WO2024060963A1 - 电动工具 - Google Patents

电动工具 Download PDF

Info

Publication number
WO2024060963A1
WO2024060963A1 PCT/CN2023/116382 CN2023116382W WO2024060963A1 WO 2024060963 A1 WO2024060963 A1 WO 2024060963A1 CN 2023116382 W CN2023116382 W CN 2023116382W WO 2024060963 A1 WO2024060963 A1 WO 2024060963A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
output
torque
equal
assembly
Prior art date
Application number
PCT/CN2023/116382
Other languages
English (en)
French (fr)
Inventor
徐中全
张仑仑
付祥青
徐谦
许彦卿
陆文静
Original Assignee
南京泉峰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202321854207.6U external-priority patent/CN220840026U/zh
Application filed by 南京泉峰科技有限公司 filed Critical 南京泉峰科技有限公司
Publication of WO2024060963A1 publication Critical patent/WO2024060963A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors

Definitions

  • This application relates to an electric tool.
  • the output mechanism can usually work under light load conditions and heavy load conditions.
  • a motor with a large power and output torque is usually installed in the electric tool.
  • the high-power motor can drive the output mechanism to drive a larger load.
  • the power consumption of the high-power motor will be relatively large, causing serious waste.
  • the working status of the motor is reduced under light load, which affects the use time of the power tool.
  • An object of the present application is to solve or at least alleviate some or all of the above problems. To this end, this application provides an electric tool that can meet the high efficiency requirements of light load conditions and high load conditions at the same time.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement set functions; and a motor component that is at least partially disposed on the housing, and the motor component includes: A motor for outputting a first torque and a first speed; a second motor for outputting a second torque and a second speed; a connector for selectively allowing power transmission between the first motor and the second motor; so that The motor component switches between multiple working states; the output mechanism is connected to at least one of the first motor, the second motor and the connector; the limit value of the efficiency of the motor component constitutes the total efficiency range, and the efficiency value of the motor component is greater than or equal to 70%
  • the part constitutes the first efficiency interval, where the first efficiency interval and the total efficiency area The ratio between them is greater than or equal to 0.5.
  • the part where the efficiency value of the motor assembly is greater than or equal to 50% constitutes the second efficiency interval, and the ratio of the first efficiency interval to the second efficiency interval is greater than or equal to 0.4.
  • the connector includes a one-way transmission assembly that connects two of the output mechanism, the first motor, and the second motor, and the one-way transmission assembly allows the first motor and/or the second motor to drive the output mechanism, the one-way transmission component limits the output mechanism to drive the first motor and the second motor.
  • the connector includes a clutch assembly including a driving member forming or connecting one of the first motor or the second motor, and a driven member forming or connecting the other, the driving member and the driven member being selectively connectable.
  • the connector includes a clutch assembly including a first clutch connected to one of the first motor or the second motor, and a second clutch connected to the other, the first clutch and the second clutch being selectively connected.
  • the connector includes a differential assembly that allows the first motor and the second motor to simultaneously output power to the output mechanism at different rotational speeds.
  • a transmission component is further included for connecting the motor component and the output mechanism.
  • a controller is further included, configured to control a ratio of output torques of the first motor and the second motor according to the first set parameter.
  • a detection mechanism is further included for detecting a first set parameter, and the first set parameter includes a load parameter of the output mechanism.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement set functions; and a motor component that is at least partially disposed on the housing, and the motor component includes: A motor for outputting a first torque and a first speed; a second motor for outputting a second torque and a second speed; a connector for selectively allowing power transmission between the first motor and the second motor; an output mechanism Connect at least one of the first motor, the second motor and the connector; when the output torque of the first motor is greater than or equal to the first torque value and less than or equal to the fourth torque value, the working efficiency of the first motor is greater than or equal to 70%; When the output torque of the second motor is greater than or equal to the fifth torque value and less than or equal to the eighth torque value, the working efficiency of the second motor is greater than or equal to 70%; the first torque value is less than the fifth torque value, and the fourth torque value is less than the eighth torque value. Torque value; wherein, when the output torque of the motor component
  • the working efficiency of the first motor when the output torque of the first motor is greater than or equal to the second torque value and less than or equal to the third torque value, the working efficiency of the first motor is greater than or equal to 75%; When the output torque of the motor assembly is greater than or equal to the second torque value and less than or equal to the seventh torque value, the working efficiency of the motor assembly is greater than or equal to 75%.
  • an embodiment of the present application provides an electric tool, comprising: a shell; an output mechanism for driving a functional element to implement a set function; a motor assembly, at least partially disposed in the shell, the motor assembly comprising: a first motor for outputting a first torque and a first speed; a second motor for outputting a second torque and a second speed; a connector, selectively allowing power transmission between the first motor and the second motor; the output mechanism connects at least at least one of the first motor, the second motor and the connector; when the working efficiency of the first motor is greater than or equal to 70%, the output torque of the first motor is within a first output torque range; when the working efficiency of the second motor is greater than or equal to 70%, the output torque of the second motor is within a second output torque range; when the working efficiency of the motor assembly is greater than or equal to 70%, the output torque of the motor assembly is within a third output torque range, and the third output torque range at least covers the first output torque range and the second output torque range.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement the set function; and a power supply installation part for installing a DC power supply and a motor assembly, at least partially Disposed on the housing, the motor assembly includes: a first motor that outputs a first torque and a first speed; a first motor driving an output mechanism; a second motor that outputs a second torque and a second speed; The motor drives the output mechanism; the DC power supply supplies power to the first motor and the second motor; the nominal voltage of the electric tool is greater than or equal to 18V.
  • the first motor and the second motor are brushless motors.
  • the DC power source includes a battery pack.
  • the battery pack powers a variety of power tools.
  • the power tool has a nominal voltage of greater than or equal to 18V and less than or equal to 56V.
  • the nominal voltage of the power tool is greater than 56V and less than or equal to 120V.
  • the power supply mounting portion is at least partially disposed on the housing.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement the setting function; the output mechanism is at least partially disposed on the housing; and a power supply mounting portion for Install a DC power supply and a motor assembly for driving the output mechanism.
  • the motor assembly includes: a first motor, the first motor outputs a first torque and a first speed; a second motor, the second motor outputs a second torque and a second speed; The first motor and the second motor are configured to have at least one different structural parameter.
  • the first motor and the second motor have different outer diameters.
  • the ratio of the diameter of the first motor outer diameter to the diameter of the second motor outer diameter is greater than or equal to 0.4.
  • the stack lengths of the first motor and the second motor are different.
  • a ratio of a stack length of the first motor to a stack length of the second motor is greater than or equal to 0.3.
  • the structural parameters include: stator core outer diameter, stator core inner diameter, rotor core outer diameter, rotor core inner diameter, rotor magnetic pole thickness, stator magnetic pole thickness, air gap length, iron core length, stator pole The number of pairs, the stator poles corresponding to radians, the rotor pole pairs and the rotor poles corresponding to radians.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement set functions; and a motor component that is at least partially disposed on the housing, and the motor component includes: A motor for outputting a first torque and a first speed; a second motor for outputting a second torque and a second speed; a connector for selectively allowing power transmission between the first motor and the second motor; an output mechanism At least one power supply among the first motor, the second motor and the connector is connected for supplying power to the first motor and the second motor; a controller is used for controlling the motor assembly; the controller is configured to: according to the output mechanism The load parameter and the load sharing coefficient of the motor assembly determine at least one of an output parameter value of the first motor and an output parameter value of the second motor, or a ratio of the first motor output parameter to the second motor output parameter.
  • a detection component is further included for detecting the load parameter of the output mechanism.
  • the demand parameters of the motor assembly are determined according to the load parameters of the output mechanism, and the demand parameters include at least one of: demand torque, demand speed, and demand power.
  • the output parameter includes at least one of output torque, output speed, and output power.
  • the load sharing coefficient is such that when the output mechanism is loaded, the total efficiency of the motor assembly is greater than or equal to the efficiency of the first motor or the second motor.
  • the load sharing coefficient is such that the efficiency range of the motor component is greater than or equal to 70%, accounting for greater than or equal to 0.5 in the total efficiency range of the motor component.
  • the controller is configured such that when the first motor and the second motor are started simultaneously, one of the first motor and the second motor is controlled through the first parameter group, and the other of the first motor and the second motor is controlled by the first parameter group.
  • the controller is configured such that when the first motor and the second motor are started simultaneously, one of the first motor and the second motor is controlled through the first parameter group, and the other of the first motor and the second motor is controlled by the first parameter group.
  • the controller is configured such that when the first motor and the second motor are started simultaneously, one of the first motor and the second motor is controlled through the first parameter group, and the other of the first motor and the second motor is controlled by the first parameter group.
  • the controller is configured such that when the first motor and the second motor are started simultaneously, one of the first motor and the second motor is controlled through the first parameter group, and the other of the first motor and the second motor is controlled by the first parameter group.
  • the second parameter group control at least one parameter of the first parameter group is different from a parameter of the second parameter group.
  • the controller is configured to switch the motor component to start the first motor or the second motor when it is determined that the first motor and the second motor are started simultaneously and the demand parameter of the motor component is less than the second preset value.
  • the controller is configured to switch the motor assembly to the first motor and the second motor simultaneously when it is determined that the first motor or the second motor in the motor assembly is started and the demand parameter of the motor assembly is greater than the first preset value. start up.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement set functions; and a motor component that is at least partially disposed on the housing, and the motor component includes: A motor for outputting a first torque and a first speed; a second motor for outputting a second torque and a second speed; a connector for selectively allowing power transmission between the first motor and the second motor; an output mechanism Connect at least one of the first motor, the second motor and the connector; a power supply for powering the first motor and the second motor; a controller for controlling the motor assembly; the controller is configured to: according to the output mechanism Load parameters, configure the output parameters of the first motor and the output parameters of the second motor so that the efficiency range of the motor component is greater than or equal to 70% and the proportion of the total efficiency range of the motor component is greater than or equal to 0.5.
  • an embodiment of the present application provides an electric tool, including: a housing; an output mechanism for driving functional components that implement set functions;
  • the motor is at least partially disposed in the housing; the motor includes: a rotor assembly formed or connected with a rotor shaft that rotates about the first axis; a stator assembly coaxially disposed with the rotor assembly; the stator assembly includes a first stator and a third two stators; a controller, electrically connected to the first stator and the second stator; the controller is used to control the motor; the controller is configured to: when the first stator is powered on and the second stator is powered off, the motor is in the first working state ; When the first stator is powered off and the second stator is powered on, the motor is in the second working state; when the first stator is powered on and the second stator is powered on, the motor is in the third working state; where, the motor is in all working states
  • the limit value of the efficiency constitutes the total efficiency interval, the efficiency value of the motor's efficiency value greater than or equal to 70% constitutes the first efficiency interval, and the ratio of the first efficiency interval to the total efficiency interval is greater than or equal
  • the stator assembly is disposed with the first axis as a central axis.
  • the first stator and the second stator are coaxially nested.
  • the first stator and the second stator are coaxial and arranged along the first axis direction.
  • the first stator and the second stator are arranged apart from each other in the first axis direction.
  • the output torque of the motor when the motor is in the third working state, the output torque of the motor is greater than the output torque of the motor in the first working state. When the motor is in the third working state, the output torque of the motor is greater than the output torque of the motor in the second working state. Output torque.
  • the rotor assembly includes a first rotor mated with the first stator and a second rotor formed or connected to the first rotor.
  • An electric tool including: a casing; an output mechanism for driving functional components that implement set functions; a motor, at least partially disposed in the casing; the motor includes: a rotor assembly; a stator assembly, the stator assembly including a first stator and a second stator; wherein the first stator and the second stator are arranged along the axial direction.
  • the rotor assembly forms or is connected with a rotor shaft that rotates with the first axis as the axis; the stator assembly and the rotor assembly are respectively arranged with the first axis as the central axis.
  • the motor further includes: a controller electrically connected to the first stator and the second stator, the controller is used to control the motor, and the controller is configured to: when the first stator is powered on and the second stator is powered off , the motor is in the first working state; when the first stator is powered off and the second stator is powered on, the motor is in the second working state; when the first stator is powered on and the second stator is powered on, the motor is in the third working state.
  • a controller electrically connected to the first stator and the second stator, the controller is used to control the motor, and the controller is configured to: when the first stator is powered on and the second stator is powered off , the motor is in the first working state; when the first stator is powered off and the second stator is powered on, the motor is in the second working state; when the first stator is powered on and the second stator is powered on, the motor is in the third working state.
  • an embodiment of the present application provides an electric tool, comprising: a shell; an output mechanism for driving a functional element to implement a set function; a power supply mounting portion, at least partially disposed on the shell, the power supply mounting portion being used to install a DC power supply; a motor, at least partially disposed in the shell; the motor comprising: a rotor, rotating about a first axis; a stator, comprising: a yoke portion and a plurality of teeth formed or connected to the yoke portion; a first winding, wound on the plurality of teeth, for generating a first magnetic field; a second winding, wound on the plurality of teeth, for generating a second magnetic field; the power supply can selectively supply power to the first winding and the second winding; wherein the first winding and the second winding are arranged radially along the first axis.
  • the DC power source includes at least one battery pack.
  • the nominal voltage of the power tool is greater than or equal to 18V.
  • the power tool has a nominal voltage of greater than or equal to 36V and less than or equal to 56V.
  • the nominal voltage of the power tool is greater than 56V and less than or equal to 120V.
  • the motor further includes: a controller, the controller is electrically connected to the first winding and the second winding, and controls the energized state of the first winding and the second winding, and the controller is configured to: when the first winding is energized, When the second winding is powered off, the motor is in the first working state; when the first winding is powered off and the second winding is powered on, the motor is in the second working state; when the first winding is powered on and the second winding is powered on, the motor is in the third working state. working status.
  • the motor further includes a detection component for detecting the energization and de-energization status of the first winding and the second winding.
  • the number of turns of the first winding and the number of turns of the second winding are different.
  • the wire diameter of the first winding and the wire diameter of the second winding are different.
  • the tooth portion protrudes inwardly of the ring yoke portion.
  • Figure 1 is a structural diagram of an embodiment of the present application
  • Figure 2 is an example diagram of an electric tool to which the motor assembly in this application can be applied;
  • Figure 3 is a schematic structural diagram of a motor in which the first motor is an external rotor motor in an embodiment of the present application;
  • Figure 4 is a schematic exploded view of the structure of the motor assembly in the embodiment of the present application.
  • Figure 5 is a cross-sectional view of the motor assembly in the embodiment of the present application.
  • Figure 6 is a schematic cross-sectional view of the motor assembly provided with a motor cover in the embodiment of the present application;
  • Figure 7 is a schematic structural diagram of a motor in which the first motor is an inner-rotor motor in an embodiment of the present application;
  • FIG8 is a schematic diagram of the structure of another motor assembly in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of the third motor assembly in the embodiment of the present application.
  • FIG10 is a schematic diagram of a structural cross-sectional view of a third motor assembly in an embodiment of the present application.
  • Figure 11 is a schematic structural cross-sectional view of the fourth motor assembly in the embodiment of the present application.
  • Figure 12 is a schematic diagram of the circuit principle of an embodiment of the present application.
  • Figure 13 is a flow chart of a control method of this application.
  • Figure 14 is a graph of motor efficiency and motor output torque of the first motor, the second motor and the motor assembly in the present application;
  • Figure 15 is a graph of motor efficiency and motor output torque of the motor assembly in the present application.
  • Figure 16 is a schematic diagram of the motor structure of the second embodiment of the present application.
  • Figure 17 is a schematic diagram of a structural cross-sectional view of an inner-rotor motor in the second embodiment of the present application.
  • Figures 18a-18b are schematic diagrams of the cross-sectional view of Figure 16, mainly showing different rotor assembly structures
  • Figure 19 is a schematic diagram of the circuit principle of an embodiment of the present application.
  • Figure 20 is a schematic diagram of the motor structure according to the third embodiment of the present application.
  • the term "and/or” is an association relationship describing associated objects, indicating that three relationships can exist.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone.
  • the character "/" in this application generally indicates that the related objects are an "and/or" relationship.
  • connection may mean direct connection, combination, coupling or installation, or indirect connection, combination, coupling or installation.
  • direct connection means that two parts or components are connected together without the need for middleware
  • indirect connection means that two parts or components are connected to at least one middleware respectively. These two parts Or components are connected through middleware.
  • “connected” and “coupled” are not limited to physical or mechanical connections or couplings, and may include electrical connections or couplings.
  • “basically” when expressing relative angular position relationships can refer to adding or subtracting a certain number of degrees (such as 1 degree, 5 degrees, 10 degrees or more) based on the indicated angle. More).
  • a function performed by a component may be performed by one component, multiple components, one part, or multiple parts.
  • the function performed by a part can also be performed by a part, a component, or a combination of parts.
  • positional words such as upper side, lower side, left side, right side, front side, and back side not only represent the front direction, but can also be understood as the side direction.
  • below can include directly below, below left, below right, and below front. And the lower back and so on.
