WO2018148935A1 - 双电机非对称动力分配效率优化方法及系统 - Google Patents
双电机非对称动力分配效率优化方法及系统 Download PDFInfo
- Publication number
- WO2018148935A1 WO2018148935A1 PCT/CN2017/073950 CN2017073950W WO2018148935A1 WO 2018148935 A1 WO2018148935 A1 WO 2018148935A1 CN 2017073950 W CN2017073950 W CN 2017073950W WO 2018148935 A1 WO2018148935 A1 WO 2018148935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- motor
- torque
- efficiency
- motors
- optimization
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/40—Electrical machine applications
- B60L2220/42—Electrical machine applications with use of more than one motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the invention relates to a method for optimizing the asymmetric power distribution efficiency of a dual motor, which is used for electric driving of automobiles.
- the invention also relates to a dual motor asymmetric power distribution efficiency optimization system.
- permanent magnet synchronous motors With its high efficiency, high power factor and high power density, permanent magnet synchronous motors are gradually becoming the mainstream motor for pure electric vehicles of new energy vehicles.
- the application of permanent magnet synchronous motors in purely electric vehicles is mainly in the form of direct drive, transmission with transmission and drive with reducer.
- the motor output flange is directly connected to the drive shaft.
- the feature of this solution is that the drive is direct and efficient.
- the disadvantage is that the maximum torque of the motor is large in order to meet the maximum grade of the vehicle.
- the maximum torque of the motor is usually proportional to the volume of the motor, so the material cost is higher when the maximum torque of the motor is large.
- the advantage of the motor + transmission drive scheme is that the transmission will greatly expand the speed and torque range of the power system to achieve higher gradeability and higher maximum speed; the transmission can put the operating point of the motor to the motor as much as possible.
- the high efficiency area helps to increase the efficiency of the motor.
- the highly efficient permanent magnet synchronous motor has a very high efficiency area and the efficiency difference between high efficiency and low efficiency is small, the efficiency optimization effect of the transmission is far lower than that of the induction asynchronous motor (less than Optimization effect on the internal combustion engine).
- the disadvantage of the motor + transmission is that the transmission loss of the transmission will reduce the efficiency of the whole system. Usually, the efficiency of the multi-speed transmission is between 90% and 95%. The loss of the system efficiency of the transmission will be even greater than that of the transmission. The improvement in efficiency leads to an increase in the mileage power consumption per vehicle.
- the advantage of the motor + reducer drive scheme is to increase the output torque of the power system through the torque reduction function of the reducer.
- the program is mainly applied to passenger cars, which has the advantages of reducing the size of the motor and effectively reducing the cost of the motor.
- the efficiency of the reducer can usually be 97%-98%.
- the disadvantage is that after the volume of the motor is reduced, the heat dissipation capability will be The corresponding reduction reduces the maximum continuous operating torque of the motor.
- the continuous power of the motor is difficult to meet the requirements of continuous heavy load.
- the present invention provides a method for optimizing the asymmetric power distribution efficiency of a dual motor, which uses different efficiency characteristics to drive the motors in parallel to optimize the driving efficiency under different speed and torque regions, and improve The drive power of the motor in the high speed region enables the overall efficiency and performance of the electric drive system to be improved.
- the invention also provides a dual motor asymmetric power distribution efficiency optimization system.
- a two-motor asymmetric power distribution efficiency optimization method which sets two sets of motors with different driving efficiencies to form a power group, which is a first motor and a second motor respectively, and the motors output torque in parallel to obtain respective efficiencies of the two sets of motors.
- the first motor torque is too large, the efficiency efficient zone is located in the low speed zone, the second motor torque is small, and the efficiency efficient zone is located in the high speed zone.
