CN106828191A - 双电机非对称动力分配效率优化方法及系统 - Google Patents

双电机非对称动力分配效率优化方法及系统 Download PDF

Info

Publication number
CN106828191A
CN106828191A CN201710081544.9A CN201710081544A CN106828191A CN 106828191 A CN106828191 A CN 106828191A CN 201710081544 A CN201710081544 A CN 201710081544A CN 106828191 A CN106828191 A CN 106828191A
Authority
CN
China
Prior art keywords
motor
torque
efficiency
power
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710081544.9A
Other languages
English (en)
Inventor
余平
叶晓
杜怀颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sophisticated Electric Polytron Technologies Inc
Jing Jin Electric Technologies Beijing Co Ltd
Original Assignee
Sophisticated Electric Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sophisticated Electric Polytron Technologies Inc filed Critical Sophisticated Electric Polytron Technologies Inc
Priority to CN201710081544.9A priority Critical patent/CN106828191A/zh
Priority to PCT/CN2017/073950 priority patent/WO2018148935A1/zh
Publication of CN106828191A publication Critical patent/CN106828191A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种双电机非对称动力分配效率优化方法,解决了现有技术中单电机直驱方案不能兼顾低速和高速效率的技术问题。该方法具体为:设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到所述动力组最高效率值。本发明利用不同效率特性电机并联驱动,实现在不同转速、转矩区域下驱动效率的最优化,并提高了电机在高速区域的驱动功率,使得电驱动系统的总体效率和性能得以提高。