  • controller In this application, the terms “controller”, “processor”, “central processing unit”, “CPU” and “MCU” are interchangeable. When using a unit “controller”, “processor”, “central processing unit”, “CPU”, or “MCU” to perform a specific function, unless otherwise stated, these functions may be performed by a single above-mentioned unit or by multiple above-mentioned units. unit to execute.
  • the terms “compute”, “judgment”, “control”, “determine”, “identify”, etc. refer to the operations and processes of a computer system or similar electronic computing device (e.g., controller, processor, etc.) .
  • FIG 1 shows an electric tool according to one embodiment of the present application.
  • the power tool includes a motor assembly 20 .
  • the electric tool is a miter saw 100 .
  • the electric tool can also be a garden tool, such as a lawn mower 100d, a hair dryer 110c, a rear-walking electric tool such as a lawn mower 100e, a chain saw, a cleaning machine, etc.
  • the power tools can also be decorative tools, such as screwdrivers/drills/wrenches, electric hammers, nail guns, sanders, etc.
  • the electric tool may also be a saw tool, such as a reciprocating saw 100b, a jigsaw, a circular saw, etc.
  • the power tool can also be other bench-type tools, such as table saws, metal cutting machines, bakelite mills, etc.
  • the electric tool can also be a grinding tool, such as an angle grinder, a sander, etc.
  • the electric tool can also be other electric tools, such as the fan 100f.
  • the walking equipment 100a that is not on the road such as a utility vehicle, may also be an ATV, a farm vehicle (Utility Terrain Vehicle, UTV), a golf cart, an all-terrain vehicle (All Terrain Vehicle, ATV), or may be an agricultural machinery vehicle. , such as harvesters, spray trucks, etc.
  • it can also be a cleaning machine.
  • It can also be a smart walking power tool that uses a motor or motor assembly to drive walking and perform work functions, such as a smart lawn mower, etc.
  • the power tool may also be a power head that includes a motor assembly.
  • the power head is used to adapt some output components to realize the function of the tool.
  • a miter saw 100 is taken as an example.
  • Miter saw 100 includes power supply 61 .
  • the power supply 61 is a DC power supply.
  • the DC power supply is used to provide electrical energy to the miter saw 100 .
  • the DC power supply is a battery pack, and the battery pack cooperates with the corresponding power circuit to power the miter saw 100.
  • power supply The power supply is not limited to the use of DC power supply. It can also supply power to the corresponding components in the machine through mains power, AC power supply, and the corresponding rectification, filtering and voltage regulation circuits.
  • the battery pack 61 will be used instead of the power supply 61 , but this does not limit this application.
  • the miter saw 100 also includes: a base 12 , a housing 11 , a functional component 13 and an output mechanism 14 .
  • the housing 11 includes a main body shell 111 and a holding portion 112 .
  • the main body casing 111 accommodates at least the motor assembly 20 and part of the output mechanism 14 and the like.
  • the main body shell 111 is also formed with or connected to a holding portion 112 for user operation.
  • the base 12 places the miter saw 100 stably on the ground or an operating surface.
  • the output mechanism 14 is used to drive the functional element 13 .
  • the output mechanism 14 includes an output shaft 141 .
  • a transmission component is connected between the output mechanism 14 and the motor component 20 , such as screwdrivers, drills, saws and other high-speed and high-torque output tools.
  • the output power of the motor assembly 20 is transmitted to the output mechanism 14 through the transmission assembly, and the output mechanism 14 completes the processing of the workpiece at the drive functional element 13 .
  • the motor assembly 20 directly drives the output mechanism 14, such as a fan, a hair dryer, a lawn mower, etc., and the output mechanism 14 drives the functional component 13 to complete the processing of the workpiece.
  • Functional element 13 is used to perform set functions.
  • a saw blade is used to perform the work function of the electric tool, such as cutting the workpiece.
  • the functional element 13 may be a grinding disc, a blade, a screwdriver, a fan, a pump, a walking wheel, etc.
  • the overall structure of the miter saw 100 is substantially the same as that of a general miter saw, and will not be described in detail here.
  • the motor assembly 20 is used to provide a power source to the output mechanism 14 so that the output mechanism 14 drives the functional component 13 .
  • the motor assembly 20 includes a first motor 21 and a second motor 22 .
  • the first motor 21 and the second motor 22 include a stator and a rotor respectively.
  • the stator 212 includes a stator core 2121 and a stator winding 2122.
  • the rotor 214 includes a rotor core 2141 and permanent magnets 2142.
  • a rotor shaft 211 is formed on or connected to the rotor 214 for outputting power.
  • the rotor is sleeved outside the stator.
  • the stator is sleeved outside the rotor.
  • the first motor 21 is an external rotor motor.
  • the first motor 21 also includes a stator bracket 213, and the stator bracket 213 is provided with mounting holes.
  • the stator 212 is fixed outside the stator bracket 213.
  • the overall structure of the motor here is roughly the same as that of a general brushless motor, and will not be described in detail here.
  • the power supply device 15 includes a power supply mounting portion 151 and a battery pack 61 .
  • the power supply mounting portion 151 is at least partially provided on the housing 11 .
  • the positions of the power supply mounting portion 151 are different.
  • the position of the power supply installation part 151 does not affect the substantive content of the protection of this application.
  • the battery pack 61 is connected to the power supply mounting part 151 , or is at least partially placed in the power supply mounting part 151 . It can be understood that the power supply installation part 151 is used to accommodate the battery pack 61 . In this embodiment, the battery pack 61 supplies power to the first motor 21 and the second motor 22, and the nominal voltage of the electric tool is greater than or equal to 18V. The battery pack 61 cooperates with the corresponding power circuit to supply power to the first motor 21 and the second motor 22 .
  • the battery pack 61 includes an insertion structure 311 and a terminal interface (not shown in the figure).
  • the power supply mounting part 151 includes a coupling part 1511 electrically connected to the battery pack 61, and a tool terminal (not shown in the figure) is provided on the coupling part 1511.
  • Tool terminals (not shown in the figure) with the same structure are provided on different electric tools and then adapted to the terminal interfaces (not shown in the figure) on the battery pack 61 so that the battery pack 61 can power a variety of different electric tools. .
  • the matching power circuit is adjusted according to the control requirements of different power tools.
  • the power tool has a nominal voltage of greater than or equal to 36V and less than or equal to 56V.
  • the nominal voltage of the power tool is greater than 56V and less than or equal to 120V.
  • the battery pack 21 may be a lithium battery pack, a solid-state battery pack, or a soft-pack battery pack.
  • the nominal voltage of the battery pack is 18V, 24V, 36V, 48V, 56V or 80V, 120V.
  • the first motor 21 is used to output a first torque and a first rotational speed.
  • the second motor 22 is used to output a second torque and a second rotational speed.
  • Motor assembly 20 also includes connector 23 .
  • the connector 23 selectively allows power transmission between the first motor 21 and the second motor 22 .
  • the connector 23 connects the first motor 21 and the second motor 22, and the connector 23 switches the connection state between the first motor 21 and the second motor 22 to switch the connection state between the first motor 21 and the second motor 22. power transmission conditions, so that the motor assembly 20 switches between multiple working states.
  • the output mechanism 14 is connected to the motor assembly 20 , that is to say, the output mechanism 14 is connected to at least one of the first motor 21 , the second motor 22 and the connector 23 , thereby realizing the coupling of the first motor 21 and the second motor 22 to the output mechanism. 14 to drive.
  • the connector 23 transmits the power of at least one of the first motor and the second motor to the output mechanism 14.
  • the connector 23 switches the power transmission conditions between the first motor 21, the second motor 22 and the output shaft 141, so that the motor assembly 20Switch between multiple working states.
  • the first motor 21, the second motor 22, or the first motor 21 and the second motor 22 are selected to drive the output mechanism 14, so that the load of the electric tool is in a light load state, a medium load state, or Under high load conditions, appropriate input power can be allocated. It can improve work efficiency in all working conditions.
  • the load state of the electric tool can be characterized by the load state of the output shaft.
  • the load status of the output shaft can be characterized by motor current-related parameters and motor output torque-related parameters. For example, when the real-time current of the motor is no more than 10% of the rated current, or 10% to 15%, it is a light load state, and when the real-time current of the motor is 50% to 80% of the rated current, it is a high load state.
  • the specific numerical value can be set according to the actual situation, and there is no specific limit here.
  • the first motor 21 is used to output the first torque and the first rotation speed.
  • the second motor 22 is used to output the second torque and second RPM. Wherein, the first torque and the second torque are different.
  • the first rotational speed and the second rotational speed are not the same. It should be explained that the first torque is different from the second torque. In some embodiments, it is defined as the output maximum torque of the first motor and the second motor is different, but the first motor and the second motor will appear during the entire working process.
  • the output torque is the same at a moment or within a time period.
  • the output torque ranges of the first motor and the second motor are different in the high efficiency range, but there will be a moment or a period of time difference between the first motor and the second motor during the entire operation process.
  • the output torque is the same.
  • the first rotational speed and the second rotational speed are different, which in some embodiments is defined as the output maximum rotational speeds of the first motor and the second motor are different, but there will be a moment or The output speed within a period of time is the same.
  • it is defined as that the output speed ranges of the first motor and the second motor are different in the high efficiency range, but there will be a difference between the first motor and the second motor at a moment or within a period of time during the entire working process.
  • the output speed is the same.
  • an application case of the first motor and the second motor is cited as an example, and the first motor 21 is a low output torque motor.
  • the second motor 22 is a high output torque motor.
  • the first motor 21 is a high output torque motor.
  • the second motor 22 is a low output torque motor.
  • the first motor 21 and the second motor 22 are the same type of motor, but the output speed and output torque of the first motor 21 and the second motor 22 are different.
  • the first motor 21 and the second motor 22 are brushless DC motors respectively.
  • the first motor 21 and the second motor 22 further include at least one different structural parameter.
  • the structural parameters include the outer diameter D of the motor and the stack length L of the motor. What needs to be explained here is that the “motor outer diameter” is the overall outer diameter of the motor. "Motor stack length” is the length of the stator core.
  • the ratio of the stack length L2 of the second motor 22 to the stack length L1 of the first motor 21 is greater than or equal to 0.3.
  • the ratio of the stack length L2 of the second motor 22 to the stack length L1 of the first motor 21 is greater than or equal to 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
  • the ratio of the stack length L1 of the first motor 21 to the stack length L2 of the second motor 22 is greater than or equal to 0.3.
  • the ratio of the stack length L1 of the first motor 21 to the stack length L2 of the second motor 22 is greater than or equal to 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
  • the ratio of the diameter D1 of the outer diameter of the first motor 21 to the diameter D2 of the outer diameter of the second motor 22 is greater than or equal to 0.4. In other alternative embodiments, the ratio of the diameter D1 of the outer diameter of the first motor 21 to the diameter D2 of the outer diameter of the second motor 22 is greater than or equal to 0.5, 0.6, 0.7, 0.8, 0.9.
  • the structural parameters of the first motor 21 and the second motor 22 include stator core outer diameter, stator core inner diameter, rotor core outer diameter, rotor core inner diameter, rotor magnetic pole thickness, stator magnetic pole thickness, air gap length, iron Core length, number of stator pole pairs, corresponding radian of stator poles, number of rotor pole pairs and corresponding rotor poles radian.
  • the first motor 21 and the second motor 22 are different in at least one structural parameter.
  • the output mechanism 14 includes an input terminal and an output terminal. The output end is connected to the functional component 13 , and the input end is connected to at least one of the first motor 21 , the second motor 22 and the connector 23 .
  • the output mechanism 14 includes an output shaft 141 .
  • the output end 141b of the output shaft is the output end of the output mechanism 14, and the input shaft 141a of the output shaft is the input end of the output mechanism 14.
  • the first motor 21 and the second motor 22 are external rotor motors respectively.
  • the first rotor shaft 211 of the first motor 21 , the second rotor shaft 221 of the second motor 22 and the output shaft 141 rotate around the first axis 101 .
  • the first rotor shaft 211 and the second rotor shaft 221 are hollow structures, and the stator 212 of the first motor and the stator of the second motor share the same stator bracket 213.
  • the stator 212 of the first motor and the stator of the second motor are respectively connected to a stator bracket 213, and the stator bracket of the first motor is connected to the stator bracket of the second motor.
  • the stator 212 of the first motor and the stator of the second motor are coaxially connected through a stator bracket.
  • the first rotor shaft 211, the stator bracket 213 and the second rotor shaft 221 form the first accommodation space 202.
  • the output shaft 141 is provided in the first accommodation space 202 .
  • the connector 23 includes a one-way transmission assembly.
  • the connector 23 includes a one-way bearing 231 .
  • the one-way bearing 231 is provided on the input end 141a side.
  • the first motor 21 is disposed on a side close to the input end 141a
  • the second motor 22 is disposed on a side close to the output end 141b relative to the first motor 21.
  • a one-way bearing 231 is provided within the first rotor shaft 211 .
  • the first motor 21 is disposed above the second motor 22 .
  • the first motor 21 is disposed below the second motor 22 .
  • the position of the first motor 21 relative to the second motor 22 does not affect the substantive content of the protection of this application.
  • a one-way bearing 231 connects the output mechanism 14 and the first motor 21 or the output mechanism 14 and the second motor 22 .
  • a one-way bearing 231 connects the first motor 21 and the second motor 22 .
  • the one-way bearing 231 allows the first motor 21 or the second motor 22 or the first motor and the second motor to drive the output mechanism 14, and the one-way bearing 231 limits the output mechanism 14 from driving the first motor 21 or the second motor 22.
  • the one-way bearing 231 includes: a one-way bearing outer ring 231a and a one-way bearing inner ring 231b.
  • the one-way bearing outer ring 231a is connected to the first rotor shaft 211
  • the one-way bearing inner ring 231b is connected to the output shaft 141.
  • the one-way bearing 231 limits the output shaft 141 to drive the first rotor shaft 211 to rotate.
  • the motor assembly 20 at least includes a first working state corresponding to a light load state (ie, when the required motor output torque is low) and a second working state corresponding to a high load state (ie, when the required motor output torque is high).
  • the second motor 22 is controlled to start working and drive the output shaft 141 to output power, and the second rotor shaft 221 and the output shaft 141 rotate in the set direction.
  • the first motor 21 does not receive the start signal or is controlled and does not start working because the output shaft 141 is connected to the first motor 21 .
  • the rotor shaft 211 is connected.
  • a one-way bearing 231 is provided.
  • the rotation of the output shaft 141 drives the one-way bearing inner ring 231b to rotate, and the one-way bearing outer ring 231a is in contact with the one-way bearing.
  • the inner ring 231b undergoes relative rotational motion, and the one-way bearing outer ring 231a does not rotate with the output shaft 141. Damage to the first motor 21 is avoided.
  • the one-way clutch when the power output part of the one-way bearing (the inner ring in this embodiment) rotates faster than the power source (the outer ring in this embodiment), the one-way clutch is in a disengaged state, and the inner ring and the outer ring There is no linkage relationship, that is to say the one-way override function of the one-way clutch.
  • the second motor 22 is controlled to start and the first motor 21 is also controlled to start.
  • the first rotor shaft 211 and the second rotor shaft 221 need to drive the output shaft 141 to rotate at the same time.
  • the rotation speed of the first rotor shaft 211 is equal to or higher than the second rotor shaft 221 , the relative motion of the one-way bearing inner ring 231 b and the one-way bearing outer ring 231 a is locked, and the second motor 22 and the first motor 21 Drive the output shaft 141 to move. Therefore, the motor assembly 20 is provided with different working states.
  • the first and second rotor shafts are connected by a one-way bearing, and the output shaft is connected to the second rotor shaft.
  • the motor assembly is controlled to enter the first working state
  • the first motor is controlled to start working and then drive the output shaft to output power
  • the one-way bearing limits the movement of the second rotor shaft driven by the first motor.
  • the motor assembly is controlled to enter the second working state
  • the first motor is controlled to start and the second motor is also controlled to start.
  • the relative motion of the one-way bearing inner ring and the one-way bearing outer ring is locked.
  • the first rotor shaft and the second rotor shaft simultaneously drive the output shaft to rotate.
  • the first rotor shaft 211 , the second rotor shaft 221 and the output shaft 141 are supported by ordinary bearings 28 as needed.
  • the ordinary bearing 28 is disposed in the first accommodation space 202 , and a dust cover 281 structure is used to block the opening of the first accommodation space near the output end to prevent dust from entering the ordinary bearing 28 .
  • a motor cover 282 is provided outside the motor assembly 20' or the first motor 21' or the second motor 22', and the common bearing 28 is provided on the first motor 21' or the second motor 22'. Outside the motor 22', ordinary bearings 28 support the output shaft 141 and the motor cover 282.
  • the motor assembly 20 When the load of the output mechanism 14 is small, the motor assembly 20 is in the first working state. At this time, only the low output torque motor, such as the second motor 22, can be started, so that the second motor 22 can operate in a power range with higher motor efficiency.
  • the energy of the battery pack 61 can be saved and the working time of the battery pack 61 can be improved. This avoids the problem of increasing power consumption caused by starting the first motor 21 and the second motor 22 and thus reducing the working time of the battery pack 61 .
  • the output power of the second motor 22 can be set smaller, that is, a low-power third motor can be used. Two motors 22, thereby reducing costs.
  • the motor assembly 20 When the load of the output mechanism 14 is relatively large, the motor assembly 20 is in the second working state. At this time, the first motor 21 and the second motor 22 are started. This allows the first motor 21 and the second motor 22 to operate at high motor efficiency. Work within the power range. The working efficiency and high-efficiency working range of the motor assembly 20 are improved.
  • the first motor 21b and the second motor 22b are inner-rotor motors.
  • the first motor 21b includes a stator 212b and a rotor 214b.
  • the stator 212b includes a stator core 2121b and a coil winding 2122b provided on the stator core.
  • the rotor 214b includes a rotor core 2141b.
  • the rotor core is provided with permanent magnets 2142b, which are arranged at intervals along the circumferential direction of the rotor core 2141b.
  • the permanent magnets 2142b are used to generate a magnetic field.
  • a rotor shaft 211b is formed on or connected to the rotor 214b for outputting power.
  • the coil winding 2122b is a conductive metal winding, such as a copper winding.
  • the first rotor shaft 211b of the first motor 21b, the second rotor shaft 221b and the output shaft 141b of the second motor 22b rotate around the first axis 101.
  • the first rotor shaft 211b and the second rotor shaft 221b are connected through the clutch assembly 26.
  • the clutch assembly 26 includes a driving part 261 and a driven part 262, and the clutch assembly 26 has a first state and a second state.
  • the clutch assembly 26 is in the first state, the driving member 261 and the driven member 262 are disconnected. Then, the power transmission between the first rotor shaft 211b and the second rotor shaft 221b is interrupted.
  • the clutch assembly 26 is in the second state, the driving member 261 and the driven member 262 are engaged and connected, and power is transmitted between the first rotor shaft 211 and the second rotor shaft 221 .
  • the output shaft 141b is mounted to the first rotor shaft 211b.
  • the first motor 21b is controlled to start and the second motor 22b does not receive a start signal or is controlled not to start working.
  • the clutch assembly 26 switches to the first state.
  • only The first motor 21b drives the output shaft 141b to output power.
  • the second motor 22b is controlled to start and the first motor 21b is also controlled to start.
  • the clutch assembly switches to the second state.
  • the first motor 21b directly drives the output shaft 141b to output.
  • the second motor 22b drives the first motor 21b to drive the output shaft 141b to output power.
  • the output shaft rotates around the first axis 101
  • the first rotor shaft of the first motor rotates around the second axis 102
  • the second motor rotates around the second axis 102
  • the second rotor shaft rotates around the third axis 103.
  • the first axis 101 is parallel to but not coincident with the second axis 102 and the third axis 103 .
  • the relationship between the first axis 101, the second axis 102, and the third axis 103 may be parallel or coincident.
  • the clutch assembly includes a first clutch 232 and a second clutch 233 .
  • the first clutch 232 is provided between the first motor 21c and the output mechanism 14c.
  • the first clutch 232 is used to connect the first motor 21c and the output mechanism 14c. realize the transmission of power between them.
