WO2018147222A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2018147222A1
WO2018147222A1 PCT/JP2018/003793 JP2018003793W WO2018147222A1 WO 2018147222 A1 WO2018147222 A1 WO 2018147222A1 JP 2018003793 W JP2018003793 W JP 2018003793W WO 2018147222 A1 WO2018147222 A1 WO 2018147222A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
semiconductor device
emitting element
opening
light emitting
Prior art date
Application number
PCT/JP2018/003793
Other languages
French (fr)
Japanese (ja)
Inventor
邦夫 岩城
秀之 内海
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2018147222A1 publication Critical patent/WO2018147222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present disclosure relates to a semiconductor device, and more particularly to a semiconductor device having a light detection function.
  • a proximity sensor is known as an example of a semiconductor device having a light detection function.
  • Patent Document 1 discloses a proximity sensor in which a light emitting element and a light receiving element are mounted on one substrate.
  • Such a proximity sensor is incorporated in an electronic device such as a smartphone or a tablet terminal, and is used to detect an object (“detection target object”) close to the device.
  • a housing of an electronic device for example, a smartphone
  • the following problems may occur in conventional proximity sensors. That is, when a part of the light emitted from the light emitting element is reflected without passing through the optical window and is directly detected by the light receiving element (that is, not reflected by an object outside the housing) There is. This is a phenomenon generally called “crosstalk”. When the amount of light (also referred to as a pseudo signal or noise) related to such crosstalk increases, it is erroneously determined that an object has come close even though it does not actually exist.
  • One of the problems of the present disclosure is to provide a semiconductor device that can improve the reliability of detection of a detection target object by suppressing erroneous detection as described above.
  • a semiconductor device provided by the first aspect of the present disclosure includes a substrate having a main surface and a back surface, a light emitting element mounted on the main surface, and light mounted on the main surface apart from the light emitting element.
  • a light detection means having a first detection unit for detecting light emitted from the light emitting element; a case surrounding the light detection means and supported by the main surface; and the main surface side
  • a translucent member having an inner surface facing the inner surface and an outer surface facing the opposite side of the inner surface, the translucent member being supported by the case at a distance from the light detection means in the thickness direction of the substrate, and the translucent member
  • a light-shielding layer provided on the optical member, wherein the light-shielding layer does not transmit light in a wavelength band corresponding to the light emitted from the light-emitting element.
  • the light-shielding layer is formed with a first opening that faces the first detector when viewed in the thickness direction of the substrate.
  • the semiconductor device provided by the second aspect of the present disclosure includes a substrate having a main surface and a back surface, a light emitting element mounted on the main surface, and a distance from the light emitting element in the first direction on the main surface.
  • a light-receiving element mounted on the light-receiving element having a detection unit for detecting light emitted from the light-emitting element; a case surrounding the light-emitting element and supported by the main surface; and a thickness of the substrate
  • the translucent member is provided with a refracting portion that refracts light emitted from the light emitting element in a direction away from the light receiving element in the first direction.
  • FIG. 1 is a perspective view of a semiconductor device according to a first embodiment of the present disclosure.
  • 1 is a plan view of a semiconductor device according to a first embodiment. It is a top view which shows the internal wiring state in the semiconductor device of 1st Embodiment. It is a bottom view of the semiconductor device of a 1st embodiment.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 2.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 2.
  • FIG. 3 is a sectional view taken along line VII-VII in FIG. 2. It is a top view which shows the light emitting element in the semiconductor device of 1st Embodiment.
  • FIG. 9 is a cross-sectional view taken along line IX-IX in FIG.
  • FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21. It is a top view of a semiconductor device based on a 3rd embodiment of this indication.
  • FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG. It is a top view of a semiconductor device based on a 4th embodiment of this indication.
  • FIG. 26 is a sectional view taken along line XXVI-XXVI in FIG. 25. It is a top view of a semiconductor device based on a 5th embodiment of this indication.
  • FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21. It is a top view of a semiconductor device based on a 3rd embodiment of this indication.
  • FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG. It is a top view of a semiconductor device based on a 4th embodiment of this indication.
  • FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG. 27. It is a perspective view of a semiconductor device based on a 6th embodiment of this indication. It is a top view of the semiconductor device of a 6th embodiment. It is a top view which shows the internal wiring state in the semiconductor device of 6th Embodiment. It is a bottom view of the semiconductor device of a 6th embodiment.
  • FIG. 31 is a cross-sectional view taken along line XXXIII-XXXIII in FIG. 30.
  • FIG. 31 is a cross-sectional view taken along line XXXIV-XXXIV in FIG. 30.
  • FIG. 31 is a cross-sectional view taken along line XXXV-XXXV in FIG.
  • FIG. 30 It is a perspective view explaining the translucent member in the semiconductor device of 6th Embodiment. It is an enlarged view explaining the refractive part provided in the said translucent member. It is a cross-sectional enlarged view explaining the modification of the said refractive part. It is a cross-sectional enlarged view explaining another modification of the said refractive part. It is sectional drawing of the light receiving element in the semiconductor device of 6th Embodiment. It is sectional drawing explaining the effect of the semiconductor device of 6th Embodiment. It is a top view of a semiconductor device based on a 7th embodiment of this indication.
  • FIG. 43 is a sectional view taken along line XLIII-XLIII in FIG. 42.
  • FIG. 45 is a cross-sectional view taken along line XLV-XLV in FIG. 44. It is a top view of a semiconductor device based on a 9th embodiment of this indication.
  • FIG. 47 is a sectional view taken along line XLVII-XLVII in FIG. 46.
  • the semiconductor device A10 includes a substrate 10, a light emitting element 31, a light detecting means (light receiving element) 32, a case 40, and a light transmitting member 50.
  • a plurality of inner conductors 21, a plurality of outer conductors 22, a plurality of intermediate conductors 23, a main surface insulating film 28 and a back surface insulating film 29 are arranged on the substrate 10.
  • the translucent member 50 is indicated by a two-dot chain line. In FIG. 3, the case 40 and the translucent member 50 are omitted.
  • the semiconductor device A10 shown in FIGS. 1 to 20 is of a type that is surface-mounted on a circuit board of an electronic device such as a smartphone or a tablet terminal.
  • the shape of the semiconductor device A ⁇ b> 10 in the thickness direction z view (also referred to as “plan view”) of the substrate 10 is a rectangular shape.
  • a direction along the long side of the semiconductor device A10 is referred to as a first direction x (perpendicular to the thickness direction z).
  • a direction along the short side of the semiconductor device A10 is referred to as a second direction y (perpendicular to both the thickness direction z and the first direction x).
  • the substrate 10 is a member for mounting the light emitting element 31 and the light receiving element 32 and mounting the semiconductor device A10 on the circuit board as shown in FIGS. 1 to 3 and FIG.
  • the substrate 10 is an electrical insulator and is made of, for example, a glass epoxy resin.
  • the shape of the substrate 10 in plan view is a rectangular shape having the first direction x as a long side.
  • the substrate 10 has a main surface 11 and a back surface 12.
  • the substrate 10 is provided with a plurality of through holes 13. As shown in FIG. 6, each through hole 13 extends from the main surface 11 to the back surface 12, and the intermediate conductor 23 is disposed so as to fill the through hole. As shown in FIGS. 3 and 4, a plurality of intermediate conductors 23 are embedded in the substrate 10.
  • the main surface 11 and the back surface 12 are surfaces facing opposite sides in the thickness direction z.
  • the main surface 11 and the back surface 12 have a rectangular shape with a long side in the first direction x in a plan view, and are flat surfaces.
  • the inner conductor 21 and the main surface insulating film 28 are disposed, and the light emitting element 31 and the light receiving element 32 are mounted.
  • a case 40 is supported on the main surface 11.
  • the back surface 12 is a surface facing the circuit board when the semiconductor device A10 is mounted.
  • An external conductor 22 and a back surface insulating film 29 are disposed on the back surface 12.
  • the inner conductor 21 is made of Cu, for example.
  • the inner conductor 21 of the present embodiment includes one first inner conductor 211 and a plurality of second inner conductors 212.
  • the first inner conductor 211 is electrically connected to the light emitting element 31, and each second inner conductor is electrically connected to the light receiving element 32.
  • the first inner conductor 211 and the second inner conductor 212 are separated from each other with a partition wall 43 (described later) of the case 40 as a boundary in the first direction x.
  • the first inner conductor 211 and at least one second inner conductor 212 may be electrically connected to each other on the main surface 11. All the inner conductors 21 of this embodiment are covered with a plating layer.
  • the plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
  • the first inner conductor 211 includes a first pad portion 211a and a die pad portion 211b.
  • the die pad portion 211b is separated from the first pad portion 211a in the second direction y, and the light emitting element 31 is mounted thereon.
  • the first pad portion 211 a is electrically connected to the light emitting element 31 through the first wire 38.
  • the die pad portion 211b is electrically connected to the light emitting element 31 via the first bonding layer 33 (see FIG. 5).
  • Each of the first pad portion 211a and the die pad portion 211b is electrically connected to one corresponding intermediate conductor 23.
  • a rectangular second pad portion 212 a is provided at the tip of each second inner conductor 212.
  • Each of the second pad portions 212a is arranged along the second direction y.
  • Each second pad portion 212 a is electrically connected to the light receiving element 32 via the second wire 39.
  • Each second inner conductor 212 is electrically connected to the corresponding one intermediate conductor 23.
  • the main surface insulating film 28 is an electric insulating member that covers at least a part of each of the first inner conductor 211 and the second inner conductor 212 as shown in FIGS. 3 and 5 to 7.
  • the main surface insulating film 28 is, for example, a solder resist film.
  • a first opening 281 and a second opening 282 are formed in the main surface insulating film 28.
  • a part of the first inner conductor 211 is exposed from the first opening 281, and the light emitting element 31 and the first wire 38 are in the first opening 281 in a plan view (in other words, the light emitting element 31 and the first wire 38 1 wire 38 is surrounded by a peripheral edge defining the first opening 281).
  • the second pad portion 212a which is a part of the second inner conductor 212 is exposed.
  • the outer conductor 22 is a conductive member that conducts to the light emitting element 31 or the light receiving element 32 via the intermediate conductor 23 and the inner conductor 21 as shown in FIGS. 4, 6, and 7.
  • Each outer conductor 22 is disposed on the back surface 12 of the substrate 10 and is electrically connected to the first inner conductor 211 or one second inner conductor 212 via the intermediate conductor 23.
  • the outer conductor 22 and the intermediate conductor 23 are made of the same material (for example, Cu) as the inner conductor 21.
  • the outer conductor 22 is covered with a plating layer in the same manner as the inner conductor 21.
  • the plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
  • the back surface insulating film 29 is an electrical insulating member that covers a part of each external conductor 22 as shown in FIGS.
  • the back surface insulating film 29 is, for example, a solder resist film, like the main surface insulating film 28.
  • the external conductor 22 exposed from the back surface insulating film 29 is electrically connected to the wiring pattern formed on the circuit board via cream solder or the like.
  • the light emitting element 31 is a semiconductor element that emits light (electromagnetic wave) having a predetermined wavelength, and is, for example, a semiconductor laser (such as a vertical cavity surface emitting laser). In the present embodiment, the light emitting element 31 emits infrared rays (for example, a wavelength of 800 nm or more). Alternatively, the light emitting element 31 may be a light emitting diode. As shown in FIGS. 2, 3, and 8, a light emitting region 311 that emits light in the thickness direction z and an upper surface electrode 312 to which the first wire 38 is connected are provided on the upper surface of the light emitting element 31. It has been.
  • the light emitting element 31 is electrically connected to the first pad portion 211 a through the first wire 38.
  • a lower surface electrode 313 (see FIG. 9) is provided on the lower surface of the light emitting element 31, and the light emitting element 31 is electrically connected to the die pad portion 211 b through the first bonding layer 33.
  • the light emitting element 31 is a vertical cavity surface emitting laser (VCSEL)
  • VCSEL vertical cavity surface emitting laser
  • the light emitting element 31 includes a semiconductor substrate 310, an upper surface electrode 312, a lower surface electrode 313, a first DBR layer 315, a second DBR layer 316, an active layer 317, an insulating layer 318, and a current confinement layer 319.
  • DBR is a distributed Bragg reflector.
  • the semiconductor substrate 310 is made of a compound semiconductor such as GeAs.
  • a first DBR layer 315 is disposed on the upper surface of the semiconductor substrate 310, and a lower surface electrode 313 is disposed on the lower surface.
  • a second DBR layer 316 is disposed on a part of the upper surface of the first DBR layer 315.
  • An active layer 317 is disposed between the first DBR layer 315 and the second DBR layer 316.
  • the active layer 317 is made of a compound semiconductor and emits light having a wavelength of ⁇ p by spontaneous emission and stimulated emission. ⁇ p is 940 nm or 850 nm.
  • the first DBR layer 315 and the second DBR layer 316 are made of a semiconductor compound and efficiently reflect the light emitted from the active layer 317.
  • the first DBR layer 315 includes two layers having different refractive indexes as a set, and a plurality of such sets are stacked. Each layer in each set is made of AlGaAs and has a thickness of ⁇ p / 4.
  • the second DBR layer 316 has the same configuration as the first DBR layer 315.
  • the thickness may be different between the second DBR layer 316 and the first DBR layer 315 or may be the same.
  • the first DBR layer 315 is configured to be thicker than the second DBR layer 316, but the present disclosure is not limited thereto.
  • the first DBR layer 315 is set to be an n-type semiconductor layer
  • the second DBR layer 316 is set to be a p-type semiconductor layer.
  • the current confinement layer 319 includes a predetermined amount of Al and is easily oxidized.
  • the current confinement layer 319 is formed inside the second DBR layer 316.
  • the current confinement layer 319 is formed by oxidizing a part of the second DBR layer 316.
  • the current confinement layer 319 can also be formed by ion implantation.
  • an opening is formed in the current confinement layer 319 so as to overlap the light emitting region 311, and current flows through the opening.
  • the insulating layer 318 is disposed so as to cover the first DBR layer 315 and the second DBR layer 316.
  • the insulating layer 318 is made of, for example, SiO 2 .
  • the upper surface electrode 312 is disposed so as to cover the insulating layer 318.
  • the upper surface electrode 312 is made of a metal such as Au, for example.
  • a through-hole (circular shape in plan view) that defines the light emission region 311 is formed in the upper surface electrode 312.
  • the insulating layer 318 is exposed from the through hole. In the vicinity of the light emitting region 311, at least one opening is formed in the insulating layer 318, and a part of the upper surface electrode 312 is disposed in the opening and is electrically connected to the second DBR layer 316.
  • the second DBR layer 316 is formed with an annular recess 314 that surrounds the light emission region 311 in a plan view and is recessed in the thickness direction z.
  • the annular recess 314 is recessed up to the first DBR layer 315.
  • the entire surface of the annular recess 314 is covered with an insulating layer 318.
  • the active layer 317 has a region that overlaps with the light emission region 311 in a plan view and is wider than the light emission region. This region is separated from other regions of the active layer 317 by the annular recess 314 (and the insulating layer 318).
  • the first wire 38 is connected to the upper surface electrode 312. Specifically, as shown in FIG. 8, the upper surface electrode 312 has a circular portion that is separated from the light emitting region 311 and the annular recess 314. One end of the first wire 38 is fixed to this circular portion.
  • a plurality of light emitting regions 311 (3 or 4 as an example) may be provided in the light emitting element 31.
  • the first bonding layer 33 is interposed between the lower surface electrode 313 of the light emitting element 31 and the die pad portion 211 b of the first inner conductor 211.
  • the light emitting element 31 is mounted on a die pad portion 211b disposed on the main surface 11 by die bonding.
  • the first bonding layer 33 is made of, for example, Ag paste (epoxy resin containing Ag).
  • the light receiving element 32 is a semiconductor element, and is supported on the main surface 11 at a position spaced from the light emitting element 31 in the first direction x, as shown in FIGS. 3 and 5. As shown in FIG. 3 or FIG. 10, the light receiving element 32 includes a plurality of electrode pads 321, a functional region 322, a laminated optical film 323, a first detection unit 351, and a second detection unit 352. As an example, the light receiving element 32 may be configured by an integrated circuit (IC) including these elements. In FIG. 10, it appears that there are two functional areas 322, but these are actually connected to form one functional area.
  • IC integrated circuit
  • the light emitted from the light emitting element 31 is detected by the first detection unit 351.
  • the first detection unit 351 is, for example, a photodiode, and outputs a predetermined voltage when light is detected.
  • the second detection unit 352 detects light having a wavelength band different from that of the first detection unit 351.
  • the second detection unit 352 detects visible light (for example, the wavelength band is 380 to 780 nm).
  • the second detection unit 352 is configured by, for example, a photodiode.
  • the second detection unit 352 can be in an illuminance sensor format that detects all bands of visible light at once, or in an RGB color sensor format that detects visible light by separating it into red, green, and blue color signals.
  • Each electrode pad 321 is made of, for example, Al, and is electrically connected to one of the first detection unit 351, the second detection unit 352, and the functional region 322. As shown in FIG. 3, each electrode pad 321 is electrically connected to one corresponding second inner conductor 212 through the second wire 39.
  • the functional region 322 is electrically connected to the first detection unit 351 and the second detection unit 352, and outputs a light detection signal (proximity signal) based on output signals from the first detection unit 351 and the second detection unit 352.
  • the functional area 322 A / D converts the output current from each of the detection units 351 and 352, and outputs a predetermined light detection signal according to the conversion result.
  • region 322 outputs a photon detection signal, when the said voltage exceeds the predetermined threshold value.
  • the laminated optical film 323 transmits only light in a wavelength band corresponding to the light emitted from the light emitting element 31.
  • the laminated optical film 323 is made of, for example, a synthetic resin.
  • the laminated optical film 323 covers the first detection unit 351 and the functional region 322. Therefore, the first detection unit 351 and the functional region 322 are not affected by light in a wavelength band corresponding to visible light (light detected by the second detection unit 352).
  • the first detection unit 351 is provided close to the laminated optical film 323 (for example, so as to be in direct contact), and the functional region 322 is provided apart from the laminated optical film 323.
  • the present disclosure is not limited to this.
  • the first detector 351 and the second detector 352 are formed in one light receiving element 32.
  • the first detector 351 may be formed in one of the two light receiving elements 32 and the second detector 352 may be formed in the other light receiving element 32.
  • the first detection unit 351 is formed in the first light receiving element 32
  • the second detection unit 352 of the illuminance sensor type is formed in the second light receiving element 32
  • the third A second detector 352 in the form of an RGB color sensor may be formed on the light receiving element 32.
  • the second bonding layer 34 is an electrical insulating member interposed between the light receiving element 32 and the main surface insulating film 28.
  • the light receiving element 32 is fixed to the main surface 11 of the substrate 10 by the second bonding layer 34.
  • the second bonding layer 34 is made of, for example, an epoxy resin or polyimide.
  • the first wire 38 is a conductive member that connects the upper surface electrode 312 of the light emitting element 31 and the first pad portion 211a of the first internal conductor 211, as shown in FIGS.