Description

双电机非对称动力分配效率优化方法及系统
技术领域
本发明涉及一种双电机非对称动力分配效率优化方法,用于汽车电驱动。本发明还涉及一种双电机非对称动力分配效率优化系统。
背景技术
永磁同步电机以其高效率、高功率因数和高功率密度等优点,正逐渐成为新能源汽车纯电驱动的主流电机。永磁同步电机在纯电驱动汽车上的应用,主要有直接驱动、带变速器驱动和带减速器驱动几种形式。
直接驱动方案中,电机输出法兰直接连接传动轴,该方案的特点是传动直接,高效,其缺点是为了满足车辆最大爬坡度,电机最大转矩较大。电机的最大转矩通常和电机的体积成正比,因此在电机最大转矩较大时,所需的材料成本较高。
电机+变速器驱动方案的优点是变速器将大大扩展动力系统的转速和转矩范围,实现较高的爬坡度和较高的最高转速;变速器可以在一定程度上把电机的工况点尽量放在电机的高效区域,有助于提高电机的效率–但是,由于已经高度优化的永磁同步电机的高效区域非常宽广,而且高效和低效之间的效率差不大,变速器的效率优化效果远远低于对感应异步电机的优化效果(更低于对内燃机的优化效果)。电机+变速器的缺点是变速器的传动损耗会降低整个系统的效率,通常多档变速箱的效率在90%到95%之间,变速箱的造成系统效率的损失,甚至会多于变速器能带来的效率改善,导致车辆单位里程电耗的增加。
电机+减速器驱动的方案的优点是通过减速器的减转速增转矩功能,增加动力系统的输出转矩。该方案主要应用于乘用车,其优点是可以减小电机体积,有效降低电机的成本,减速器的效率通常可以做到97%-98%,缺点是电机的体积减小以后,散热能力会相应降低,从而限制了电机的最大连续工作转矩。应用于重载商用车时,电机的持续功率难以满足持续重载的要求。
综上所述,在重载商用车中,直驱方案仍然是最常见,效率最高的方案。由于重载商用车对电机转矩需求较高,单电机直驱方案往往不能兼顾低速和高速的效率,而且当电机转速超过拐点以后,随着电机转速的增加,输出转矩和功率会快速下降,影响车辆在高速的驱动能力。
发明内容
鉴于现有技术中存在的问题,本发明提供了一种双电机非对称动力分配效率优化方法,利用不同效率特性电机并联驱动,实现在不同转速、转矩区域下驱动效率的最优化,并提高了电机在高速区域的驱动功率,使得电驱动系统的总体效率和性能得以提高。
本发明同时还提供了一种双电机非对称动力分配效率优化系统。
为达到上述目的,本发明的技术方案是这样实现的:
双电机非对称动力分配效率优化方法,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到所述动力组最高效率值。
进一步,所述第一电机转矩偏大,效率高效区位于低速区,所述第二电机转矩偏小,效率高效区位于高速区。
进一步,所述优化计算方法包括以下步骤:
步骤1.在离线状态下进行仿真优化,采用扫描计算方法,对所述动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:
Tm1=Td·x
第二电机的转矩为:
Tm2=Td·(1-x)
步骤2.第一电机和第二电机的效率分别表示为:
η1=f1(T,ω),η2=f2(T,ω)
则所述动力组系统效率ηdual表示为:
每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分若干区间,列举x从0到1之间的的所有点;
求解使得所述动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:
x*=fx(Td,ω)
η*=fη(Td,ω)
步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。
进一步,所述x在0到1之间均匀划分20个区间,x从0到1之间的的所有点分别为:
x1=0,x2=0.05,……,x20=1。
进一步,根据所述转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
进一步,所述电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
双电机非对称动力分配效率优化系统,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,所述系统设置有主控制器,所述主控制器中设置有权利要求3-5任一项所述的转矩分配数据库,根据所述转矩分配数据库所述主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
进一步,所述第一电机和第二电机分别设置有从控制器,所述主控制器控制所述从控制器实现不同电机的动力分配。
进一步,所述第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm;或者,所述第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
进一步,所述电机采用永磁同步电机。
采用上述技术方案的本发明具有以下优点:
本发明采用双电机并联驱动,可以有效改善单电机驱动在高速工况下输出能力不足的问题,扩展动力系统的高效驱动范围,提高系统在多变的工况条件下的效率。
双电机系统可以由高转矩电机和低转矩电机两个电机构成,高转矩电机在低速区的效率和功率较高,随着转速升高,转速超过功率拐点以后,功率会逐步下降,效率也会逐步降低。低转矩电机在高速区效率和功率较高,但在低速区的效率比较低。利用两个电机的非对称特性,采用优化计算方法求解两个电机的效率,可以实现比单电机更优的驱动效率和驱动功率。
附图说明
图1是3000Nm单电机驱动系统效率MAP;
图2是本发明转矩优化分配的流程图;
图3是本发明转矩优化分配的流程图;
图4是本发明双电机系统中900Nm电机驱动效率MAP;
图5是本发明双电机系统中2100Nm电机驱动效率MAP;
图6是本发明双电机系统中900Nm电机的优化分配转矩图;
图7是本发明双电机系统中2100Nm电机的优化分配转矩图;
图8是本发明3000Nm双电机系统驱动效率MAP;
图9是本发明双电机系统和现有技术单电机系统功率外特性对比图;
图10是本发明双电机系统中2000Nm电机驱动效率MAP;
图11是本发明双电机系统中2800Nm电机驱动效率MAP;
图12是本发明4800Nm双电机系统驱动效率MAP。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例1
双电机非对称动力分配效率优化方法,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,这两组电机并联对外输出转矩,获得两组电机各自的效率值,在动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到动力组最高效率值。
第一电机转矩偏大,效率高效区位于低速区,第二电机转矩偏小,效率高效区位于高速区,如图4、图5所示。电机驱动效率MAP中包含了多个效率参数,受到附图尺寸限制,在低效率参数处数字是叠加的,但是不影响对电机驱动效率MAP的查看,只关注高效率参数即可。
优化计算方法包括以下步骤:
步骤1.在离线状态下进行仿真优化,采用扫描计算方法(通过计算机实现扫描),对动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:
Tm1=Td·x
第二电机的转矩为:
Tm2=Td·(1-x)
步骤2.第一电机和第二电机的效率分别表示为:
η1=f1(T,ω),η2=f2(T,ω),该效率具体数值是从相应电机效率MAP中查表获取。
则所述动力组系统效率ηdual表示为:
每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分20个区间(也可以划分多于20个空间,例如30个空间,40个空间,空间越多精确度越高,但是处理计算难度也越大),列举x从0到1之间的的所有点,
x1=0,x2=0.05,……,x20=1
求解使得动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:
x*=fx(Td,ω)
η*=fη(Td,ω)
步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。不同转矩需求和转速下最高的转矩分配可以制作成二维表格,如图6、图7所示。
根据转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
双电机系统中,由于需要两个动力源配合工作,需要将整车的转矩指令优化分配给两个电机,以实现最高的系统控制效率。转矩优化分配的流程如图2、图3所示。
画出双电机系统优化后的曲线,如图8所示,与单电机系统相比,其中高转速区间的转矩更高,高效率区域的范围更广。
在实时控制中,需要将优化的分配MAP存储到控制器中,电机控制器分为主控制器和从控制器,主控制器接到整车需求转矩指令后,根据转矩分配MAP查表,分别得出两个电机的转矩。
图9是单电机和双电机的功率外特性对比,可见,单电机在峰值功率点能取得比双电机更大的功率,但由于电机特性限值,转速过了拐点以后,电机功率迅速下降。相比之下,双电机在中高速区间的驱动能力更强,更能满足大型商用车在中高车速的驱动需求。更适用于重载城市公交,也非常适用于公路客车(采用小速比桥),电机系统驱动平均驱动效率,平均制动效率都要优于单电机系统。在中国城市典型公交工况运行下,双电机系统相对于单电机系统经济性提高4.76%,如下表所示。
工况循环净能量消耗 工况能量转化效率 所需电磁总能量 节约电能%
普通电机 100 84% 119.0
高效双电机 100 88% 113.6 4.761905
实施例2
在该实施例中,双电机非对称动力分配效率优化系统,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,这两组电机并联对外输出转矩,该系统设置有主控制器,主控制器中设置有实施例1中所述的转矩分配数据库,根据转矩分配数据库主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
第一电机和第二电机分别设置有从控制器,主控制器控制从控制器实现不同电机的动力分配。
第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm。
上述电机采用永磁同步电机。
如图4所示是本实施例中双电机系统中900Nm电机驱动效率MAP;如图5所示是本实施例中双电机系统中2100Nm电机驱动效率MAP。
如图6所示是本实施例中双电机系统中900Nm电机的优化分配转矩图;如图7所示是本实施例中双电机系统中2100Nm电机的优化分配转矩图。
如图8所示是本实施例中3000Nm双电机系统驱动效率MAP,如图9所示是本本实施例中双电机系统和现有技术单电机系统功率外特性对比图。
将3000Nm的单一电机分成900Nm和2100Nm的双电机,电机的总转矩仍然是3000Nm,但电机在高速区间的转矩/功率输出能力得到了较大的提升,如图9所示,在1500rpm到3000rpm区间,双电机的最大输出功率比单电机高出50kW,改善了整车在中高速段,或坡道上的动力性。
实施例3
在该实施例中,第一电机和第二电机的转矩还可以采用其他参数,例如,第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
如图10所示是本实施例中双电机系统中2000Nm电机驱动效率MAP;如图11所示是本实施例中双电机系统中2800Nm电机驱动效率MAP;如图12所示是本实施例中4800Nm双电机系统驱动效率MAP。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