  • the second clutch 233 is provided between the second motor 22c and the output mechanism 14c, and is used to transmit power between the second motor 22c and the output mechanism 14c.
  • the motor assembly 20c also includes a transmission member 24, which is transmission connected with the first rotor shaft 211c and the second rotor shaft 221c.
  • the transmission member 24 is connected to the output shaft 141c, wherein the transmission member 24 and the output shaft 141c do not move relative to each other.
  • the first clutch 232 is provided between the transmission member 24 and the first rotor shaft 211c.
  • the first clutch 232 is a one-way transmission component.
  • the first clutch 232 is a one-way bearing.
  • the second clutch 233 is provided between the transmission member 24 and the second rotor shaft 221c.
  • the second clutch 233 is a one-way transmission component.
  • the second clutch 233 is a one-way bearing.
  • the first motor 21c When the motor assembly 20c is controlled to enter the first working state, the first motor 21c is controlled to start working and drive the output shaft 141c through the transmission member 24 to output power.
  • the one-way bearing 231 limits the transmission member 24 to drive the second rotor shaft 221c to move.
  • the second motor 22c When the motor assembly 20c is controlled to enter the first working state, the second motor 22c is controlled to start and the first motor 21c is also controlled to start. At this time, the relative motion of the one-way bearing inner ring and the one-way bearing outer ring is locked.
  • the first rotor shaft 211c and the second rotor shaft 221c simultaneously drive the output shaft 141c to rotate.
  • the motor assembly 20c can also include a third working state, that is, the second motor 22c is controlled to start working and then drive the output shaft 141c through the transmission member 24 to output power, and the one-way bearing 231 limits the transmission member 24 to drive the first The rotor shaft 211c moves, and at this time only the second motor 22c drives the output shaft 141c.
  • At least one of the first motor and the second motor is an AC motor
  • the clutch assembly includes a first clutch and a second clutch.
  • the clutch assembly includes one of first clutch 232 or second clutch 233 .
  • at least one of the first motor and the second motor is an AC motor, and the first motor and the second motor are rigidly connected.
  • the first motor and the second motor are DC motors, and the first motor and the second motor are rigidly connected.
  • the first clutch 232g includes: a first driving member and a first driven member
  • the second clutch 233g includes: a second driving member and a second driven member.
  • the first clutch 232g has a first state and a second state. When the first clutch 232g is in the first state, the first driving member and the first driven member are disconnected. Then, the power transmission between the first rotor shaft 211g and the transmission member 24g is interrupted. When the first clutch 232g is in the second state, the first driving member and the first driven member are engaged and connected, and power is transmitted between the first rotor shaft 211g and the transmission member 24g.
  • the second clutch 233g has a third state and a fourth state.
  • the connector includes a differential assembly that allows the first motor and the second motor to simultaneously output power to the output mechanism at different rotational speeds.
  • the connector structures in the above embodiments may use part of them individually, or may use a combination of several of the technical solutions.
  • the power tool also includes: a controller 17 for controlling the motor assembly 20 .
  • the controller 17 is set on the control circuit board, which includes: PCB circuit board (Printed Circuit Board) and FPC circuit board (Flexible Printed Circuit board).
  • the controller 17 adopts a dedicated control chip, such as a single chip microcomputer or a microcontroller unit MCU (Microcontroller Unit). It should be noted that the control chip can be integrated into the controller 17, or can be provided independently of the controller 17. As for the structural relationship between the driver chip and the controller 17, this embodiment is not limited.
  • the controller 17 is configured to determine the output parameter value of the first motor 21 and the output parameter value of the second motor 22 or the ratio of the output parameter of the first motor 21 to the output parameter of the second motor 22 according to the load parameter of the output mechanism and the load distribution coefficient of the motor assembly.
  • the load distribution coefficient makes the total efficiency of the motor assembly 20 greater than or equal to the efficiency of the first motor 21 or the second motor 22 working alone when the load of the same output mechanism is applied.
  • the distribution coefficient makes the efficiency of the motor assembly 20 greater than or equal to 70% and the proportion of the total efficiency interval of the motor assembly 20 greater than or equal to 0.5.
  • the load distribution coefficient is to ensure the optimal efficiency distribution of the first motor and the second motor so that the total efficiency of the motor assembly 20 is optimal.
  • the controller 17 determines the required parameters of the motor assembly 20 according to the load of the output shaft 141, and the required parameters include: at least one of the required torque, the required speed, and the required power.
  • the output parameters include at least one of the output torque, the output speed, and the output power, and the output parameter ratio includes at least one of the ratio of the output torque, the ratio of the output speed, and the ratio of the output power.
  • the required torque of the motor assembly is taken as an example.
  • the total required output torque is distributed to the first motor 21 and the second motor 22 according to the principle that the first motor 21 and the second motor 22 can be in a high-efficiency range of motor operation.
  • the first-order derivative is used to obtain the proportional coefficient value of the first motor and the second motor or the set of proportional coefficients of the first motor and the second motor that maximizes the efficiency of the motor assembly 20.
  • the above constitutes the load distribution coefficient of the motor assembly.
  • the load distribution coefficient includes at least one of a first motor load distribution coefficient and a second motor load distribution coefficient.
  • the load The distribution coefficient table is queried to determine the first motor load distribution coefficient, and the motor component 20 demand torque is multiplied by the first motor load distribution coefficient to obtain the first motor demand torque.
  • the second motor demand torque can be obtained by the difference between the motor assembly 20 demand torque and the first motor demand torque, or can be obtained by the product of the motor assembly 20 demand torque and (1-first motor load distribution coefficient), or by the motor assembly 20 is obtained by multiplying the demand torque and the load distribution coefficient of the second motor obtained by looking up the table.
  • the load distribution coefficient is stored in the storage unit of the controller 17 . At least one of the first motor load distribution coefficient and the second motor load distribution coefficient is stored in the storage unit of the controller 17 . In some implementations, the corresponding relationship between the load distribution coefficient and the load parameter of the output mechanism and the load distribution coefficient are stored in a storage unit of the controller.
  • the load parameter of the output mechanism includes at least one of output torque, output speed or output current.
  • the output torque of the first motor and the second motor is reasonably distributed according to the demand load value and the load distribution coefficient to ensure a long high-efficiency range of the motor components. At the same time, the battery life and battery life are guaranteed.
  • the control method of this application is simple, reliable, and robust.
  • the controller 17 is configured to configure the output parameter value of the first motor and the output parameter value of the second motor or the output torque of the first motor and the output parameter according to the load parameter of the output mechanism.
  • the ratio of the second motor output parameter is such that the proportion of the motor component efficiency range greater than or equal to 70% in the motor component total efficiency range is greater than or equal to 0.5. That is to say, the controller 17 stores the efficiency range of the first motor 21 , the efficiency range of the second motor 22 , and the efficiency range of the motor assembly 20 , and determines the efficiency range of the motor assembly 20 according to the load parameter value or load value of the output shaft 141 .
  • the controller 17 calculates the total required output torque in real time based on the pre-stored efficiency range of the first motor 21, the efficiency range of the second motor 22, and the efficiency range of the motor assembly 20, and obtains the output torque of the first motor 21 when the efficiency of the motor assembly is maximum.
  • the value is the same as the output torque value of the second motor 22.
  • the ratio of the efficiency range of the motor component to be greater than or equal to 75% in the total efficiency range of the motor component is greater than or equal to 0.5.
  • the first motor, the second motor, or both motors can be selectively started using a connector, and the operating states of the first motor and the second motor can be controlled respectively, so that the torque range of the motor component with an efficiency greater than or equal to 70% is greater than that of the first motor working alone or the second motor working alone, the high-efficiency output range of the power tool is expanded, and high-efficiency operation can be achieved in response to various working conditions.
  • the torque range of the motor component with an efficiency greater than or equal to 70% that is, the high-efficiency interval of the motor component is long, and the high-efficiency interval accounts for a large proportion.
  • the controller 17 includes a first controller 17a and a second controller 17b, that is, a dual MCU controller.
  • the first controller 17a is connected to the first motor 21, and the second controller 17b is connected to the second motor 22.
  • the first controller 17a and the second controller 17b are connected in communication.
  • the first controller 17a and the second controller 17b can be combined into one controller 17, i.e., a single MCU control, to control the first motor 21 and the second motor 22 at the same time.
  • more than two controllers i.e., multi-MCU control, are included.
  • the controller 17 is configured to switch the motor assembly 20 when it is determined that the first motor 21 or the second motor 22 in the motor assembly 20 is started and the total required output torque of the motor assembly 20 is greater than the first preset torque.
  • the first motor 21 and the second motor 22 are started simultaneously. After the first motor 21 and the second motor 22 are started, after a preset time, the first motor 21 and the second motor 22 are controlled according to the first set parameter control and the load distribution coefficient of the motor assembly.
  • the output torque value of the motor 22 or the output torque of the first motor 21 is proportional to the output torque of the second motor 22 .
  • first motor and the second motor is controlled by a first parameter set, and the other is controlled by a second parameter set, and at least one parameter of the first parameter set is different from a parameter of the second parameter set.
  • first motor is controlled using a first parameter group, which includes the motor's rotational speed and motor current. At the same time, the motor adopts closed-loop control to make the motor control more accurate.
  • the second motor is controlled using a second parameter group. The second parameter group includes the motor current. At the same time, the motor adopts closed-loop control to make the motor control more accurate.
  • the controller 17 is configured to switch the motor assembly 20 when it is determined that the first motor 21 and the second motor 22 in the motor assembly 20 are started simultaneously, and when the total required output torque of the motor assembly 20 is less than the second preset torque. Start the first motor 21 or the second motor 22 .
  • the controller 17 controls the selection of starting the first motor 21 or the second motor 22 in the motor assembly 20 according to the load distribution coefficient of the motor assembly. According to the principle that the total required output torque corresponds to the load distribution coefficient so that the first motor 21 or the second motor 22 can be in a high-efficiency range of motor operation, the first motor 21 or the second motor 22 is selected to be started.
  • the second preset value is smaller than the first preset value to prevent the motor assembly from switching between single-motor operation and dual-motor operation too frequently.
  • the load distribution coefficient of the motor assembly is input into the storage unit of the controller 17 .
  • At least one of the efficiency range of the first motor 21 , the efficiency range of the second motor 22 and the efficiency range of the motor assembly 20 is input into the storage unit of the controller 17 .
  • the first controller 17a and the second controller 17b can adopt a preset method to control the corresponding motors.
  • the first controller 17a and the second controller 17b employ vector control.
  • the first controller 17a and the second controller 17b adopt different control methods to control the motor operation. For example, the first controller 17a adopts vector control, and the second controller 17b adopts vector control.
  • Direct torque control is adopted; or, the first controller 17a adopts direct torque control, and the second controller 17b adopts vector control; or, the first controller 17a adopts vector control, and the second controller 17b adopts square wave control; or , the first controller 17a adopts square wave control, and the second controller 17b adopts vector control; or, the first controller 17a adopts square wave control, and the second controller 17b adopts direct torque control; or, the first controller 17a adopts direct torque control.
  • Direct torque control is adopted, and the second controller 17b adopts square wave control. Since square wave control is a traditional control technology, it will not be described in detail here. Under square wave control, the controller 17 can adjust pulse width modulation (PWM), or conduction angle, lead angle, etc. according to the assigned target torque.
  • PWM pulse width modulation
  • the first motor 21 and the second motor 22 are respectively three-phase brushless motors. It includes electronically commutated three-phase stator windings U, V, and W. In some embodiments, the three-phase stator windings U, V, and W are connected in a star shape, and in other embodiments, the three-phase stator windings U, V, and W are connected in an angular shape. In one embodiment, other types of brushless motors are within the scope of this application. Brushless motors may include fewer or more than three phases.
  • Power tools also include drive circuits.
  • the drive circuit is electrically connected to the stator windings U, V, and W of the motor, and is used to transfer the current from the battery pack 61 to the stator windings U, V, and W to drive the motor to rotate.
  • the electric power tool includes a first driving circuit 171a and a second driving circuit 171b.
  • the first driving circuit 171a is connected to the first controller 17a and the battery pack 61
  • the second driving circuit 171b is connected to the second controller 17b and the battery pack 61.
  • the first driving circuit 171a includes a plurality of switching elements Q1, Q2, Q3, Q4, Q5, and Q6.
  • each switching element is electrically connected to the first controller 17a for receiving a control signal from the first controller 17a.
  • the drain or source of each switching element is connected to the stator windings U, V, W of the first motor 21 .
  • the switching elements Q1 - Q6 receive control signals from the first controller 17 a to change their respective conduction states, thereby changing the current loaded by the battery pack 61 on the stator windings U, V, and W of the first motor 21 .
  • the first driver circuit 171a may be a three-phase bridge driver circuit including six controllable semiconductor power devices (eg, FETs, BJTs, IGBTs, etc.). In some embodiments, the driver circuit may also include more than six controllable semiconductor power devices.
  • the switching element may also be any other type of solid-state switch, such as an insulated gate bipolar transistor (IGBT), a bipolar junction transistor (BJT), etc.
  • the controller 17 (including the first controller 17a and the second controller 17b) specifically controls the on or off state of the switching elements in the drive circuit through the control chip.
  • the controller controls the ratio between the on-time and off-time of the drive switch based on a pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • the electric tool also includes a detection component 18 for detecting the load parameters of the output mechanism.
  • the detection component 18 is formed or connected with the controller 17 .
  • the measuring component 18 detects the phase current, bus voltage, bus current, current accumulation time, degaussing time and other parameters in the drive circuit and sends them to the controller 17 in the form of a signal.
  • the detection component 18 detects motor speed, motor commutation parameters, and motor torque parameters and sends them to the controller 17 in a signal mode.
  • the electric tool includes a motor assembly 20 and an output mechanism 14 driven by the motor assembly 20.
  • the motor assembly 20 includes a first motor 21 and a second motor 22, which specifically includes the following steps:
  • the controller 17 determines whether the motor assembly 20 is currently in single-motor operation or dual-motor operation based on electrical parameters such as current, voltage, or based on physical parameters.
  • the controller 17 pre-stores a suitable first preset torque T1 as a threshold value for comparison and judgment with the real-time output torque T.
  • the preset time is the time for the motor to run stably, which can be one or more commutation cycles of the motor, one or more complete waveform cycles of the motor current, etc.
  • the motor component 20 operates according to the output torque T, and controls the operating mode of the motor component 20 through the current loop.
  • the preset time is the time for the motor to run stably, which can be one or more commutation cycles of the motor, one or more completed waveform cycles of the motor current, etc.
  • the load distribution coefficient is to ensure optimal efficiency distribution between the first motor and the second motor, so that the overall efficiency of the motor assembly 20 is optimal.
  • the ratio of the efficiency range of the motor component 20 to be greater than or equal to 70% in the total efficiency range of the motor component 20 is greater than or equal to 0.5.
  • the total efficiency of the motor assembly 20 is greater than or equal to the efficiency of the first motor 21 or the second motor 22 .
  • the load distribution coefficient of the motor assembly 20 is obtained by looking up the table.
  • the efficiency range of the first motor 21, and/or the efficiency range of the second motor 22, and/or the efficiency range of the motor assembly 20 are obtained through a table lookup method.
  • the power tool uses a mechanical structure to switch the operating mode of the motor assembly 20 .
  • the electric tool may further include a mode switch for user operation, and the mode switch is connected to the control mechanism to switch the motor assembly 20 to the first working state or the second working state.
  • the user can independently operate the mode switch, so that the user can independently control the motor assembly 20 to be in the first working state or the second working state.
  • the controller 17 can further identify the working status of the motor assembly 20 according to the signal sent by the mode switch.
  • the user can independently control the working state of the motor assembly 20 through the operation mode switching switch, so that the working state can be switched according to the different needs of the user, which improves the versatility of the electric tool.
  • the connecting piece of the power tool switches the motor assembly 20 to the first working state or the second working state through a mechanical structure.
  • the connecting member is a one-way transmission structure, in which at least one of the first motor 21 or the second motor 22 and the one-way transmission structure achieve rotational speed balance or torque balance. That is to say, for example, the one-way transmission structure operates synchronously with the second motor 22, and the one-way transmission structure is directly connected to the second motor 22 to provide a speed balance member. When the speed of the second motor 22 exceeds the balance speed, the one-way transmission structure is released. The first motor 21 is restricted so that the first motor 21 and the second motor 22 rotate together. It is understandable that the equilibrium state can also be achieved through torsion or centrifugal force, and the above does not affect the substantive content of the present application.
  • the power tool includes both a mechanical mechanism and an electronic control mechanism for switching the working state of the motor assembly 20 .
  • the controller 17 cannot control the working state of the motor assembly 20.
  • the user can select a suitable working state through the mode switch, that is, select the first motor 21 to start, the second motor 22 to start, or the first motor 21 to start.
  • the motor and the second motor are started at the same time, and when the electric tool is started, the controller 17 is powered on to control the working state of the electric tool.
  • motor efficiency refers to the ratio of output power (mechanical) to input power (electrical) The ratio of the output power (mechanical) to the speed (torque) required.
  • the input power (electrical) is calculated using the voltage and current supplied to the motor.
  • the first motor 21 is a low output torque motor.
  • the parameters of the low output torque motor are as follows: the outer diameter of the motor is ⁇ 105mm, the motor stack length is 15mm, the outer rotor motor, the wire diameter of the stator winding of the motor is ⁇ 0.5mm, 6 wires are wound in parallel, the number of turns is 18T, and the maximum output torque is 12N ⁇ m.
  • the "motor outer diameter” is the outer diameter of the entire motor.
  • the “motor stack length” is the length of the stator core.
  • the motor efficiency gradually increases.
  • the motor efficiency reaches 70% and above.
  • the second torque value in this embodiment, the second torque value is 0.5N ⁇ m
  • the motor efficiency reaches 75% and above.
  • the output torque is in the first maximum efficiency range (in this embodiment, it is greater than or equal to 1.86 N ⁇ m and less than or equal to 2.92 N ⁇ m)
  • the motor efficiency is maintained at the highest level.
  • the output torque exceeds the extreme value of the first maximum efficiency zone (in this embodiment, 2.92N ⁇ m)
  • the motor efficiency begins to decrease.
  • the motor efficiency is less than 75%.
  • the motor efficiency is less than 70%.
  • the output torque range in which the motor efficiency is greater than 50% is greater than or equal to 0.2 N ⁇ m and less than or equal to 9.3 N ⁇ m.
  • the first output torque range in which the motor efficiency is greater than 70% is greater than or equal to the first torque value (0.37N ⁇ m) and less than or equal to the fourth torque value (7.7N ⁇ m).