- optimization calculation method includes the following steps:
- Step 1 Perform simulation optimization in the offline state, using the scan calculation method, divide the grid points in the torque/speed range allowed by the power group, and the required torque T d corresponding to each grid point. And the rotational speed ⁇ , the optimal distribution ratio x is solved, so that the torque of the first motor is:
- the torque of the second motor is:
- Step 2 The efficiencies of the first motor and the second motor are respectively expressed as:
- the method for solving each torque demand and speed point is: x divides several intervals in the interval between 0 and 1, and enumerates all points between x and 0;
- Step 3 After solving by numerical calculation, the highest torque distribution database with different torque demand and speed can be obtained.
- the x is evenly divided into 20 intervals from 0 to 1, and all points between x and 0 are:
- first motor and the second motor are torque-distributed online according to the torque distribution database.
- the different efficiency characteristics of the motor are realized by the motor itself or by different reduction ratios.
- a dual-motor asymmetric power distribution efficiency optimization system which sets two sets of motors with different driving efficiencies to form a power group, which is a first motor and a second motor respectively, the motors output torque in parallel, and the system is provided with main control Provided in the main controller, the torque distribution database according to any one of claims 3-5, wherein the main controller distributes torque between the two sets of motors according to the torque distribution database, and obtains a The highest efficiency value of the power group.
- first motor and the second motor are respectively provided with slave controllers, and the master controller controls the slave controller to realize power distribution of different motors.
- the first motor has a maximum torque of 2100 Nm and the second motor has a maximum torque of 900 Nm; or the first motor has a maximum torque of 2800 Nm and the second motor has a maximum torque of 2000 Nm.
- the motor uses a permanent magnet synchronous motor.
- the invention adopts double-motor parallel driving, can effectively improve the problem of insufficient output capability of single-motor driving under high-speed working conditions, expand the efficient driving range of the power system, and improve the efficiency of the system under changing working conditions.
- the two-motor system can be composed of two motors: a high-torque motor and a low-torque motor.
- the high-torque motor has higher efficiency and power in the low-speed region. As the speed increases, the power will gradually decrease after the speed exceeds the power inflection point. Efficiency will also gradually decrease.
- Low-torque motors have higher efficiency and power in the high-speed zone, but are less efficient in the low-speed zone.
- Figure 1 is 3000Nm single motor drive system efficiency MAP
- FIG. 3 is a flow chart of the torque optimized allocation of the present invention.
- Figure 4 is a 900Nm motor drive efficiency MAP in the dual motor system of the present invention.
- Figure 5 is a 2100Nm motor drive efficiency MAP in the dual motor system of the present invention.
- FIG. 6 is a diagram showing an optimized distributed torque of a 900 Nm motor in the dual motor system of the present invention
- Figure 7 is a diagram showing an optimized distributed torque of a 2100 Nm motor in the dual motor system of the present invention.
- Figure 8 is a driving efficiency MAP of the 3000Nm dual motor system of the present invention.
- Figure 9 is a comparison diagram of the power external characteristics of the dual motor system of the present invention and the prior art single motor system;
- Figure 10 is a 2000Nm motor drive efficiency MAP in the dual motor system of the present invention.
- Figure 11 is a 2800 Nm motor drive efficiency MAP in the dual motor system of the present invention.
- Figure 12 is a drive efficiency MAP of the 4800 Nm dual motor system of the present invention.
- the two-motor asymmetric power distribution efficiency optimization method is to set two sets of motors with different driving efficiencies to form a power group, which is a first motor and a second motor respectively.
- the two sets of motors are connected in parallel to output torque, and the two sets of motors are respectively obtained.
- Efficiency value when the power group has different output torque demand, the torque is distributed between the two sets of motors through optimization calculation, and the highest efficiency value of the power group is obtained.
- the motor drive efficiency MAP contains a plurality of efficiency parameters, which are limited by the size of the drawing. The numbers are superimposed at the low efficiency parameters, but do not affect the view of the motor drive efficiency MAP, and only focus on high efficiency parameters.
- the optimization calculation method includes the following steps:
- Step 1 Perform simulation optimization in the offline state, using the scanning calculation method (scanning by computer), divide the grid points within the torque/speed range allowed by the power group, and the corresponding requirements for each grid point.