1.双电机非对称动力分配效率优化方法,其特征在于,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,获得两组电机各自的效率值,在所述动力组有不同的输出转矩需求时,通过优化计算在两组电机之间分配转矩,得到所述动力组最高效率值。
2.根据权利要求1所述的优化方法,其特征在于,所述第一电机转矩偏大,效率高效区位于低速区,所述第二电机转矩偏小,效率高效区位于高速区。
3.根据权利要求1所述的优化方法,其特征在于,所述优化计算方法包括以下步骤:
步骤1.在离线状态下进行仿真优化,采用扫描计算方法,对所述动力组允许的转矩/转速范围内,划分若干网格点,对每个网格点所对应的需求转矩Td和转速ω,求解最优的分配比例x,使得第一电机的转矩为:
Tm1=Td·x
第二电机的转矩为:
Tm2=Td·(1-x)
步骤2.第一电机和第二电机的效率分别表示为:
η1=f1(T,ω),η2=f2(T,ω)
则所述动力组系统效率ηdual表示为:
η d u a l = T d T d · x / η 1 + T d · ( 1 - x ) / η 2 = 1 x / f 1 ( T d x , ω ) + ( 1 - x ) / f 2 ( T d ( 1 - x ) , ω )
每个转矩需求和转速点数值求解方法为:x在0到1之间的区间划分若干区间,列举x从0到1之间的的所有点;
求解使得所述动力组系统效率最高的xi,并记录该点的最高系统效率ηi,制作成为需求转矩Td和转速ω的数据库,最优分配比例和最高效率表示为Td和ω的函数:
x*=fx(Td,ω)
η*=fη(Td,ω)
步骤3.采用数值计算求解以后,即可得到不同转矩需求和转速下最高的转矩分配数据库。
4.根据权利要求3所述的优化方法,其特征在于,所述x在0到1之间均匀划分20个区间,x从0到1之间的的所有点分别为:
x1=0,x2=0.05,……,x20=1。
5.根据权利要求3所述的优化方法,其特征在于,根据所述转矩分配数据库对所述第一电机和第二电机在线进行转矩分配。
6.根据权利要求1所述的优化系统,其特征在于,所述电机不同的效率特性由电机本身实现,或者由不同的减速比实现。
7.双电机非对称动力分配效率优化系统,其特征在于,设置两组驱动效率不等的电机组成一个动力组,分别为第一电机和第二电机,所述电机并联对外输出转矩,所述系统设置有主控制器,所述主控制器中设置有权利要求3-5任一项所述的转矩分配数据库,根据所述转矩分配数据库所述主控制器在两组电机之间分配转矩,得到所述动力组最高效率值。
8.根据权利要求7所述的优化系统,其特征在于,所述第一电机和第二电机分别设置有从控制器,所述主控制器控制所述从控制器实现不同电机的动力分配。
9.根据权利要求7所述的优化系统,其特征在于,所述第一电机最大转矩为2100Nm,第二电机最大转矩为900Nm;或者,所述第一电机最大转矩为2800Nm,第二电机最大转矩为2000Nm。
10.根据权利要求7所述的优化系统,其特征在于,所述电机采用永磁同步电机。
CN201710081544.9A 2017-02-15 2017-02-15 双电机非对称动力分配效率优化方法及系统 Pending CN106828191A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710081544.9A CN106828191A (zh) 2017-02-15 2017-02-15 双电机非对称动力分配效率优化方法及系统
PCT/CN2017/073950 WO2018148935A1 (zh) 2017-02-15 2017-02-17 双电机非对称动力分配效率优化方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710081544.9A CN106828191A (zh) 2017-02-15 2017-02-15 双电机非对称动力分配效率优化方法及系统