  • the first wire 38 is disposed along the second direction y in plan view.
  • the second wire 39 connects one electrode pad 321 (light receiving element 32) and a corresponding second pad portion 212 a (second internal conductor 212). It is a conductive member.
  • any second wire 39 is located between the light emitting element 31 and the light receiving element 32 in the first direction x.
  • the plurality of second wires 39 are arranged to be separated from each other along one side of the light receiving element 32 in plan view.
  • the plurality of second wires 39 may be arranged along two sides (for example, two sides separated from each other in the first direction x), three sides, or four sides of the light receiving element 32.
  • the first wire 38 and the plurality of second wires 39 are made of the same material (for example, Au).
  • the case 40 is a member that is supported by the main surface 11 of the substrate 10 and surrounds at least the light receiving element 32 as shown in FIGS. 2 and 5 to 7. In the present embodiment, the case 40 surrounds both the light emitting element 31 and the light receiving element 32.
  • the case 40 has a light shielding property. Case 40 is made of, for example, ceramics or black epoxy resin.
  • the case 40 has a top plate 41, a side wall 42, and a partition wall 43. In the present embodiment, the side wall 42 has four rectangular outer surfaces.
  • the top plate 41 is disposed away from the light receiving element 32 in the thickness direction z.
  • the top plate 41 is provided with an incident opening 411 that faces the light receiving element 32 in plan view.
  • the opening portion “facing” a certain object means that the opening portion overlaps at least a part of the object in a plan view (at least a part of the object is visually recognized through the opening).
  • the size relationship between the opening and the object does not matter (the same applies hereinafter).
  • the top plate 41 is provided with an emission opening 412 that faces the light emitting element 31 in a plan view.
  • the entrance opening 411 and the exit opening 412 are separated from each other in the first direction x.
  • the shapes of the entrance opening 411 and the exit opening 412 in a plan view are circular.
  • the incident opening 411 surrounds the first detection unit 351 and the second detection unit 352 of the light receiving element 32 in plan view.
  • the light emission region 311 of the light emitting element 31 is located at the center of the emission opening 412 in plan view.
  • the top plate 41 is provided with at least two air vent grooves 44.
  • the first air vent groove 44 communicates with the incident opening 411 and the outside, and the second air vent groove 44 communicates with the output opening 412 and the outside.
  • Each air vent groove 44 is provided so as to be recessed downward from the upper surface of the top plate 41.
  • the side wall 42 is connected to the peripheral surface of the top plate 41 in plan view, and one end (the lower end in FIG. 5) in the thickness direction z is supported by the main surface 11 of the substrate 10.
  • the side wall 42 of the case 40 surrounds the light emitting element 31 and the light receiving element 32.
  • the side wall 42 has a top surface 421 facing the same direction as the main surface 11 and a bottom surface 422 facing the opposite side of the top surface 421.
  • the bottom surface 422 is bonded to the main surface insulating film 28 via an adhesive.
  • the partition wall 43 is located between the light emitting element 31 and the light receiving element 32 in a plan view.
  • one end (upper end) of the partition wall 43 is connected to the top plate 41, and the other end (lower end) is joined to the main surface insulating film 28 with an adhesive.
  • the partition wall 43 is disposed along the second direction y in plan view. In the present embodiment, the partition 43 separates the first area 61 in which the light receiving element 32 is disposed and the second area 62 in which the light emitting element 31 is disposed.
  • the translucent member 50 is a translucent member, and is supported by the case 40 while being separated from the light receiving element 32 in the thickness direction z, as shown in FIGS.
  • the translucent member 50 is supported by the top plate 41 of the case 40.
  • the translucent member 50 is made of, for example, glass or synthetic resin.
  • the translucent member 50 has an outer surface 51 and an inner surface 52.
  • the outer surface 51 is a flat surface and is flush with the top surface 421 of the side wall 42 of the case 40.
  • the inner surface 52 is a surface facing the main surface 11.
  • the translucent member 50 is supported on the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41 of the case 40.
  • the adhesive layer 59 is made of, for example, an acrylic resin or an epoxy resin.
  • the entrance opening 411 and the exit opening 412 are closed by the translucent member 50 from above.
  • the first area 61 and the second area 62 are surrounded by the substrate 10, the case 40, and the translucent member 50.
  • part or all of the first area 61 may be filled with a synthetic resin having translucency.
  • a part or all of the second area 62 may be filled with a synthetic resin having translucency.
  • this is not the case when the light emitting element 31 may be damaged by filling the protective resin.
  • the translucent member 50 is provided with a light shielding layer 53 that does not transmit light in a wavelength band corresponding to the light emitted from the light emitting element 31.
  • the light shielding layer 53 is an IR cut filter made of, for example, a synthetic resin.
  • the light shielding layer 53 can be provided on the translucent member 50 by printing, for example.
  • the light shielding layer 53 has a first opening 531 formed so as to expose a part of the translucent member 50 and to face the first detection unit 351 in plan view.
  • the light shielding layer 53 is in contact with the inner surface 52 of the translucent member 50. Instead of this, as shown in FIG.
  • a light shielding layer 53 may be provided so as to contact the outer surface 51 of the translucent member 50. Furthermore, as shown in FIG. 14, the first light shielding layer 53 may be provided on the outer surface 51 of the translucent member 50, and the second light shielding layer 53 may be provided on the inner surface 52 of the translucent member 50.
  • the first opening 531 is circular. A part of the first detection unit 351 of the light receiving element 32 is located inside the first opening 531. The entire second detection unit 352 overlaps the light shielding layer 53. The entire first opening 531 is located inside the incident opening 411.
  • the first opening 531 may have an elliptical shape as shown in FIG. 16 or a rectangular shape as shown in FIG. Or as shown in FIG. 18, the 1st opening part 531 is good also as a shape which covered a part of circular opening. In any case, the first opening 531 is located inside the incident opening 411.
  • the detection accuracy (false detection) of the semiconductor device A10 with respect to the detection target located at a specific distance from the semiconductor device A10. (Suppression accuracy) can be optimized.
  • the second detection unit 352 may have a portion overlapping the first opening 531 in plan view.
  • the light shielding layer 53 has a second opening 532, and the second opening is separated from the first opening 531 in the first direction x.
  • the light-transmitting member 50 is partly exposed and formed so as to face the light emitting element 31 in a plan view.
  • the second opening 532 has a circular shape and is located inside the emission opening 412 in plan view.
  • the light L emitted from the light emitting element 31 is reflected by the upper surface of the optical window OW (boundary surface S between the optical window and external air), and the first detection unit of the light detection unit Suppose that it progressed toward 351. However, the reflected light is blocked by the light shielding layer 53 after passing through the light transmitting member 50. For this reason, the reflected light does not reach the first detection unit 351 and crosstalk does not occur.
  • the light traveling path when the light shielding layer 53 does not exist is indicated by L ′ (two-dot chain line).
  • the light emitted from the light emitting element 31 may be reflected by the lower surface of the optical window OW, for example.
  • the light shielding layer 53 transmits visible light (wavelength band different from infrared). For this reason, while aiming at prevention of erroneous detection of the first detection unit 351, the adjacent second detection unit 352 can have a sufficiently large light reception viewing angle, and detection by the second detection unit 352 is appropriately performed. Can be.
  • VCSELs have better light directivity than light emitting diodes. Therefore, if the light emitting element 31 is configured by a VCSEL, crosstalk can be more reliably suppressed, which contributes to prevention of erroneous detection of the first detection unit 351.
  • the top plate 41 of the case 40 is solid except for the entrance opening 411 and the exit opening 412. Since the solid part supports the translucent member 50, the translucent member 50 can be reliably fixed to the case 40, and the translucent member 50 can be prevented from being easily deformed by an external force.
  • the case 40 has a partition wall 43 located between the light emitting element 31 and the light detection means in plan view. One end of the partition wall 43 is connected to the top plate 41 in the thickness direction z. A region in the case 40 (region surrounded by the substrate 10, the case 40, and the translucent member 50) is divided into a first area 61 (there is a light detection means) and a second area 62 (the light emitting element 31) by the partition wall 43. ) And are separated. By providing the partition wall 43, the rigidity of the case 40 can be increased. In addition, in the semiconductor device A10, light emitted from the light emitting element 31 is prevented from reaching the first detection unit 351 of the light detection unit directly, so that erroneous detection by the first detection unit 351 is suppressed. be able to.
  • the light shielding member 53 has a second opening 532 formed so as to face the light emitting element 31 in a plan view. With such a configuration, it is possible to emit only light within a specific range (within a specific solid angle) out of the light emitted from the light emitting element 31 toward the detection target. This contributes to suppression of erroneous detection by the first detection unit 351.
  • the internal conductor 21 disposed on the main surface 11 of the substrate 10 and the external conductor 22 disposed on the back surface 12 are electrically connected to each other by an intermediate conductor 23 embedded in the substrate 10. With such a configuration, since the outer conductor 22 is not exposed to the side of the semiconductor device A10, the semiconductor device A10 can be downsized.
  • the inner conductor 21 (first and second inner conductors 211 and 212) and the outer conductor 22 are covered with a plating layer.
  • the internal conductor 21 is protected from an impact such as heat when the light emitting element 31 and the light receiving element 32 are mounted or when the first wire 38 and the second wire 39 are connected. Can do.
  • the semiconductor device A10 is mounted on the circuit board, the erosion of the external conductor 22 due to the influence of cream solder or the like can be prevented.
  • FIGS. A semiconductor device A20 according to the second embodiment of the present disclosure will be described with reference to FIGS.
  • the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the semiconductor device A20 of the present embodiment is different from the semiconductor device A10 described above in the configuration of the case 40.
  • the case 40 is not provided with the partition wall 43. For this reason, there is one hollow region in the case 40. Further, the case 40 is not provided with an air vent groove that communicates with the emission opening 412 and the outside. There is one opening formed in the main surface insulating film 28.
  • the light transmissive member 50 is provided with a light shielding layer 53 that does not transmit infrared rays.
  • the light shielding layer 53 has a first opening 531 formed so as to face the first detection unit 351 in plan view. Therefore, the function and effect described with reference to FIG. 20 can also be obtained by the semiconductor device A20. That is, it becomes possible to suppress noise and suppress false detection by the light detection means.
  • the light emitting element 31 is preferably a VCSEL rather than a light emitting diode, but the present disclosure is not limited to this.
  • FIGS. A semiconductor device A30 according to the third embodiment of the present disclosure will be described with reference to FIGS.
  • the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the semiconductor device A30 of the present embodiment is different from the semiconductor device A10 described above in the configuration of the case 40 and the arrangement of the translucent member 50.
  • the semiconductor device A30 as shown in FIG. 23 and FIG. 24, no partition is provided in the case 40, and there is one hollow region. There is also no air vent groove communicating with the exit opening 412 and the outside.
  • the top surface of the top plate 41 is flush with the top surface 421 of the side wall 42.
  • the number of openings provided in the main surface insulating film 28 is one.
  • the translucent member 50 is supported by the top plate 41 through the adhesive layer 59 so that the outer surface 51 faces the top plate 41.
  • the entrance opening 411 and the exit opening 412 are closed by the translucent member 50 from below.
  • An air vent groove 44 communicating with the incident opening 411 and the outside is provided so as to be recessed from the lower surface of the top plate 41.
  • the light transmissive member 50 is provided with a light shielding layer 53 that does not transmit infrared light.
  • the light shielding layer 53 has a first opening 531 formed so as to face the first detection unit 351 in plan view. Therefore, the semiconductor device A30 can also suppress noise and suppress false detection of the light detection means. Since no partition is provided in the case 40, the light emitting element 31 is preferably a VCSEL rather than a light emitting diode, but the present disclosure is not limited thereto.
  • FIG. 25 and FIG. 25 A semiconductor device A40 according to the fourth embodiment of the present disclosure will be described based on FIG. 25 and FIG. In these drawings, the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • FIG. 25 is a plan view of the semiconductor device A40. 26 is a cross-sectional view taken along line XXVI-XXVI in FIG.
  • the semiconductor device A40 of this embodiment is different from the semiconductor device A10 described above in the configuration of the case 40, the translucent member 50, and the like.
  • the top surface of the top plate 41 is flush with the top surface 421 of the side wall 42.
  • the translucent member 50 includes a first translucent member 501 and a second translucent member 502.
  • the first light transmissive member 501 closes the incident opening 411.
  • the first light transmissive member 501 is provided with a light shielding layer (first light shielding layer) 53 having a first opening 531.
  • the second light transmissive member 502 closes the emission opening 412.
  • the second light transmitting member 502 is provided with a light shielding layer (second light shielding layer) 53 having a second opening 532.
  • the first light transmissive member 501 and the second light transmissive member 502 are separated from each other.
  • the first light transmissive member 501 and the second light transmissive member 502 are contained in the top plate 41 and supported by the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41.
  • the light-shielding layer 53 may not be provided on the second light-transmissive member 502.
  • the semiconductor device A40 at least the first light-transmissive member 501 is provided with a light-shielding layer 53 that does not transmit infrared rays.
  • the light-shielding layer 53 is formed so as to face the first detection unit 351 in plan view.
  • An opening 531 is provided. Therefore, the semiconductor device A40 can also suppress noise and prevent erroneous detection of the light detection means.
  • FIGS. A semiconductor device A50 according to the fifth embodiment of the present disclosure will be described with reference to FIGS.
  • the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the semiconductor device A50 of this embodiment is different from the semiconductor device A10 described above in the configuration of the case 40, the translucent member 50, and the like.
  • the top surface of the top plate 41 is flush with the top surface 421 of the side wall.
  • the translucent member 50 includes the first translucent member 501 and the second translucent member 502 as in the semiconductor device A40 described above. In the first direction x, the first light transmissive member 501 and the second light transmissive member 502 are separated from each other. The first light transmissive member 501 and the second light transmissive member 502 are supported by the top plate 41 through the adhesive layer 59 so that the outer surface 51 faces the top plate 41.
  • the second light transmissive member 502 may not include the light shielding layer 53.
  • the semiconductor device A50 At least the first light transmitting member 501 is provided with a light shielding layer 53 that does not transmit infrared rays.
  • the light shielding layer 53 is formed so as to face the first detection unit 351 in plan view.
  • An opening 531 is provided. Therefore, also with the semiconductor device A50, it is possible to suppress noise and suppress erroneous detection of the light detection means.
  • the semiconductor device B10 includes a substrate 10, a light emitting element 31, a light receiving element 32, a case 40, and a translucent member 50.
  • a plurality of inner conductors 21, a plurality of outer conductors 22, a plurality of intermediate conductors 23, a main surface insulating film 28 and a back surface insulating film 29 are arranged on the substrate 10. 29 and 30, the translucent member 50 is indicated by a two-dot chain line.
  • FIG. 31 is a plan view of the semiconductor device B10, and the case 40 and the translucent member 50 are omitted.
  • the substrate 10 is a member on which the light emitting element 31 and the light receiving element 32 are mounted and the semiconductor device B10 is mounted on the circuit board as shown in FIGS.
  • the substrate 10 is an electrical insulator and is made of, for example, a glass epoxy resin.
  • the shape of the substrate 10 in plan view is a rectangular shape having the first direction x as a long side.
  • the substrate 10 has a main surface 11 and a back surface 12.
  • the substrate 10 is provided with a plurality of through holes 13 extending in the thickness direction z (see FIG. 34). In each through hole 13, an intermediate conductor 23 is disposed so as to fill the through hole 13.
  • the main surface 11 and the back surface 12 face each other in the thickness direction z.
  • the main surface 11 and the back surface 12 are both flat in shape when viewed from above, with the long side in the first direction x.
  • the inner conductor 21 and the main surface insulating film 28 are disposed, and the light emitting element 31 and the light receiving element 32 are mounted.
  • Case 40 is supported by main surface 11.
  • the back surface 12 is a surface facing the wiring board or the like when the semiconductor device B10 is mounted.
  • the external conductor 22 and the back surface insulating film 29 are disposed on the back surface 12.
  • the inner conductor 21 is made of Cu, for example.
  • the internal conductor 21 includes a first internal conductor 211 that is conductive to the light emitting element 31 and a plurality of second internal conductors 212 that are conductive to the light receiving element 32.
  • the first inner conductor 211 and the second inner conductor 212 are separated from each other with the partition wall 43 of the case 40 as a boundary (see FIG. 33).
  • Each of the inner conductors 21 is covered with a plating layer.
  • the plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
  • the first inner conductor 211 has a first pad portion 211a and a die pad portion that is spaced apart from the first pad portion 211a in the second direction y and mounts the light emitting element 31. 211b.
  • a first wire 38 is connected to the first pad portion 211a.
  • the first pad portion 211 a is electrically connected to the light emitting element 31 through the first wire 38.
  • the die pad portion 211 b is electrically connected to the light emitting element 31 through the first bonding layer 33.
  • the first pad portion 211a and the die pad portion 211b are electrically connected to the intermediate conductor 23, respectively.
  • a second pad portion 212a having a rectangular shape in plan view is provided at the tip of each second inner conductor 212.
  • Each of the second pad portions 212a is arranged along the second direction y.
  • a second wire 39 is connected to each second pad portion 212 a, and the second inner conductor 212 is electrically connected to the light receiving element 32 via the second wire 39.
  • the second inner conductors 212 are electrically connected to the intermediate conductor 23, respectively.
  • the main surface insulating film 28 is an electrical insulating member that partially covers the first inner conductor 211 and the second inner conductor 212 as shown in FIGS. 31 and 33 to 35.
  • the main surface insulating film 28 is, for example, a solder resist film.
  • a first opening 281 and a second opening 282 are formed in the main surface insulating film 28. In plan view, both the light emitting element 31 and the first wire 38 are surrounded by the first opening 281.
  • a second pad portion 212 a that is a part of the second inner conductor 212 is exposed from the second opening 282.
  • Each outer conductor 22 is electrically connected to the light emitting element 31 or the light receiving element 32 through the intermediate conductor 23 and the inner conductor 21 as shown in FIGS. 32, 34 and 35.
  • Each outer conductor 22 is electrically connected to one of the first inner conductor 211 and the second inner conductor 212 via the intermediate conductor 23.
  • the outer conductor 22 and the intermediate conductor 23 are made of the same material (for example, Cu) as the inner conductor 21.
  • the outer conductor 22 is covered with a plating layer in the same manner as the inner conductor 21.
  • the plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
  • the back surface insulating film 29 is an electrical insulating member that covers a part of the outer conductor 22 as shown in FIGS.
  • the back surface insulating film 29 is, for example, a solder resist film, like the main surface insulating film 28.
  • the light emitting element 31 is a semiconductor element that emits light.
  • the light emitting element 31 is a VCSEL that emits laser light.
  • the light emitting element 31 may be a light emitting diode emitting infrared rays.
  • a light emitting region 311 that emits light in the thickness direction z and an upper surface electrode 312 to which the first wire 38 is connected are provided on the upper surface of the light emitting element 31. .
  • the light emitting element 31 is electrically connected to the first pad portion 211 a of the first inner conductor 211 via the first wire 38.