- Torque T d and speed ⁇ the optimal distribution ratio x is solved, so that the torque of the first motor is:
- the torque of the second motor is:
- Step 2 The efficiencies of the first motor and the second motor are respectively expressed as:
- the method for solving each torque demand and speed point is: x divides 20 intervals in the interval between 0 and 1 (you can also divide more than 20 spaces, for example 30 spaces, 40 spaces, the more the space is more accurate More High, but the processing calculation is more difficult), enumerate all points between x and 0,
- Step 3 After solving by numerical calculation, the highest torque distribution database with different torque demand and speed can be obtained.
- the highest torque distribution for different torque demands and speeds can be made into a two-dimensional table, as shown in Figures 6 and 7.
- the first motor and the second motor are torque-distributed online according to a torque distribution database.
- the different efficiency characteristics of the motor are achieved by the motor itself or by different reduction ratios.
- the optimized curve of the dual motor system is shown. As shown in Fig. 8, compared with the single motor system, the torque in the high speed range is higher, and the range of the high efficiency area is wider.
- the optimized allocation MAP needs to be stored in the controller.
- the motor controller is divided into the main controller and the slave controller. After the main controller receives the vehicle demand torque command, the MAP is checked according to the torque distribution. , the torque of the two motors is obtained separately.
- Figure 9 shows the comparison of the power characteristics of single and dual motors. It can be seen that a single motor can achieve more power than a dual motor at the peak power point. However, due to the motor characteristic limit, the motor power drops rapidly after the inflection point. In contrast, the dual-motor has a stronger driving capability in the middle and high-speed range, and can better meet the driving needs of large commercial vehicles at medium and high speeds. It is more suitable for heavy-duty urban buses, and is also very suitable for road passenger cars (using small speed ratio bridges). The motor system drives average driving efficiency, and the average braking efficiency is better than that of single-motor systems. Under the typical bus conditions of Chinese cities, the economics of the dual-motor system is 4.76% higher than that of the single-motor system, as shown in the following table.
- the dual motor asymmetric power distribution efficiency optimization system is provided with two sets of motors with different driving efficiencies to form a power group, which is a first motor and a second motor respectively, and the two sets of motors output torque in parallel.
- the system is provided with a main controller, and the main controller is provided with the torque distribution database described in Embodiment 1, and the torque is distributed between the two sets of motors according to the torque distribution database main controller, and the power group is obtained.
- Efficiency value is provided with a main controller, and the main controller is provided with the torque distribution database described in Embodiment 1, and the torque is distributed between the two sets of motors according to the torque distribution database main controller, and the power group is obtained.
- the first motor and the second motor are respectively provided with slave controllers, and the master controller controls the power distribution of the different motors from the controller.
- the maximum torque of the first motor is 2100 Nm, and the maximum torque of the second motor is 900 Nm.
- the above motor uses a permanent magnet synchronous motor.
- the 900Nm motor drive efficiency MAP in the dual motor system in this embodiment is the 2100Nm motor drive efficiency MAP in the dual motor system in this embodiment.
- FIG. 6 is an optimized distributed torque diagram of a 900 Nm motor in the dual motor system of the embodiment
- FIG. 7 is an optimized distributed torque diagram of the 2100 Nm motor in the dual motor system of the embodiment.
- FIG. 8 is a driving efficiency MAP of a 3000 Nm dual motor system in this embodiment.
- FIG. 9 is a comparison diagram of power external characteristics of the dual motor system and the prior art single motor system in the present embodiment.
- the 3000Nm single motor is divided into 900Nm and 2100Nm dual motors.
- the total torque of the motor is still 3000Nm, but the torque/power output capability of the motor in the high speed range has been greatly improved, as shown in Figure 9, at 1500rpm.
- the maximum output power of the dual motor is 50 kW higher than that of the single motor, which improves the power of the vehicle in the middle and high speed sections or on the ramp.
- the torque of the first motor and the second motor may also take other parameters, for example, the first motor maximum torque is 2800 Nm, and the second motor maximum torque is 2000 Nm.