  • the output torque range in which the motor efficiency is greater than 75% is greater than or equal to the second torque value (0.5N ⁇ m) and less than or equal to the third torque value (6.9N ⁇ m).
  • the second motor 22 is a high output torque motor.
  • the parameters of the high output torque motor are as follows.
  • the outer diameter of the motor is ⁇ 105mm
  • the stack length of the motor is an external rotor motor of 40mm
  • the wire diameter of the stator winding of the motor is ⁇ 0.
  • 63mm, 9 parallel windings, the number of turns is 7T
  • the maximum output torque is 33N ⁇ m.
  • the motor efficiency reaches 70% and above.
  • the sixth torque value in this embodiment, the sixth torque value is 1.1 N ⁇ m
  • the motor efficiency reaches 75% and above.
  • the output torque is in the second maximum efficiency range (in this embodiment, it is greater than or equal to 4.17 and less than or equal to 11.0 N ⁇ m)
  • the motor efficiency is maintained at the highest level.
  • the output torque reaches the extreme value of the second maximum efficiency interval (in this embodiment, 11.0 N ⁇ m)
  • the motor efficiency begins to decrease.
  • the seventh torque value in this embodiment, the seventh torque value is 19.2N ⁇ m
  • the motor efficiency is less than 75%.
  • the motor efficiency is less than 70%.
  • the output torque range in which the motor efficiency is greater than 50% is greater than or equal to 0.5 N ⁇ m and less than or equal to 25.8 N ⁇ m.
  • the second output torque range in which the motor efficiency is greater than 70% is equal to or greater than the fifth torque value (0.99N ⁇ m) and equal to or less than the eighth torque value (21N ⁇ m).
  • the output torque range in which the motor efficiency is greater than 75% is greater than or equal to the sixth torque value (1.1N ⁇ m) and less than or equal to the seventh torque value (19.2N ⁇ m).
  • FIGS. 14-15 graphs of motor efficiency and motor output torque of the motor assembly 20 are shown.
  • the motor assembly 20 that is, the combination of the first motor 21 and the second motor 22 is used
  • the motor efficiency reaches 70 % and above.
  • the output torque reaches the second torque value (in this embodiment, the second torque value is 0.5N ⁇ m)
  • the motor efficiency reaches 75% and above.
  • the motor efficiency When the output torque is in the third maximum efficiency range (in this embodiment, it is greater than or equal to 1.86N ⁇ m and less than or equal to 11.0N ⁇ m), the motor efficiency remains at the highest; when the output torque exceeds the extreme of the second maximum efficiency range value (in this embodiment, 11.0 N ⁇ m), the motor efficiency begins to decrease.
  • the output torque is greater than the seventh torque value (in this embodiment, the seventh torque value is 19.2N ⁇ m)
  • the motor efficiency When the output torque exceeds the eighth torque value (in this embodiment, the eighth torque value is 21 N ⁇ m), the motor efficiency is still greater than 70%.
  • the output torque range in which the motor efficiency is greater than 50% is greater than or equal to 0.2 N ⁇ m and less than or equal to 25.8 N ⁇ m.
  • the operating efficiency of the motor component is greater than or equal to 70%.
  • the motor component when the working efficiency of the motor component is greater than or equal to 70%, the motor component is in the third output torque interval, and the third output torque interval at least covers the first output torque interval and the second output torque interval. .
  • the right extreme value of the third output torque interval is greater than the eighth torque value.
  • a first motor and a second motor so that the efficiency of the motor assembly is greater than or equal to 70% and the torque range is greater than that of the first motor working alone or the second motor working alone, thereby expanding the high-efficiency output range of the power tool, thereby achieving the response It can work efficiently under various working conditions.
  • the motor efficiency of the motor assembly is greater than 75%.
  • the maximum output torque of the first motor 21 and the second motor 22 is greater than or equal to the sum of the maximum output torque of the first motor and the maximum output torque of the second motor.
  • the limit value of the efficiency of the motor assembly 20 constitutes the total efficiency interval, and the efficiency value of the motor assembly 20 that is greater than or equal to 70% constitutes the first efficiency interval, where the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.5. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.6. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.7. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.8. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.9.
  • the efficiency value of the motor assembly 20 that is greater than or equal to 50% constitutes the second efficiency interval, and the ratio between the first efficiency interval and the second efficiency interval is greater than or equal to 0.4. In other embodiments, the ratio of the first efficiency interval to the second efficiency interval is greater than or equal to 0.5. In other embodiments, the ratio of the first efficiency interval to the second efficiency interval is greater than or equal to 0.6. In other embodiments, the ratio of the first efficiency interval to the second efficiency interval is greater than or equal to 0.7. The proportion of high-efficiency range of motor components increases.
  • this embodiment discloses an electric tool, in which parts that are identical or corresponding to those in Embodiment 1 are given corresponding reference signs or names as in Embodiment 1.
  • the second embodiment and the first embodiment will be described.
  • the difference between the electric tool of this embodiment and the first embodiment is the motor structure.
  • the power tool includes a motor 30 .
  • the motor 30 includes a rotor assembly 31 and a stator assembly 33 .
  • the rotor is sleeved outside the stator.
  • the stator is sleeved outside the rotor.
  • the motor 30 is an inner-rotor motor.
  • Rotor assembly 31 includes at least one rotor body. As shown in Figure 18a, the rotor assembly includes a first rotor 311 and a second rotor 312. The first rotor 311 and the second rotor 312 are respectively provided at both ends of the rotor shaft 32.
  • the rotor shaft 32 forms or connects the first rotor 311 or the second rotor 312 .
  • the structural forms of the first rotor 311 and the second rotor 312 are basically the same.
  • the first rotor 311 includes a rotor core 3111.
  • the rotor core 3111 is provided with permanent magnets 3112.
  • the permanent magnets 3112 are arranged at intervals along the circumferential direction of the rotor core 3111.
  • the permanent magnets 3112 is used to generate a magnetic field.
  • a rotor shaft 32 is formed on or connected to the first rotor 311 for outputting power.
  • the rotor shaft 32 rotates with the first axis 301 as an axis.
  • the dimensional characteristics of the first rotor 311 and the second rotor 312 may be the same or different.
  • the number of permanent magnets of the first rotor 311 and the second rotor 312 may be different.
  • the rotor core diameter of the rotor 312 is different. The specific dimensions and values can be set according to the actual situation, and are not specifically limited here.
  • the stator assembly 33 includes a first stator 331 and a second stator 332.
  • the first stator 331 and the second stator 332 have substantially the same structure.
  • the stator includes a stator core 3311 and a coil winding 3312 disposed on the stator core 3311, and the coil winding 3312 is a winding of a conductive metal, such as a copper winding.
  • the first stator 331 and the second stator 332 respectively include three-phase stator windings U, V, and W that are electronically commutated.
  • the three-phase stator windings U, V, and W are connected in a star configuration, and in other embodiments, the three-phase stator windings U, V, and W are connected in a delta configuration.
  • other types of stator windings are also within the scope of the present application.
  • the stator winding may include less than or more than three phases.
  • the power tool also includes a controller 37 and a drive circuit.
  • the controller 37 is used to control the motor 30, that is, to control the energization state of the first stator and the second stator.
  • the driving circuit is electrically connected to the stator windings U, V, and W, and is used to transfer the current from the battery pack 61 to the U, V, and W of the stator winding 3312 to drive the motor to rotate.
  • the drive circuit includes multiple switching elements Q1, Q2, Q3, Q4, Q5, Q6.
  • the gate terminal of each switching element is electrically connected to the controller 37 for receiving control signals from the controller 37 .
  • the drain or source of each switching element is connected to the stator windings U, V, and W.
  • the switching elements Q1 - Q6 receive control signals from the controller 37 to change their respective conduction states, thereby changing the current loaded on the stator windings U, V, and W by the battery pack 61.
  • the driver circuit may be a three-phase bridge driver circuit including six controllable semiconductor power devices (eg, FETs, BJTs, IGBTs, etc.). In some embodiments, the driver circuit may also include more than six controllable semiconductor power devices.
  • the above-mentioned switching element can also be any other type of solid-state switch, such as an insulated gate bipolar transistor (IGBT), a bipolar junction transistor (Bipolar Junction Transistor, BJT), etc.
  • IGBT insulated gate bipolar transistor
  • BJT bipolar junction transistor
  • the controller 37 is set on a control circuit board, which includes: a printed circuit board (Printed Circuit Board, PCB) and a flexible printed circuit board (FPC).
  • the controller 37 adopts a dedicated control chip, such as a single-chip microcomputer or a microcontroller unit (MCU). It should be noted that the control chip can be integrated into the controller 37 , or can be provided independently of the controller 37 . As for the structural relationship between the driver chip and the controller 37 , this embodiment is not limited.
  • the controller 37 specifically controls the on or off state of the switching elements in the drive circuit through the control chip. In some embodiments, controller 37 controls the ratio between the on-time and off-time of the drive switch based on a pulse width modulated (PWM) signal.
  • the driving circuit includes a first driving circuit 371a and a second driving circuit 371b.
  • the first drive circuit 371a is connected to the first stator 331, and the second drive circuit 371b is connected to the second stator 332.
  • the controller 37 simultaneously controls the first driving circuit 371a and the second driving circuit 371b according to settings.
  • the controller 37 includes a first controller 37a and a second controller 37b, respectively connected to the first driving circuit 371a and the second driving circuit 371b.
  • the controller 37 is configured to optimize efficiency according to the load of the output mechanism.
  • the energization status of the first stator 331 and the second stator 332 is determined. This allows the motor to allocate appropriate input power and output appropriate output torque regardless of the load condition of the electric tool. It can improve work efficiency in all working conditions.
  • At least one of the structural parameters of the first stator 331 and the second stator 332 is different, such as at least one of stator core outer diameter, stator core inner diameter, stator magnetic pole thickness, and coil winding parameters. Therefore, when the first stator 331 and the second stator 332 are energized separately, the output load range of the motor 30 is different. For example, when the first stator 331 is powered on and the second stator 332 is powered off, the motor 30 is in the first working state, corresponding to the light load state. When the first stator 331 is powered off and the second stator 332 is powered on, the motor 30 is in the second working state, corresponding to the medium load state. When the first stator 331 and the second stator 332 are energized, the motor 30 is in the third working state, corresponding to the high load state.
  • the limit value of motor efficiency in all working states of the motor 30 constitutes the total efficiency interval, and the efficiency value of the motor 30 that is greater than or equal to 70% constitutes the first efficiency interval, wherein the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.5. . In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.6. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.7. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.8. In other embodiments, the ratio of the first efficiency interval to the total efficiency interval is greater than or equal to 0.9.
  • a motor including a first stator and a second stator is provided, and different working states are set by the first stator and the second stator being in different power-on and power-off states, so that the efficiency of the motor is greater than or equal to 70%.
  • the proportion of the range in the total efficiency range is greater than or equal to 0.5, which expands the high-efficiency output range of the power tool, thereby enabling high-efficiency work in various working conditions.
  • the torque range in which the efficiency of the motor component is greater than or equal to 70% means that the high-efficiency range of the motor component is long and the high-efficiency range accounts for a large proportion.
  • the limit value of the motor efficiency of the motor 30 in all working states constitutes the total efficiency interval
  • the efficiency value of the motor 30 greater than or equal to 75% constitutes the third efficiency interval, where the third efficiency interval is the same as the total efficiency.
  • the ratio of the intervals is greater than or equal to 0.5. In other embodiments, the ratio of the third efficiency interval to the total efficiency interval is greater than or equal to 0.6. In other embodiments, the ratio of the third efficiency interval to the total efficiency interval is greater than or equal to 0.7. In other embodiments, the ratio of the third efficiency interval to the total efficiency interval is greater than or equal to 0.8. In other embodiments, the ratio of the third efficiency interval to the total efficiency interval is greater than or equal to 0.9.
  • first stator 331 and the second stator 332 are arranged one behind the other in the axial direction.
  • the first stator 331 and the second stator 332 do not overlap in the axial direction.
  • the stator assembly 33 and the rotor assembly 31 are arranged with the first axis 301 as the central axis. That is to say, the stator assembly 33 and the rotor assembly 31 are arranged coaxially.
  • the first stator 331 and the second stator 332 are coaxially arranged.
  • the first stator 331 and the second stator 332 are coaxially nested, that is, the first stator 331 and the second stator 332 are respectively the inner stator and the outer stator.
  • the first stator 331 is composed of a first stator 331 core and a first stator 331 winding.
  • the second stator 332 is composed of a second stator 332 core and a second stator 332 winding.
  • the first stator 331 and the second stator 332 are The number of grooves is the same, and the grooves of the two correspond to the centers of the grooves, and the teeth correspond to the centers of the teeth.
  • the driving circuit is electrically connected to the first stator 331 winding and the second stator 332 winding. By controlling the power on and off of the windings of the first stator 331 and the second stator 332, the power on and off of the first stator 331 and the second stator 332 are further controlled.
  • the rotor assembly 31 is a one-piece structure.
  • each set of windings has a commonly used three-phase structure
  • the two sets of windings have multiple connection modes, such as three commonly used connection modes, namely series connection, parallel connection and independent control.
  • three commonly used connection modes namely series connection, parallel connection and independent control.
  • the motor 30 needs to work at low speed and high torque, that is, under heavy load, it needs to be wired in series.
  • the motor 30 needs to work at high speed and light load, it needs to be connected in parallel to reduce the internal back electromotive force and achieve speed expansion.
  • the six-phase windings can be controlled independently to increase the phase redundancy.
  • a switch can be used to switch between each working mode to achieve runtime transition.
  • this embodiment discloses an electric tool, in which parts that are identical or corresponding to those in Embodiment 1 are given corresponding reference signs or names as those in Embodiment 1. For the sake of simplicity, only the differences between Embodiment 3 and Embodiment 1 will be described. The difference between the electric tool of this embodiment and the first embodiment is the motor structure.
  • the motor 40 includes a rotor 41 and a stator 42 .
  • the rotor 41 rotates with the first axis 401 as a rotation axis.
  • the stator 42 includes a yoke portion 421 , a tooth portion 422 , a first winding 423 and a second winding 424 .
  • the tooth portion 422 is formed or connected to the ring yoke portion 421 .
  • the tooth portion 422 protrudes toward the inside or outside of the yoke portion 421 .
  • a plurality of tooth portions 422 are provided.
  • the first winding 423 is wound around the plurality of teeth 422 for generating a first magnetic field.
  • the second winding 424 is wound around the plurality of teeth 422 for generating a second magnetic field.
  • the battery pack 61 supplies power to the first winding 423 and the second winding 424; wherein the first winding 423 and the second winding 424 are arranged along the radial direction of the first axis 401.
  • a motor is provided including a first winding and a second winding, using the same power supply to power the first winding and the second winding, the first winding and the second winding being radially arranged so that the teeth of each stator include the same winding pattern.
  • the motor structure has good versatility and reduces manufacturing costs. There is no additional limit on the number of motor teeth.
  • the battery pack 61 supplies power to the first winding 423 and the second winding 424, and the nominal voltage of the electric tool is greater than or equal to 18V.
  • the battery pack 61 cooperates with the corresponding power circuit to supply power to the first winding 423 and the second winding 424.
  • the power tool has a nominal voltage of greater than or equal to 36V and less than or equal to 56V. In some embodiments , the nominal voltage of the power tool is greater than 56V and less than or equal to 120V.
  • Power tools also include: controller and drive circuit.
  • the controller is used to control the motor, that is, to control the energized state of the first winding 423 and the second winding 424.
  • the driving circuit is electrically connected to the first winding 423 and the second winding 424.
  • the driving circuit is electrically connected to the first windings U, V, and W, and is used to transfer the current from the battery pack 61 to the first windings U, V, and W to drive the motor to rotate.
  • the driving circuit is electrically connected to the second windings U, V, and W, and is used to transfer the current from the battery pack 61 to the second windings U, V, and W to drive the motor to rotate.
  • the drive circuit includes multiple switching elements Q1, Q2, Q3, Q4, Q5, Q6.
  • each switching element is electrically connected to the controller for receiving control signals from the controller.
  • the drain or source of each switching element is connected to the windings U, V, W.
  • the switching elements Q1-Q6 receive control signals from the controller to change their respective conduction states, thereby changing the current loaded on the windings U, V, and W of the battery pack 61.
  • the driver circuit may be a three-phase bridge driver circuit including six controllable semiconductor power devices (eg, FETs, BJTs, IGBTs, etc.). In some embodiments, the driver circuit includes more than six controllable semiconductor power devices.
  • the switching element may also be any other type of solid-state switch, such as an insulated gate bipolar transistor (IGBT), a bipolar junction transistor (BJT), etc.
  • the controller is configured to determine the energization state of the first winding and the second winding according to the load of the output mechanism based on the principle of efficiency optimization. This allows the motor to allocate appropriate input power and output appropriate output torque regardless of the load condition of the electric tool. It can improve work efficiency in all working conditions.
  • At least one of the structural parameters of the first winding and the second winding is different, such as at least one of winding diameter, number of winding turns, number of parallel windings, winding cross-sectional shape, and winding slot fullness ratio. Therefore, when the first winding 423 and the second winding 424 are energized separately, the output load range of the motor is different. For example, when the first winding 423 is powered on and the second winding 424 is powered off, the motor 40 is in the first working state, corresponding to the light load state. When the first winding 423 is powered off and the second winding 424 is powered on, the motor 40 is in the second working state, corresponding to the medium load state.
  • the motor 40 When the first winding 423 is energized and the second winding 424 is energized, the motor 40 is in the third working state, corresponding to the high load state.
  • the radially arranged first winding and the second winding can achieve different motor output load states by controlling different energization states, so that the motor is suitable for more working conditions.
  • the motor 40 also includes a detection circuit for detecting whether the first winding 423 and the second winding 424 are powered on or off.
  • the motor 40 is a brushless DC inner rotor motor 40.
  • the motor 40 may also be an outer rotor motor 40.
  • the rotor 41 is arranged to rotate about a first axis 401 .
  • the rotor 41 is provided with permanent magnets 411 for generating a magnetic field.
  • the permanent magnet slots are arranged at intervals along the circumferential direction of the first axis 401 for placing the permanent magnets 411 that can generate or induce a magnetic field.
  • the rotor 41 is nested within the stator 42 and forms a radial gap with the stator 42 .
  • the first winding 423 is used to generate a first magnetic field under the action of a power source
  • the second winding 424 is used to generate a second magnetic field that overlaps with the first magnetic field under the action of a power source.
  • the first winding 423 and the second winding 424 are arranged along the radial direction of the first axis 401 .
  • first winding 423 and the second winding 424 are sequentially arranged on the same tooth portion 422 along the radial direction of the first axis 401.
  • the first winding 423 and the second winding 424 are An insulating layer is placed between them to isolate the mutual interference of the two magnetic fields.
  • the same tooth portion 422 here includes the same multiple tooth portions 422 and the same single tooth portion 422 .
  • first windings 423 are connected in series or parallel to form three voltage access terminals for accessing the battery pack 61 .
  • second windings 424 are connected to each other in series or parallel to form another three voltage access terminals for accessing the energy storage device.
  • the number of turns of the first winding 423 and the number of turns of the second winding 424 are different. In some embodiments, the wire diameter of the first winding 423 and the second winding 424 are different. In some embodiments, the number of turns and wire diameters of the first winding 423 and the second winding 424 are different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Portable Power Tools In General (AREA)