  • a lower surface electrode 313 is provided on the lower surface of the light emitting element 31, and the light emitting element 31 is electrically connected to the die pad portion 211 b of the internal conductor 21 through the first bonding layer 33.
  • the configuration of the VCSEL used as the light emitting element 31 is the same as the configuration described with reference to FIGS. 8 and 9, for example.
  • the first bonding layer 33 is a conductive member interposed between the lower surface electrode 313 of the light emitting element 31 and the die pad portion 211b of the first inner conductor 211, as shown in FIGS.
  • the light emitting element 31 is mounted on a die pad portion 211b disposed on the main surface 11 by die bonding.
  • the first bonding layer 33 is made of, for example, Ag paste (epoxy resin containing Ag).
  • the light receiving element 32 is a semiconductor element that is supported by the main surface 11 and spaced from the light emitting element 31 in the first direction x and detects light emitted from the light emitting element 31.
  • the light receiving element 32 is formed of, for example, an integrated circuit (IC), and includes a plurality of electrode pads 321 and a detection unit 350, a functional region 322, and a laminated optical film 324 as shown in FIG.
  • IC integrated circuit
  • the detection unit 350 is a part that detects light that is emitted from the light emitting element 31 and then reflected by the detection target, and is configured by, for example, a photodiode. When detecting the light, the detecting unit 350 outputs a voltage due to the photovoltaic effect.
  • Each electrode pad 321 is made of, for example, Al, and is electrically connected to the detection unit 350 or the functional region 322. As shown in FIG. 31, each electrode pad 321 is electrically connected to the second inner conductor 212 via the second wire 39.
  • the functional area 322 is electrically connected to the detection unit 350. As an example, the functional area 322 outputs a proximity signal indicating the proximity of the detection target based on the output voltage from the detection unit 350. More specifically, the functional area 322 outputs a proximity signal to the outside of the semiconductor device B10 when the output voltage exceeds a preset threshold value.
  • the laminated optical film 324 is made of a synthetic resin that transmits only light in a wavelength range corresponding to the light emitted from the light emitting element 31.
  • the laminated optical film 324 covers the detection unit 350 and the functional region 322. For this reason, the detection unit 350 and the functional region 322 are not affected by light in a wavelength region different from the light emitted from the light emitting element 31 such as visible light.
  • the second bonding layer 34 is an electrically insulating member interposed between the light receiving element 32 and the back surface insulating film 29 as shown in FIGS. 33 and 34.
  • the light receiving element 32 is fixed to the main surface 11 of the substrate 10 by the second bonding layer 34.
  • the second bonding layer 34 is made of, for example, an epoxy resin or polyimide.
  • the first wire 38 is a conductive member that connects the upper surface electrode 312 of the light emitting element 31 and the first pad portion 211a of the first internal conductor 211, as shown in FIG. In the present embodiment, the first wire 38 is disposed along the second direction y. Each second wire 39 connects the electrode pad 321 of the light receiving element 32 and the second pad portion 212 a of the second inner conductor 212. In the present embodiment, the plurality of second wires 39 are all arranged between the light emitting element 31 and the light receiving element 32 in the first direction x and along one side of the light receiving element 32 in plan view.
  • the second wires 39 may be arranged along two sides of the light receiving element 32 (for example, two sides separated from each other in the first direction x), or may be arranged along four sides of the light receiving element 32.
  • the first wire 38 and the second wire 39 are made of the same material (for example, Au).
  • the case 40 is a member that is supported by the main surface 11 of the substrate 10 and surrounds at least the light emitting element 31 as shown in FIG. In the present embodiment, the case 40 surrounds both the light emitting element 31 and the light receiving element 32.
  • Case 40 is made of a light-insulating electrical insulating member (for example, ceramics or black epoxy resin).
  • the case 40 has a top plate 41, a side wall 42, and a partition wall 43.
  • the top plate 41 is disposed away from the light emitting element 31 and the light receiving element 32 in the thickness direction z.
  • the top plate 41 is provided with an emission opening 412 facing the light emitting element 31 and an incident opening 411 facing the light receiving element 32 in plan view.
  • the exit opening 412 and the entrance opening 411 are separated from each other in the first direction x.
  • the shapes of the exit opening 412 and the entrance opening 411 in plan view are both circular.
  • the light emission region 311 of the light emitting element 31 is located at the center of the emission opening 412.
  • the incident opening 411 surrounds the detection unit 350 of the light receiving element 32 in plan view.
  • the top plate 41 is provided with an air vent groove 44 that communicates with the incident opening 411 and the outside.
  • the air vent groove 44 is provided so as to be recessed from the upper surface of the top plate 41.
  • the side wall 42 is connected to the peripheral surface of the top plate 41 in plan view, and one end in the thickness direction z is supported by the main surface 11 of the substrate 10.
  • the side wall 42 has a top surface 421 facing the same direction as the main surface 11 and a bottom surface 422 facing the opposite side of the top surface 421.
  • the bottom surface 422 is bonded to the main surface insulating film 28 via an adhesive.
  • the partition wall 43 is located between the light emitting element 31 and the light receiving element 32 in a plan view, and one end (upper end in FIG. 33) is connected to the top plate 41 in the thickness direction z. The other end (lower end) of the partition wall 43 is bonded to the main surface insulating film 28 via an adhesive.
  • the partition wall 43 is disposed along the second direction y in plan view (see FIG. 30). In the present embodiment, the space in the case 40 is separated by a partition wall 43 into a first area 61 where the light receiving element 32 exists and a second area 62 where the light emitting element 31 exists.
  • the translucent member 50 is a member that is supported by the case 40 while being spaced apart from the light emitting element 31 in the thickness direction z and transmits light emitted from the light emitting element 31, as shown in FIGS.
  • the translucent member 50 is supported by the top plate 41 of the case 40.
  • the translucent member 50 is made of, for example, glass.
  • the translucent member 50 has an outer surface 51 and an inner surface 52.
  • the outer surface 51 is a surface facing in the same direction as the main surface 11 of the substrate 10.
  • the outer surface 51 is a flat surface and is flush with the top surface 421 of the side wall 42 of the case 40.
  • the inner surface 52 faces away from the outer surface 51 and faces the main surface 11.
  • the translucent member 50 is supported by the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41 of the case 40.
  • the adhesive layer 59 is made of, for example, an acrylic resin or an epoxy resin. Further, the exit opening 412 and the entrance opening 411 are closed by the translucent member 50 from above.
  • the translucent member 50 is provided with a refracting portion 54.
  • the refracting unit 54 is configured to refract the light emitted from the light emitting element 31 in a direction away from the light receiving element 32 in the first direction x (see FIG. 41).
  • the refracting portion 54 is provided so as to be recessed from the inner surface 52.
  • the refracting portion 54 has a side surface 541 and an inclined surface 542.
  • the side surface 541 has one end connected to the inner surface 52 in the thickness direction z and the other end connected to the inclined surface 542.
  • the side surface 541 is disposed along the thickness direction z (FIG. 37).
  • the inclined surface 542 has one end in the thickness direction z connected to the side surface 541 and the other end connected to the inner surface 52.
  • the inclined surface 542 is inclined so as to move away from the light emitting element 31 in the thickness direction z as it approaches the light receiving element 32 in the first direction x.
  • the refracting portion 54 is provided over the entire section of the translucent member 50 in the second direction y.
  • the cross-sectional shape (FIG. 37) of the refracting portion 54 along the first direction x is uniform in the second direction y.
  • the refracting portion 54 can have a configuration different from the configurations shown in FIGS.
  • FIG. 38 is an enlarged cross-sectional view of a refracting portion 54 of a semiconductor device B11 that is a first modification of the semiconductor device B10.
  • the refracting portion 54 of the semiconductor device B11 is provided so as to protrude from the inner surface 52 toward the main surface 11 of the substrate 10.
  • the refracting portion 54 is included in the exit opening 412.
  • the refracting portion 54 is provided only in a partial section of the translucent member 50 in the second direction y.
  • the outer surface 51 is flat.
  • an air vent groove 44 that communicates with the emission opening 412 and the outside is provided so as to be recessed from the top surface of the top plate 41.
  • FIG. 39 is an enlarged cross-sectional view of a refracting portion 54 of a semiconductor device B12 that is a second modification of the semiconductor device B10.
  • the refracting portion 54 of the semiconductor device B12 protrudes outward from the outer surface 51.
  • the inclined surface 542 of the refracting portion 54 approaches the light emitting element 31 in the thickness direction z as it approaches the light receiving element 32 in the first direction x.
  • the refracting portion 54 may be provided so as to be recessed from the outer surface 51 toward the main surface 11. Further, the refracting portion 54 extends over the entire section of the translucent member 50 in the second direction y, similarly to the semiconductor device B10. In this case, the inner surface 52 is flat.
  • an air vent groove 44 that communicates with the emission opening 412 and the outside is provided so as to be recessed from the upper surface of the top plate 41, as in the semiconductor device B11.
  • the semiconductor device B10 includes the substrate 10, the light emitting element 31 and the light receiving element 32 supported by the substrate 10, the case 40 surrounding at least the light emitting element 31 and supported by the substrate 10, and the case 40 supporting the semiconductor device B10.
  • the translucent member 50 is provided. A hollow region surrounded by the substrate 10, the case 40, and the translucent member 50 is divided into a first area 61 (the light receiving element 32 exists) and a second area 62 (the light emitting element 31 exists) by the partition wall 43. Yes.
  • the translucent member 50 is provided with a refracting portion 54.
  • the light on the surface of the refracting portion 54 (the boundary between the refracting portion 54 and the air) is shifted to the right (first) Refracted in a direction x away from the light receiving element 32).
  • the light is refracted to the right in the traveling direction even when it is emitted from the refracting portion 54.
  • the light L emitted from the light emitting element 31 is refracted in the direction away from the light receiving element 32 (detection unit 350) in the first direction x when passing through the refraction unit 54.
  • the light immediately after being emitted from the light emitting element 31 is drawn to travel along the thickness direction z, but actually travels at an angle inclined with respect to the thickness direction z. There is also light.
  • the reflected light reaches the detection unit 350 of the light receiving element 32. It can be avoided.
  • the second area 62 is hollow.
  • the VCSEL is a semiconductor element that is weak against external force. When the light emitting element 31 is a VCSEL, it is preferable that the second area 62 is hollow because no external force acts on the light emitting element 31.
  • the case 40 surrounds at least the light emitting element 31 and has a top plate 41 that is disposed away from the light emitting element 31 in the thickness direction z.
  • the top plate 41 is provided with an emission opening 412 that faces the light emitting element 31 in plan view.
  • the translucent member 50 closes the emission opening 412 and is supported by the top plate 41. With such a configuration, the translucent member 50 is firmly supported by the case 40, and deformation of the translucent member 50 due to an external force or the like can be suppressed.
  • the case 40 has a partition wall 43 located between the light emitting element 31 and the light receiving element 32 in a plan view and having one end connected to the top plate 41 in the thickness direction z. With such a configuration, the rigidity of the case 40 can be improved. In addition, since light emitted from the light emitting element 31 directly reaches the detection unit 350 of the light receiving element 32 inside the semiconductor device B10, erroneous detection by the light receiving element 32 can be suppressed.
  • the internal conductor 21 disposed on the main surface 11 of the substrate 10 and the external conductor 22 disposed on the back surface 12 are electrically connected to each other by an intermediate conductor 23 embedded in the substrate 10. With such a configuration, since the outer conductor 22 is not exposed to the side of the semiconductor device B10, the semiconductor device B10 can be downsized.
  • the inner conductor 21 (the first inner conductor 211 and the second inner conductor 212) and the outer conductor 22 are both covered with a plating layer.
  • the internal conductor 21 is protected from an impact such as heat when the light emitting element 31 and the light receiving element 32 are mounted or when the first wire 38 and the second wire 39 are connected. Can do.
  • the semiconductor device B10 is mounted on the circuit board, the erosion of the external conductor 22 due to the influence of cream solder or the like can be prevented.
  • FIG. 42 is a plan view of the semiconductor device B20, and the translucent member 50 is indicated by a two-dot chain line.
  • 43 is a cross-sectional view taken along line XLIII-XLIII in FIG.
  • the semiconductor device B20 of the present embodiment is different from the semiconductor device B10 described above in the configuration of the case 40.
  • the semiconductor device B20 as shown in FIG. 43, no partition is provided in the case 40.
  • the inside of the case 40 forms one hollow region.
  • the main surface insulating film 28 disposed on the main surface 11 has only one opening.
  • the light transmissive member 50 of the semiconductor device B20 is provided with a refracting unit 54 that refracts the light emitted from the light emitting element 31 so as to be away from the light receiving element 32 in the first direction x. Yes. Therefore, the semiconductor device B20 can suppress the crosstalk similarly to the semiconductor device B10.
  • the semiconductor device B30 of the present embodiment is different from the semiconductor device B10 described above in the configuration of the case 40 and the arrangement form of the translucent member 50.
  • the semiconductor device B30 as shown in FIG. 45, no partition is provided in the case 40.
  • the main surface insulating film 28 disposed on the main surface 11 has one opening.
  • the top surface of the top plate 41 is flush with the top surface 421 of the side wall 42.
  • the translucent member 50 is fixed to the top plate 41 via an adhesive layer 59 so that the outer surface 51 faces the top plate 41. Further, both the exit opening 412 and the entrance opening 411 are closed by the translucent member 50 from below.
  • An air vent groove 44 communicating with the incident opening 411 and the outside is provided so as to be recessed from the lower surface of the top plate 41. Also in the semiconductor device B30, the refracting portion 54 can suppress crosstalk.
  • FIG. 46 is a plan view of the semiconductor device B40, and the translucent member 50 is indicated by a two-dot chain line.
  • FIG. 47 is a sectional view taken along line XLVII-XLVII in FIG.
  • the semiconductor device B40 is different from the semiconductor device B10 described above in the configuration of the case 40, the translucent member 50, and the like.
  • the top surface of the top plate 41 is flush with the top surface 421 of the side wall.
  • two members, a first light transmitting member 501 and a second light transmitting member 502, are used corresponding to the light transmitting member 50.
  • the first light transmissive member 501 closes the incident opening 411.
  • the second light transmissive member 502 closes the emission opening 412 and is provided with a refracting portion 54. In the first direction x, the first light transmissive member 501 and the second light transmissive member 502 are separated from each other.
  • the outer surfaces 51 of the first light transmitting member 501 and the second light transmitting member 502 are flush with the upper surface of the top plate 41.
  • each of the translucent members 501 and 502 is embedded in the top plate 41 as a whole.
  • the inner surface 52 of each of the translucent members 501 and 502 is fixed to the top plate 41 via an adhesive layer 59 so as to face the top plate 41.
  • the second light transmitting member 502 is provided with the refracting portion 54, whereby crosstalk can be suppressed.
  • the semiconductor devices according to the above-described Embodiments B10 to B40 can be defined as an appendix as follows.
  • Appendix 1 A substrate having a main surface and a back surface; A light emitting element mounted on the main surface; A light receiving element mounted on the main surface at a distance from the light emitting element in a first direction, the light receiving element having a detection unit for detecting light emitted from the light emitting element; A case surrounding the light emitting element and supported by the main surface; A translucent member that is spaced apart from the light emitting element and supported by the case in the thickness direction of the substrate, The semiconductor device, wherein the light transmissive member is provided with a refracting portion that refracts light emitted from the light emitting element in a direction away from the light receiving element in the first direction.
  • the translucent member has an outer surface facing the same direction as the main surface, and an inner surface facing the main surface,
  • the refracting portion has an inclined surface provided on the inner surface, and the inclined surface is configured to move away from the light emitting element in the thickness direction as it approaches the light receiving element in the first direction.
  • Appendix 3 The semiconductor device according to attachment 2, wherein the refracting portion is provided so as to be recessed from the inner surface.
  • Appendix 4 The semiconductor device according to appendix 2, wherein the refracting portion is provided so as to protrude from the inner surface toward the main surface.
  • Appendix 5 The semiconductor device according to any one of appendices 2 to 4, wherein the outer surface is a flat surface.
  • the translucent member has an outer surface facing the same direction as the main surface, and an inner surface facing the main surface,
  • the refracting portion has an inclined surface provided on the outer surface, and the inclined surface is configured to approach the light emitting element in the thickness direction as it approaches the light receiving element in the first direction.
  • Appendix 7 The case has a top plate and a side wall, and the top plate is disposed apart from the light emitting element in the thickness direction, and the side wall of the top plate is viewed in the thickness direction of the substrate. Connected to the peripheral surface, and one end in the thickness direction is supported by the main surface, The top plate is provided with an emission opening facing the light emitting element in the thickness direction view, The semiconductor device according to any one of appendices 2 to 6, wherein the translucent member closes the emission opening and is supported by the top plate.
  • Appendix 8 The semiconductor device according to appendix 7, wherein the inner surface of the translucent member faces the top plate.
  • Appendix 9 The semiconductor device according to appendix 7, wherein the outer surface of the translucent member faces the top plate.
  • Appendix 10 The side wall surrounds the light emitting element and the light receiving element;
  • the top plate is provided with an incident opening that is spaced apart from the emission opening in the first direction and faces the light receiving element in the thickness direction view,
  • Appendix 11 The case includes a partition located between the light emitting element and the light receiving element in the thickness direction view, and the partition has one end connected to the top plate in the thickness direction,
  • the semiconductor device according to appendix 10 wherein the light emitting element and the light receiving element are separated from each other by the partition wall.
  • the translucent member includes a first translucent member that closes the incident opening, and a second translucent member that closes the exit opening, and the refracting portion is provided in the second translucent member.
  • Appendix 13 The semiconductor device according to any one of appendices 1 to 10, wherein the light emitting element is a VCSEL.
  • Appendix 14 In the configuration further comprising the first inner conductor, the second inner conductor and the outer conductor, The first inner conductor and the second inner conductor are provided on the main surface, and are electrically connected to the light emitting element and the light receiving element, respectively. 14. The semiconductor device according to any one of appendices 1 to 13, wherein the outer conductor is provided on the back surface and is electrically connected to one of the first inner conductor and the second inner conductor.
  • Appendix 15 The semiconductor device according to appendix 14, wherein the first inner conductor, the second inner conductor, and the outer conductor are all covered with a plating layer.
  • Appendix 16 In the configuration further comprising an intermediate conductor, The substrate is formed with a through hole from the main surface to the back surface where the intermediate conductor is disposed, The semiconductor device according to appendix 14 or 15, wherein the intermediate conductor connects the outer conductor to one of the first inner conductor and the second inner conductor.
  • APPENDIX 17 The semiconductor device according to any one of appendices 14 to 16, wherein the light receiving element is an integrated circuit, and the detection unit is a photodiode.

Abstract

This semiconductor device is provided with a substrate, a light emitting element, a light detection means, a case, a light transmitting member and a light blocking layer. The substrate has a main surface and a back surface. The light emitting element is mounted on the main surface of the substrate. The light detection means is mounted on the main surface at a distance from the light emitting element. The light detection means comprises a first detection part that detects light emitted from the light emitting element. The case surrounds the light detection means, while being supported by the main surface. The light transmitting member has an inner surface that faces toward the main surface and an outer surface that faces toward a direction which is opposite to the direction toward which the inner surface faces. The light transmitting member is supported by the case at a distance from the light detection means in the thickness direction of the substrate. The light blocking layer is provided on the light transmitting member and blocks light in the wavelength range that corresponds to the light emitted from the light emitting element. The light blocking layer is provided with a first opening that faces the first detection part when viewed from the thickness direction of the substrate.