- FIG. 10 is a 2000Nm motor drive efficiency MAP in the dual motor system of the embodiment
- FIG. 11 is a 2800 Nm motor drive efficiency MAP in the dual motor system of the embodiment
- FIG. 12 is the embodiment. 4800Nm dual motor system drive efficiency MAP.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Multiple Motors (AREA)
Abstract
一种双电机非对称动力分配效率优化方法,该方法为:设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,电机并联对外输出转矩,获得两组电机各自的效率值,在动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到动力组最高效率值。还涉及一种双电机非对称动力分配效率优化系统。该双电机非对称动力分配效率优化方法用不同效率特性电机并联驱动,实现在不同转速、转矩区域下驱动效率的最优化,并提高了电机在高速区域的驱动功率,使得电驱动系统的总体效率和性能得以提高。
Description
本发明涉及一种双电机非对称动力分配效率优化方法,用于汽车电驱动。本发明还涉及一种双电机非对称动力分配效率优化系统。
发明背景
永磁同步电机以其高效率、高功率因数和高功率密度等优点,正逐渐成为新能源汽车纯电驱动的主流电机。永磁同步电机在纯电驱动汽车上的应用,主要有直接驱动、带变速器驱动和带减速器驱动几种形式。
直接驱动方案中,电机输出法兰直接连接传动轴,该方案的特点是传动直接、高效,其缺点是为了满足车辆最大爬坡度,电机最大转矩较大。电机的最大转矩通常和电机的体积成正比,因此在电机最大转矩较大时,所需的材料成本较高。
电机+变速器驱动方案的优点是变速器将大大扩展动力系统的转速和转矩范围,实现较高的爬坡度和较高的最高转速;变速器可以在一定程度上把电机的工况点尽量放在电机的高效区域,有助于提高电机的效率。但是,由于已经高度优化的永磁同步电机的高效区域非常宽广,而且高效和低效之间的效率差不大,变速器的效率优化效果远远低于对感应异步电机的优化效果(更低于对内燃机的优化效果)。电机+变速器的缺点是变速器的传动损耗会降低整个系统的效率,通常多档变速箱的效率在90%到95%之间,变速箱的造成系统效率的损失,甚至会多于变速器能带来的效率改善,导致车辆单位里程电耗的增加。
电机+减速器驱动的方案的优点是通过减速器的减转速增转矩功能,增加动力系统的输出转矩。该方案主要应用于乘用车,其优点是可以减小电机体积,有效降低电机的成本,减速器的效率通常可以做到97%-98%,缺点是电机的体积减小以后,散热能力会相应降低,从而限制了电机的最大连续工作转矩。应用于重载商用车时,电机的持续功率难以满足持续重载的要求。
综上所述,在重载商用车中,直驱方案仍然是最常见,效率最高的方案。由于
重载商用车对电机转矩需求较高,单电机直驱方案往往不能兼顾低速和高速的效率,而且当电机转速超过拐点以后,随着电机转速的增加,输出转矩和功率会快速下降,影响车辆在高速的驱动能力。
发明内容
鉴于现有技术中存在的问题,本发明提供了一种双电机非对称动力分配效率优化方法,利用不同效率特性电机并联驱动,实现在不同转速、转矩区域下驱动效率的最优化,并提高了电机在高速区域的驱动功率,使得电驱动系统的总体效率和性能得以提高。
本发明同时还提供了一种双电机非对称动力分配效率优化系统。
为达到上述目的,本发明的技术方案是这样实现的:
双电机非对称动力分配效率优化方法,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到所述动力组最高效率值。
进一步,所述第一电机转矩偏大,效率高效区位于低速区,所述第二电机转矩偏小,效率高效区位于高速区。
进一步,所述优化计算方法包括以下步骤:
步骤1.在离线状态下进行仿真优化,采用扫描计算方法,对所述动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:
Tm1=Td·x
第二电机的转矩为:
Tm2=Td·(1-x)
步骤2.第一电机和第二电机的效率分别表示为:
η1=f1(T,ω),η2=f2(T,ω)
则所述动力组系统效率ηdual表示为:
每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分若干区间,列举x从0到1之间的所有点;
求解使得所述动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:
x*=fx(Td,ω)
η*=fη(Td,ω)
步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。
进一步,所述x在0到1之间均匀划分20个区间,x从0到1之间的所有点分别为:
x1=0,x2=0.05,……,x20=1。
进一步,根据所述转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
进一步,所述电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