Publications (1)

Publication Number Publication Date
CN106828191A true CN106828191A (zh) 2017-06-13

Family

ID=59128657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710081544.9A Pending CN106828191A (zh) 2017-02-15 2017-02-15 双电机非对称动力分配效率优化方法及系统

Country Status (2)

Country Link
CN (1) CN106828191A (zh)
WO (1) WO2018148935A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108621861A (zh) * 2018-04-17 2018-10-09 德威(苏州)新能源有限公司 一种双电机组合的智能高效安全的电动汽车全轮控制方法
CN109703346A (zh) * 2017-10-25 2019-05-03 上海汽车集团股份有限公司 双电机汽车动力系统及其控制方法和装置
CN110149075A (zh) * 2019-05-21 2019-08-20 江苏大学 一种多运行工况下双定子车用驱动电机广域高效化动态功率分配方法
CN110941877A (zh) * 2019-11-15 2020-03-31 江苏开沃汽车有限公司 一种针对纯电动汽车电机工作区域的分析方法
CN111186308A (zh) * 2019-12-31 2020-05-22 广汽蔚来新能源汽车科技有限公司 电动汽车驱动转矩分配方法、装置和计算机设备
CN112078562A (zh) * 2020-08-27 2020-12-15 包头长安永磁电机有限公司 一种电动汽车双电机并联效率最优控制方法
CN112622635A (zh) * 2020-12-24 2021-04-09 奇瑞汽车股份有限公司 双电机扭矩分配的方法和装置
CN113400953A (zh) * 2021-07-30 2021-09-17 精进电动科技股份有限公司 一种双电机转矩分配方法及双电机系统
WO2024060963A1 (zh) * 2022-09-21 2024-03-28 南京泉峰科技有限公司 电动工具