Description

半導体装置Semiconductor device
 本開示は、半導体装置に関し、特に光検知機能を備えた半導体装置に関する。 The present disclosure relates to a semiconductor device, and more particularly to a semiconductor device having a light detection function.
 光検知機能を備えた半導体装置の一例として、近接センサが公知である。たとえば特許文献1には、1つの基板に発光素子および受光素子を搭載した近接センサが開示されている。このような近接センサは、スマートフォンやタブレット端末などの電子機器に組み込まれて、当該機器に近接する物体(「検出対象物」)を検出するのに用いられる。一例として、電子機器(たとえばスマートフォン)の筐体には、光を透過させる光学窓が設けられる。発光素子から発せられた光は、この光学窓を介して外部に出たのち、検出対象物にあたって反射する。この反射光が電子機器の筐体内に戻り、受光素子によって検出される。 A proximity sensor is known as an example of a semiconductor device having a light detection function. For example, Patent Document 1 discloses a proximity sensor in which a light emitting element and a light receiving element are mounted on one substrate. Such a proximity sensor is incorporated in an electronic device such as a smartphone or a tablet terminal, and is used to detect an object (“detection target object”) close to the device. As an example, a housing of an electronic device (for example, a smartphone) is provided with an optical window that transmits light. The light emitted from the light emitting element exits to the outside through the optical window and then reflects on the detection target. This reflected light returns into the housing of the electronic device and is detected by the light receiving element.
 従来の近接センサには、以下のような不具合が生じうる。すなわち、発光素子から発せられた光の一部が、光学窓を透過せずに反射されてしまい、直接的に(すなわち筐体外部の物体に反射されることなく)受光素子に検知される場合がある。これは、一般に「クロストーク」と称される現象である。このようなクロストークにかかる光(擬似信号あるいはノイズとも称される)が多くなると、実際には存在しないにもかかわらず、物体が近接したとの誤った判断がされてしまう。 The following problems may occur in conventional proximity sensors. That is, when a part of the light emitted from the light emitting element is reflected without passing through the optical window and is directly detected by the light receiving element (that is, not reflected by an object outside the housing) There is. This is a phenomenon generally called “crosstalk”. When the amount of light (also referred to as a pseudo signal or noise) related to such crosstalk increases, it is erroneously determined that an object has come close even though it does not actually exist.
特開2010-34189号公報JP 2010-34189 A
 本開示の課題の一つは、上述したような誤検知を抑制することにより、検出対象物の検出にかかる信頼度の向上を図りうる半導体装置を提供することである。 One of the problems of the present disclosure is to provide a semiconductor device that can improve the reliability of detection of a detection target object by suppressing erroneous detection as described above.
 本開示の第1の側面により提供される半導体装置は、主面および裏面を有する基板と、前記主面に搭載された発光素子と、前記発光素子から離間して前記主面に搭載された光検出手段であって、前記発光素子から発せられた光を検出する第1検出部を有する光検出手段と、前記光検出手段を囲み、かつ前記主面に支持されたケースと、前記主面側を向く内面および前記内面とは反対側を向く外面を有する透光部材であって、前記基板の厚さ方向において前記光検出手段から離間して前記ケースに支持された透光部材と、前記透光部材に設けられた遮光層であって、前記発光素子から発せられた光に対応する波長帯の光を透過させない遮光層と、を備える。前記遮光層には、前記基板の厚さ方向視において前記第1検出部を臨む第1開口部が形成されている。 A semiconductor device provided by the first aspect of the present disclosure includes a substrate having a main surface and a back surface, a light emitting element mounted on the main surface, and light mounted on the main surface apart from the light emitting element. A light detection means having a first detection unit for detecting light emitted from the light emitting element; a case surrounding the light detection means and supported by the main surface; and the main surface side A translucent member having an inner surface facing the inner surface and an outer surface facing the opposite side of the inner surface, the translucent member being supported by the case at a distance from the light detection means in the thickness direction of the substrate, and the translucent member A light-shielding layer provided on the optical member, wherein the light-shielding layer does not transmit light in a wavelength band corresponding to the light emitted from the light-emitting element. The light-shielding layer is formed with a first opening that faces the first detector when viewed in the thickness direction of the substrate.
 本開示の第2の側面により提供される半導体装置は、主面および裏面を有する基板と、前記主面に搭載された発光素子と、前記発光素子から第1方向に離間して前記主面に搭載された受光素子であって、前記発光素子から発せられた光を検出する検出部を有する受光素子と、前記発光素子を囲み、かつ前記主面に支持されたケースと、前記基板の厚さ方向において前記発光素子から離間して前記ケースに支持された透光部材と、を備える。前記透光部材には、前記発光素子から発せられた光を、前記第1方向において前記受光素子から遠ざかる方向に屈折させる屈折部が設けられている。 The semiconductor device provided by the second aspect of the present disclosure includes a substrate having a main surface and a back surface, a light emitting element mounted on the main surface, and a distance from the light emitting element in the first direction on the main surface. A light-receiving element mounted on the light-receiving element having a detection unit for detecting light emitted from the light-emitting element; a case surrounding the light-emitting element and supported by the main surface; and a thickness of the substrate And a translucent member supported by the case at a distance from the light emitting element. The translucent member is provided with a refracting portion that refracts light emitted from the light emitting element in a direction away from the light receiving element in the first direction.
 本開示の半導体装置に関するその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of the semiconductor device of the present disclosure will become more apparent from the detailed description given below with reference to the accompanying drawings.
本開示の第1実施形態に基づく半導体装置の斜視図である。1 is a perspective view of a semiconductor device according to a first embodiment of the present disclosure. 第1実施形態の半導体装置の平面図である。1 is a plan view of a semiconductor device according to a first embodiment. 第1実施形態の半導体装置における内部配線状態を示す平面図である。It is a top view which shows the internal wiring state in the semiconductor device of 1st Embodiment. 第1実施形態の半導体装置の底面図である。It is a bottom view of the semiconductor device of a 1st embodiment. 図2のV-V線に沿う断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 2. 図2のVI-VI線に沿う断面図である。FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. 2. 図2のVII-VII線に沿う断面図である。FIG. 3 is a sectional view taken along line VII-VII in FIG. 2. 第1実施形態の半導体装置における発光素子を示す平面図である。It is a top view which shows the light emitting element in the semiconductor device of 1st Embodiment. 図8のIX-IX線に沿う断面図である。FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 8. 第1実施形態の半導体装置における受光素子の断面図である。It is sectional drawing of the light receiving element in the semiconductor device of 1st Embodiment. 遮光層が設けられた透光部材を示す斜視図である。It is a perspective view which shows the translucent member provided with the light shielding layer. 図5に示された構成の一部を説明する拡大図である。It is an enlarged view explaining a part of structure shown by FIG. 図12に示す構成の変形例を説明する図である。It is a figure explaining the modification of the structure shown in FIG. 図12に示す構成の別の変形例を説明する図である。It is a figure explaining another modification of the composition shown in FIG. 図2に示された構成の一部を説明する拡大図である。FIG. 3 is an enlarged view for explaining a part of the configuration shown in FIG. 2. 図15に示す構成の変形例を説明する図である。It is a figure explaining the modification of the structure shown in FIG. 図15に示す構成の別の変形例を説明する図である。It is a figure explaining another modification of the composition shown in FIG. 図15に示す構成の別の変形例を説明する図である。It is a figure explaining another modification of the composition shown in FIG. 図15に示す構成の別の変形例を説明する図である。It is a figure explaining another modification of the composition shown in FIG. 第1実施形態の半導体装置の作用効果を説明する断面図である。It is sectional drawing explaining the effect of the semiconductor device of 1st Embodiment. 本開示の第2実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 2nd embodiment of this indication. 図21のXXII-XXII線に沿う断面図である。FIG. 22 is a sectional view taken along line XXII-XXII in FIG. 21. 本開示の第3実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 3rd embodiment of this indication. 図23のXXIV-XXIV線に沿う断面図である。FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG. 本開示の第4実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 4th embodiment of this indication. 図25のXXVI-XXVI線に沿う断面図である。FIG. 26 is a sectional view taken along line XXVI-XXVI in FIG. 25. 本開示の第5実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 5th embodiment of this indication. 図27のXXVIII-XXVIII線に沿う断面図である。FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG. 27. 本開示の第6実施形態に基づく半導体装置の斜視図である。It is a perspective view of a semiconductor device based on a 6th embodiment of this indication. 第6実施形態の半導体装置の平面図である。It is a top view of the semiconductor device of a 6th embodiment. 第6実施形態の半導体装置における内部配線状態を示す平面図である。It is a top view which shows the internal wiring state in the semiconductor device of 6th Embodiment. 第6実施形態の半導体装置の底面図である。It is a bottom view of the semiconductor device of a 6th embodiment. 図30のXXXIII-XXXIII線に沿う断面図である。FIG. 31 is a cross-sectional view taken along line XXXIII-XXXIII in FIG. 30. 図30のXXXIV-XXXIV線に沿う断面図である。FIG. 31 is a cross-sectional view taken along line XXXIV-XXXIV in FIG. 30. 図30のXXXV-XXXV線に沿う断面図である。FIG. 31 is a cross-sectional view taken along line XXXV-XXXV in FIG. 30. 第6実施形態の半導体装置における透光部材を説明する斜視図である。It is a perspective view explaining the translucent member in the semiconductor device of 6th Embodiment. 上記透光部材に設けられた屈折部を説明する拡大図である。It is an enlarged view explaining the refractive part provided in the said translucent member. 上記屈折部の変形例を説明する断面拡大図である。It is a cross-sectional enlarged view explaining the modification of the said refractive part. 上記屈折部の別の変形例を説明する断面拡大図である。It is a cross-sectional enlarged view explaining another modification of the said refractive part. 第6実施形態の半導体装置における受光素子の断面図である。It is sectional drawing of the light receiving element in the semiconductor device of 6th Embodiment. 第6実施形態の半導体装置の作用効果を説明する断面図である。It is sectional drawing explaining the effect of the semiconductor device of 6th Embodiment. 本開示の第7実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 7th embodiment of this indication. 図42のXLIII-XLIII線に沿う断面図である。FIG. 43 is a sectional view taken along line XLIII-XLIII in FIG. 42. 本開示の第8実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on an 8th embodiment of this indication. 図44のXLV-XLV線に沿う断面図である。FIG. 45 is a cross-sectional view taken along line XLV-XLV in FIG. 44. 本開示の第9実施形態に基づく半導体装置の平面図である。It is a top view of a semiconductor device based on a 9th embodiment of this indication. 図46のXLVII-XLVII線に沿う断面図である。FIG. 47 is a sectional view taken along line XLVII-XLVII in FIG. 46.
 以下、例示的な実施形態について添付図面に基づいて説明する。図1~図20は、本開示の第1実施形態に基づく半導体装置A10の説明図である。半導体装置A10は、基板10、発光素子31、光検出手段(受光素子)32、ケース40および透光部材50を備える。基板10には、複数の内部導体21、複数の外部導体22、複数の中間導体23、主面絶縁膜28および裏面絶縁膜29が配置されている。図1および図2では、透光部材50を二点鎖線で示している。図3では、ケース40および透光部材50を省略している。 Hereinafter, exemplary embodiments will be described with reference to the accompanying drawings. 1 to 20 are explanatory diagrams of the semiconductor device A10 according to the first embodiment of the present disclosure. The semiconductor device A10 includes a substrate 10, a light emitting element 31, a light detecting means (light receiving element) 32, a case 40, and a light transmitting member 50. A plurality of inner conductors 21, a plurality of outer conductors 22, a plurality of intermediate conductors 23, a main surface insulating film 28 and a back surface insulating film 29 are arranged on the substrate 10. 1 and 2, the translucent member 50 is indicated by a two-dot chain line. In FIG. 3, the case 40 and the translucent member 50 are omitted.
 図1~図20に示す半導体装置A10は、スマートフォンやタブレット端末などの電子機器の回路基板に表面実装される形式のものである。図1に示すように、基板10の厚さ方向z視(「平面視」とも称する)における半導体装置A10の形状は、矩形状である。説明の便宜上、半導体装置A10の長辺に沿った方向を第1方向x(厚さ方向zに対して直角)と称する。また、半導体装置A10の短辺に沿った方向を第2方向y(厚さ方向zおよび第1方向xの双方に直角)と称する。 The semiconductor device A10 shown in FIGS. 1 to 20 is of a type that is surface-mounted on a circuit board of an electronic device such as a smartphone or a tablet terminal. As illustrated in FIG. 1, the shape of the semiconductor device A <b> 10 in the thickness direction z view (also referred to as “plan view”) of the substrate 10 is a rectangular shape. For convenience of explanation, a direction along the long side of the semiconductor device A10 is referred to as a first direction x (perpendicular to the thickness direction z). A direction along the short side of the semiconductor device A10 is referred to as a second direction y (perpendicular to both the thickness direction z and the first direction x).
 基板10は、図1~図3および図5に示すように、発光素子31および受光素子32を搭載し、かつ半導体装置A10を回路基板に実装するための部材である。基板10は、電気絶縁体であり、たとえばガラスエポキシ樹脂からなる。基板10の平面視の形状は、第1方向xを長辺とする矩形状である。基板10は、主面11および裏面12を有する。基板10には、貫通孔13が複数設けられている。図6に示すように、各貫通孔13は、主面11から裏面12まで延びており、中間導体23が当該貫通孔を埋めるように配置されている。図3および図4に示すように、複数の中間導体23が基板10に埋設されている。 The substrate 10 is a member for mounting the light emitting element 31 and the light receiving element 32 and mounting the semiconductor device A10 on the circuit board as shown in FIGS. 1 to 3 and FIG. The substrate 10 is an electrical insulator and is made of, for example, a glass epoxy resin. The shape of the substrate 10 in plan view is a rectangular shape having the first direction x as a long side. The substrate 10 has a main surface 11 and a back surface 12. The substrate 10 is provided with a plurality of through holes 13. As shown in FIG. 6, each through hole 13 extends from the main surface 11 to the back surface 12, and the intermediate conductor 23 is disposed so as to fill the through hole. As shown in FIGS. 3 and 4, a plurality of intermediate conductors 23 are embedded in the substrate 10.
 図3~図5に示すように、主面11および裏面12は、厚さ方向zにおいて互いに反対側を向く面である。主面11および裏面12は、平面視の形状が第1方向xを長辺とする矩形状であり、かつ平坦面である。主面11に、内部導体21および主面絶縁膜28が配置され、かつ発光素子31および受光素子32が搭載されている。また、主面11にケース40が支持されている。裏面12は、半導体装置A10の実装の際に回路基板と対向する面である。裏面12に、外部導体22および裏面絶縁膜29が配置されている。 As shown in FIGS. 3 to 5, the main surface 11 and the back surface 12 are surfaces facing opposite sides in the thickness direction z. The main surface 11 and the back surface 12 have a rectangular shape with a long side in the first direction x in a plan view, and are flat surfaces. On the main surface 11, the inner conductor 21 and the main surface insulating film 28 are disposed, and the light emitting element 31 and the light receiving element 32 are mounted. A case 40 is supported on the main surface 11. The back surface 12 is a surface facing the circuit board when the semiconductor device A10 is mounted. An external conductor 22 and a back surface insulating film 29 are disposed on the back surface 12.
 内部導体21は、たとえばCuから構成される。図3および図5~図7に示すように、本実施形態の内部導体21は、1つの第1内部導体211および複数の第2内部導体212を含む。第1内部導体211は、発光素子31に導通し、各第2内部導体は、受光素子32に導通する。第1内部導体211および第2内部導体212は、第1方向xにおいてケース40の隔壁43(後述)を境界として互いに離間している。これとは異なり、第1内部導体211と少なくとも1つの第2内部導体212とが、主面11において互いに導通する構成であってもよい。本実施形態の内部導体21は、いずれもめっき層により覆われている。めっき層は、たとえば互いに積層されたNi層およびAu層により構成されている。 The inner conductor 21 is made of Cu, for example. As shown in FIGS. 3 and 5 to 7, the inner conductor 21 of the present embodiment includes one first inner conductor 211 and a plurality of second inner conductors 212. The first inner conductor 211 is electrically connected to the light emitting element 31, and each second inner conductor is electrically connected to the light receiving element 32. The first inner conductor 211 and the second inner conductor 212 are separated from each other with a partition wall 43 (described later) of the case 40 as a boundary in the first direction x. Unlike this, the first inner conductor 211 and at least one second inner conductor 212 may be electrically connected to each other on the main surface 11. All the inner conductors 21 of this embodiment are covered with a plating layer. The plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
 図3に示すように、第1内部導体211は、第1パッド部211aと、ダイパッド部211bとを含む。ダイパッド部211bは、第1パッド部211aから第2方向yに離間しており、発光素子31を搭載している。第1パッド部211aは第1ワイヤ38を介して発光素子31に導通している。ダイパッド部211bは、第1接合層33(図5参照)を介して発光素子31に導通している。第1パッド部211aおよびダイパッド部211bはそれぞれ、対応する一の中間導体23に導通している。 As shown in FIG. 3, the first inner conductor 211 includes a first pad portion 211a and a die pad portion 211b. The die pad portion 211b is separated from the first pad portion 211a in the second direction y, and the light emitting element 31 is mounted thereon. The first pad portion 211 a is electrically connected to the light emitting element 31 through the first wire 38. The die pad portion 211b is electrically connected to the light emitting element 31 via the first bonding layer 33 (see FIG. 5). Each of the first pad portion 211a and the die pad portion 211b is electrically connected to one corresponding intermediate conductor 23.
 図3に示すように、各第2内部導体212の先端には、矩形状の第2パッド部212aが設けられている。各々の第2パッド部212aは、第2方向yに沿って配列されている。各々の第2パッド部212aは、第2ワイヤ39を介して受光素子32に導通している。各々の第2内部導体212は、対応する一の中間導体23に導通している。 As shown in FIG. 3, a rectangular second pad portion 212 a is provided at the tip of each second inner conductor 212. Each of the second pad portions 212a is arranged along the second direction y. Each second pad portion 212 a is electrically connected to the light receiving element 32 via the second wire 39. Each second inner conductor 212 is electrically connected to the corresponding one intermediate conductor 23.