Abstract

一种电动工具,包括:电机组件(20),至少部分设置于壳体(11),电机组件(20)包括:第一电机(21)、第二电机(22)和连接器(23),电机组件(20)的效率的极限值构成总效率区间,电机组件的效率值大于等于70%的部分构成第一效率区间,其中,第一效率区间与总效率区间的比值大于等于0.5。

Description

电动工具
本申请要求申请日为2022年9月21日、申请号为202211146803.9、申请日为2023年7月14日、申请号为202310871018.8、申请日为2023年7月14日、申请号为202321854207.6、申请日为2023年7月14日、申请号为202321870645.1及申请日为2023年7月14日、申请号为202310868955.8的中国专利申请的优先权,上述申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种电动工具。
背景技术
相关技术中的电动工具在进行工作时,输出机构通常在轻载工况和重载工况下能工作。为了使得电动工具能够输出较大的扭矩以适应重载工况,通常会使得电动工具中设置一个功率、输出扭矩很大的电机,大功率的电机能够驱动输出机构带动较大的负载。但是当电动工具处于轻载工况时,大功率电机的功耗会比较大,造成严重的浪费。使得轻载时,电机的工作状态降低,影响电动工具使用时间。
本部分提供了与本申请相关的背景信息,这些背景信息不一定是现有技术。
发明内容
本申请的一个目的是解决或至少减轻上述问题的一部分或者全部。为此,本申请提供了一种电动工具,能够同时满足轻负载工况、高负载工况的高效率要求。
第一方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机组件,至少部分设置于壳体,电机组件包括:第一电机,用于输出第一扭矩和第一转速;第二电机,用于输出第二扭矩和第二转速;连接器,选择性的允许第一电机和第二电机间的动力传递;以使电机组件在多个工作状态之间切换;输出机构至少连接第一电机、第二电机和连接器中的一个;电机组件的效率的极限值构成总效率区间,电机组件的效率值大于等于70%的部分构成第一效率区间,其中,第一效率区间与总效率区 间的比值大于等于0.5。
在一些实施例中,电机组件的效率值大于等于50%的部分构成第二效率区间,第一效率区间与第二效率区间的比值大于等于0.4。
在一些实施例中,连接器包括单向传动组件,单向传动组件连接输出机构、第一电机、第二电机中的两个,单向传动组件允许第一电机和/或第二电机驱动输出机构,单向传动组件限制输出机构驱动第一电机以及第二电机。
在一些实施例中,连接器包括离合组件,包括形成或连接第一电机或第二电机中一个的主动件,和形成或连接另一个的从动件,主动件和从动件可选择连接。
在一些实施例中,连接器包括离合组件,离合组件包括连接第一电机或第二电机中一个的第一离合器,和连接另一个的第二离合器,第一离合器和第二离合器可选择的连接。
在一些实施例中,连接器包括差速组件,差速组件允许第一电机和第二电机以不同转速同时输出动力给输出机构。
在一些实施例中,还包括传动组件,用于连接电机组件和输出机构。
在一些实施例中,还包括控制器,被配置为根据第一设定参数控制第一电机与第二电机的输出扭矩的比值。
在一些实施例中,还包括检测机构,用于检测第一设定参数,第一设定参数包括输出机构的负载参数。
第二方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机组件,至少部分设置于壳体,电机组件包括:第一电机,用于输出第一扭矩和第一转速;第二电机,用于输出第二扭矩和第二转速;连接器,选择性的允许第一电机和第二电机间的动力传递;输出机构至少连接第一电机、第二电机和连接器中的至少一个;当第一电机的输出扭矩大于等于第一扭矩值且小于等于第四扭矩值时,第一电机的工作效率大于等于70%;当第二电机的输出扭矩大于等于第五扭矩值且小于等于第八扭矩值时,第二电机的工作效率大于等于70%;第一扭矩值小于第五扭矩值,第四扭矩值小于第八扭矩值;其中,电机组件的输出扭矩为大于等于第一扭矩值且小于等于第八扭矩值时,电机组件的工作效率大于等于70%。
在一些实施例中,第一电机的输出扭矩为大于等于第二扭矩值且小于等于第三扭矩值时,第一电机的工作效率大于等于75%;第二电机的输出扭矩为大于 等于第六扭矩值且小于等于第七扭矩值时,第一电机的工作效率大于等于75%;第二扭矩值小于第六扭矩值,第三扭矩值小于第七扭矩值;电机组件的输出扭矩为大于等于第二扭矩值且小于等于第七扭矩值时,电机组件的工作效率大于等于75%。
第三方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机组件,至少部分设置于壳体,电机组件包括:第一电机,用于输出第一扭矩和第一转速;第二电机,用于输出第二扭矩和第二转速;连接器,选择性的允许第一电机和第二电机间的动力传递;输出机构至少连接第一电机、第二电机和连接器中的至少一个;当第一电机的工作效率大于等于70%时,第一电机的输出扭矩在第一输出扭矩区间内;当第二电机的工作效率大于等于70%时,第二电机的输出扭矩在第二输出扭矩区间内;当电机组件的工作效率大于等于70%时,电机组件的输出扭矩在第三输出扭矩区间内,第三输出扭矩区间至少覆盖第一输出扭矩区间与第二输出扭矩区间。
第四方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电源安装部,用于安装直流电源,电机组件,至少部分设置于壳体,电机组件包括:第一电机,第一电机输出第一扭矩和第一转速;第一电机驱动输出机构;第二电机,第二电机输出第二扭矩和第二转速;第二电机驱动输出机构;直流电源为第一电机和第二电机供电;电动工具的标称电压大于等于18V。
在一些实施例中,第一电机和第二电机为无刷电机。
在一些实施例中,直流电源包括电池包。
在一些实施例中,电池包为多种电动工具供电。
在一些实施例中,电动工具的标称电压大于等于18V小于等于56V。
在一些实施例中,电动工具的标称电压大于56V小于等于120V。
在一些实施例中,电源安装部至少部分设置于壳体。
第五方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;输出机构至少部分设置于壳体;电源安装部,用于安装直流电源,电机组件,用于驱动输出机构,电机组件包括:第一电机,第一电机输出第一扭矩和第一转速;第二电机,第二电机输出第二扭矩和第二转速;第一电机和第二电机被配置为至少具有一种不相同的结构参数。
在一些实施例中,第一电机与第二电机的外径不同。
在一些实施例中,第一电机外径的直径与第二电机外径的直径的比值大于等于0.4。
在一些实施例中,第一电机与第二电机的叠长不同。
在一些实施例中,第一电机的叠长与第二电机的叠长的比值大于等于0.3。
在一些实施例中,结构参数包括:定子铁芯外径、定子铁芯内径、转子铁芯外径、转子铁芯内径、转子磁极厚度、定子磁极厚度、气隙长度、铁芯长度、定子极对数、定子磁极对应弧度、转子极对数和转子磁极对应弧度。
第六方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机组件,至少部分设置于壳体,电机组件包括:第一电机,用于输出第一扭矩和第一转速;第二电机,用于输出第二扭矩和第二转速;连接器,选择性的允许第一电机和第二电机间的动力传递;输出机构至少连接第一电机、第二电机和连接器中的至少一个供电电源,用于为第一电机和第二电机供电;控制器,用于控制电机组件;控制器被配置为:根据输出机构的负载参数和电机组件的负载分配系数确定第一电机的输出参数值与第二电机的输出参数值中的至少一个,或第一电机输出参数与第二电机输出参数的比值。
在一些实施例中,还包括检测组件,用于检测输出机构的负载参数。
在一些实施例中,根据输出机构的负载参数确定电机组件的需求参数,需求参数包括:需求扭矩、需求转速、需求功率中的至少一种。
在一些实施例中,输出参数包括输出扭矩、输出转速、输出功率中的至少一种。
在一些实施例中,负载分配系数使得在相同输出机构负载时,电机组件的总效率大于等于第一电机或第二电机的效率。
在一些实施例中,负载分配系数使得电机组件的效率大于等于70%区间在电机组件总效率区间的占比大于等于0.5。
在一些实施例中,控制器被配置为第一电机和第二电机同时启动时,第一电机和第二电机中的一个通过第一参数组控制,第一电机和第二电机中的另一个通过第二参数组控制,第一参数组的参数与第二参数组的参数至少一个不同。
在一些实施例中,控制器被配置为当确定第一电机和第二电机同时启动,电机组件的需求参数小于第二预设值时,切换电机组件为第一电机或第二电机启动。
在一些实施例中,控制器被配置当确定电机组件中第一电机或第二电机启动时,电机组件的需求参数大于第一预设值时,切换电机组件为第一电机和第二电机同时启动。
第七方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机组件,至少部分设置于壳体,电机组件包括:第一电机,用于输出第一扭矩和第一转速;第二电机,用于输出第二扭矩和第二转速;连接器,选择性的允许第一电机和第二电机间的动力传递;输出机构至少连接第一电机、第二电机和连接器中的至少一个;供电电源,用于为第一电机和第二电机供电;控制器,用于控制电机组件;控制器被配置为:根据输出机构的负载参数,配置第一电机的输出参数与第二电机的输出参数,以使电机组件的效率大于等于70%区间在电机组件总效率区间的占比大于等于0.5。
第八方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;
电机,至少部分设置于壳体中;电机包括:转子组件,形成或连接有以第一轴线为轴旋转的转子轴;定子组件,与转子组件同轴设置;定子组件包括第一定子和第二定子;控制器,与第一定子和第二定子电连接;控制器用于控制电机;控制器被配置为:当第一定子通电且第二定子断电时,电机处于第一工作状态;当第一定子断电且第二定子通电时,电机处于第二工作状态;当第一定子通电且第二定子通电时,电机处于第三工作状态;其中,电机在所有工作状态中的效率的极限值构成总效率区间,电机的效率值大于等于70%的效率值构成第一效率区间,第一效率区间与总效率区间的比值大于等于0.5。
在一些实施例中,定子组件以第一轴线为中心轴设置。
在一些实施例中,第一定子和第二定子同轴套设。
在一些实施例中,第一定子和第二定子同轴且沿第一轴线方向排布设置。
在一些实施例中,第一定子与第二定子在第一轴线方向上相离设置。
在一些实施例中,电机处于第三工作状态时,电机的输出扭矩大于电机在第一工作状态时输出扭矩,电机处于第三工作状态时,电机的输出扭矩大于电机在第二工作状态时的输出扭矩。
在一些实施例中,转子组件包括第一转子和第二转子,第一转子配合第一定子,第二转子配合第二定子,第二转子形成或连接于第一转子。
一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电机,至少部分设置于壳体中;电机包括:转子组件;定子组件,定子组件包括第一定子和第二定子;其中,第一定子和第二定子沿轴向排布设置。
在一些实施例中,转子组件形成或连接有以第一轴线为轴旋转的转子轴;定子组件和转子组件分别以第一轴线为中心轴设置。
在一些实施例中,电机还包括:控制器,与第一定子和第二定子电连接,控制器用于控制电机,控制器被配置为:当第一定子通电且第二定子断电时,电机处于第一工作状态;当第一定子断电且第二定子通电时,电机处于第二工作状态;当第一定子通电且第二定子通电时,电机处于第三工作状态。
第九方面,本申请一实施例提供了一种电动工具,包括:壳体;输出机构,用于驱动实现设定功能的功能元件;电源安装部,至少部分设置于壳体,电源安装部用于安装直流电源;电机,至少部分设置于壳体中;电机包括:转子,以第一轴线为转轴旋转;定子,包括:环轭部和多个形成或连接于环轭部的齿部;第一绕组,缠绕在多个齿部上,用于产生第一磁场;第二绕组,缠绕在多个齿部上,用于产生第二磁场;供电电源可选择的为第一绕组和第二绕组供电;其中,第一绕组和第二绕组沿第一轴线的径向设置。
在一些实施例中,直流电源包括至少一个电池包。
在一些实施例中,电动工具的标称电压大于等于18V。
在一些实施例中,电动工具的标称电压大于等于36V小于等于56V。
在一些实施例中,电动工具的标称电压大于56V小于等于120V。
在一些实施例中,电机还包括:控制器,控制器与第一绕组和第二绕组电连接,并控制第一绕组和第二绕组通电状态,控制器被配置为:当第一绕组通电,第二绕组断电时,电机处于第一工作状态;当第一绕组断电,第二绕组通电时,电机处于第二工作状态;当第一绕组通电,第二绕组通电时,电机处于第三工作状态。
在一些实施例中,电机还包括检测组件,用于检测第一绕组和第二绕组通电与断电的状态。
在一些实施例中,第一绕组的匝数和第二绕组的匝数不相同。
在一些实施例中,第一绕组的线径和第二绕组的线径不相同。
在一些实施例中,齿部向环轭部内侧凸出设置。
附图说明
图1是本申请中的一实施例的结构图;
图2是本申请中电机组件可适用的电动工具的示例图;
图3是本申请实施例中第一电机为外转子电机的电机结构示意图;
图4是本申请实施例中电机组件的结构的爆炸图的示意图;
图5是本申请实施例中电机组件的剖视图;
图6是本申请实施例中电机组件设置有电机罩盖的剖视图的示意图;
图7是本申请实施例中第一电机为内转子电机的电机结构示意图;
图8是本申请实施例中另一种电机组件的结构示意图;
图9是本申请实施例中第三种电机组件的结构示意图;
图10是本申请实施例中第三种电机组件的结构剖视图的示意图;
图11是本申请实施例中第四种电机组件的结构剖视图的示意图;
图12是本申请实施例的电路原理示意图;
图13是本申请一种控制方法的流程图;
图14是本申请中的第一电机、第二电机和电机组件的电机效率和电机输出扭矩的曲线图;
图15是本申请中的电机组件的电机效率和电机输出扭矩的曲线图;
图16是本申请中的第二实施例的电机结构的示意图;
图17是本申请第二实施例中电机为内转子电机的结构截面剖视图的示意图;
图18a-18b是图16的剖视图的示意图,主要示出不同的转子组件结构;
图19是本申请实施例的电路原理示意图;
图20是本申请中的第三实施例的电机结构的示意图。
具体实施方式
在详细解释本申请的任何实施方式之前,应当理解,本申请不限于其应用到以下描述中阐述的或以上附图中所示的结构细节和组件布置。
在本申请中,术语“包括”、“包含”、“具有”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由 语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请中,术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“和/或”的关系。
本申请中,术语“连接”、“结合”、“耦合”、“安装”可以是直接连接、结合、耦合或安装,也可以是间接连接、结合、耦合或安装。其中,进行举例示范,直接连接指的是两个零件或组件之间不需设置中间件而连接在一起,间接连接指的是两个零件或组件分别与至少一个中间件连接,这两个零件或组件通过中间件实现连接。此外,“连接”和“耦合”不限于物理或机械连接或耦合,并且可以包括电连接或耦合。
在本申请中,本领域普通技术人员将理解,结合数量或条件使用的相对术语(例如,“约”,“大约”,“基本”等)为包括所述值并且具有上下文所指示的含义。例如,该相对术语至少包括与特定值的测量相关的误差程度,与特定值相关的由制造,组装,使用造成的公差等。这种术语也应被视为公开了由两个端点的绝对值限定的范围。相对术语可指代所指示的值的一定百分比(例如1%,5%,10%或更多)的加或减。未采用相对术语的数值,也应该被揭示为具有公差的特定值。此外,“基本”在表达相对的角度位置关系时(例如,基本平行,基本垂直),可指代在所指示的角度的基础上加或减一定度数(例如1度,5度,10度或更多)。
在本申请中,本领域普通技术人员将理解,由组件执行的功能可以为由一个组件,多个组件,一个零件,或多个零件执行。同样的,由零件执行的功能也可以由一个零件,一个组件,或多个零件组合来执行。
在本申请中,术语“上”、“下”、“左”、“右”、“前”、“后”等方位词是以附图所示的方位和位置关系来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。还应当理解的,上侧、下侧、左侧、右侧、前侧、后侧等方位词不仅代表正方位,也可以理解为侧方位。例如,下方可以包括正下方、左下方、右下方、前下方 以及后下方等。
在本申请中,术语“控制器”、“处理器”、“中央处理器”、“CPU”、“MCU”可以互换。在使用单元“控制器”、“处理器”、“中央处理器”、“CPU”、或“MCU”来执行特定功能,除非另有说明,否则这些功能则可以由单个上述单元或多个上述单元来执行。
在本申请中,术语“装置”、“模块”或“单元”为了实现特定的功能,它们可以通过硬件或软件的形式来实现。
在本申请中,术语“计算”、“判断”、“控制”、“确定”、“识别”等指的是计算机系统或类似电子计算设备(例如,控制器,处理器等)的操作和过程。
为了清楚的说明本申请的技术方案,在说明书附图中定义上侧、下侧。
如图1示出了本申请的一个实施例的电动工具。其中,电动工具包括电机组件20。在本实施例中,该电动工具为一种斜锯100。如图2所示,在一些实施例中,该电动工具还可以为园林工具,例如打草机100d、吹风机110c、后走式电动工具例如割草机100e、链锯、清洗机等。或者,电动工具还可以为装潢工具,例如螺丝批/钻/扳手类100h、电锤、钉枪、砂光机等。或者,电动工具还可以为锯类工具,例如往复锯100b、曲线锯、圆锯等。或者,电动工具还可以为其他台型工具,例如台锯、金属切割机、电木铣等。或者,电动工具还可以为打磨类工具,例如角磨、砂光机等。或者,电动工具还可以为其它电动工具,例如风扇100f等。或者非上路行驶的行走设备100a,例如多用途车,还可以为沙滩车、农夫车(Utility Terrain Vehicle,UTV)、高尔夫车、全地形车(All Terrain Vehicle,ATV),还可以为农用机械车辆,例如收割机、喷药车等。对于行走设备而言,还可为清洗机。还可以为使用电机、电机组件驱动行走并实施作业功能的智能行走电动工具,例如智能割草机等。
只要具有电机驱动的电动工具就可以采用本实施例所公开的技术方案,采用本实施例所公开的技术方案的动力设备属于本申请所保护的范围。例如,还电动工具还可以是动力头,该动力头包括电机组件。动力头用于适配一些输出组件以实现工具的功能。
如图1所示,以斜锯100为例。斜锯100包括供电电源61。其中,本实施例中,供电电源61为直流电源。直流电源用于为斜锯100提供电能。直流电源为电池包,电池包配合相应的电源电路,为斜锯100供电。本领域技术人员应当理解,供电 电源并不限于使用直流电源的场景,还可通过市电、交流电源,配合相应的整流、滤波和调压电路,实现对机内的相应部件供电。后续描述,将用电池包61代替供电电源61,但其并不能作为对本申请的限制。
斜锯100还包括:底座12、壳体11、功能元件13和输出机构14。其中,壳体11包括主体外壳111和握持部112。在主体外壳111中至少收容有电机组件20和部分输出机构14等。主体外壳111还形成或连接有一供用户操作的握持部112。
底座12将斜锯100平稳地放置于地面或操作平面上。
如图4所示,输出机构14用于驱动功能元件13。在本实施例中,输出机构14包括输出轴141。在一些实施例中,输出机构14和电机组件20之间连接有传动组件,例如,螺丝批类、钻类、锯类等高速大扭矩输出类工具。通过传动组件将电机组件20的输出动力传递至输出机构14,输出机构14在驱动功能元件13完成对工件的加工。在一些实施例中,电机组件20直接驱动输出机构14,例如风扇、吹风机、割草类工具等,输出机构14驱动功能元件13完成对工件的加工。
功能元件13用于执行设定的功能。在本实施例中,用于执行电动工具的工作功能,例如切割加工件的锯片。在其他替换实施例中,功能元件13可以为磨片、刀片、螺丝批、风扇、泵类、行走的行走轮等。
斜锯100的整体结构与一般的斜锯结构大体相同,这里不再做详细赘述。
在本实施例中,电机组件20用于提供动力来源给出输出机构14,进而使输出机构14驱动功能元件13。在本实施例中,电机组件20包括第一电机21和第二电机22。其中,第一电机21和第二电机22分别包括定子和转子。以第一电机21为例,如图3所示,定子212包括定子铁芯2121和定子绕组2122。转子214包括转子铁芯2141和永磁体2142。转子214上形成或连接有转子轴211,用于输出动力。针对外转子电机,转子套设在定子外侧。针对内转子电机,定子套设在转子外侧。在本实施例中,第一电机21为外转子电机。第一电机21还包括定子支架213,定子支架213上设置有安装孔。定子212固定在定子支架213外。
这里的电机整体结构与一般的无刷电机结构大体相同,这里不再做详细赘述。
如图1所示,电源装置15包括电源安装部151和电池包61。电源安装部151至少部分设置在壳体11上。针对不同类型的电动工具,电源安装部151的位置不同。电源安装部151的位置并不影响本申请保护的实质性内容。
电池包61连接在电源安装部151上,或至少部分放置在电源安装部151内。 可以理解的,电源安装部151用于收容电池包61。在本实施例中,电池包61为第一电机21和第二电机22供电,电动工具的标称电压大于等于18V。电池包61配合相应的电源电路,为第一电机21和第二电机22供电。电池包61包括:插装结构311以及端子接口(图中未示出)。电源安装部151包括与电池包61电连接的结合部1511,结合部1511上设置有工具端子(图中未示出)。在不同电动工具上设置结构相同的工具端子(图中未示出)进而适配电池包61上的端子接口(图中未示出),以使得电池包61可以为多种不同的电动工具供电。而与之配合的电源电路根据不同的电动工具的控制要求进行调整。在一些实施例中,电动工具的标称电压大于等于36V小于等于56V。在一些实施例中,电动工具的标称电压大于56V小于等于120V。在一些实施例中,电池包21可为锂电池包、固态电池包或软包电池包。电池包的标称电压为18V、24V、36V、48V、56V或80V、120V。
如图4至图5所示,第一电机21用于输出第一扭矩和第一转速。第二电机22用于输出第二扭矩和第二转速。电机组件20还包括连接器23。连接器23选择性的允许第一电机21和第二电机22间的动力传递。在一些实施例中,连接器23连接第一电机21和第二电机22,连接器23通过切换第一电机21和第二电机22间的连接状态以切换第一电机21和第二电机22间的动力传递情况,以使电机组件20在多个工作状态之间切换。输出机构14连接电机组件20,即是说,输出机构14至少连接第一电机21、第二电机22和连接器23中的一个,进而实现第一电机21和第二电机22耦合而对输出机构14进行驱动。连接器23至少将第一电机和第二电机中的一个的动力传递至输出机构14,连接器23通过切换第一电机21、第二电机22和输出轴141间动力传递情况,以使电机组件20在多个工作状态之间切换。