双电机非对称动力分配效率优化系统,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,所述系统设置有主控制器,所述主控制器中设置有权利要求3-5任一项所述的转矩分配数据库,根据所述转矩分配数据库所述主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
进一步,所述第一电机和第二电机分别设置有从控制器,所述主控制器控制所述从控制器实现不同电机的动力分配。
进一步,所述第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm;或者,所述第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
进一步,所述电机采用永磁同步电机。
采用上述技术方案的本发明具有以下优点:
本发明采用双电机并联驱动,可以有效改善单电机驱动在高速工况下输出能力不足的问题,扩展动力系统的高效驱动范围,提高系统在多变的工况条件下的效率。
双电机系统可以由高转矩电机和低转矩电机两个电机构成,高转矩电机在低速区的效率和功率较高,随着转速升高,转速超过功率拐点以后,功率会逐步下降,效率也会逐步降低。低转矩电机在高速区效率和功率较高,但在低速区的效率比较低。利用两个电机的非对称特性,采用优化计算方法求解两个电机的效率,可以实现比单电机更优的驱动效率和驱动功率。
附图简要说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是3000Nm单电机驱动系统效率MAP;
图2是本发明转矩优化分配的流程图;
图3是本发明转矩优化分配的流程图;
图4是本发明双电机系统中900Nm电机驱动效率MAP;
图5是本发明双电机系统中2100Nm电机驱动效率MAP;
图6是本发明双电机系统中900Nm电机的优化分配转矩图;
图7是本发明双电机系统中2100Nm电机的优化分配转矩图;
图8是本发明3000Nm双电机系统驱动效率MAP;
图9是本发明双电机系统和现有技术单电机系统功率外特性对比图;
图10是本发明双电机系统中2000Nm电机驱动效率MAP;
图11是本发明双电机系统中2800Nm电机驱动效率MAP;
图12是本发明4800Nm双电机系统驱动效率MAP。
实施本发明的方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
双电机非对称动力分配效率优化方法,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,这两组电机并联对外输出转矩,获得两组电机各自的效率值,在动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到动力组最高效率值。
第一电机转矩偏大,效率高效区位于低速区,第二电机转矩偏小,效率高效区位于高速区,如图4、图5所示。电机驱动效率MAP中包含了多个效率参数,受到附图尺寸限制,在低效率参数处数字是叠加的,但是不影响对电机驱动效率MAP的查看,只关注高效率参数即可。
优化计算方法包括以下步骤:
步骤1.在离线状态下进行仿真优化,采用扫描计算方法(通过计算机实现扫描),对动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:
Tm1=Td·x
第二电机的转矩为:
Tm2=Td·(1-x)
步骤2.第一电机和第二电机的效率分别表示为:
η1=f1(T,ω),η2=f2(T,ω),该效率具体数值是从相应电机效率MAP中查表获取。
则所述动力组系统效率ηdual表示为:
每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分20个区间(也可以划分多于20个空间,例如30个空间,40个空间,空间越多精确度越
高,但是处理计算难度也越大),列举x从0到1之间的所有点,
x1=0,x2=0.05,……,x20=1
求解使得动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:
x*=fx(Td,ω)
η*=fη(Td,ω)
步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。不同转矩需求和转速下最高的转矩分配可以制作成二维表格,如图6、图7所示。
根据转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
双电机系统中,由于需要两个动力源配合工作,需要将整车的转矩指令优化分配给两个电机,以实现最高的系统控制效率。转矩优化分配的流程如图2、图3所示。
画出双电机系统优化后的曲线,如图8所示,与单电机系统相比,其中高转速区间的转矩更高,高效率区域的范围更广。
在实时控制中,需要将优化的分配MAP存储到控制器中,电机控制器分为主控制器和从控制器,主控制器接到整车需求转矩指令后,根据转矩分配MAP查表,分别得出两个电机的转矩。
图9是单电机和双电机的功率外特性对比,可见,单电机在峰值功率点能取得比双电机更大的功率,但由于电机特性限值,转速过了拐点以后,电机功率迅速下降。相比之下,双电机在中高速区间的驱动能力更强,更能满足大型商用车在中高车速的驱动需求。更适用于重载城市公交,也非常适用于公路客车(采用小速比桥),电机系统驱动平均驱动效率,平均制动效率都要优于单电机系统。在中国城市典型公交工况运行下,双电机系统相对于单电机系统经济性提高4.76%,如下表所示。