 主面絶縁膜28は、図3および図5~図7に示すように、第1内部導体211および第2内部導体212それぞれの少なくとも一部を覆う電気絶縁部材である。主面絶縁膜28は、たとえばソルダ-レジストフィルムである。主面絶縁膜28には、第1開口281および第2開口282が形成されている。第1開口281から、第1内部導体211の一部が露出している、平面視において発光素子31および第1ワイヤ38は、第1開口281内にある(換言すれば、発光素子31および第1ワイヤ38は、第1開口281を規定する周縁に囲まれている)。第2開口282からは、第2内部導体212の一部である第2パッド部212aが露出している。 The main surface insulating film 28 is an electric insulating member that covers at least a part of each of the first inner conductor 211 and the second inner conductor 212 as shown in FIGS. 3 and 5 to 7. The main surface insulating film 28 is, for example, a solder resist film. A first opening 281 and a second opening 282 are formed in the main surface insulating film 28. A part of the first inner conductor 211 is exposed from the first opening 281, and the light emitting element 31 and the first wire 38 are in the first opening 281 in a plan view (in other words, the light emitting element 31 and the first wire 38 1 wire 38 is surrounded by a peripheral edge defining the first opening 281). From the second opening 282, the second pad portion 212a which is a part of the second inner conductor 212 is exposed.
 外部導体22は、図4、図6および図7に示すように、中間導体23および内部導体21を介して発光素子31または受光素子32に導通する導電部材である。各外部導体22は、基板10の裏面12に配置され、中間導体23を介して第1内部導体211または一の第2内部導体212に導通している。外部導体22および中間導体23は、内部導体21と同一の材料(たとえばCu)から構成される。外部導体22は、内部導体21と同じく、いずれもめっき層により覆われている。当該めっき層は、たとえば互いに積層されたNi層およびAu層により構成されている。 The outer conductor 22 is a conductive member that conducts to the light emitting element 31 or the light receiving element 32 via the intermediate conductor 23 and the inner conductor 21 as shown in FIGS. 4, 6, and 7. Each outer conductor 22 is disposed on the back surface 12 of the substrate 10 and is electrically connected to the first inner conductor 211 or one second inner conductor 212 via the intermediate conductor 23. The outer conductor 22 and the intermediate conductor 23 are made of the same material (for example, Cu) as the inner conductor 21. The outer conductor 22 is covered with a plating layer in the same manner as the inner conductor 21. The plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
 裏面絶縁膜29は、図4~図7に示すように、各外部導体22の一部を覆う電気絶縁部材である。裏面絶縁膜29は、主面絶縁膜28と同じく、たとえばソルダーレジストフィルムである。半導体装置A10を回路基板に実装したとき、裏面絶縁膜29から露出した外部導体22は、回路基板に形成された配線パターンにクリームはんだなどを介して導通する。 The back surface insulating film 29 is an electrical insulating member that covers a part of each external conductor 22 as shown in FIGS. The back surface insulating film 29 is, for example, a solder resist film, like the main surface insulating film 28. When the semiconductor device A10 is mounted on the circuit board, the external conductor 22 exposed from the back surface insulating film 29 is electrically connected to the wiring pattern formed on the circuit board via cream solder or the like.
 発光素子31は、所定の波長を有する光(電磁波)を出射する半導体素子であり、たとえば半導体レーザ(垂直共振器面発光レーザなど)である。本実施形態では、発光素子31は、赤外線(たとえば波長が800nm以上)を発する。あるいは、発光素子31は、発光ダイオードであってもよい。発光素子31の上面には、図2、図3および図8に示すように、厚さ方向zに光が発せられる光出射領域311と、第1ワイヤ38が接続される上面電極312とが設けられている。発光素子31は、第1ワイヤ38を介して第1パッド部211aに導通している。発光素子31の下面には下面電極313(図9参照)が設けられ、発光素子31は、第1接合層33を介してダイパッド部211bに導通している。 The light emitting element 31 is a semiconductor element that emits light (electromagnetic wave) having a predetermined wavelength, and is, for example, a semiconductor laser (such as a vertical cavity surface emitting laser). In the present embodiment, the light emitting element 31 emits infrared rays (for example, a wavelength of 800 nm or more). Alternatively, the light emitting element 31 may be a light emitting diode. As shown in FIGS. 2, 3, and 8, a light emitting region 311 that emits light in the thickness direction z and an upper surface electrode 312 to which the first wire 38 is connected are provided on the upper surface of the light emitting element 31. It has been. The light emitting element 31 is electrically connected to the first pad portion 211 a through the first wire 38. A lower surface electrode 313 (see FIG. 9) is provided on the lower surface of the light emitting element 31, and the light emitting element 31 is electrically connected to the die pad portion 211 b through the first bonding layer 33.
 発光素子31が垂直共振器面発光レーザ(VCSEL)である場合について、図8および図9に基づき説明する。発光素子31は、半導体基板310、上面電極312、下面電極313、第1DBR層315、第2DBR層316、活性層317、絶縁層318および電流狭窄層319を有する。ここで、DBRとは、分布ブラッグ反射鏡のことである。 A case where the light emitting element 31 is a vertical cavity surface emitting laser (VCSEL) will be described with reference to FIGS. The light emitting element 31 includes a semiconductor substrate 310, an upper surface electrode 312, a lower surface electrode 313, a first DBR layer 315, a second DBR layer 316, an active layer 317, an insulating layer 318, and a current confinement layer 319. Here, DBR is a distributed Bragg reflector.
 半導体基板310は、たとえばGeAsなどの化合物半導体から構成される。半導体基板310の上面には、第1DBR層315が配置され、下面には、下面電極313が配置されている。第1DBR層315の上面の一部には、第2DBR層316が配置されている。第1DBR層315と第2DBR層316との間には、活性層317が配置されている。 The semiconductor substrate 310 is made of a compound semiconductor such as GeAs. A first DBR layer 315 is disposed on the upper surface of the semiconductor substrate 310, and a lower surface electrode 313 is disposed on the lower surface. A second DBR layer 316 is disposed on a part of the upper surface of the first DBR layer 315. An active layer 317 is disposed between the first DBR layer 315 and the second DBR layer 316.
 活性層317は、化合物半導体からなり、自然放出および誘導放出により波長がλpである光を放出する。λpは、940nmまたは850nmである。第1DBR層315および第2DBR層316は、半導体化合物からなり、活性層317から発せられた光を効率よく反射させる。たとえば、第1DBR層315は、屈折率が異なる2つの層を一組とし、このような組みを複数個積層させることにより構成される。各組における各層は、AlGaAsから構成され、厚さはλp/4である。第2DBR層316は、第1DBR層315と同様の構成である。ただし、厚さは、第2DBR層316と第1DBR層315とで異なっていても、あるいは同じでもよい。図9に示す例では、第1DBR層315の方が第2DBR層316よりも厚く構成されているが、本開示がこれに限定されるわけではない。また、本実施形態では、第1DBR層315がn型半導体層、第2DBR層316がp型半導体層となるように設定されている。 The active layer 317 is made of a compound semiconductor and emits light having a wavelength of λp by spontaneous emission and stimulated emission. λp is 940 nm or 850 nm. The first DBR layer 315 and the second DBR layer 316 are made of a semiconductor compound and efficiently reflect the light emitted from the active layer 317. For example, the first DBR layer 315 includes two layers having different refractive indexes as a set, and a plurality of such sets are stacked. Each layer in each set is made of AlGaAs and has a thickness of λp / 4. The second DBR layer 316 has the same configuration as the first DBR layer 315. However, the thickness may be different between the second DBR layer 316 and the first DBR layer 315 or may be the same. In the example illustrated in FIG. 9, the first DBR layer 315 is configured to be thicker than the second DBR layer 316, but the present disclosure is not limited thereto. In the present embodiment, the first DBR layer 315 is set to be an n-type semiconductor layer, and the second DBR layer 316 is set to be a p-type semiconductor layer.
 電流狭窄層319は、所定量のAlを含み、かつ酸化されやすい層から構成される。電流狭窄層319は、第2DBR層316の内部に形成されている。電流狭窄層319は、第2DBR層316の一部を酸化させることにより形成される。なお、電流狭窄層319は、イオン注入によっても形成しうる。平面視おいて、光出射領域311と重なるように電流狭窄層319には開口が形成され、当該開口に電流が流れる。 The current confinement layer 319 includes a predetermined amount of Al and is easily oxidized. The current confinement layer 319 is formed inside the second DBR layer 316. The current confinement layer 319 is formed by oxidizing a part of the second DBR layer 316. Note that the current confinement layer 319 can also be formed by ion implantation. In plan view, an opening is formed in the current confinement layer 319 so as to overlap the light emitting region 311, and current flows through the opening.
 絶縁層318は、第1DBR層315および第2DBR層316を覆うように配置されている。絶縁層318は、たとえばSiO2から構成される。 The insulating layer 318 is disposed so as to cover the first DBR layer 315 and the second DBR layer 316. The insulating layer 318 is made of, for example, SiO 2 .
 上面電極312は、絶縁層318を覆うように配置されている。上面電極312は、たとえばAuなどの金属から構成される。上面電極312には、光出射領域311を規定する貫通孔(平面視円形状)が形成されている。当該貫通孔からは絶縁層318が露出している。光出射領域311の近傍において、絶縁層318には開口が少なくとも1つ形成されており、この開口に上面電極312の一部が配置されかつ第2DBR層316に導通している。 The upper surface electrode 312 is disposed so as to cover the insulating layer 318. The upper surface electrode 312 is made of a metal such as Au, for example. A through-hole (circular shape in plan view) that defines the light emission region 311 is formed in the upper surface electrode 312. The insulating layer 318 is exposed from the through hole. In the vicinity of the light emitting region 311, at least one opening is formed in the insulating layer 318, and a part of the upper surface electrode 312 is disposed in the opening and is electrically connected to the second DBR layer 316.
 第2DBR層316には、平面視において光出射領域311を囲み、かつ厚さ方向zに凹む環状凹部314が形成されている。環状凹部314は、第1DBR層315まで陥入している。環状凹部314の表面は、全て絶縁層318により覆われている。図9から理解されるように、活性層317は、平面視において光出射領域311と重なり且つ当該光出射領域よりも広い領域を有している。この領域は、環状凹部314(および絶縁層318)により、活性層317の他の領域から分断された構成となっている。上述のとおり、第1ワイヤ38は、上面電極312に接続される。具体的には、図8に示すように、上面電極312は、光出射領域311および環状凹部314から離間した、円形状部分を有している。第1ワイヤ38の一端は、この円形状部分に固定される。 The second DBR layer 316 is formed with an annular recess 314 that surrounds the light emission region 311 in a plan view and is recessed in the thickness direction z. The annular recess 314 is recessed up to the first DBR layer 315. The entire surface of the annular recess 314 is covered with an insulating layer 318. As can be understood from FIG. 9, the active layer 317 has a region that overlaps with the light emission region 311 in a plan view and is wider than the light emission region. This region is separated from other regions of the active layer 317 by the annular recess 314 (and the insulating layer 318). As described above, the first wire 38 is connected to the upper surface electrode 312. Specifically, as shown in FIG. 8, the upper surface electrode 312 has a circular portion that is separated from the light emitting region 311 and the annular recess 314. One end of the first wire 38 is fixed to this circular portion.
 本実施形態では、発光素子31に設けられた光出射領域311は1つである。これに代えて、複数の(一例として3または4の)光出射領域311を発光素子31に設けてもよい。 In the present embodiment, there is one light emitting region 311 provided in the light emitting element 31. Instead of this, a plurality of light emitting regions 311 (3 or 4 as an example) may be provided in the light emitting element 31.
 図5および図7に示すように、第1接合層33は、発光素子31の下面電極313と第1内部導体211のダイパッド部211bとの間に介在する。発光素子31は、ダイボンディングにより主面11に配置されたダイパッド部211bに搭載されている。第1接合層33は、たとえばAgペースト(Agを含有するエポキシ樹脂)から構成される。 As shown in FIG. 5 and FIG. 7, the first bonding layer 33 is interposed between the lower surface electrode 313 of the light emitting element 31 and the die pad portion 211 b of the first inner conductor 211. The light emitting element 31 is mounted on a die pad portion 211b disposed on the main surface 11 by die bonding. The first bonding layer 33 is made of, for example, Ag paste (epoxy resin containing Ag).
 受光素子32は、半導体素子であり、図3および図5に示すように、発光素子31から第1方向xに離間した位置で主面11に支持されている。図3または図10に示すように、受光素子32は、複数の電極パッド321、機能領域322、積層光学膜323、第1検出部351および第2検出部352を備える。一例として、受光素子32は、これらの要素を備えた集積回路(IC)で構成しうる。なお、図10では、機能領域322が2つあるように見えるが、これらは実際にはつながっており1つの機能領域を構成している。 The light receiving element 32 is a semiconductor element, and is supported on the main surface 11 at a position spaced from the light emitting element 31 in the first direction x, as shown in FIGS. 3 and 5. As shown in FIG. 3 or FIG. 10, the light receiving element 32 includes a plurality of electrode pads 321, a functional region 322, a laminated optical film 323, a first detection unit 351, and a second detection unit 352. As an example, the light receiving element 32 may be configured by an integrated circuit (IC) including these elements. In FIG. 10, it appears that there are two functional areas 322, but these are actually connected to form one functional area.
 発光素子31から発せられた光(本実施形態では赤外線)は、第1検出部351にて検出される。第1検出部351は、たとえばフォトダイオードであり、光を検出すると所定の電圧を出力する。第2検出部352は、第1検出部351とは異なる波長帯の光を検出する。たとえば、第2検出部352は、可視光線(一例として、波長帯が380~780nm)を検出する。第2検出部352は、たとえばフォトダイオードにて構成される。第2検出部352は、可視光線の全帯域を一括りに検出する照度センサ形式、あるいは可視光線を赤、緑、青の色信号に分別して検出するRGBカラーセンサ形式とすることができる。 The light emitted from the light emitting element 31 (infrared rays in the present embodiment) is detected by the first detection unit 351. The first detection unit 351 is, for example, a photodiode, and outputs a predetermined voltage when light is detected. The second detection unit 352 detects light having a wavelength band different from that of the first detection unit 351. For example, the second detection unit 352 detects visible light (for example, the wavelength band is 380 to 780 nm). The second detection unit 352 is configured by, for example, a photodiode. The second detection unit 352 can be in an illuminance sensor format that detects all bands of visible light at once, or in an RGB color sensor format that detects visible light by separating it into red, green, and blue color signals.
 各電極パッド321は、たとえばAlから構成され、第1検出部351、第2検出部352および機能領域322のいずれかに導通している。図3に示すように、各々の電極パッド321は、第2ワイヤ39を介して、対応する一の第2内部導体212に導通している。機能領域322は、第1検出部351および第2検出部352に導通し、かつ第1検出部351および第2検出部352からの出力信号に基づき、光検出信号(近接信号)を出力する。たとえば、機能領域322は、各検出部351,352からの出力電流をA/D変換し、その変換結果に応じて所定の光検出信号を出力する。あるいは、機能領域322は、各検出部351,352からの出力電圧に基づき、当該電圧が予め定められた閾値を超えた場合に光検出信号を出力する。 Each electrode pad 321 is made of, for example, Al, and is electrically connected to one of the first detection unit 351, the second detection unit 352, and the functional region 322. As shown in FIG. 3, each electrode pad 321 is electrically connected to one corresponding second inner conductor 212 through the second wire 39. The functional region 322 is electrically connected to the first detection unit 351 and the second detection unit 352, and outputs a light detection signal (proximity signal) based on output signals from the first detection unit 351 and the second detection unit 352. For example, the functional area 322 A / D converts the output current from each of the detection units 351 and 352, and outputs a predetermined light detection signal according to the conversion result. Or based on the output voltage from each detection part 351,352, the function area | region 322 outputs a photon detection signal, when the said voltage exceeds the predetermined threshold value.
 積層光学膜323は、発光素子31から発せられた光に対応する波長帯の光のみを透過させる。積層光学膜323は、たとえば合成樹脂から構成される。受光素子32において積層光学膜323は、第1検出部351および機能領域322を覆っている。このため、第1検出部351および機能領域322は、可視光線(第2検出部352が検出する光)に対応する波長帯の光の影響を受けない。図10に示す例では、第1検出部351は積層光学膜323に近接して(たとえば直接的に接するように)設けられおり、かつ機能領域322は積層光学膜323から離間して設けられているが、本開示がこれに限定されるわけではない。 The laminated optical film 323 transmits only light in a wavelength band corresponding to the light emitted from the light emitting element 31. The laminated optical film 323 is made of, for example, a synthetic resin. In the light receiving element 32, the laminated optical film 323 covers the first detection unit 351 and the functional region 322. Therefore, the first detection unit 351 and the functional region 322 are not affected by light in a wavelength band corresponding to visible light (light detected by the second detection unit 352). In the example shown in FIG. 10, the first detection unit 351 is provided close to the laminated optical film 323 (for example, so as to be in direct contact), and the functional region 322 is provided apart from the laminated optical film 323. However, the present disclosure is not limited to this.
 本実施形態では、第1検出部351および第2検出部352が1つの受光素子32に形成されている。これに代えて、たとえば、2つの受光素子32の一方に第1検出部351を形成し、他方の受光素子32に第2検出部352を形成してもよい。あるいは、3つの受光素子32を用いて、第1の受光素子32に第1検出部351を形成し、第2の受光素子32に照度センサ形式の第2検出部352を形成し、第3の受光素子32にRGBカラーセンサ形式の第2検出部352を形成してもよい。 In the present embodiment, the first detector 351 and the second detector 352 are formed in one light receiving element 32. Instead of this, for example, the first detector 351 may be formed in one of the two light receiving elements 32 and the second detector 352 may be formed in the other light receiving element 32. Alternatively, using the three light receiving elements 32, the first detection unit 351 is formed in the first light receiving element 32, the second detection unit 352 of the illuminance sensor type is formed in the second light receiving element 32, and the third A second detector 352 in the form of an RGB color sensor may be formed on the light receiving element 32.
 第2接合層34は、図5および図6に示すように、受光素子32と主面絶縁膜28との間に介在する電気絶縁部材である。第2接合層34によって、受光素子32は基板10の主面11に固着される。第2接合層34は、たとえばエポキシ樹脂やポリイミドなどから構成される。 As shown in FIGS. 5 and 6, the second bonding layer 34 is an electrical insulating member interposed between the light receiving element 32 and the main surface insulating film 28. The light receiving element 32 is fixed to the main surface 11 of the substrate 10 by the second bonding layer 34. The second bonding layer 34 is made of, for example, an epoxy resin or polyimide.
 第1ワイヤ38は、図3および図7に示すように、発光素子31の上面電極312と、第1内部導体211の第1パッド部211aとを接続する導電部材である。本実施形態では、第1ワイヤ38は、平面視において第2方向yに沿って配置されている。また、第2ワイヤ39は、図3および図5に示すように、一の電極パッド321(受光素子32)と、対応する一の第2パッド部212a(第2内部導体212)とを接続する導電部材である。本実施形態では、いずれの第2ワイヤ39も第1方向xにおいて発光素子31と受光素子32との間にある。また、複数の第2ワイヤ39は、平面視において受光素子32の一辺に沿って相互に離間して配列されている。これに代えて、複数の第2ワイヤ39を、受光素子32の二辺(たとえば第1方向xにおいて互いに離間した二辺)または三辺または四辺に沿って配列する構成としてもよい。第1ワイヤ38および複数の第2ワイヤ39は、同一の材料(たとえばAu)から構成される。 The first wire 38 is a conductive member that connects the upper surface electrode 312 of the light emitting element 31 and the first pad portion 211a of the first internal conductor 211, as shown in FIGS. In the present embodiment, the first wire 38 is disposed along the second direction y in plan view. Further, as shown in FIGS. 3 and 5, the second wire 39 connects one electrode pad 321 (light receiving element 32) and a corresponding second pad portion 212 a (second internal conductor 212). It is a conductive member. In the present embodiment, any second wire 39 is located between the light emitting element 31 and the light receiving element 32 in the first direction x. The plurality of second wires 39 are arranged to be separated from each other along one side of the light receiving element 32 in plan view. Instead of this, the plurality of second wires 39 may be arranged along two sides (for example, two sides separated from each other in the first direction x), three sides, or four sides of the light receiving element 32. The first wire 38 and the plurality of second wires 39 are made of the same material (for example, Au).