根据输出机构14的负载情况选择由第一电机21、第二电机22或第一电机21和第二电机22来驱动输出机构14,这样使得电动工具的负载无论处于轻负载状态、中负载状态还是高负载状态时,可以分配到合适的输入功率。可以提高全工况的工作效率。电动工具的负载状态可以通过输出轴的负载状态来表征。输出轴的负载状态可以通过电机电流相关参数、电机输出扭矩相关参数来进行表征。例如,当电机实时电流为不超过额定电流的10%,或10%~15%时为轻负载状态,当电机实时电流为额定电流的50%~80%时为高负载状态。具体的数值可根据实际情况进行设置,在此不做具体的限定。
第一电机21用于输出第一扭矩和第一转速。第二电机22用于输出第二扭矩 和第二转速。其中,第一扭矩与第二扭矩不相同。第一转速和第二转速不相同。需要解释的,第一扭矩与第二扭矩不同,在一些实施例中,定义为第一电机和第二电机的输出最大扭矩不同,但第一电机与第二电机在工作的全过程中会出现一个时刻或一个时间段内的输出扭矩相同。在一些实施例中,定义为第一电机和第二电机在高效率区间时的输出扭矩范围不同,但第一电机与第二电机在工作的全过程中会出现一个时刻或一个时间段内的输出扭矩相同。第一转速和第二转速不相同,在一些实施例中,定义为第一电机和第二电机的输出最大转速不同,但第一电机与第二电机在工作的全过程中会出现一个时刻或一个时间段内的输出转速相同。在一些实施例中,定义为第一电机和第二电机在高效率区间时的输出转速范围不同,但第一电机与第二电机在工作的全过程中会出现一个时刻或一个时间段内的输出转速相同。
在一些实施例中,列举第一电机和第二电机的一种应用情况作为一种实施例,第一电机21为低输出扭矩电机。第二电机22为高输出扭矩电机。当然,也可以,第一电机21为高输出扭矩电机。第二电机22为低输出扭矩电机。或者是,第一电机21和第二电机22为同种电机,但第一电机21和第二电机22的输出转速和输出扭矩不同。在本实施例中,第一电机21和第二电机22分别为直流无刷电机。
在一实施例中,第一电机21和第二电机22还包括至少一种不相同的结构参数。结构参数包括电机的外径D和电机叠长L。这里需要解释的,“电机外径”为电机的整机外径。“电机叠长”为定子铁芯长度。
在本实施例中,第二电机22的叠长L2与第一电机21的叠长L1的比值大于等于0.3。第二电机22的叠长L2与第一电机21的叠长L1的比值大于等于0.4、0.5、0.6、0.7、0.8、0.9。在其他可替换实例中,第一电机21的叠长L1与第二电机22的叠长L2的比值大于等于0.3。在其他可替换实施例中,第一电机21的叠长L1与第二电机22的叠长L2的比值大于等于0.4、0.5、0.6、0.7、0.8、0.9。
在其他可替换实施例中,第一电机21外径的直径D1与第二电机22外径的直径D2的比值大于等于0.4。在其他可替换实施例中,第一电机21外径的直径D1与第二电机22外径的直径D2的比值大于等于0.5、0.6、0.7、0.8、0.9。
其中,第一电机21与第二电机22的结构参数包括定子铁芯外径、定子铁芯内径、转子铁芯外径、转子铁芯内径、转子磁极厚度、定子磁极厚度、气隙长度、铁芯长度、定子极对数、定子磁极对应弧度、转子极对数和转子磁极对应 弧度。第一电机21与第二电机22至少一种结构参数不同。
输出机构14包括输入端和输出端。其中,输出端连接功能元件13,输入端至少连接第一电机21、第二电机22和连接器23中的一个。在本实施例中,输出机构14包括输出轴141。其中,输出轴的输出端141b为输出机构14的输出端、输出轴的输入轴141a为输出机构14的输入端。
在本实施例中,第一电机21和第二电机22分别为外转子电机。第一电机21的第一转子轴211、第二电机22的第二转子轴221与输出轴141以第一轴线101为轴转动。第一转子轴211和第二转子轴221为中空结构,第一电机的定子212和第二电机的定子共用同一个定子支架213。在一些实施例中,第一电机的定子212和第二电机的定子分别连接有定子支架213,第一电机的定子支架与第二电机的定子支架连接。在一些实施例中,通过定子支架将第一电机的定子212和第二电机的定子同轴连接。其中,第一转子轴211、定子支架213与第二转子轴221形成第一容纳空间202。输出轴141设置在第一容纳空间202内。在本实施例中,连接器23包括单向传动组件。可选的,连接器23包括单向轴承231。单向轴承231设置在输入端141a侧。第一电机21设置在靠近输入端141a的一侧,第二电机22相对于第一电机21设置在靠近输出端141b的一侧。单向轴承231设置在第一转子轴211内。在本实施例中,第一电机21设置在第二电机22的上方。在其他可替换实施例中,第一电机21设置在第二电机22的下方。第一电机21相对于第二电机22的位置并不影响本申请保护的实质性内容。可选的,单向轴承231连接输出机构14和第一电机21或输出机构14和第二电机22。可选的,单向轴承231连接第一电机21和第二电机22。单向轴承231允许第一电机21或第二电机22或第一电机和第二电机驱动输出机构14,单向轴承231限制输出机构14驱动第一电机21或第二电机22。
单向轴承231包括:单向轴承外圈231a和单向轴承内圈231b。可选的,单向轴承外圈231a连接第一转子轴211,单向轴承内圈231b连接输出轴141。单向轴承231限制输出轴141驱动第一转子轴211旋转。
在本实施例中,电机组件20至少包括对应轻负载状态(即所需电机输出扭矩低时)的第一工作状态和对应高负载状态(即所需电机输出扭矩高时)的第二工作状态。当电机组件20被控制进入第一工作状态时,第二电机22被控制启动工作进而驱动输出轴141输出动力,第二转子轴221和输出轴141沿设定方向转动。第一电机21未收到启动信号或被控制而不启动工作,由于输出轴141与第一 转子轴211连接,如果输出轴141旋转进而驱动第一转子轴211旋转,那么此时第一电机21的转子会被动反向旋转,容易造成电机损伤。而本实施例中设置单向轴承231,当第二电机22启动而第一电机21不启动时,输出轴141的旋转带动单向轴承内圈231b旋转,单向轴承外圈231a与单向轴承内圈231b发生相对旋转运动,单向轴承外圈231a不随输出轴141旋转。避免了对第一电机21的损坏。
可以理解的,当单向轴承的动力输出部分(本实施例中为内环)转速比动力源(本实施例中为外环)还快时,单向离合器处于解脱状态,内环与外环没有任何连动关系,即是说单向离合器的单向超越功能。
当电机组件20被控制进入第二工作状态时,第二电机22被控制启动同时第一电机21也被控制启动,第一转子轴211和第二转子轴221需要同时驱动输出轴141旋转。当第一转子轴211的的转速等于或高于第二转子轴221时,此时单向轴承内圈231b与单向轴承外圈231a的相对运动被锁定,第二电机22和第一电机21带动输出轴141运动。进而使电机组件20设有不同的工作状态。
在其他可替换实施例中,第一转子轴和第二转子轴通过单向轴承连接,输出轴连接在第二转子轴上。当电机组件被控制进入第一工作状态时,第一电机被控制启动工作进而驱动输出轴输出动力,单向轴承限制第一电机带动第二转子轴运动。当电机组件被控制进入第二工作状态时,第一电机被控制启动同时第二电机也被控制启动,此时单向轴承内圈与单向轴承外圈的相对运动被锁定。第一转子轴和第二转子轴同时驱动输出轴旋转。
如图5所示,第一转子轴211、第二转子轴221和输出轴141会根据需要套设普通轴承28进行支撑。在本实施例中,普通轴承28设置在第一容纳空间202内,使用防尘盖281结构将第一容纳空间靠近输出端的开口进行遮挡,以灰尘进入普通轴承28。在一些实施例中,如图6所示,在电机组件20’或第一电机21’或第二电机22’的外侧设置电机罩盖282,普通轴承28设置在第一电机21’或第二电机22’外侧,普通轴承28支撑输出轴141和电机罩盖282。
当输出机构14的负载较小时,电机组件20处于第一工作状态,这时仅启动低输出扭矩电机,例如第二电机22,可以使第二电机22在电机效率较高的功率区间内工作。可以节约电池包61的能量,提高电池包61的工作时间。避免第一电机21和第二电机22的启动而造成的功耗增大进而造成减小电池包61的工作时长的问题。因为第二电机22的功率只需要满足输出机构14的轻负载的情况,因此第二电机22的输出功率可以被设置的较小,也即是说,可以采用小功率的第 二电机22,从而可以降低成本。当输出机构14的负载较大时,电机组件20处于第二工作状态,这时第一电机21和第二电机22启动,这样可以使第一电机21和第二电机22在电机效率较高的功率区间内工作。提高了电机组件20的工作效率和高效率工作区间。
如图7所示,在一些可替换实施例中,第一电机21b和第二电机22b为内转子电机。以第一电机21b为例,第一电机21b包括包括定子212b和转子214b。定子212b包括定子铁芯2121b和设置在定子铁芯上的线圈绕组2122b。转子214b包括转子铁芯2141b,转子铁芯设有永磁体2142b,沿转子铁芯2141b的周向间隔排列,永磁体2142b用于产生磁场。转子214b上形成或连接有转子轴211b,用于输出动力。线圈绕组2122b为导电金属的绕组,例如铜绕组。
如图8所示,第一电机21b的第一转子轴211b、第二电机22b的第二转子轴221b与输出轴141b以第一轴线101为轴转动。第一转子轴211b和第二转子轴221b通过离合组件26连接。离合组件26包括主动件261和从动件262,离合组件26具有第一状态和第二状态。当离合组件26处于第一状态时主动件261和从动件262断开连接。进而断开第一转子轴211b和第二转子轴221b之间的动力传递。当离合组件26处于第二状态时,主动件261和从动件262啮合连接,第一转子轴211和第二转子轴221之间的动力传递。
输出轴141b安装至第一转子轴211b。当电机组件20b处于第一工作状态时,第一电机21b被控制启动且第二电机22b未收到启动信号或被控制而不启动工作,同时离合组件26切换至第一状态,这时仅有第一电机21b驱动输出轴141b输出动力。而当电机组件20b处于第二工作状态时,第二电机22b被控制启动同时第一电机21b也被控制启动,同时离合组件切换至第二状态,这时第一电机21b直接驱动输出轴141b输出动力,第二电机22b通过驱动第一电机21b进而驱动输出轴141b输出动力。
如图9至图11所示,在一些可替换实施例中,输出轴以第一轴线101为轴转动,第一电机的第一转子轴以第二轴线102为轴转动,第二电机的第二转子轴以第三轴线103为轴转动。在本实施例中,第一轴线101与第二轴线102和第三轴线103平行但不重合。但在其他实施例中,第一轴线101与第二轴线102和第三轴线103的关系,可以为平行也可以为重合。
离合组件包括第一离合器232和第二离合器233。第一离合器232设置在第一电机21c和输出机构14c之间,第一离合器232用于在第一电机21c和输出机构14c 之间实现动力的传递。第二离合器233设置在第二电机22c和输出机构14c之间,第二离合器233用于在第二电机22c和输出机构14c之间实现动力的传递。
在本实施例中,电机组件20c还包括传动件24,传动件24与第一转子轴211c和第二转子轴221c传动连接。传动件24与输出轴141c连接,其中,传动件24与输出轴141c不发生相对运动。在本实施例中,第一离合器232设置在传动件24与第一转子轴211c之间。第一离合器232为单向传动组件,在本实施例中,第一离合器232为单向轴承。第二离合器233设置在传动件24与第二转子轴221c之间。第二离合器233为单向传动组件,在本实施例中,第二离合器233为单向轴承。当电机组件20c被控制进入第一工作状态时,第一电机21c被控制启动工作进而同通过传动件24驱动输出轴141c输出动力,单向轴承231限制传动件24带动第二转子轴221c运动。当电机组件20c被控制进入第一工作状态时,第二电机22c被控制启动同时第一电机21c也被控制启动,此时单向轴承内圈与单向轴承外圈的相对运动被锁定。第一转子轴211c和第二转子轴221c同时驱动输出轴141c旋转。在本实施例中,电机组件20c还可以包括第三工作状态,即第二电机22c被控制启动工作进而同通过传动件24驱动输出轴141c输出动力,单向轴承231限制传动件24带动第一转子轴211c运动,此时仅第二电机22c驱动输出轴141c。
在一些可替换实施例中,第一电机与第二电机中至少一个为交流电机,离合组件包括第一离合器和第二离合器。
在一些可替换实施例中,离合组件包括第一离合器232或第二离合器233中的一个。在一些可替换实施例中,第一电机与第二电机中至少一个为交流电机,第一电机与第二电机刚性连接。在一些可替换实施例中,第一电机与第二电机为直流电机,且第一电机与第二电机刚性连接。
如图11所示,在一些可替换实施例中,第一离合器232g包括:第一主动件和第一从动件,第二离合器233g包括:第二主动件和第二从动件。第一离合器232g具有第一状态和第二状态。当第一离合器232g处于第一状态时,第一主动件和第一从动件断开连接。进而断开第一转子轴211g和传动件24g之间的动力传递。当第一离合器232g处于第二状态时,第一主动件和第一从动件啮合连接,第一转子轴211g和传动件24g之间的动力传递。第二离合器233g具有第三状态和第四状态。当第二离合器233g处于第三状态时,第二主动件和第二从动件断开连接。进而断开第二转子轴221g和传动件24g之间的动力传递。当第二离合器233g处于第四状态时,第二主动件和第二从动件啮合连接,第二转子轴221g和 传动件24g之间的动力传递。
在一些可替换实施例中,连接器包括差速组件,差速组件允许第一电机和第二电机以不同转速同时输出动力给输出机构。
在上述实施例中的连接器结构可以单独使用其中一部分,也可以使用通过使用其中几种技术方案的组合。
如图12所示,电动工具还包括:控制器17用于控制电机组件20。控制器17设置在控制电路板上,控制电路板包括:PCB电路板(Printed Circuit Board)和FPC电路板(Flexible Printed Circuit board)。控制器17采用专用的控制芯片,例如,单片机、微控制模块MCU(Microcontroller Unit)。需要注意的是,控制芯片可以集成于控制器17内,或者还可以独立于控制器17设置,至于驱动芯片与控制器17的结构关系,本实施例并不限定。
控制器17被配置为:根据输出机构的负载参数和电机组件的负载分配系数确定第一电机21输出参数值与第二电机22的输出参数值或第一电机21输出参数与第二电机22输出参数的比值。负载分配系数使得在相同输出机构的负载时,电机组件20的总效率大于等于第一电机21或第二电机22单独工作时的效率。分配系数使得电机组件20的效率大于等于70%区间在电机组件20总效率区间的占比大于等于0.5。在本实施例中,负载分配系数为保证第一电机与第二电机的效率分配最优,以使得电机组件20的总效率最优。控制器17根据输出轴141的负载进而确定电机组件20的需求参数,需求参数包括:需求扭矩、需求转速、需求功率中的至少一种。输出参数包括输出扭矩、输出转速、输出功率中的至少一种,输出参数比值包括输出扭矩的比值、输出转速的比值、输出功率的比值中的至少一种。
在本实施例中,以电机组件的需求扭矩为例。根据使第一电机21和第二电机22可以处于电机运行的高效率区间的原则,将总需求输出扭矩分配至第一电机21和第二电机22。其中,通过查表或预先测定第一电机21的效率区间、第二电机22的效率区间、电机组件20的效率区间,通过一阶、二阶或高阶运算,或者一阶、二阶或高阶导数,得到使电机组件20的效率最大的第一电机、第二电机的比例系数值或第一电机与第二电机的比例系数集,以上构成电机组件的负载分配系数。
在一些实施例中,负载分配系数包括第一电机负载分配系数、第二电机负载分配系数中的至少一个。当确定电机组件20的总需求输出扭矩后,通过负载 分配系数表查询确定第一电机负载分配系数,将电机组件20需求扭矩乘以第一电机负载分配系数,获得第一电机需求扭矩。第二电机需求扭矩可以通过电机组件20需求扭矩与第一电机需求扭矩的差值得出,也可以通过电机组件20需求扭矩与(1-第一电机负载分配系数)的乘积获得,或者通过电机组件20需求扭矩与查表获得的第二电机负载分配系数的乘积获得。
在本实施例中,负载分配系数储存在控制器17的储存单元中。第一电机负载分配系数、第二电机负载分配系数中的至少一个储存在控制器17的储存单元中。在一些实施中,负载分配系数与输出机构的负载参数的对应关系以及负载分配系数储存在控制器的储存单元中。
输出机构的负载参数为包括输出扭矩、输出转速或输出电流中的至少一种。根据需求负载值和负载分配系数合理分配第一电机和第二电机的输出扭矩,保证电机组件的高效率区间长。同时保证电池的续航时间和电池的使用寿命。而且本申请的控制方法简单可靠、鲁棒性强。
在一些实施例中,控制器17被配置为根据输出机构的负载参数,配置所述第一电机的输出参数值与所述第二电机的输出参数值或所述第一电机输出扭矩与所述第二电机输出参数的比值,以使电机组件的效率大于等于70%区间在所述电机组件总效率区间的占比大于等于0.5。即是说,控制器17中储存有第一电机21的效率区间、第二电机22的效率区间、电机组件20的效率区间,根据输出轴141的负载参数值或负载值进而确定电机组件20的总需求输出扭矩,控制器17根据预先储存的第一电机21的效率区间、第二电机22的效率区间、电机组件20的效率区间实时计算,得到电机组件效率最大时的第一电机21输出扭矩值与第二电机22输出扭矩值。在一些实施例中,以使电机组件的效率大于等于75%区间在所述电机组件总效率区间的占比大于等于0.5。
通过使用能输出第一扭矩和第一转速的第一电机与能输出第二扭矩和第二转速的第二电机的组合,利用连接器可选择的启动第一电机、第二电机或同时启动第一电机与第二电机,并分别控制第一电机、第二电机的运行状态,以使的电机组件的效率大于等于70%的扭矩范围大于单独工作的第一电机或单独工作的第二电机,扩大的电动工具的高效率输出范围,进而做到应对多种工况时可以高效率工作。电机组件的效率大于等于70%的扭矩范围即电机组件的高效率区间长,高效率区间占比大。
在本实施例中,控制器17包括第一控制器17a和第二控制器17b即双MCU控 制。其中,第一控制器17a连接第一电机21,第二控制器17b连接第二电机22。第一控制器17a、第二控制器17b之间通讯连接。在一些实施例中,第一控制器17a和第二控制器17b可以合并为一个控制器17即单MCU控制,同时对第一电机21和第二电机22进行控制。或者在一些实施例中,包括多于两个控制器即多MCU控制。
在本实施例中,控制器17被配置当确定电机组件20中第一电机21或第二电机22启动时,当电机组件20的总需求输出扭矩大于第一预设扭矩时,切换电机组件20为第一电机21和第二电机22同时启动。在第一电机21和第二电机22启动后,经过预设时间后根据第一设定参数控制和电机组件的负载分配系数控制第一电机21与第二电机22的第一电机21与第二电机22的输出扭矩值或第一电机21输出扭矩与第二电机22输出扭矩配比。第一电机和第二电机中的一个通过第一参数组控制,另一个通过第二参数组控制,所述第一参数组的参数与第二参数组的参数至少一个不同。在本实施例中,第一电机使用第一参数组控制,第一参数组包括电机的转速和电机电流,同时电机采用闭环控制以使电机控制更加精准。第二电机使用第二参数组控制,第二参数组包括电机电流,同时电机采用闭环控制以使电机控制更加精准。
在本实施例中,控制器17被配置当确定电机组件20中第一电机21和第二电机22同时启动,当电机组件20的总需求输出扭矩小于第二预设扭矩时,切换电机组件20为第一电机21或第二电机22启动。在一些实施例中,控制器17根据电机组件的负载分配系数控制选择电机组件20中启动第一电机21或第二电机22。根据总需求输出扭矩对应负载分配系数,以使第一电机21或第二电机22可以处于电机运行的高效率区间的原则,选择启动第一电机21或第二电机22。
其中,第二预设值小于第一预设值,以避免电机组件的单电机工作与双电机工作状态切换的过于频繁。
在本实施例中,将电机组件的负载分配系数输入控制器17的存储单元中。将第一电机21的效率区间、第二电机22的效率区间以及电机组件20的效率区间中的至少一个输入控制器17的存储单元中。
第一控制器17a和第二控制器17b接收到分配的目标扭矩后,可以采取预设的方法控制所对应的电机。在一些实施例中,第一控制器17a和第二控制器17b采用矢量控制。在一些实施例中,第一控制器17a和第二控制器17b采用不同的控制方法控制电机运行,例如,第一控制器17a采取矢量控制,第二控制器17b 采取直接转矩控制;或者,第一控制器17a采取直接转矩控制,第二控制器17b采取矢量控制;或者,第一控制器17a采取矢量控制,第二控制器17b采取方波控制;或者,第一控制器17a采取方波控制,第二控制器17b采取矢量控制;或者,第一控制器17a采取方波控制,第二控制器17b采取直接转矩控制;或者,第一控制器17a采取直接转矩控制,第二控制器17b采取方波控制。由于方波控制是传统控制技术,这里不再赘述。在方波控制下,控制器17可以根据分配的目标转矩调节脉冲宽度调制(PWM),或者导通角、超前角等。
如图12所示,在本实施例中,第一电机21与第二电机22分别为三相无刷电机。包括以电子方式换向的三相定子绕组U、V、W。在一些实施例中,三相定子绕组U、V、W之间采用星型连接,在另一些实施例中,三相定子绕组U、V、W之间采用角型连接。在一实施例中,其他类型的无刷电动机也在本申请的范围。无刷电动机可包括少于或多于三相。
电动工具还包括驱动电路。驱动电路与电机的定子绕组U、V、W电性连接,用于将来自电池包61的电流传递至定子绕组U、V、W以驱动电机旋转。在本实施例中,电动工具包括第一驱动电路171a和第二驱动电路171b。其中,第一驱动电路171a与第一控制器17a和电池包61连接,第二驱动电路171b与第二控制器17b和电池包61连接。以第一驱动电路171a为例,第一驱动电路171a包括多个开关元件Q1、Q2、Q3、Q4、Q5、Q6。每个开关元件的栅极端与第一控制器17a电性连接,用于接收来自第一控制器17a的控制信号。每个开关元件的漏极或源极与第一电机21的定子绕组U、V、W连接。开关元件Q1-Q6接收来自第一控制器17a的控制信号改变各自的导通状态,从而改变电池包61加载在第一电机21的定子绕组U、V、W上的电流。在一个实施例中,第一驱动电路171a可以是包括六个可控半导体功率器件(例如FET,BJT,IGBT等)的三相桥驱动器电路。在一些实施例中,驱动电路也可以包括多于六个可控半导体功率器件。在一实施例中,上述开关元件也可以是任何其他类型的固态开关,例如绝缘栅双极型晶体管(IGBT),双极结型晶体管(BJT)等。
控制器17(包括第一控制器17a和第二控制器17b)具体通过控制芯片控制驱动电路中的开关元件的导通或关断状态。在一些实施例中,控制器基于脉冲宽度调制(PWM)信号来控制驱动开关的导通时间与关断时间之间的比例。
电动工具还包括检测组件18,用于检测输出机构的负载参数。在本实施例中,具体为输出轴的负载参数。其中,检测组件18形成或连接与控制器17。检 测组件18通过检测驱动电路中的相电流、母线电压、母线电流、蓄流时间、消磁时间等参数以信号的模式发送给控制器17。在一些实施例中,检测组件18通过检测电机转速、电机换向参数、电机扭矩的参数以信号模式发送给控制器17。
