空航天大学 直接光热重高精度分析仪及其工作方法

Also Published As

Publication number Publication date
CN106769606A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
WO2018149208A1 (zh) 一种快速升温热重分析仪
CN106769621B (zh) 一种微波热重分析装置与联用系统
CN206258335U (zh) 燃料快速燃烧特性分析装置
CN103760054B (zh) 一种用于大试样测试的热重反应器
CN103439212B (zh) 一种快速变温双炉体热天平
CN108007809B (zh) 一种快速升温宽量程热重分析仪
CN102109446B (zh) 控制热天平分析仪反应气窜流的方法及加压热天平分析仪
CN106053280B (zh) 一种可实现热态在线称重的微型固定床反应装置及方法
CN106290700A (zh) 一种流化床内气固反应实时工况测量系统
CN207408261U (zh) 大重量生物质压块成型燃料燃烧特性测试装置
CN105004625A (zh) 一种电与微波协同加热的反应热重分析系统
CN105954137A (zh) 一种原位快速采样热重分析仪
CN104634922A (zh) 一种可拆卸式固体燃料悬浮燃烧实验测试装置及测试方法
CN101382478A (zh) 一种用微波加热试样的热重分析方法和装置
CN102495110A (zh) 一种气体传感器测试系统
CN201666861U (zh) 测试固态物体加热失重的装置
CN208818642U (zh) 一种测试煤自然发火全过程的实验系统
CN205691449U (zh) 一种原位快速采样热重分析仪
CN206523393U (zh) 一种快速升温热重分析仪
CN113624907B (zh) 一种点燃实验模拟装置
CN113433022B (zh) 一种可实现高精度初期稳定测量的热重分析系统
CN109030272A (zh) 一种用于气固反应动力学实时精确测量的流化床热重分析系统
CN104502535A (zh) 用于研究气固本征化学反应动力学的微型装置及建模方法
CN111841453B (zh) 一种应用于热重分析的微型流化床反应装置
CN109632879A (zh) 一种用于型煤燃烧的可视化宏观热重分析仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17896407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17896407

Country of ref document: EP

Kind code of ref document: A1