 ケース40は、図2および図5~図7に示すように、基板10の主面11に支持され、かつ少なくとも受光素子32を囲む部材である。本実施形態では、ケース40は、発光素子31および受光素子32の双方を囲んでいる。ケース40は、遮光性を有する。ケース40は、たとえばセラミックスや黒色のエポキシ樹脂などから構成される。ケース40は、天板41、側壁42および隔壁43を有する。本実施形態では、側壁42は、4つの矩形状外面を有している。 The case 40 is a member that is supported by the main surface 11 of the substrate 10 and surrounds at least the light receiving element 32 as shown in FIGS. 2 and 5 to 7. In the present embodiment, the case 40 surrounds both the light emitting element 31 and the light receiving element 32. The case 40 has a light shielding property. Case 40 is made of, for example, ceramics or black epoxy resin. The case 40 has a top plate 41, a side wall 42, and a partition wall 43. In the present embodiment, the side wall 42 has four rectangular outer surfaces.
 図5~図7に示すように、天板41は、厚さ方向zにおいて受光素子32から離間して配置されている。図1および図2に示すように、天板41には、平面視において受光素子32を臨む入射開口部411が設けられている。ここで、開口部が、ある対象を「臨む」とは、平面視において当該開口部が当該対象の少なくとも一部と重なる(対象の少なくとも一部が開口部を介して視認される)ことを言い、開口部と対象との大小関係は問わない(以下同様)。また、天板41には、平面視において発光素子31を臨む出射開口部412が設けられている。入射開口部411および出射開口部412は、第1方向xにおいて互いに離間している。平面視における入射開口部411および出射開口部412の形状は、円形状である。平面視において入射開口部411は、受光素子32の第1検出部351および第2検出部352を囲んでいる。また、平面視において出射開口部412の中心に、発光素子31の光出射領域311が位置する。さらに、図2および図5~図7に示すように、天板41には、少なくとも2つの空気抜き溝44が設けられている。第1の空気抜き溝44は、入射開口部411と外部とに通じており、第2の空気抜き溝44は、出射開口部412と外部とに通じている。各空気抜き溝44は、天板41の上面から下に凹むように設けられている。 As shown in FIGS. 5 to 7, the top plate 41 is disposed away from the light receiving element 32 in the thickness direction z. As shown in FIGS. 1 and 2, the top plate 41 is provided with an incident opening 411 that faces the light receiving element 32 in plan view. Here, the opening portion “facing” a certain object means that the opening portion overlaps at least a part of the object in a plan view (at least a part of the object is visually recognized through the opening). The size relationship between the opening and the object does not matter (the same applies hereinafter). The top plate 41 is provided with an emission opening 412 that faces the light emitting element 31 in a plan view. The entrance opening 411 and the exit opening 412 are separated from each other in the first direction x. The shapes of the entrance opening 411 and the exit opening 412 in a plan view are circular. The incident opening 411 surrounds the first detection unit 351 and the second detection unit 352 of the light receiving element 32 in plan view. In addition, the light emission region 311 of the light emitting element 31 is located at the center of the emission opening 412 in plan view. Further, as shown in FIGS. 2 and 5 to 7, the top plate 41 is provided with at least two air vent grooves 44. The first air vent groove 44 communicates with the incident opening 411 and the outside, and the second air vent groove 44 communicates with the output opening 412 and the outside. Each air vent groove 44 is provided so as to be recessed downward from the upper surface of the top plate 41.
 図2および図5~図7に示すように側壁42は、平面視において天板41の周面につながり、かつ厚さ方向zにおける一端(図5において下端)が基板10の主面11に支持されている。本実施形態では、ケース40の側壁42が、発光素子31および受光素子32の周囲を囲む。側壁42は、主面11と同方向を向く頂面421と、頂面421とは反対側を向く底面422とを有する。接着剤を介して底面422が主面絶縁膜28に接合される。 As shown in FIGS. 2 and 5 to 7, the side wall 42 is connected to the peripheral surface of the top plate 41 in plan view, and one end (the lower end in FIG. 5) in the thickness direction z is supported by the main surface 11 of the substrate 10. Has been. In the present embodiment, the side wall 42 of the case 40 surrounds the light emitting element 31 and the light receiving element 32. The side wall 42 has a top surface 421 facing the same direction as the main surface 11 and a bottom surface 422 facing the opposite side of the top surface 421. The bottom surface 422 is bonded to the main surface insulating film 28 via an adhesive.
 図2、図5および図7に示すように、隔壁43は、平面視において発光素子31と受光素子32との間に位置する。厚さ方向zにおいて、隔壁43の一端(上端)は天板41につながり、他端(下端)は、接着剤にて主面絶縁膜28に接合されている。隔壁43は、平面視において第2方向yに沿って配置されている。本実施形態では、隔壁43によって、受光素子32が配置された第1区域61と、発光素子31が配置された第2区域62とが互いに分離されている。 As shown in FIGS. 2, 5, and 7, the partition wall 43 is located between the light emitting element 31 and the light receiving element 32 in a plan view. In the thickness direction z, one end (upper end) of the partition wall 43 is connected to the top plate 41, and the other end (lower end) is joined to the main surface insulating film 28 with an adhesive. The partition wall 43 is disposed along the second direction y in plan view. In the present embodiment, the partition 43 separates the first area 61 in which the light receiving element 32 is disposed and the second area 62 in which the light emitting element 31 is disposed.
 透光部材50は、透光性を有する部材であり、図5~図7に示すように、厚さ方向zにおいて受光素子32から離間してケース40に支持される。本実施形態では、透光部材50は、ケース40の天板41に支持されている。透光部材50は、たとえばガラスや合成樹脂などから構成される。透光部材50は、外面51および内面52を有する。外面51は、平坦面であり、かつケース40の側壁42の頂面421と面一である。内面52は、主面11に対向する面である。内面52がケース40の天板41に対向するように、透光部材50が接着層59を介して天板41に支持されている。接着層59は、たとえばアクリル樹脂またはエポキシ樹脂から構成される。入射開口部411および出射開口部412は、上方から透光部材50により塞がれている。第1区域61および第2区域62は、基板10、ケース40および透光部材50によって囲まれている。受光素子32の保護のため、透光性を有する合成樹脂により第1区域61の一部または全部を充填してもよい。同様に、発光素子31(たとえば発光ダイオード)の保護のため、透光性を有する合成樹脂により第2区域62の一部または全部を充填してもよい。ただし、保護樹脂の充填により発光素子31が損傷をうけるおそれがある場合等は、この限りでない。 The translucent member 50 is a translucent member, and is supported by the case 40 while being separated from the light receiving element 32 in the thickness direction z, as shown in FIGS. In the present embodiment, the translucent member 50 is supported by the top plate 41 of the case 40. The translucent member 50 is made of, for example, glass or synthetic resin. The translucent member 50 has an outer surface 51 and an inner surface 52. The outer surface 51 is a flat surface and is flush with the top surface 421 of the side wall 42 of the case 40. The inner surface 52 is a surface facing the main surface 11. The translucent member 50 is supported on the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41 of the case 40. The adhesive layer 59 is made of, for example, an acrylic resin or an epoxy resin. The entrance opening 411 and the exit opening 412 are closed by the translucent member 50 from above. The first area 61 and the second area 62 are surrounded by the substrate 10, the case 40, and the translucent member 50. In order to protect the light receiving element 32, part or all of the first area 61 may be filled with a synthetic resin having translucency. Similarly, in order to protect the light emitting element 31 (for example, a light emitting diode), a part or all of the second area 62 may be filled with a synthetic resin having translucency. However, this is not the case when the light emitting element 31 may be damaged by filling the protective resin.
 図2および図5~図7に示すように、透光部材50には、発光素子31から発せられた光に対応する波長帯の光を透過させない遮光層53が設けられている。本実施形態では、遮光層53は、たとえば合成樹脂から構成されたIRカットフィルタである。遮光層53は、たとえば印刷などにより透光部材50に設けることができる。図2および図11に示すように、遮光層53は、透光部材50の一部を露出させ、かつ平面視において第1検出部351を臨むように形成された第1開口部531を有する。本実施形態では、図12に示すように、遮光層53は、透光部材50の内面52に当接している。これに代えて、図13に示すように、遮光層53を透光部材50の外面51に当接するように設けてもよい。さらに、図14に示すように、第1の遮光層53を透光部材50の外面51に、第2の遮光層53を透光部材50の内面52に設けてもよい。 As shown in FIGS. 2 and 5 to 7, the translucent member 50 is provided with a light shielding layer 53 that does not transmit light in a wavelength band corresponding to the light emitted from the light emitting element 31. In the present embodiment, the light shielding layer 53 is an IR cut filter made of, for example, a synthetic resin. The light shielding layer 53 can be provided on the translucent member 50 by printing, for example. As shown in FIGS. 2 and 11, the light shielding layer 53 has a first opening 531 formed so as to expose a part of the translucent member 50 and to face the first detection unit 351 in plan view. In the present embodiment, as illustrated in FIG. 12, the light shielding layer 53 is in contact with the inner surface 52 of the translucent member 50. Instead of this, as shown in FIG. 13, a light shielding layer 53 may be provided so as to contact the outer surface 51 of the translucent member 50. Furthermore, as shown in FIG. 14, the first light shielding layer 53 may be provided on the outer surface 51 of the translucent member 50, and the second light shielding layer 53 may be provided on the inner surface 52 of the translucent member 50.
 図15に示すように、第1開口部531は円形である。受光素子32の第1検出部351の一部は、第1開口部531の内部に位置している。第2検出部352は、その全体が遮光層53に重なっている。第1開口部531は、その全体が入射開口部411の内側に位置している。 As shown in FIG. 15, the first opening 531 is circular. A part of the first detection unit 351 of the light receiving element 32 is located inside the first opening 531. The entire second detection unit 352 overlaps the light shielding layer 53. The entire first opening 531 is located inside the incident opening 411.
 第1開口部531は、図16に示すように楕円形状としてもよいし、図17に示すように長方形状としてもよい。あるいは、図18に示すように、第1開口部531は、円形開口の一部を覆った形状としてもよい。いずれの場合においても、第1開口部531は、入射開口部411の内側に位置している。 The first opening 531 may have an elliptical shape as shown in FIG. 16 or a rectangular shape as shown in FIG. Or as shown in FIG. 18, the 1st opening part 531 is good also as a shape which covered a part of circular opening. In any case, the first opening 531 is located inside the incident opening 411.
 図16~図18に示すように、平面視における第1開口部531の形状を適宜選択することによって、半導体装置A10から特定の距離に位置する検出対象物に対する半導体装置A10の検出精度(誤検知抑制精度)を最適なものにすることができる。 As shown in FIGS. 16 to 18, by appropriately selecting the shape of the first opening 531 in plan view, the detection accuracy (false detection) of the semiconductor device A10 with respect to the detection target located at a specific distance from the semiconductor device A10. (Suppression accuracy) can be optimized.
 図19に示すように、平面視において第2検出部352が第1開口部531と重なる部分を有する構成としてもよい。 As shown in FIG. 19, the second detection unit 352 may have a portion overlapping the first opening 531 in plan view.
 図2、図5および図11に示すように、遮光層53は、第2開口部532を有しており、当該第2開口部は、第1方向xにおいて第1開口部531から離間するとともに、透光部材50の一部を露出させ、かつ平面視において発光素子31を臨むように形成されている。第2開口部532は、円形状であり、平面視において出射開口部412の内側に位置している。 As shown in FIGS. 2, 5, and 11, the light shielding layer 53 has a second opening 532, and the second opening is separated from the first opening 531 in the first direction x. The light-transmitting member 50 is partly exposed and formed so as to face the light emitting element 31 in a plan view. The second opening 532 has a circular shape and is located inside the emission opening 412 in plan view.
 次に、半導体装置A10の作用効果について説明する。 Next, functions and effects of the semiconductor device A10 will be described.
 たとえば、図20に示すように、発光素子31から発せられた光Lが、光学窓OWの上面(当該光学窓と外部空気との境界面S)で反射し、光検出手段の第1検出部351に向って進行したとする。しかしながらこの反射光は、透光部材50を透過後に遮光層53によりさえぎられる。このため、当該反射光は、第1検出部351には到達せず、クロストークが生じない。図20では、遮光層53が存在しない場合の光の進行経路をL'(二点鎖線)で示している。図20に示す状況以外に、発光素子31から発せられた光が、たとえば光学窓OWの下面で反射する可能性がある。このような場合であっても、反射光(ノイズ)を遮光層53で遮ることにより、クロストークを抑制することが可能である。このように、半導体装置A10によれば、ノイズを抑制することにより誤検知の防止、延いては検出対象物の検出信頼度の向上を図ることができる。 For example, as shown in FIG. 20, the light L emitted from the light emitting element 31 is reflected by the upper surface of the optical window OW (boundary surface S between the optical window and external air), and the first detection unit of the light detection unit Suppose that it progressed toward 351. However, the reflected light is blocked by the light shielding layer 53 after passing through the light transmitting member 50. For this reason, the reflected light does not reach the first detection unit 351 and crosstalk does not occur. In FIG. 20, the light traveling path when the light shielding layer 53 does not exist is indicated by L ′ (two-dot chain line). In addition to the situation shown in FIG. 20, the light emitted from the light emitting element 31 may be reflected by the lower surface of the optical window OW, for example. Even in such a case, it is possible to suppress crosstalk by blocking the reflected light (noise) with the light blocking layer 53. As described above, according to the semiconductor device A10, it is possible to prevent false detection by suppressing noise and to improve detection reliability of the detection target.
 本実施形態において、遮光層53は、可視光線(波長帯が赤外線と異なる)を透過させる。このため、第1検出部351の誤検知防止を図りつつ、隣接する第2検出部352が十分な大きさの受光視野角を有することができ、第2検出部352による検出が適切に行われるようにすることができる。 In the present embodiment, the light shielding layer 53 transmits visible light (wavelength band different from infrared). For this reason, while aiming at prevention of erroneous detection of the first detection unit 351, the adjacent second detection unit 352 can have a sufficiently large light reception viewing angle, and detection by the second detection unit 352 is appropriately performed. Can be.
 VCSELは、発光ダイオードよりも光の指向性がよい。よって、発光素子31をVCSELで構成すれば、クロストークをより確実に抑制することができ、第1検出部351の誤検知防止に資する。 VCSELs have better light directivity than light emitting diodes. Therefore, if the light emitting element 31 is configured by a VCSEL, crosstalk can be more reliably suppressed, which contributes to prevention of erroneous detection of the first detection unit 351.
 ケース40の天板41は、入射開口部411および出射開口部412を除き、中実である。この中実部分が透光部材50を支持しているので、透光部材50を確実にケース40に固定することができ、透光部材50が外力によって容易に変形しないようにすることができる。 The top plate 41 of the case 40 is solid except for the entrance opening 411 and the exit opening 412. Since the solid part supports the translucent member 50, the translucent member 50 can be reliably fixed to the case 40, and the translucent member 50 can be prevented from being easily deformed by an external force.
 ケース40は、平面視において発光素子31と光検出手段との間に位置する隔壁43を有する。隔壁43は、厚さ方向zにおいて一端が天板41につながる。ケース40内の領域(基板10、ケース40および透光部材50によって囲まれた領域)は、隔壁43によって、第1区域61(光検出手段が存する)と第2区域62(発光素子31が存する)とに分離される。隔壁43を設けることによって、ケース40の剛性を高めることができる。また、半導体装置A10の内部において、発光素子31から発せられた光が光検出手段の第1検出部351に直接到達することが回避されるため、第1検出部351による誤検知の抑制を図ることができる。 The case 40 has a partition wall 43 located between the light emitting element 31 and the light detection means in plan view. One end of the partition wall 43 is connected to the top plate 41 in the thickness direction z. A region in the case 40 (region surrounded by the substrate 10, the case 40, and the translucent member 50) is divided into a first area 61 (there is a light detection means) and a second area 62 (the light emitting element 31) by the partition wall 43. ) And are separated. By providing the partition wall 43, the rigidity of the case 40 can be increased. In addition, in the semiconductor device A10, light emitted from the light emitting element 31 is prevented from reaching the first detection unit 351 of the light detection unit directly, so that erroneous detection by the first detection unit 351 is suppressed. be able to.
 遮光部材53は、平面視において発光素子31を臨むように形成された第2開口部532を有する。このような構成により、発光素子31から発せられた光線のうち、特定の範囲内(特定の立体角内)の光線のみを検出対象物に向けて出射させることができる。このことは、第1検出部351による誤検知の抑制に資する。 The light shielding member 53 has a second opening 532 formed so as to face the light emitting element 31 in a plan view. With such a configuration, it is possible to emit only light within a specific range (within a specific solid angle) out of the light emitted from the light emitting element 31 toward the detection target. This contributes to suppression of erroneous detection by the first detection unit 351.
 基板10の主面11に配置された内部導体21と、裏面12に配置された外部導体22は、基板10に埋設された中間導体23によって相互に導通している。このような構成により、外部導体22が半導体装置A10の側方に露出しないため、半導体装置A10の小型化を図ることができる。 The internal conductor 21 disposed on the main surface 11 of the substrate 10 and the external conductor 22 disposed on the back surface 12 are electrically connected to each other by an intermediate conductor 23 embedded in the substrate 10. With such a configuration, since the outer conductor 22 is not exposed to the side of the semiconductor device A10, the semiconductor device A10 can be downsized.
 内部導体21(第1および第2内部導体211、212)および外部導体22は、めっき層により覆われている。このような構成により、半導体装置A10の製造において、発光素子31および受光素子32の搭載時や、第1ワイヤ38および第2ワイヤ39の接続時の熱などの衝撃から内部導体21を保護することができる。また、半導体装置A10を回路基板に実装する際、クリームはんだなどの影響による外部導体22の侵食を防止することができる。 The inner conductor 21 (first and second inner conductors 211 and 212) and the outer conductor 22 are covered with a plating layer. With such a configuration, in manufacturing the semiconductor device A10, the internal conductor 21 is protected from an impact such as heat when the light emitting element 31 and the light receiving element 32 are mounted or when the first wire 38 and the second wire 39 are connected. Can do. Further, when the semiconductor device A10 is mounted on the circuit board, the erosion of the external conductor 22 due to the influence of cream solder or the like can be prevented.