工况循环净能量消耗 | 工况能量转化效率 | 所需电磁总能量 | 节约电能% | |
普通电机 | 100 | 84% | 119.0 | |
高效双电机 | 100 | 88% | 113.6 | 4.761905 |
实施例2
在该实施例中,双电机非对称动力分配效率优化系统,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,这两组电机并联对外输出转矩,该系统设置有主控制器,主控制器中设置有实施例1中所述的转矩分配数据库,根据转矩分配数据库主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
第一电机和第二电机分别设置有从控制器,主控制器控制从控制器实现不同电机的动力分配。
第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm。
上述电机采用永磁同步电机。
如图4所示是本实施例中双电机系统中900Nm电机驱动效率MAP;如图5所示是本实施例中双电机系统中2100Nm电机驱动效率MAP。
如图6所示是本实施例中双电机系统中900Nm电机的优化分配转矩图;如图7所示是本实施例中双电机系统中2100Nm电机的优化分配转矩图。
如图8所示是本实施例中3000Nm双电机系统驱动效率MAP,如图9所示是本本实施例中双电机系统和现有技术单电机系统功率外特性对比图。
将3000Nm的单一电机分成900Nm和2100Nm的双电机,电机的总转矩仍然是3000Nm,但电机在高速区间的转矩/功率输出能力得到了较大的提升,如图9所示,在1500rpm到3000rpm区间,双电机的最大输出功率比单电机高出50kW,改善了整车在中高速段,或坡道上的动力性。
实施例3
在该实施例中,第一电机和第二电机的转矩还可以采用其他参数,例如,第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
如图10所示是本实施例中双电机系统中2000Nm电机驱动效率MAP;如图11所示是本实施例中双电机系统中2800Nm电机驱动效率MAP;如图12所示是本实施例中4800Nm双电机系统驱动效率MAP。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。
Claims (10)
- 双电机非对称动力分配效率优化方法,其特征在于,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到所述动力组最高效率值。
- 根据权利要求1所述的优化方法,其特征在于,所述第一电机转矩偏大,效率高效区位于低速区,所述第二电机转矩偏小,效率高效区位于高速区。
- 根据权利要求1所述的优化方法,其特征在于,所述优化计算方法包括以下步骤:步骤1.在离线状态下进行仿真优化,采用扫描计算方法,对所述动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:Tm1=Td·x第二电机的转矩为:Tm2=Td·(1-x)步骤2.第一电机和第二电机的效率分别表示为:η1=f1(T,ω),η2=f2(T,ω)则所述动力组系统效率ηdual表示为:每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分若干区间,列举x从0到1之间的所有点;求解使得所述动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:x*=fx(Td,ω)η*=fη(Td,ω)步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。
- 根据权利要求3所述的优化方法,其特征在于,所述x在0到1之间均匀划分20个区间,x从0到1之间的所有点分别为:x1=0,x2=0.05,……,x20=1。
- 根据权利要求3所述的优化方法,其特征在于,根据所述转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
- 根据权利要求1所述的优化系统,其特征在于,所述电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
- 双电机非对称动力分配效率优化系统,其特征在于,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,所述系统设置有主控制器,所述主控制器中设置有权利要求3-5任一项所述的转矩分配数据库,根据所述转矩分配数据库所述主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
- 根据权利要求7所述的优化系统,其特征在于,所述第一电机和第二电机分别设置有从控制器,所述主控制器控制所述从控制器实现不同电机的动力分配。
- 根据权利要求7所述的优化系统,其特征在于,所述第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm;或者,所述第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