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466363B (zh) * 2019-08-29 2021-08-20 华人运通(江苏)技术有限公司 车辆的电机控制方法、装置、设备和计算机可读存储介质
CN111731152B (zh) * 2020-06-28 2021-10-29 中国第一汽车股份有限公司 一种功率控制方法、装置、车辆和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070298A1 (en) * 2001-03-06 2002-09-12 Nissan Motor Co.,Ltd. Hybrid vehicle control system and control method
CN103273857A (zh) * 2013-03-20 2013-09-04 北京工业大学 一种主从式多电机驱动系统的效率优化方法
CN104129388A (zh) * 2013-05-03 2014-11-05 上海汽车集团股份有限公司 基于效率优化的混合动力系统中双电机扭矩分配控制方法
US20150298574A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Dual motor electric vehicle drive with efficiency-optimized power sharing
CN105584382A (zh) * 2015-12-15 2016-05-18 杭州伯坦科技工程有限公司 一种多电机扭矩输出分配控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537011A (en) * 1994-12-22 1996-07-16 Ford Motor Company Method and apparatus for promoting even wear in a multiple-motor drivetrain
WO2012120682A1 (ja) * 2011-03-10 2012-09-13 パイオニア株式会社 効率マップ生成装置、効率マップ生成方法、およびプログラム
CN103738199B (zh) * 2013-12-19 2016-07-06 北京新能源汽车股份有限公司 双电机两档驱动控制系统及其驱动控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070298A1 (en) * 2001-03-06 2002-09-12 Nissan Motor Co.,Ltd. Hybrid vehicle control system and control method
CN103273857A (zh) * 2013-03-20 2013-09-04 北京工业大学 一种主从式多电机驱动系统的效率优化方法
CN104129388A (zh) * 2013-05-03 2014-11-05 上海汽车集团股份有限公司 基于效率优化的混合动力系统中双电机扭矩分配控制方法
US20150298574A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Dual motor electric vehicle drive with efficiency-optimized power sharing
CN105584382A (zh) * 2015-12-15 2016-05-18 杭州伯坦科技工程有限公司 一种多电机扭矩输出分配控制方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109703346A (zh) * 2017-10-25 2019-05-03 上海汽车集团股份有限公司 双电机汽车动力系统及其控制方法和装置
CN109703346B (zh) * 2017-10-25 2022-04-26 上海汽车集团股份有限公司 双电机汽车动力系统及其控制方法和装置
CN108621861A (zh) * 2018-04-17 2018-10-09 德威(苏州)新能源有限公司 一种双电机组合的智能高效安全的电动汽车全轮控制方法
CN110149075A (zh) * 2019-05-21 2019-08-20 江苏大学 一种多运行工况下双定子车用驱动电机广域高效化动态功率分配方法
CN110941877A (zh) * 2019-11-15 2020-03-31 江苏开沃汽车有限公司 一种针对纯电动汽车电机工作区域的分析方法
CN111186308A (zh) * 2019-12-31 2020-05-22 广汽蔚来新能源汽车科技有限公司 电动汽车驱动转矩分配方法、装置和计算机设备
CN112078562A (zh) * 2020-08-27 2020-12-15 包头长安永磁电机有限公司 一种电动汽车双电机并联效率最优控制方法
CN112622635A (zh) * 2020-12-24 2021-04-09 奇瑞汽车股份有限公司 双电机扭矩分配的方法和装置
CN112622635B (zh) * 2020-12-24 2022-07-08 奇瑞汽车股份有限公司 双电机扭矩分配的方法和装置
CN113400953A (zh) * 2021-07-30 2021-09-17 精进电动科技股份有限公司 一种双电机转矩分配方法及双电机系统
CN113400953B (zh) * 2021-07-30 2024-03-26 精进电动科技股份有限公司 一种双电机转矩分配方法及双电机系统
WO2024060963A1 (zh) * 2022-09-21 2024-03-28 南京泉峰科技有限公司 电动工具

Also Published As

Publication number Publication date
WO2018148935A1 (zh) 2018-08-23

Similar Documents

Publication Publication Date Title
CN106828191A (zh) 双电机非对称动力分配效率优化方法及系统
Hung et al. A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs
CN105584382B (zh) 一种多电机扭矩输出分配控制方法
CN105109326B (zh) 一种混合动力传动驱动装置
CN102019843B (zh) 混合动力输出功率平衡装置及其控制方法
Zhang et al. An optimal structure selection and parameter design approach for a dual-motor-driven system used in an electric bus
CN107719184A (zh) 一种基于扭矩梯度的电动汽车控制方法、系统
CN103213490A (zh) 多速比多模式混合动力系统及其驱动方式
CN102815295A (zh) 一种混联式混合动力车辆的动力控制方法
CN106864307A (zh) 一种双电机的驱动控制方法、装置、控制器及汽车
CN110155034B (zh) 一种输入分配式混合动力系统行星排特征参数的匹配方法
CN103213491A (zh) 新型混合动力系统及其驱动方式
CN112026531A (zh) 前后轴双电机驱动电动汽车的驱动扭矩分配方法及系统
CN109532815A (zh) 用于多个电机的扭矩分配方法及存储介质
CN1297420C (zh) 多级高效变频调速电动汽车驱动装置及控制方法
CN205059312U (zh) 一种电动汽车驱动系统
CN109017448A (zh) 四轮独立驱动电动汽车力矩分配的二次规划方法、制定约束条件及目标函数的方法
CN104442340B (zh) 复合双行星排式液驱混合动力系统
CN109177968A (zh) 一种功率分流式混合动力汽车的驱动模式控制方法
CN103991389A (zh) 一种燃料电池混合动力公交车能量管理方法及装置
CN204296444U (zh) 双转子电机复合行星排式混合动力系统
CN103171429A (zh) 基于变量泵和定量多联马达的混合动力车辆驱动装置
CN106627098A (zh) 一种混联式混合动力汽车动力系统控制方法及装置
CN204296443U (zh) 双转子电机行星式双模混合动力系统
CN203157692U (zh) 多速比多模式混合动力系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613