 図21および図22を参照し、本開示の第2実施形態に基づく半導体装置A20について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して説明を適宜省略する。 A semiconductor device A20 according to the second embodiment of the present disclosure will be described with reference to FIGS. In these drawings, the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
 本実施形態の半導体装置A20は、ケース40の構成が先述した半導体装置A10と異なる。半導体装置A20では、図21および図22に示すように、ケース40には、隔壁43が設けられていない。このためケース40内の中空領域は1つである。また、ケース40には、出射開口部412と外部とに通じる空気抜き溝は設けられていない。主面絶縁膜28に形成された開口は1つである。 The semiconductor device A20 of the present embodiment is different from the semiconductor device A10 described above in the configuration of the case 40. In the semiconductor device A20, as shown in FIGS. 21 and 22, the case 40 is not provided with the partition wall 43. For this reason, there is one hollow region in the case 40. Further, the case 40 is not provided with an air vent groove that communicates with the emission opening 412 and the outside. There is one opening formed in the main surface insulating film 28.
 次に、半導体装置A20の作用効果について説明する。 Next, functions and effects of the semiconductor device A20 will be described.
 半導体装置A20は、先述した半導体装置A10と同様に、透光部材50には赤外線を透過させない遮光層53が設けられている。遮光層53は、平面視において第1検出部351を臨むように形成された第1開口部531を有する。したがって、半導体装置A20によっても、図20を参照して説明した作用効果が得られる。すなわち、ノイズを抑制し、光検出手段による誤検知の抑制を図ることが可能となる。本実施形態においては、ケース40内に隔壁が無いため、発光素子31は、発光ダイオードよりもVCSELであることが望ましいが、本開示がこれに限定されるわけではない。 In the semiconductor device A20, similarly to the semiconductor device A10 described above, the light transmissive member 50 is provided with a light shielding layer 53 that does not transmit infrared rays. The light shielding layer 53 has a first opening 531 formed so as to face the first detection unit 351 in plan view. Therefore, the function and effect described with reference to FIG. 20 can also be obtained by the semiconductor device A20. That is, it becomes possible to suppress noise and suppress false detection by the light detection means. In this embodiment, since there is no partition in the case 40, the light emitting element 31 is preferably a VCSEL rather than a light emitting diode, but the present disclosure is not limited to this.
 図23および図24を参照し、本開示の第3実施形態に基づく半導体装置A30について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。 A semiconductor device A30 according to the third embodiment of the present disclosure will be described with reference to FIGS. In these drawings, the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本実施形態の半導体装置A30は、ケース40の構成と、透光部材50の配置形態とが先述した半導体装置A10と異なる。半導体装置A30では、図23および図24に示すように、ケース40内に隔壁が設けられておらず、中空領域は1つである。出射開口部412と外部とに通じる空気抜き溝も設けられていない。天板41の上面は、側壁42の頂面421と面一である。主面絶縁膜28に設けられた開口は1つである。 The semiconductor device A30 of the present embodiment is different from the semiconductor device A10 described above in the configuration of the case 40 and the arrangement of the translucent member 50. In the semiconductor device A30, as shown in FIG. 23 and FIG. 24, no partition is provided in the case 40, and there is one hollow region. There is also no air vent groove communicating with the exit opening 412 and the outside. The top surface of the top plate 41 is flush with the top surface 421 of the side wall 42. The number of openings provided in the main surface insulating film 28 is one.
 透光部材50は、外面51が天板41に対向するように接着層59を介して天板41に支持されている。入射開口部411および出射開口部412は、下方から透光部材50により塞がれている。入射開口部411と外部とに通じる空気抜き溝44は、天板41の下面から凹むように設けられている。 The translucent member 50 is supported by the top plate 41 through the adhesive layer 59 so that the outer surface 51 faces the top plate 41. The entrance opening 411 and the exit opening 412 are closed by the translucent member 50 from below. An air vent groove 44 communicating with the incident opening 411 and the outside is provided so as to be recessed from the lower surface of the top plate 41.
 次に、半導体装置A30の作用効果について説明する。 Next, functions and effects of the semiconductor device A30 will be described.
 半導体装置A30は、先述した半導体装置A10と同様に、透光部材50には、赤外線を透過させない遮光層53が設けられている。遮光層53は、平面視において第1検出部351を臨むように形成された第1開口部531を有する。したがって、半導体装置A30によっても、ノイズを抑制し、光検出手段の誤検知の抑制を図ることが可能となる。ケース40内に隔壁が設けられていないので、発光素子31は、発光ダイオードよりもVCSELであることが望ましいが、本開示がこれに限定されるわけではない。 In the semiconductor device A30, similarly to the semiconductor device A10 described above, the light transmissive member 50 is provided with a light shielding layer 53 that does not transmit infrared light. The light shielding layer 53 has a first opening 531 formed so as to face the first detection unit 351 in plan view. Therefore, the semiconductor device A30 can also suppress noise and suppress false detection of the light detection means. Since no partition is provided in the case 40, the light emitting element 31 is preferably a VCSEL rather than a light emitting diode, but the present disclosure is not limited thereto.
 図25および図26に基づき、本開示の第4実施形態に基づく半導体装置A40について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。 A semiconductor device A40 according to the fourth embodiment of the present disclosure will be described based on FIG. 25 and FIG. In these drawings, the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図25は、半導体装置A40の平面図である。図26は、図25のXXVI-XXVI線に沿う断面図である。 FIG. 25 is a plan view of the semiconductor device A40. 26 is a cross-sectional view taken along line XXVI-XXVI in FIG.
 本実施形態の半導体装置A40は、ケース40および透光部材50等の構成が先述した半導体装置A10と異なる。半導体装置A40では、図25および図26に示すように、天板41の上面は、側壁42の頂面421と面一である。透光部材50は、第1透光部材501および第2透光部材502を含む。第1透光部材501は、入射開口部411を塞いでいる。第1透光部材501には、第1開口部531を有する遮光層(第1遮光層)53が設けられている。第2透光部材502は、出射開口部412を塞いでいる。第2透光部材502には、第2開口部532を有する遮光層(第2遮光層)53が設けられている。第1方向xにおいて第1透光部材501および第2透光部材502は、互いに離間している。第1透光部材501および第2透光部材502は、天板41に内包され、かつ内面52が天板41に対向するように接着層59を介して天板41に支持されている。図示した例に代えて、第2透光部材502には、遮光層53を設けないようにしてもよい。 The semiconductor device A40 of this embodiment is different from the semiconductor device A10 described above in the configuration of the case 40, the translucent member 50, and the like. In the semiconductor device A 40, as shown in FIGS. 25 and 26, the top surface of the top plate 41 is flush with the top surface 421 of the side wall 42. The translucent member 50 includes a first translucent member 501 and a second translucent member 502. The first light transmissive member 501 closes the incident opening 411. The first light transmissive member 501 is provided with a light shielding layer (first light shielding layer) 53 having a first opening 531. The second light transmissive member 502 closes the emission opening 412. The second light transmitting member 502 is provided with a light shielding layer (second light shielding layer) 53 having a second opening 532. In the first direction x, the first light transmissive member 501 and the second light transmissive member 502 are separated from each other. The first light transmissive member 501 and the second light transmissive member 502 are contained in the top plate 41 and supported by the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41. Instead of the illustrated example, the light-shielding layer 53 may not be provided on the second light-transmissive member 502.
 次に、半導体装置A40の作用効果について説明する。 Next, functions and effects of the semiconductor device A40 will be described.
 半導体装置A40においては、少なくとも第1透光部材501には、赤外線を透過させない遮光層53が設けられ、当該遮光層53は、平面視において第1検出部351を臨むように形成された第1開口部531を有する。したがって、半導体装置A40によっても、ノイズを抑制し、光検出手段の誤検知の防止を図ることが可能である。 In the semiconductor device A40, at least the first light-transmissive member 501 is provided with a light-shielding layer 53 that does not transmit infrared rays. The light-shielding layer 53 is formed so as to face the first detection unit 351 in plan view. An opening 531 is provided. Therefore, the semiconductor device A40 can also suppress noise and prevent erroneous detection of the light detection means.
 図27および図28に基づき、本開示の第5実施形態に基づく半導体装置A50について説明する。これらの図において、先述した半導体装置A10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。 A semiconductor device A50 according to the fifth embodiment of the present disclosure will be described with reference to FIGS. In these drawings, the same or similar elements as those of the semiconductor device A10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本実施形態の半導体装置A50は、ケース40および透光部材50等の構成が先述した半導体装置A10と異なる。半導体装置A50では、図27および図28に示すように、天板41の上面は、側壁42の頂面421と面一である。透光部材50は、先述した半導体装置A40と同じく第1透光部材501および第2透光部材502を含む。第1方向xにおいて第1透光部材501および第2透光部材502は、互いに離間している。第1透光部材501および第2透光部材502は、外面51が天板41に対向するように接着層59を介して天板41に支持されている。第2透光部材502には、遮光層53を設けなくてもよい。 The semiconductor device A50 of this embodiment is different from the semiconductor device A10 described above in the configuration of the case 40, the translucent member 50, and the like. In the semiconductor device A50, as shown in FIGS. 27 and 28, the top surface of the top plate 41 is flush with the top surface 421 of the side wall. The translucent member 50 includes the first translucent member 501 and the second translucent member 502 as in the semiconductor device A40 described above. In the first direction x, the first light transmissive member 501 and the second light transmissive member 502 are separated from each other. The first light transmissive member 501 and the second light transmissive member 502 are supported by the top plate 41 through the adhesive layer 59 so that the outer surface 51 faces the top plate 41. The second light transmissive member 502 may not include the light shielding layer 53.
 次に、半導体装置A50の作用効果について説明する。 Next, functions and effects of the semiconductor device A50 will be described.
 半導体装置A50においては、少なくとも第1透光部材501には、赤外線を透過させない遮光層53が設けられ、当該遮光層53は、平面視において第1検出部351を臨むように形成された第1開口部531を有する。したがって、半導体装置A50によっても、ノイズを抑制し、光検出手段の誤検知の抑制を図ることが可能となる。 In the semiconductor device A50, at least the first light transmitting member 501 is provided with a light shielding layer 53 that does not transmit infrared rays. The light shielding layer 53 is formed so as to face the first detection unit 351 in plan view. An opening 531 is provided. Therefore, also with the semiconductor device A50, it is possible to suppress noise and suppress erroneous detection of the light detection means.
 図29~図41を参照して、本開示の第6実施形態に基づく半導体装置B10について説明する。半導体装置B10は、基板10、発光素子31、受光素子32、ケース40および透光部材50を備える。基板10には、複数の内部導体21、複数の外部導体22、複数の中間導体23、主面絶縁膜28および裏面絶縁膜29が配置されている。図29および図30では、透光部材50を二点鎖線で示している。図31は、半導体装置B10の平面図であり、ケース40および透光部材50を省略している。 A semiconductor device B10 according to the sixth embodiment of the present disclosure will be described with reference to FIGS. The semiconductor device B10 includes a substrate 10, a light emitting element 31, a light receiving element 32, a case 40, and a translucent member 50. A plurality of inner conductors 21, a plurality of outer conductors 22, a plurality of intermediate conductors 23, a main surface insulating film 28 and a back surface insulating film 29 are arranged on the substrate 10. 29 and 30, the translucent member 50 is indicated by a two-dot chain line. FIG. 31 is a plan view of the semiconductor device B10, and the case 40 and the translucent member 50 are omitted.
 基板10は、図29~図31および図33に示すように、発光素子31および受光素子32を搭載し、かつ半導体装置B10を回路基板に実装するための部材である。基板10は、電気絶縁体であり、たとえばガラスエポキシ樹脂からなる。基板10の平面視の形状は、第1方向xを長辺とする矩形状である。基板10は、主面11および裏面12を有する。基板10には、厚さ方向zに延びる貫通孔13が複数設けられている(図34参照)。各々の貫通孔13には、中間導体23が貫通孔13を埋めるように配置されている。 The substrate 10 is a member on which the light emitting element 31 and the light receiving element 32 are mounted and the semiconductor device B10 is mounted on the circuit board as shown in FIGS. The substrate 10 is an electrical insulator and is made of, for example, a glass epoxy resin. The shape of the substrate 10 in plan view is a rectangular shape having the first direction x as a long side. The substrate 10 has a main surface 11 and a back surface 12. The substrate 10 is provided with a plurality of through holes 13 extending in the thickness direction z (see FIG. 34). In each through hole 13, an intermediate conductor 23 is disposed so as to fill the through hole 13.
 図33に示すように、主面11および裏面12は、厚さ方向zにおいて互いに反対側を向く。図31および図32に示すように、主面11および裏面12は、ともに平面視の形状が第1方向xを長辺とする矩形状であり、かつ平坦面である。主面11には、内部導体21および主面絶縁膜28が配置され、発光素子31および受光素子32が搭載されている。ケース40は主面11に支持される。裏面12は、半導体装置B10を実装する際に配線基板等に対向する面である。図32に示すように、裏面12に、外部導体22および裏面絶縁膜29が配置されている。 33, the main surface 11 and the back surface 12 face each other in the thickness direction z. As shown in FIG. 31 and FIG. 32, the main surface 11 and the back surface 12 are both flat in shape when viewed from above, with the long side in the first direction x. On the main surface 11, the inner conductor 21 and the main surface insulating film 28 are disposed, and the light emitting element 31 and the light receiving element 32 are mounted. Case 40 is supported by main surface 11. The back surface 12 is a surface facing the wiring board or the like when the semiconductor device B10 is mounted. As shown in FIG. 32, the external conductor 22 and the back surface insulating film 29 are disposed on the back surface 12.
 内部導体21は、たとえばCuから構成される。図31に示すように、内部導体21は、発光素子31に導通する第1内部導体211と、受光素子32に導通する複数の第2内部導体212とを含む。第1内部導体211および第2内部導体212は、ケース40の隔壁43を境界として互いに離間している(図33参照)。内部導体21は、いずれもめっき層により覆われている。めっき層は、たとえば互いに積層されたNi層およびAu層により構成されている。 The inner conductor 21 is made of Cu, for example. As shown in FIG. 31, the internal conductor 21 includes a first internal conductor 211 that is conductive to the light emitting element 31 and a plurality of second internal conductors 212 that are conductive to the light receiving element 32. The first inner conductor 211 and the second inner conductor 212 are separated from each other with the partition wall 43 of the case 40 as a boundary (see FIG. 33). Each of the inner conductors 21 is covered with a plating layer. The plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
 図31、図33および図35に示すように、第1内部導体211は、第1パッド部211aと、第1パッド部211aから第2方向yに離間し、かつ発光素子31を搭載するダイパッド部211bとを含む。第1パッド部211aに第1ワイヤ38が接続され。第1パッド部211aは第1ワイヤ38を介して発光素子31に導通している。ダイパッド部211bは、第1接合層33を介して発光素子31に導通している。第1パッド部211aおよびダイパッド部211bは、それぞれ中間導体23に導通している。 As shown in FIGS. 31, 33, and 35, the first inner conductor 211 has a first pad portion 211a and a die pad portion that is spaced apart from the first pad portion 211a in the second direction y and mounts the light emitting element 31. 211b. A first wire 38 is connected to the first pad portion 211a. The first pad portion 211 a is electrically connected to the light emitting element 31 through the first wire 38. The die pad portion 211 b is electrically connected to the light emitting element 31 through the first bonding layer 33. The first pad portion 211a and the die pad portion 211b are electrically connected to the intermediate conductor 23, respectively.
 図31、図33および図34に示すように、各第2内部導体212の先端には、平面視における形状が矩形状である第2パッド部212aが設けられている。各々の第2パッド部212aは、第2方向yに沿って配列されている。各々の第2パッド部212aに第2ワイヤ39が接続され、第2内部導体212は、第2ワイヤ39を介して受光素子32に導通している。第2内部導体212は、それぞれ中間導体23に導通している。 As shown in FIGS. 31, 33 and 34, a second pad portion 212a having a rectangular shape in plan view is provided at the tip of each second inner conductor 212. Each of the second pad portions 212a is arranged along the second direction y. A second wire 39 is connected to each second pad portion 212 a, and the second inner conductor 212 is electrically connected to the light receiving element 32 via the second wire 39. The second inner conductors 212 are electrically connected to the intermediate conductor 23, respectively.
 主面絶縁膜28は、図31および図33~図35に示すように、第1内部導体211および第2内部導体212を部分的に覆う電気絶縁部材である。主面絶縁膜28は、たとえばソルダ-レジストフィルムである。主面絶縁膜28には、第1開口281および第2開口282が形成されている。平面視において発光素子31および第1ワイヤ38は、ともに第1開口281に囲まれている。第2開口282から第2内部導体212の一部である第2パッド部212aが露出している。 The main surface insulating film 28 is an electrical insulating member that partially covers the first inner conductor 211 and the second inner conductor 212 as shown in FIGS. 31 and 33 to 35. The main surface insulating film 28 is, for example, a solder resist film. A first opening 281 and a second opening 282 are formed in the main surface insulating film 28. In plan view, both the light emitting element 31 and the first wire 38 are surrounded by the first opening 281. A second pad portion 212 a that is a part of the second inner conductor 212 is exposed from the second opening 282.
 各外部導体22は、図32、図34および図35に示すように、中間導体23および内部導体21を介して発光素子31または受光素子32に導通する。各外部導体22は、中間導体23を介して第1内部導体211および第2内部導体212のいずれか一方に導通している。外部導体22および中間導体23は、内部導体21と同一の材料(たとえばCu)から構成される。外部導体22は、内部導体21と同じく、いずれもめっき層により覆われている。当該めっき層は、たとえば互いに積層されたNi層およびAu層により構成されている。 Each outer conductor 22 is electrically connected to the light emitting element 31 or the light receiving element 32 through the intermediate conductor 23 and the inner conductor 21 as shown in FIGS. 32, 34 and 35. Each outer conductor 22 is electrically connected to one of the first inner conductor 211 and the second inner conductor 212 via the intermediate conductor 23. The outer conductor 22 and the intermediate conductor 23 are made of the same material (for example, Cu) as the inner conductor 21. The outer conductor 22 is covered with a plating layer in the same manner as the inner conductor 21. The plating layer is composed of, for example, a Ni layer and an Au layer stacked on each other.
 裏面絶縁膜29は、図32~図35に示すように、外部導体22の一部を覆う電気絶縁部材である。裏面絶縁膜29は、主面絶縁膜28と同じく、たとえばソルダーレジストフィルムである。半導体装置B10を回路基板に実装したとき、裏面絶縁膜29から露出した外部導体22は、クリームはんだなどを介して回路基板に形成された配線パターンに導通する。 The back surface insulating film 29 is an electrical insulating member that covers a part of the outer conductor 22 as shown in FIGS. The back surface insulating film 29 is, for example, a solder resist film, like the main surface insulating film 28. When the semiconductor device B10 is mounted on the circuit board, the external conductor 22 exposed from the back surface insulating film 29 is electrically connected to the wiring pattern formed on the circuit board via cream solder or the like.