- 根据权利要求7所述的优化系统,其特征在于,所述电机采用永磁同步电机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710081544.9 | 2017-02-15 | ||
CN201710081544.9A CN106828191A (zh) | 2017-02-15 | 2017-02-15 | 双电机非对称动力分配效率优化方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018148935A1 true WO2018148935A1 (zh) | 2018-08-23 |
Family
ID=59128657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/073950 WO2018148935A1 (zh) | 2017-02-15 | 2017-02-17 | 双电机非对称动力分配效率优化方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106828191A (zh) |
WO (1) | WO2018148935A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110466363A (zh) * | 2019-08-29 | 2019-11-19 | 华人运通(江苏)技术有限公司 | 车辆的电机控制方法、装置、设备和计算机可读存储介质 |
CN111731152A (zh) * | 2020-06-28 | 2020-10-02 | 中国第一汽车股份有限公司 | 一种功率控制方法、装置、车辆和存储介质 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109703346B (zh) * | 2017-10-25 | 2022-04-26 | 上海汽车集团股份有限公司 | 双电机汽车动力系统及其控制方法和装置 |
CN108621861A (zh) * | 2018-04-17 | 2018-10-09 | 德威(苏州)新能源有限公司 | 一种双电机组合的智能高效安全的电动汽车全轮控制方法 |
CN110149075B (zh) * | 2019-05-21 | 2021-04-20 | 江苏大学 | 一种多工况下双定子车用电机广域高效动态功率分配方法 |
CN110941877A (zh) * | 2019-11-15 | 2020-03-31 | 江苏开沃汽车有限公司 | 一种针对纯电动汽车电机工作区域的分析方法 |
CN111186308B (zh) * | 2019-12-31 | 2021-07-27 | 合创汽车科技有限公司 | 电动汽车驱动转矩分配方法、装置和计算机设备 |
CN112078562A (zh) * | 2020-08-27 | 2020-12-15 | 包头长安永磁电机有限公司 | 一种电动汽车双电机并联效率最优控制方法 |
CN112622635B (zh) * | 2020-12-24 | 2022-07-08 | 奇瑞汽车股份有限公司 | 双电机扭矩分配的方法和装置 |
CN113400953B (zh) * | 2021-07-30 | 2024-03-26 | 精进电动科技股份有限公司 | 一种双电机转矩分配方法及双电机系统 |
WO2024060963A1 (zh) * | 2022-09-21 | 2024-03-28 | 南京泉峰科技有限公司 | 电动工具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5537011A (en) * | 1994-12-22 | 1996-07-16 | Ford Motor Company | Method and apparatus for promoting even wear in a multiple-motor drivetrain |
WO2012120682A1 (ja) * | 2011-03-10 | 2012-09-13 | パイオニア株式会社 | 効率マップ生成装置、効率マップ生成方法、およびプログラム |
CN103273857A (zh) * | 2013-03-20 | 2013-09-04 | 北京工业大学 | 一种主从式多电机驱动系统的效率优化方法 |
CN103738199A (zh) * | 2013-12-19 | 2014-04-23 | 北京汽车新能源汽车有限公司 | 双电机两档驱动控制系统及其驱动控制方法 |
CN105000013A (zh) * | 2014-04-16 | 2015-10-28 | 福特全球技术公司 | 具有效率优化动力分配的双马达电动车辆驱动 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3624841B2 (ja) * | 2001-03-06 | 2005-03-02 | 日産自動車株式会社 | 車両の制御装置 |
CN104129388B (zh) * | 2013-05-03 | 2017-04-26 | 上海汽车集团股份有限公司 | 基于效率优化的混合动力系统中双电机扭矩分配控制方法 |
CN105584382B (zh) * | 2015-12-15 | 2017-10-20 | 杭州伯坦科技工程有限公司 | 一种多电机扭矩输出分配控制方法 |
-
2017