如图11所示,一种电动工具的控制方法,电动工具包括电机组件20和电机组件20驱动的输出机构14,电机组件20包括第一电机21和第二电机22,具体包括以下步骤:
S200,开始。
S210,根据输出机构的输出转速,确定维持当前输出转速所需的电机组件20输出扭矩T。
S220,确定当前电机组件20是第一电机21或第二电机22运行。若是,执行S230,若否,执行S240。
控制器17根据电参数例如电流、电压或根据物理参数确定电机组件20当前是单电机运行还是双电机运行。
S230,确定电机组件20输出扭矩T小于第一预设扭矩T1。若是,执行S232,若否,执行S231。
控制器17预先存储适合的第一预设扭矩T1作为阈值与实时输出扭矩T进行比较判断。
S231,切换电机组件20为第一电机21和第二电机22同时启动,并执行S240。
切换为第一电机和第二电机同时启动后,经过一个预设时间后,执行S240。进而双电机控制流程。其中,预设时间为电机运行稳定的时间,可以为电机的一个或多个换向循环、电机电流的一个或多个完整波形循环等。
S232,将电机组件20输出扭矩T分配给当前处于运行状态的电机。
S250,电机组件20根据输出扭矩T运行,并通过电流环控制电机组件20的运行模式。
S240,确定电机组件20输出扭矩T大于第二预设扭矩T2。若是,执行S242,若否,执行S241。
S241,切换电机组件20为第一电机21或第二电机22启动,并执行S230。
切换为第一电机或第二电机同时启动即单电机启动,经过一个预设时间后,执行S230。进而单电机控制流程。其中,预设时间为电机运行稳定的时间,可以为电机的一个或多个换向循环、电机电流的一个或多个完成波形循环等。
S242,根据电机组件20输出扭矩T和电机组件的负载分配系数,将总需求输 出扭矩分配至第一电机21和第二电机22;执行S250。
负载分配系数为保证第一电机与第二电机的效率分配最优,以使得电机组件20的总效率最优。其中,电机组件20的效率大于等于70%区间在电机组件20总效率区间的占比大于等于0.5。相同输出机构的负载时,电机组件20的总效率大于等于第一电机21或第二电机22的效率。电机组件20的负载分配系数通过查表所得。第一电机21的效率区间、和/或第二电机22的效率区间、和/或电机组件20的效率区间通过查表法获取。
在一些实施例中,电动工具使用机械结构切换电机组件20的运行模式。例如,电动工具还可以包括用于供用户操作的模式切换开关,模式切换开关与控制机构连接以切换电机组件20至第一工作状态或者第二工作状态。这样用户可以自主的操作模式切换开关,从而用户可以自主的控制电机组件20处于第一工作状态或者第二工作状态。控制器17根据模式切换开关发出的信号进而可以识别电机组件20的工作状态。用户可以通过操作模式切换开关自主的控制电机组件20的工作状态,这样可以根据用户的不同的需求来切换工作状态,提高了电动工具的适用的广泛性。
在一些实施例中,电动工具的连接件通过机械结构实现切换电机组件20至第一工作状态或者第二工作状态。例如,连接件为单向传动结构,其中第一电机21或第二电机22中的至少一个与单向传动结构实现转速平衡或扭矩平衡。即是说,例如单向传动结构与第二电机22同步运转,单向传动结构与第二电机22连接直接设置转速平衡件,当第二电机22的转速超过平衡转速后,单向传动结构释放对于第一电机21的限制,以使第一电机21和第二电机22共同旋转。可以理解的,平衡状态也可以通过扭力或离心力实现,以上并不影响本申请的实质性内容。
在一些实施例中,电动工具同时包括机械机构和电子控制两种切换电机组件20工作状态的机构。当电动工具未启动时,控制器17无法控制电机组件20的工作状态,这时用户可以通过模式切换开关选择一个合适的工作状态,即选择第一电机21启动、第二电机22启动或第一电机和第二电机同时启动,而当电动工具启动后,控制器17上电进而对电动工具的工作状态进行控制。
在上述实施例中的技术方案可以单独使用其中一部分,也可以使用通过使用其中几种技术方案的组合,从而根据实际需求来提高电机的效率。
这里需要解释的是,“电机效率”是指输出功率(机械)与输入功率(电) 之比,一般使用百分比来表示。输出功率(机械)是使用所需扭矩和速度计算的。输入功率(电)是使用供应给电机的电压和电流计算的。
如图14所示,为一实施例的第一电机21、第二电机22和电机组件20的电机效率和电机输出扭矩的曲线图。其中,第一电机21为低输出扭矩电机。在相关技术中,低输出扭矩电机的参数如下,电机外径为φ105mm,电机叠长为15mm的外转子电机,电机的定子绕组的线径为φ0.5mm,6根并绕,匝数为18T,输出扭矩的最大值为12N·m。这里需要解释的,“电机外径”为电机的整机外径。“电机叠长”为定子铁芯长度。
当受到负载即输出扭矩在小于等于1.86N·m时,电机效率逐渐提高。当输出扭矩达到第一扭矩值(在本实施例中,第一扭矩值为0.37N·m)时,电机效率达到70%及以上。当输出扭矩达到第二扭矩值(在本实施例中,第二扭矩值为0.5N·m)时,电机效率达到75%及以上。当输出扭矩在第一最大效率区间(在本实施例中,为大于等于1.86N·m且小于等于2.92N·m)时,电机效率保持在最高。当输出扭矩超过第一最大效率区的极值(在本实施例中,为2.92N·m)时,电机效率开始下降。当输出扭矩超过第三扭矩值(在本实施例中,第三扭矩值为6.9N·m)时,电机效率小于75%。当输出扭矩超过第四扭矩值(在本实施例中,第四扭矩值为7.7N·m)时,电机效率小于70%。在本实施例中,针对低输出扭矩电机,电机效率大于50%的输出扭矩区间为大于等于0.2N·m且小于等于9.3N·m。电机效率大于70%的第一输出扭矩区间为大于等于第一扭矩值(0.37N·m)且小于等于第四扭矩值(7.7N·m)。电机效率大于75%的输出扭矩区间为大于等于第二扭矩值(0.5N·m)且小于等于第三扭矩值(6.9N·m)。
第二电机22为高输出扭矩电机,在本实施例中,高输出扭矩电机的参数如下,电机外径为φ105mm,电机叠长为40mm的外转子电机,电机的定子绕组的线径为φ0.63mm,9根并绕,匝数为7T,输出扭矩的最大值为33N·m。
当输出扭矩达到第五扭矩值(在本实施例中,第五扭矩值为0.99N·m)时,电机效率达到70%及以上。当输出扭矩达到第六扭矩值(在本实施例中,第六扭矩值为1.1N·m)时,电机效率达到75%及以上。当输出扭矩在第二最大效率区间(在本实施例中,为大于等于4.17且小于等于11.0N·m)时,电机效率保持在最高。当输出扭矩第二最大效率区间的极值(在本实施例中,为11.0N·m)时,电机效率开始下降。当输出扭矩超过第七扭矩值(在本实施例中,第七扭矩值为19.2N·m)时,电机效率小于75%。当输出扭矩超过第八扭矩值(在本实 施例中,第八扭矩值为21N·m)时,电机效率小于70%。在本实施例中,针对高输出扭矩电机,电机效率大于50%的输出扭矩区间为大于等于0.5N·m且小于等于25.8N·m。电机效率大于70%的第二输出扭矩区间为大于等于第五扭矩值(0.99N·m)且小于等于第八扭矩值(21N·m)。电机效率大于75%的输出扭矩区间为大于等于第六扭矩值(1.1N·m)且小于等于第七扭矩值(19.2N·m)。
如图14-15所示,电机组件20的电机效率和电机输出扭矩的曲线图。使用电机组件20即使用第一电机21和第二电机22的组合时,当输出扭矩达到第一扭矩值(在本实施例中,第一扭矩值为0.37N·m)时,电机效率达到70%及以上。当输出扭矩达到第二扭矩值(在本实施例中,第二扭矩值为0.5N·m)时,电机效率达到75%及以上。当输出扭矩在第三最大效率区间(在本实施例中,为大于等于1.86N·m且小于等于11.0N·m)时,电机效率保持在最高;当输出扭矩超过第二最大效率区间的极值(在本实施例中,为11.0N·m)时,电机效率开始下降。当输出扭矩大于第七扭矩值(在本实施例中,第七扭矩值为19.2N·m)时,电机效率仍大于75%。当输出扭矩超过第八扭矩值(在本实施例中,第八扭矩值为21N·m)时,电机效率仍大于70%。在本实施例中,针对电机组件20,电机效率大于50%的输出扭矩区间为大于等于0.2N·m且小于等于25.8N·m。所述电机组件在输出扭矩为大于等于第一扭矩值(0.37N·m)且小于等于第八扭矩值(21N·m)时,所述电机组件的工作效率大于等于70%。
在本实施例中,定义电机组件的工作效率大于等于70%时,电机组件在第三输出扭矩区间内,第三输出扭矩区间至少覆盖所述第一输出扭矩区间与所述第二输出扭矩区间。在本实施例中,第三输出扭矩区间的右极值大于第八扭矩值。通过使用能输出第一扭矩和第一转速的第一电机与能输出第二扭矩和第二转速的第二电机的组合,利用连接器可选择的启动第一电机、第二电机或同时启动第一电机与第二电机,以使的电机组件的效率大于等于70%的扭矩范围大于单独工作的第一电机或单独工作的第二电机,扩大的电动工具的高效率输出范围,进而做到应对多种工况时可以高效率工作。
电机组件的输出扭矩大于等于第二扭矩值(0.5N·m)且小于等于第七扭矩值(19.2N·m)时,电机组件的电机效率大于75%。
而当第一电机21和第二电机22同时工作时,第一电机21和第二电机22输出扭矩的最大值大于等于为第一电机最大输出扭矩与第二电机最大输出扭矩之和。
电机组件20的效率的极限值构成总效率区间,电机组件20的效率值大于等于70%的效率值构成第一效率区间,其中,第一效率区间与总效率区间的比值大于等于0.5。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.6。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.7。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.8。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.9。电机组件20的效率值大于等于50%的效率值构成第二效率区间,第一效率区间与第二效率区间的比值大于等于0.4。在其他实施例中,第一效率区间与第二效率区间的比值大于等于0.5。在其他实施例中,第一效率区间与第二效率区间的比值大于等于0.6。在其他实施例中,第一效率区间与第二效率区间的比值大于等于0.7。电机组件的高效率区间占比提高。
如图16至19所示,本实施例公开了一种电动工具,其中与实施例一相同或相应的零部件采用与实施例一相应的附图标记或名称。为简便起见,仅描述实施例二与实施例一的区别点。本实施例的电动工具与实施例一不同的是电机结构。
在本实施例中,电动工具包括电机30。电机30包括:转子组件31和定子组件33。针对外转子电机,转子套设在定子外侧。针对内转子电机,定子套设在转子外侧。在本实施例中,电机30为内转子电机。转子组件31包括至少一个转子本体。如图18a所示,转子组件包括第一转子311和第二转子312,转子轴32的两端分别设置第一转子311和第二转子312。转子轴32形成或连接第一转子311或第二转子312。第一转子311和第二转子312的结构形式基本相同。以第一转子311为例,如图17所示,第一转子311包括转子铁芯3111,转子铁芯3111设有永磁体3112,永磁体3112沿转子铁芯3111的周向间隔排列,永磁体3112用于产生磁场。第一转子311上形成或连接有转子轴32,用于输出动力,转子轴32以第一轴线301为轴旋转。在本实施例中,第一转子311和第二转子312的尺寸特征可以相同也可以不相同,例如,第一转子311与第二转子312的永磁体数量可以不同、第一转子311与第二转子312的转子铁芯直径不同等。具体的尺寸和数值可根据实际情况进行设置,在此不做具体的限定。
定子组件33包括第一定子331和第二定子332。第一定子331和第二定子332的结构形式基本相同。以第一定子331为例,定子包括定子铁芯3311和设置在定子铁芯3311上的线圈绕组3312,线圈绕组3312为导电金属的绕组,例如铜绕组。 在本实施例中,第一定子331和第二定子332分别包括以电子方式换向的三相定子绕组U、V、W。在一些实施例中,三相定子绕组U、V、W之间采用星型连接,在另一些实施例中,三相定子绕组U、V、W之间采用角型连接。然而,在一实施例中,其他类型的定子绕组也在本申请的范围。定子绕组可包括少于或多于三相。
电动工具还包括控制器37和驱动电路。控制器37用于控制电机30即用于控制第一定子和第二定子的通电状态。驱动电路与定子绕组U、V、W电性连接,用于将来自电池包61的电流传递至定子绕组3312的U、V、W以驱动电机旋转。驱动电路包括多个开关元件Q1、Q2、Q3、Q4、Q5、Q6。每个开关元件的栅极端与控制器37电性连接,用于接收来自控制器37的控制信号。每个开关元件的漏极或源极与定子绕组U、V、W连接。开关元件Q1-Q6接收来自控制器37的控制信号改变各自的导通状态,从而改变电池包61加载在定子绕组U、V、W上的电流。在一个实施例中,驱动电路可以是包括六个可控半导体功率器件(例如FET,BJT,IGBT等)的三相桥驱动器电路。在一些实施例中,驱动电路也可以包括多于六个可控半导体功率器件。在一实施例中,上述开关元件也可以是任何其他类型的固态开关,例如绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT),双极结型晶体管(Bipolar Junction Transistor,BJT)等。
控制器37设置在控制电路板上,控制电路板包括:电路板(Printed Circuit Board,PCB)和电路板(Flexible Printed Circuit board,FPC)。控制器37采用专用的控制芯片,例如,单片机、微控制模块(Microcontroller Unit,MCU)。需要注意的是,控制芯片可以集成于控制器37内,或者还可以独立于控制器37设置,至于驱动芯片与控制器37的结构关系,本实施例并不限定。
控制器37具体通过控制芯片控制驱动电路中的开关元件的导通或关断状态。在一些实施例中,控制器37基于脉冲宽度调制(PWM)信号来控制驱动开关的导通时间与关断时间之间的比例。其中,驱动电路包括第一驱动电路371a和第二驱动电路371b。第一驱动电路371a连接第一定子331,第二驱动电路371b连接第二定子332。控制器37同时控制根据设定控制第一驱动电路371a和第二驱动电路371b。在一些实施例中,控制器37包括第一控制器37a和第二控制器37b,分别连接第一驱动电路371a和第二驱动电路371b。
在本实施例中,控制器37被配置可以根据输出机构的负载以效率最优原则 确定第一定子331和第二定子332的通电状态。这样使得电动工具无论出于何种负载工况时,电机可以分配到合适的输入功率,输出合适输出扭矩。可以提高全工况的工作效率。
在本实施例中,第一定子331和第二定子332的结构参数至少一个不同,例如定子铁芯外径、定子铁芯内径、定子磁极厚度、线圈绕组参数中至少一个。因此,第一定子331和第二定子332单独通电时,电机30的输出负载范围不同。示例性的,当第一定子331通电且第二定子332断电时,电机30处于第一工作状态,对应轻负载状态。当第一定子331断电且第二定子332通电时,电机30处于第二工作状态,对应中负载状态。当第一定子331通电且第二定子332通电时,所述电机30处于第三工作状态,对应高负载状态。
电机30在所有工作状态的电机效率的极限值构成总效率区间,电机30的效率值大于等于70%的效率值构成第一效率区间,其中,第一效率区间与总效率区间的比值大于等于0.5。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.6。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.7。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.8。在其他实施例中,第一效率区间与总效率区间的比值大于等于0.9。设置包括第一定子和第二定子的电机,通过第一定子和第二定子处于不同的通电与断电状态,来设置不同的工作状态,以使的电机的效率大于等于70%的效率区间在总效率区间的占比大于等于0.5,扩大的电动工具的高效率输出范围,进而做到应对多种工况时可以高效率工作。电机组件的效率大于等于70%的扭矩范围即电机组件的高效率区间长,高效率区间占比大。
在一些实施例中,电机30在所有工作状态的电机效率的极限值构成总效率区间,电机30的效率值大于等于75%的效率值构成第三效率区间,其中,第三效率区间与总效率区间的比值大于等于0.5。在其他实施例中,第三效率区间与总效率区间的比值大于等于0.6。在其他实施例中,第三效率区间与总效率区间的比值大于等于0.7。在其他实施例中,第三效率区间与总效率区间的比值大于等于0.8。在其他实施例中,第三效率区间与总效率区间的比值大于等于0.9。
在一些实施例中,第一定子331和第二定子332沿轴向方向前后设置。第一定子331与第二定子332在轴向方向不发生重叠。
定子组件33与转子组件31以第一轴线301为中心轴设置,即是说,定子组件33与转子组件31同轴设置。其中,第一定子331和第二定子332同轴设置。在一 些实施例中,第一定子331和第二定子332同轴套设,即第一定子331和第二定子332分别为内定子和外定子。第一定子331由第一定子331铁心和第一定子331绕组组成,第二定子332由第二定子332铁心和第二定子332绕组构成,第一定子331和第二定子332的槽数一致,并且两者的槽与槽的中心对应,齿与齿中心对应。驱动电路与第一定子331绕组和第二定子332绕组电连接。通过控制第一定子331绕组和第二定子332绕组的通断电,进而控制第一定子331和第二定子332的通断电。
如图18b所示,在一些可替换实施例中,转子组件31为一体式结构。
由于该电机30具有两套定子绕组,每套绕组为常用的三相结构,使两套绕组具有多种连接方式,如常用的三种连接方式,分别为串联、并联和独立控制。在给定的母线电压下,如果电机30需要工作在低速大扭矩即重载状态,需按照串联的方式接线。如果电机30需要工作在高速轻载状态下时,需要按照并联的方式连接,以降低内部反电动势,实现扩速。如果电动机工作在安全性可靠性较高的场合,可以采用六相绕组独立控制的方式、增大相的沉余度。每个工作模式之间可以用开关进行切换,实现运行时过渡。
如图20所示,本实施例公开了一种电动工具,其中与实施例一相同或相应的零部件采用与实施例一相应的附图标记或名称。为简便起见,仅描述实施例三与实施例一的区别点。本实施例的电动工具与实施例一不同的是电机结构。
电机40包括:转子41和定子42。其中,转子41以第一轴线401为转轴旋转。定子42包括:环轭部421、齿部422、第一绕组423和第二绕组424。其中,齿部422形成或连接于环轭部421。齿部422向环轭部421内侧或外侧凸出设置。齿部422设置有多个。第一绕组423缠绕在多个齿部422上,用于产生第一磁场。第二绕组424缠绕在多个齿部422上,用于产生第二磁场。电池包61为第一绕组423和第二绕组424供电;其中,第一绕组423和第二绕组424沿第一轴线401的径向设置。设置包括第一绕组和第二绕组的电机,使用同一供电电源为第一绕组和第二绕组供电,第一绕组和第二绕组径向设置以使每一个定子的齿部包括相同的绕组形式。电机结构通用性好,降低制造成本。对于电机齿部的数量不需要额外限定。
电池包61为第一绕组423和第二绕组424供电,电动工具的标称电压大于等于18V。电池包61配合相应的电源电路,为第一绕组423和第二绕组424供电。在一些实施例中,电动工具的标称电压大于等于36V小于等于56V。在一些实施例 中,电动工具的标称电压大于56V小于等于120V。
电动工具还包括:控制器和驱动电路。控制器用于控制电机,即控制第一绕组423和第二绕组424通电状态。驱动电路与第一绕组423和第二绕组424电连接。驱动电路与第一绕组U、V、W电性连接,用于将来自电池包61的电流传递至第一绕组U、V、W以驱动电机旋转。驱动电路与第二绕组U、V、W电性连接,用于将来自电池包61的电流传递至第二绕组U、V、W以驱动电机旋转。驱动电路包括多个开关元件Q1、Q2、Q3、Q4、Q5、Q6。每个开关元件的栅极端与控制器电性连接,用于接收来自控制器的控制信号。每个开关元件的漏极或源极与绕组U、V、W连接。开关元件Q1-Q6接收来自控制器的控制信号改变各自的导通状态,从而改变电池包61加载在绕组U、V、W上的电流。在一个实施例中,驱动电路可以是包括六个可控半导体功率器件(例如FET,BJT,IGBT等)的三相桥驱动器电路。在一些实施例中,驱动电路包括多于六个可控半导体功率器件。在一实施例中,上述开关元件也可以是任何其他类型的固态开关,例如绝缘栅双极型晶体管(IGBT),双极结型晶体管(BJT)等。
在本实施例中,控制器被配置可以根据输出机构的负载以效率最优原则确定第一绕组和第二绕组的通电状态。这样使得电动工具无论出于何种负载工况时,电机可以分配到合适的输入功率,输出合适输出扭矩。可以提高全工况的工作效率。
在本实施例中,第一绕组和第二绕组的结构参数至少一个不同,例如绕组线径、绕线匝数、绕组并线数、绕组截面形状以及绕组的槽满率中至少一个。因此,第一绕组423和第二绕组424单独通电时,电机的输出负载范围不同。示例性的,当第一绕组423通电,第二绕组424断电时,电机40处于第一工作状态,对应轻负载状态。当第一绕组423断电,第二绕组424通电时,电机40处于第二工作状态,对应中负载状态。当第一绕组423通电,第二绕组424通电时,电机40处于第三工作状态,对应高负载状态。设置径向设置的第一绕组和第二绕组可以通过控制不同的通电状态,实现不同的电机输出负载状态,以使电机适用于更多的工况。
电机40还包括检测电路,用于检测第一绕组423和第二绕组424通电与断电的状态。
在本实施例中,电机40为无刷直流内转子电机40。当然。电机40也可以外转子电机40。
转子41被设置为绕第一轴线401转动。转子41上设有用于产生磁场的永磁体411,永磁体槽沿第一轴线401的周向间隔排列,用于放置能产生或感应磁场的永磁体411。转子41套设在定子42内并与定子42之间形成径向间隙。
第一绕组423用于在电源作用下产生第一磁场,第二绕组424用于在电源作用下产生与第一磁场重叠的第二磁场。第一绕组423和第二绕组424沿第一轴线401的径向设置。
以第一绕组423和第二绕组424为例进行说明,在同一齿部422上沿第一轴线401的径向依次设置第一绕组423和第二绕组424,第一绕组423和第二绕组424之间设置绝缘层以隔绝两个磁场的相互干扰。
需要说明的是,这里的同一齿部422包括同一个的多个齿部422和同一个的单个齿部422。
这样,若干个第一绕组423彼此之间以串联或并联的方式连接形成三个电压接入端以接入电池包61。若干个第二绕组424彼此之间以串联或并联的方式连接形成另三个电压接入端以接入储能装置。
在本实施例中,第一绕组423的匝数和第二绕组424的匝数不同。在一些实施例中,第一绕组423的线径和第二绕组424的线径不同。在一些实施例中,第一绕组423和第二绕组424的匝数和线径不同。
以上显示和描述了本申请的基本原理、主要特征和优点。本行业的技术人员应该了解,上述实施例不以任何形式限制本申请,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本申请的保护范围内。

Claims (35)

  1. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电机组件,至少部分设置于所述壳体,所述电机组件包括:
    第一电机,用于输出第一扭矩和第一转速;
    第二电机,用于输出第二扭矩和第二转速;
    连接器,选择性的允许所述第一电机和所述第二电机间的动力传递;以使电机组件在多个工作状态之间切换;
    所述输出机构至少连接所述第一电机、所述第二电机和所述连接器中的一个;
    所述电机组件的效率的极限值构成总效率区间,所述电机组件的效率值大于等于70%的部分构成第一效率区间,其中,第一效率区间与总效率区间的比值大于等于0.5。
  2. 根据权利要求1所述的电动工具,其中,所述电机组件的效率值大于等于50%的部分构成第二效率区间,所述第一效率区间与所述第二效率区间的比值大于等于0.4。
  3. 根据权利要求1所述的电动工具,其中,所述连接器包括单向传动组件,所述单向传动组件连接所述输出机构、所述第一电机、所述第二电机中的两个,所述单向传动组件允许所述第一电机和所述第二电机中的至少一个驱动所述输出机构,所述单向传动组件限制所述输出机构驱动所述第一电机以及所述第二电机。
  4. 根据权利要求1所述的电动工具,其中,所述连接器包括离合组件,包括形成或连接所述第一电机或所述第二电机中一个的主动件,和形成或连接另一个的从动件,所述主动件和所述从动件可选择连接。
  5. 根据权利要求1所述的电动工具,其中,所述连接器包括离合组件,所述离合组件包括连接所述第一电机或所述第二电机中一个的第一离合器,和连接另一个的第二离合器,所述第一离合器和所述第二离合器可选择的连接。
  6. 根据权利要求1所述的电动工具,其中,所述连接器包括差速组件,所述差速组件允许所述第一电机和所述第二电机以不同转速同时输出动力给所述输出机构。
  7. 根据权利要求1所述的电动工具,还包括传动组件,用于连接所述电机组 件和所述输出机构。
  8. 根据权利要求1所述的电动工具,还包括控制器,被配置为根据第一设定参数控制所述第一电机与所述第二电机的输出扭矩的比值。
  9. 根据权利要求8所述的电动工具,还包括检测机构,用于检测所述第一设定参数,所述第一设定参数包括输出机构的负载参数。
  10. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电机组件,至少部分设置于所述壳体,所述电机组件包括:
    第一电机,用于输出第一扭矩和第一转速;
    第二电机,用于输出第二扭矩和第二转速;
    连接器,选择性的允许所述第一电机和所述第二电机间的动力传递;
    所述输出机构至少连接所述第一电机、所述第二电机和所述连接器中的至少一个;
    当所述第一电机的输出扭矩大于等于第一扭矩值且小于等于第四扭矩值时,所述第一电机的工作效率大于等于70%;
    当所述第二电机的输出扭矩大于等于第五扭矩值且小于等于第八扭矩值时,所述第二电机的工作效率大于等于70%;
    所述第一扭矩值小于所述第五扭矩值,所述第四扭矩值小于所述第八扭矩值;
    其中,所述电机组件的输出扭矩为大于等于第一扭矩值且小于等于第八扭矩值时,所述电机组件的工作效率大于等于70%。
  11. 根据权利要求10所述的电动工具,其中,所述第一电机的输出扭矩为大于等于第二扭矩值且小于等于第三扭矩值时,所述第一电机的工作效率大于等于75%;所述第二电机的输出扭矩为大于等于第六扭矩值且小于等于第七扭矩值时,所述第一电机的工作效率大于等于75%;所述第二扭矩值小于所述第六扭矩值,所述第三扭矩值小于所述第七扭矩值;所述电机组件的输出扭矩为大于等于第二扭矩值且小于等于第七扭矩值时,所述电机组件的工作效率大于等于75%。
  12. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电机组件,至少部分设置于所述壳体,所述电机组件包括:
    第一电机,用于输出第一扭矩和第一转速;
    第二电机,用于输出第二扭矩和第二转速;
    连接器,选择性的允许所述第一电机和所述第二电机间的动力传递;所述输出机构至少连接所述第一电机、所述第二电机和所述连接器中的至少一个;
    当所述第一电机的工作效率大于等于70%时,所述第一电机的输出扭矩在第一输出扭矩区间内;
    当所述第二电机的工作效率大于等于70%时,所述第二电机的输出扭矩在第二输出扭矩区间内;
    当所述电机组件的工作效率大于等于70%时,所述电机组件的输出扭矩在第三输出扭矩区间内,所述第三输出扭矩区间至少覆盖所述第一输出扭矩区间与所述第二输出扭矩区间。
  13. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电源安装部,用于安装直流电源,
    电机组件,至少部分设置于所述壳体,所述电机组件包括:
    第一电机,所述第一电机输出第一扭矩和第一转速;所述第一电机驱动所述输出机构;
    第二电机,所述第二电机输出第二扭矩和第二转速;所述第二电机驱动所述输出机构;
    所述直流电源为所述第一电机和所述第二电机供电;所述电动工具的标称电压大于等于18V。
  14. 根据权利要求13所述的电动工具,其中,所述第一电机和所述第二电机为无刷电机。
  15. 根据权利要求13所述的电动工具,其中,所述直流电源包括电池包。
  16. 根据权利要求15所述的电动工具,其中,所述电池包为多种电动工具供电。
  17. 根据权利要求13所述的电动工具,其中,所述电动工具的标称电压大于等于18V小于等于56V。
  18. 根据权利要求13所述的电动工具,其中,所述电动工具的标称电压大于56V小于等于120V。
  19. 根据权利要求13所述的电动工具,其中,所述电源安装部至少部分设置于所述壳体。
  20. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;所述输出机构至少部分设置于所述壳体;
    电源安装部,用于安装直流电源,
    电机组件,用于驱动所述输出机构,所述电机组件包括:
    第一电机,所述第一电机输出第一扭矩和第一转速;
    第二电机,所述第二电机输出第二扭矩和第二转速;所述第一电机和所述第二电机被配置为至少具有一种不相同的结构参数。
  21. 根据权利要求20所述的电动工具,其中,所述第一电机与所述第二电机的外径不同。
  22. 根据权利要求21所述的电动工具,其中,所述第一电机外径的直径与所述第二电机外径的直径的比值大于等于0.4。
  23. 根据权利要求20所述的电动工具,其中,所述第一电机与所述第二电机的叠长不同。
  24. 根据权利要求23所述的电动工具,其中,所述第一电机的叠长与所述第二电机的叠长的比值大于等于0.3。
  25. 根据权利要求20所述的电动工具,其中,所述结构参数包括:定子铁芯外径、定子铁芯内径、转子铁芯外径、转子铁芯内径、转子磁极厚度、定子磁极厚度、气隙长度、铁芯长度、定子极对数、定子磁极对应弧度、转子极对数和转子磁极对应弧度。
  26. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电机组件,至少部分设置于所述壳体,
    所述电机组件包括:
    第一电机,用于输出第一扭矩和第一转速;
    第二电机,用于输出第二扭矩和第二转速;
    连接器,选择性的允许所述第一电机和所述第二电机间的动力传递;
    所述输出机构至少连接所述第一电机、所述第二电机和所述连接器中的至少一个;
    供电电源,用于为所述第一电机和所述第二电机供电;
    控制器,用于控制所述电机组件;
    所述控制器被配置为:根据输出机构的负载参数和电机组件的负载分配系数确定所述第一电机的输出参数值与所述第二电机的输出参数值中的至少一个,
    或所述第一电机输出参数与所述第二电机输出参数的比值。
  27. 根据权利要求26所述的电动工具,还包括检测组件,用于检测所述输出机构的负载参数。
  28. 根据权利要求26所述的电动工具,其中,根据输出机构的负载参数确定所述电机组件的需求参数,所述需求参数包括:需求扭矩、需求转速、需求功率中的至少一种。
  29. 根据权利要求28所述的电动工具,其中,所述输出参数包括输出扭矩、输出转速、输出功率中的至少一种。
  30. 根据权利要求26所述的电动工具,其中,所述负载分配系数使得在相同输出机构负载时,所述电机组件的总效率大于等于第一电机或第二电机的效率。
  31. 根据权利要求26所述的电动工具,其中,所述负载分配系数使得电机组件的效率大于等于70%区间在电机组件总效率区间的占比大于等于0.5。
  32. 根据权利要求26所述的电动工具,其中,所述控制器被配置为所述第一电机和所述第二电机同时启动时,所述第一电机和所述第二电机中的一个通过第一参数组控制,所述第一电机和所述第二电机中的另一个通过第二参数组控制,所述第一参数组的参数与所述第二参数组的参数至少一个不同。
  33. 根据权利要求27所述的电动工具,其中,所述控制器被配置为当确定所述第一电机和所述第二电机同时启动,所述电机组件的需求参数小于第二预设值时,切换所述电机组件为所述第一电机或所述第二电机启动。
  34. 根据权利要求26所述的电动工具,其中,所述控制器被配置当确定所述电机组件中所述第一电机或所述第二电机启动时,所述电机组件的需求参数大于第一预设值时,切换所述电机组件为所述第一电机和所述第二电机同时启动。
  35. 一种电动工具,包括:
    壳体;
    输出机构,用于驱动实现设定功能的功能元件;
    电机组件,至少部分设置于所述壳体,
    所述电机组件包括:
    第一电机,用于输出第一扭矩和第一转速;
    第二电机,用于输出第二扭矩和第二转速;
    连接器,选择性的允许所述第一电机和所述第二电机间的动力传递;
    所述输出机构至少连接所述第一电机、所述第二电机和所述连接器中的至少一个;
    供电电源,用于为所述第一电机和所述第二电机供电;
    控制器,用于控制所述电机组件;
    所述控制器被配置为:根据所述输出机构的负载参数,配置第一电机的输出参数与第二电机的输出参数,以使所述电机组件的效率大于等于70%区间在所述电机组件总效率区间的占比大于等于0.5。
PCT/CN2023/116382 2022-09-21 2023-09-01 电动工具 WO2024060963A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202211146803.9 2022-09-21
CN202211146803 2022-09-21
CN202310868955.8 2023-07-14
CN202321854207.6 2023-07-14
CN202310871018.8 2023-07-14
CN202321870645.1 2023-07-14
CN202321854207.6U CN220840026U (zh) 2022-09-21 2023-07-14 电动工具
CN202321870645.1U CN220628968U (zh) 2022-09-21 2023-07-14 电动工具
CN202310868955.8A CN117733798A (zh) 2022-09-21 2023-07-14 电动工具
CN202310871018.8A CN117748814A (zh) 2022-09-21 2023-07-14 电动工具

Publications (1)

Publication Number Publication Date
WO2024060963A1 true WO2024060963A1 (zh) 2024-03-28

Family

ID=90453832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116382 WO2024060963A1 (zh) 2022-09-21 2023-09-01 电动工具

Country Status (1)

Country Link
WO (1) WO2024060963A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060727A (ja) * 2010-09-07 2012-03-22 Isuzu Motors Ltd モータ制御システム
US20150298574A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Dual motor electric vehicle drive with efficiency-optimized power sharing
CN106696759A (zh) * 2017-01-14 2017-05-24 张化锴 一种单行星排结构电动汽车动力总成及其控制方法
CN106828191A (zh) * 2017-02-15 2017-06-13 精进电动科技股份有限公司 双电机非对称动力分配效率优化方法及系统
CN107681801A (zh) * 2016-08-01 2018-02-09 南京德朔实业有限公司 电动工具
US20210328526A1 (en) * 2018-10-07 2021-10-21 Woods Hole Oceanographic Institution Large Dynamic Range Electric Motor
CN216451942U (zh) * 2020-09-08 2022-05-10 南京泉峰科技有限公司 割草机和电动工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060727A (ja) * 2010-09-07 2012-03-22 Isuzu Motors Ltd モータ制御システム
US20150298574A1 (en) * 2014-04-16 2015-10-22 Ford Global Technologies, Llc Dual motor electric vehicle drive with efficiency-optimized power sharing
CN107681801A (zh) * 2016-08-01 2018-02-09 南京德朔实业有限公司 电动工具
CN106696759A (zh) * 2017-01-14 2017-05-24 张化锴 一种单行星排结构电动汽车动力总成及其控制方法
CN106828191A (zh) * 2017-02-15 2017-06-13 精进电动科技股份有限公司 双电机非对称动力分配效率优化方法及系统
US20210328526A1 (en) * 2018-10-07 2021-10-21 Woods Hole Oceanographic Institution Large Dynamic Range Electric Motor
CN216451942U (zh) * 2020-09-08 2022-05-10 南京泉峰科技有限公司 割草机和电动工具

Similar Documents

Publication Publication Date Title
US8030868B2 (en) Electric motor, power apparatus using the same, and self-propelled snow remover
EP3806316B1 (en) Electric tool
US9160211B2 (en) Work machine and brushless motor
CN101885178B (zh) 电动工具
US8421282B2 (en) Power tool
CN102005889B (zh) 一种带有控制功能的无刷直流电机的电驱动设备
WO2008150334A1 (en) Electronically commutated motor and control system employing phase angle control of phase current
US10972023B2 (en) Power tool and control method thereof
JP2022529427A (ja) パワーツールのためのセンサレスモータ制御
WO2024060963A1 (zh) 电动工具
CN111835249A (zh) 电动工具
CN220840026U (zh) 电动工具
US10256701B2 (en) Electric power tool and method for driving brushless motor thereof
JP2019047605A (ja) 電気機器
EP1560318A1 (en) Starting power generation system and starting power generator
JP2004048829A (ja) ブラシレスdcモータ
CN216451942U (zh) 割草机和电动工具
CN109510405A (zh) 一种无感无刷电机及其防堵转控制方法
CN113839538B (zh) 一种转动机器人的无刷马达
CN216216446U (zh) 一种微型无刷电机
WO2022083384A1 (zh) 电动工具
US20240128897A1 (en) Power tool
CN210669803U (zh) 一种过载能力强的直流电机
CN215580642U (zh) 一种用于冷柜压缩机散热的内转子直流无刷电机
KR20140100280A (ko) 팬쉬라우드 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867254

Country of ref document: EP

Kind code of ref document: A1