- 2017-02-15 CN CN201710081544.9A patent/CN106828191A/zh active Pending
- 2017-02-17 WO PCT/CN2017/073950 patent/WO2018148935A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5537011A (en) * | 1994-12-22 | 1996-07-16 | Ford Motor Company | Method and apparatus for promoting even wear in a multiple-motor drivetrain |
WO2012120682A1 (ja) * | 2011-03-10 | 2012-09-13 | パイオニア株式会社 | 効率マップ生成装置、効率マップ生成方法、およびプログラム |
CN103273857A (zh) * | 2013-03-20 | 2013-09-04 | 北京工业大学 | 一种主从式多电机驱动系统的效率优化方法 |
CN103738199A (zh) * | 2013-12-19 | 2014-04-23 | 北京汽车新能源汽车有限公司 | 双电机两档驱动控制系统及其驱动控制方法 |
CN105000013A (zh) * | 2014-04-16 | 2015-10-28 | 福特全球技术公司 | 具有效率优化动力分配的双马达电动车辆驱动 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110466363A (zh) * | 2019-08-29 | 2019-11-19 | 华人运通(江苏)技术有限公司 | 车辆的电机控制方法、装置、设备和计算机可读存储介质 |
CN111731152A (zh) * | 2020-06-28 | 2020-10-02 | 中国第一汽车股份有限公司 | 一种功率控制方法、装置、车辆和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106828191A (zh) | 2017-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018148935A1 (zh) | 双电机非对称动力分配效率优化方法及系统 | |
CN103863311B (zh) | 基于能量优化的混合动力汽车发动机与电机扭矩分配方法 | |
CN112224035B (zh) | 一种纯电动汽车的驱动转矩优化控制方法 | |
CN104709114B (zh) | 用于电动车辆的动力系统及其控制方法 | |
CN109606348B (zh) | 一种插电式行星混联汽车能量管理控制方法 | |
WO2009046673A1 (fr) | Procédé de gestion de couple pour moteur électrique hybride | |
KR101338435B1 (ko) | 친환경 자동차의 토크 제어방법 및 그 장치 | |
CN102371998B (zh) | 并联式混合动力车辆挡位及转矩分配控制方法 | |
CN110341687B (zh) | 双电机增程驱动混合动力车辆扭矩分配方法及系统 | |
WO2022142897A1 (zh) | 纵置车辆动力总成及车辆动力控制方法 | |
CN103625307A (zh) | 基于多种行驶模式的电动机扭矩控制方法 | |
CN104477051A (zh) | 一种双驱轴双电机纯电动车驱动电机功率差异化匹配方法 | |
CN101585359A (zh) | 可外接充电型混合动力汽车电量保持阶段的能量管理方法 | |
CN1297420C (zh) | 多级高效变频调速电动汽车驱动装置及控制方法 | |
CN106357189A (zh) | 一种车用驱动电机系统效率分布的设计方法 | |
CN110667565A (zh) | 一种智能网联插电式混合动力汽车协同优化能量管理方法 | |
CN111137171B (zh) | 一种复合电源系统模糊控制器的参数优化设计方法 | |
CN109177968A (zh) | 一种功率分流式混合动力汽车的驱动模式控制方法 | |
CN105620481B (zh) | 车辆的控制方法及系统 | |
CN105438257B (zh) | 混合动力汽车用电气辅助系统 | |
CN108638852B (zh) | 一种电动汽车动力系统及其效率提升的方法 | |
CN112895918B (zh) | 一种新型能源电动汽车双电机结构的扭矩分配方法 | |
CN106627098B (zh) | 一种混联式混合动力汽车动力系统控制方法及装置 | |
CN105774795B (zh) | 并联式混合动力系统车辆的扭矩分配方法及系统 | |
CN104760495A (zh) | 复合双行星排式油电混联混合动力系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17896884 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17896884 Country of ref document: EP Kind code of ref document: A1 |