 発光素子31は、光を出射する半導体素子である。たとえば、発光素子31は、レーザ光を発するVCSELである。これに代えて、発光素子31は、赤外線を発する発光ダイオードであってもよい。図30および図31に示すように、発光素子31の上面には厚さ方向zに向けて光を発する光出射領域311と、第1ワイヤ38が接続される上面電極312とが設けられている。発光素子31は、第1ワイヤ38を介して第1内部導体211の第1パッド部211aに導通している。発光素子31の下面には下面電極313が設けられ、発光素子31は、第1接合層33を介して内部導体21のダイパッド部211bに導通している。発光素子31として用いられるVCSELの構成は、たとえば、図8および図9を参照して説明した構成と同じである。 The light emitting element 31 is a semiconductor element that emits light. For example, the light emitting element 31 is a VCSEL that emits laser light. Instead of this, the light emitting element 31 may be a light emitting diode emitting infrared rays. As shown in FIGS. 30 and 31, a light emitting region 311 that emits light in the thickness direction z and an upper surface electrode 312 to which the first wire 38 is connected are provided on the upper surface of the light emitting element 31. . The light emitting element 31 is electrically connected to the first pad portion 211 a of the first inner conductor 211 via the first wire 38. A lower surface electrode 313 is provided on the lower surface of the light emitting element 31, and the light emitting element 31 is electrically connected to the die pad portion 211 b of the internal conductor 21 through the first bonding layer 33. The configuration of the VCSEL used as the light emitting element 31 is the same as the configuration described with reference to FIGS. 8 and 9, for example.
 第1接合層33は、図33および図35に示すように、発光素子31の下面電極313と第1内部導体211のダイパッド部211bとの間に介在する導電部材である。発光素子31は、ダイボンディングにより主面11に配置されたダイパッド部211bに搭載されている。第1接合層33は、たとえばAgペースト(Agを含有するエポキシ樹脂)から構成される。 The first bonding layer 33 is a conductive member interposed between the lower surface electrode 313 of the light emitting element 31 and the die pad portion 211b of the first inner conductor 211, as shown in FIGS. The light emitting element 31 is mounted on a die pad portion 211b disposed on the main surface 11 by die bonding. The first bonding layer 33 is made of, for example, Ag paste (epoxy resin containing Ag).
 受光素子32は、図31および図33に示すように、発光素子31から第1方向xに離間して主面11に支持され、かつ発光素子31から発せられた光を検出する半導体素子である。受光素子32はたとえば集積回路(IC)で構成され、複数の電極パッド321のほか、図40に示すように、検出部350、機能領域322および積層光学膜324を有している。 As shown in FIGS. 31 and 33, the light receiving element 32 is a semiconductor element that is supported by the main surface 11 and spaced from the light emitting element 31 in the first direction x and detects light emitted from the light emitting element 31. . The light receiving element 32 is formed of, for example, an integrated circuit (IC), and includes a plurality of electrode pads 321 and a detection unit 350, a functional region 322, and a laminated optical film 324 as shown in FIG.
 検出部350は、発光素子31から出射した後に検出対象物に反射した光を検出する部分であり、たとえばフォトダイオードで構成される。検出部350は、光を検出すると光起電力効果により電圧を出力する。各電極パッド321は、たとえばAlからなり、検出部350または機能領域322に導通している。図31に示すように、各々の電極パッド321は、第2ワイヤ39を介して第2内部導体212に導通している。機能領域322は、検出部350に導通している。一例として、機能領域322は、検出部350からの出力電圧に基づき、検出対象物の近接を示す近接信号を出力する。より具体的には、機能領域322は、当該出力電圧が予め設定された閾値を超えると、近接信号を半導体装置B10の外部に出力する。 The detection unit 350 is a part that detects light that is emitted from the light emitting element 31 and then reflected by the detection target, and is configured by, for example, a photodiode. When detecting the light, the detecting unit 350 outputs a voltage due to the photovoltaic effect. Each electrode pad 321 is made of, for example, Al, and is electrically connected to the detection unit 350 or the functional region 322. As shown in FIG. 31, each electrode pad 321 is electrically connected to the second inner conductor 212 via the second wire 39. The functional area 322 is electrically connected to the detection unit 350. As an example, the functional area 322 outputs a proximity signal indicating the proximity of the detection target based on the output voltage from the detection unit 350. More specifically, the functional area 322 outputs a proximity signal to the outside of the semiconductor device B10 when the output voltage exceeds a preset threshold value.
 積層光学膜324は、発光素子31から発せられた光に対応する波長域の光に対してのみ透光性を有する合成樹脂から構成される。受光素子32において積層光学膜324は、検出部350および機能領域322を覆っている。このため、検出部350および機能領域322は、可視光線など発光素子31から発せられた光と異なる波長域の光の影響は受けない。 The laminated optical film 324 is made of a synthetic resin that transmits only light in a wavelength range corresponding to the light emitted from the light emitting element 31. In the light receiving element 32, the laminated optical film 324 covers the detection unit 350 and the functional region 322. For this reason, the detection unit 350 and the functional region 322 are not affected by light in a wavelength region different from the light emitted from the light emitting element 31 such as visible light.
 第2接合層34は、図33および図34に示すように、受光素子32と裏面絶縁膜29との間に介在する電気絶縁部材である。第2接合層34によって、受光素子32は基板10の主面11に固着される。第2接合層34は、たとえばエポキシ樹脂やポリイミドなどからなる。 The second bonding layer 34 is an electrically insulating member interposed between the light receiving element 32 and the back surface insulating film 29 as shown in FIGS. 33 and 34. The light receiving element 32 is fixed to the main surface 11 of the substrate 10 by the second bonding layer 34. The second bonding layer 34 is made of, for example, an epoxy resin or polyimide.
 第1ワイヤ38は、図31に示すように、発光素子31の上面電極312と、第1内部導体211の第1パッド部211aとを接続する導電部材である。本実施形態では、第1ワイヤ38は、第2方向yに沿って配置されている。各第2ワイヤ39は、受光素子32の電極パッド321と、第2内部導体212の第2パッド部212aとを接続する。本実施形態では、複数の第2ワイヤ39は、いずれも第1方向xにおいて発光素子31と受光素子32との間に、かつ平面視において受光素子32の一辺に沿って配列されている。なお、第2ワイヤ39は、受光素子32の二辺(たとえば第1方向xにおいて互いに離間した二辺)に沿って配列してもよく、受光素子32の四辺に沿って配列してもよい。第1ワイヤ38および第2ワイヤ39は、同一の材料(たとえばAu)から構成される。 The first wire 38 is a conductive member that connects the upper surface electrode 312 of the light emitting element 31 and the first pad portion 211a of the first internal conductor 211, as shown in FIG. In the present embodiment, the first wire 38 is disposed along the second direction y. Each second wire 39 connects the electrode pad 321 of the light receiving element 32 and the second pad portion 212 a of the second inner conductor 212. In the present embodiment, the plurality of second wires 39 are all arranged between the light emitting element 31 and the light receiving element 32 in the first direction x and along one side of the light receiving element 32 in plan view. The second wires 39 may be arranged along two sides of the light receiving element 32 (for example, two sides separated from each other in the first direction x), or may be arranged along four sides of the light receiving element 32. The first wire 38 and the second wire 39 are made of the same material (for example, Au).
 ケース40は、図30に示すように、基板10の主面11に支持され、かつ少なくとも発光素子31を囲む部材である。本実施形態では、ケース40は、発光素子31および受光素子32の双方を囲んでいる。ケース40は、遮光性を有する電気絶縁部材(たとえばセラミックスや黒色のエポキシ樹脂など)から構成される。ケース40は、天板41、側壁42および隔壁43を有する。 The case 40 is a member that is supported by the main surface 11 of the substrate 10 and surrounds at least the light emitting element 31 as shown in FIG. In the present embodiment, the case 40 surrounds both the light emitting element 31 and the light receiving element 32. Case 40 is made of a light-insulating electrical insulating member (for example, ceramics or black epoxy resin). The case 40 has a top plate 41, a side wall 42, and a partition wall 43.
 図30および図33~図35に示すように、天板41は、厚さ方向zにおいて発光素子31および受光素子32から離間して配置されている。天板41には、平面視において発光素子31を臨む出射開口部412と、受光素子32を臨む入射開口部411とがそれぞれ設けられている。出射開口部412および入射開口部411は、第1方向xにおいて互いに離間している。平面視における出射開口部412および入射開口部411の形状は、ともに円形状である。平面視において、出射開口部412の中心に発光素子31の光出射領域311が位置する。また、平面視において、入射開口部411は、受光素子32の検出部350を囲んでいる。天板41には、入射開口部411と外部とに通じる空気抜き溝44が設けられている。空気抜き溝44は、天板41の上面から凹むように設けられている。 As shown in FIG. 30 and FIGS. 33 to 35, the top plate 41 is disposed away from the light emitting element 31 and the light receiving element 32 in the thickness direction z. The top plate 41 is provided with an emission opening 412 facing the light emitting element 31 and an incident opening 411 facing the light receiving element 32 in plan view. The exit opening 412 and the entrance opening 411 are separated from each other in the first direction x. The shapes of the exit opening 412 and the entrance opening 411 in plan view are both circular. In plan view, the light emission region 311 of the light emitting element 31 is located at the center of the emission opening 412. Further, the incident opening 411 surrounds the detection unit 350 of the light receiving element 32 in plan view. The top plate 41 is provided with an air vent groove 44 that communicates with the incident opening 411 and the outside. The air vent groove 44 is provided so as to be recessed from the upper surface of the top plate 41.
 図30および図33~図35に示すように側壁42は、平面視において天板41の周面につながり、かつ厚さ方向zにおける一端が基板10の主面11に支持されている。側壁42は、主面11と同方向を向く頂面421と、頂面421とは反対側を向く底面422とを有する。底面422は、接着剤を介して主面絶縁膜28に接合される。 30 and FIGS. 33 to 35, the side wall 42 is connected to the peripheral surface of the top plate 41 in plan view, and one end in the thickness direction z is supported by the main surface 11 of the substrate 10. The side wall 42 has a top surface 421 facing the same direction as the main surface 11 and a bottom surface 422 facing the opposite side of the top surface 421. The bottom surface 422 is bonded to the main surface insulating film 28 via an adhesive.
 隔壁43は、平面視において発光素子31と受光素子32との間に位置し、かつ厚さ方向zにおいて一端(図33において上端)が天板41につながっている。隔壁43の他端(下端)は、接着剤を介して主面絶縁膜28に接合されている。隔壁43は、平面視において第2方向yに沿って配置されている(図30参照)。本実施形態では、ケース40内の空間が、隔壁43によって、受光素子32が存する第1区域61と、発光素子31が存する第2区域62とに分離されている。 The partition wall 43 is located between the light emitting element 31 and the light receiving element 32 in a plan view, and one end (upper end in FIG. 33) is connected to the top plate 41 in the thickness direction z. The other end (lower end) of the partition wall 43 is bonded to the main surface insulating film 28 via an adhesive. The partition wall 43 is disposed along the second direction y in plan view (see FIG. 30). In the present embodiment, the space in the case 40 is separated by a partition wall 43 into a first area 61 where the light receiving element 32 exists and a second area 62 where the light emitting element 31 exists.
 透光部材50は、図33~図35に示すように、厚さ方向zにおいて発光素子31から離間してケース40に支持され、かつ発光素子31から発せられた光を透過させる部材である。本実施形態では、透光部材50は、ケース40の天板41に支持されている。透光部材50は、たとえばガラスなどから構成される。透光部材50は、外面51および内面52を有する。外面51は、基板10の主面11と同方向を向く面である。本実施形態では、外面51は、平坦面であり、かつケース40の側壁42の頂面421と面一である。内面52は、外面51とは反対側を向き、かつ主面11に対向する面である。本実施形態では、内面52がケース40の天板41に対向するように、透光部材50が接着層59を介して天板41に支持されている。接着層59は、たとえばアクリル樹脂またはエポキシ樹脂から構成される。また、出射開口部412および入射開口部411は、上方から透光部材50により塞がれている。 The translucent member 50 is a member that is supported by the case 40 while being spaced apart from the light emitting element 31 in the thickness direction z and transmits light emitted from the light emitting element 31, as shown in FIGS. In the present embodiment, the translucent member 50 is supported by the top plate 41 of the case 40. The translucent member 50 is made of, for example, glass. The translucent member 50 has an outer surface 51 and an inner surface 52. The outer surface 51 is a surface facing in the same direction as the main surface 11 of the substrate 10. In the present embodiment, the outer surface 51 is a flat surface and is flush with the top surface 421 of the side wall 42 of the case 40. The inner surface 52 faces away from the outer surface 51 and faces the main surface 11. In the present embodiment, the translucent member 50 is supported by the top plate 41 via the adhesive layer 59 so that the inner surface 52 faces the top plate 41 of the case 40. The adhesive layer 59 is made of, for example, an acrylic resin or an epoxy resin. Further, the exit opening 412 and the entrance opening 411 are closed by the translucent member 50 from above.
 図33および図35~図37に示すように、透光部材50には、屈折部54が設けられている。屈折部54は、発光素子31から発せられた光を第1方向xにおいて受光素子32から遠ざかる方向に屈折させるように構成されている(図41参照)。本実施形態では、屈折部54は、内面52から凹むように設けられている。屈折部54は、側面541および傾斜面542を有する、側面541は、厚さ方向zにおける一端が内面52につながり、他端が傾斜面542につながる。側面541は、厚さ方向zに沿って配置されている(図37)。傾斜面542は、厚さ方向zにおける一端が側面541につながり、他端が内面52につながる。傾斜面542は、第1方向xにおいて受光素子32に近づくほど、厚さ方向zにおいて発光素子31から遠ざかるように傾斜している。図36に示すように、屈折部54は、第2方向yにおける透光部材50の全区間にわたって設けられている。第1方向xに沿う屈折部54の断面形状(図37)は、第2方向yにおいて一様である。 33 and FIGS. 35 to 37, the translucent member 50 is provided with a refracting portion 54. As shown in FIG. The refracting unit 54 is configured to refract the light emitted from the light emitting element 31 in a direction away from the light receiving element 32 in the first direction x (see FIG. 41). In the present embodiment, the refracting portion 54 is provided so as to be recessed from the inner surface 52. The refracting portion 54 has a side surface 541 and an inclined surface 542. The side surface 541 has one end connected to the inner surface 52 in the thickness direction z and the other end connected to the inclined surface 542. The side surface 541 is disposed along the thickness direction z (FIG. 37). The inclined surface 542 has one end in the thickness direction z connected to the side surface 541 and the other end connected to the inner surface 52. The inclined surface 542 is inclined so as to move away from the light emitting element 31 in the thickness direction z as it approaches the light receiving element 32 in the first direction x. As shown in FIG. 36, the refracting portion 54 is provided over the entire section of the translucent member 50 in the second direction y. The cross-sectional shape (FIG. 37) of the refracting portion 54 along the first direction x is uniform in the second direction y.
 屈折部54は、図36および図37に示す構成とは異なる構成とすることができる。図38は、半導体装置B10の第1変形例である半導体装置B11の屈折部54の断面拡大図である。図38に示すように、半導体装置B11の屈折部54は、内面52から基板10の主面11に向けて突出するように設けられている。屈折部54は、出射開口部412に内包される。このため、屈折部54は、第2方向yにおける透光部材50の一部の区間にのみ設けられる。外面51は平坦である。本変形例では、出射開口部412と外部とに通じる空気抜き溝44が天板41の上面から凹むように設けられている。 The refracting portion 54 can have a configuration different from the configurations shown in FIGS. FIG. 38 is an enlarged cross-sectional view of a refracting portion 54 of a semiconductor device B11 that is a first modification of the semiconductor device B10. As shown in FIG. 38, the refracting portion 54 of the semiconductor device B11 is provided so as to protrude from the inner surface 52 toward the main surface 11 of the substrate 10. The refracting portion 54 is included in the exit opening 412. For this reason, the refracting portion 54 is provided only in a partial section of the translucent member 50 in the second direction y. The outer surface 51 is flat. In the present modification, an air vent groove 44 that communicates with the emission opening 412 and the outside is provided so as to be recessed from the top surface of the top plate 41.
 図39は、半導体装置B10の第2変形例である半導体装置B12の屈折部54の断面拡大図である。図39に示すように、半導体装置B12の屈折部54は、外面51から外部に向けて突出している。屈折部54の傾斜面542は、第1方向xにおいて受光素子32に近づくほど、厚さ方向zにおいて発光素子31に近づく。なお、屈折部54は、外面51から主面11に向けて凹むように設けられてもよい。また、屈折部54は、半導体装置B10と同じく、第2方向yにおける透光部材50の全区間にわたる。この場合、内面52は平坦である。本変形例では、半導体装置B11と同じく、出射開口部412と外部とに通じる空気抜き溝44が天板41の上面から凹むように設けられている。 FIG. 39 is an enlarged cross-sectional view of a refracting portion 54 of a semiconductor device B12 that is a second modification of the semiconductor device B10. As shown in FIG. 39, the refracting portion 54 of the semiconductor device B12 protrudes outward from the outer surface 51. The inclined surface 542 of the refracting portion 54 approaches the light emitting element 31 in the thickness direction z as it approaches the light receiving element 32 in the first direction x. The refracting portion 54 may be provided so as to be recessed from the outer surface 51 toward the main surface 11. Further, the refracting portion 54 extends over the entire section of the translucent member 50 in the second direction y, similarly to the semiconductor device B10. In this case, the inner surface 52 is flat. In the present modification, an air vent groove 44 that communicates with the emission opening 412 and the outside is provided so as to be recessed from the upper surface of the top plate 41, as in the semiconductor device B11.
 次に、半導体装置B10の作用効果について説明する。 Next, functions and effects of the semiconductor device B10 will be described.
 上述のとおり、半導体装置B10は、基板10と、基板10に支持された発光素子31および受光素子32と、少なくとも発光素子31を囲み、かつ基板10に支持されたケース40と、ケース40に支持された透光部材50とを備える。基板10、ケース40および透光部材50によって囲まれた中空領域は、隔壁43によって、第1区域61(受光素子32が存する)と第2区域62(発光素子31が存する)とに分けられている。透光部材50には、屈折部54が設けられている。 As described above, the semiconductor device B10 includes the substrate 10, the light emitting element 31 and the light receiving element 32 supported by the substrate 10, the case 40 surrounding at least the light emitting element 31 and supported by the substrate 10, and the case 40 supporting the semiconductor device B10. The translucent member 50 is provided. A hollow region surrounded by the substrate 10, the case 40, and the translucent member 50 is divided into a first area 61 (the light receiving element 32 exists) and a second area 62 (the light emitting element 31 exists) by the partition wall 43. Yes. The translucent member 50 is provided with a refracting portion 54.
 図41の断面図で示すように、発光素子31から発せられた光は、屈折部54に入射する際、屈折部54の表面(屈折部54と空気との境界)において、進行方向右寄り(第1方向xにおいて受光素子32から遠ざかる方向)に屈折する。また、図41に示す例では、光は、屈折部54から出射する際にも進行方向右寄りに屈折する。このように、発光素子31から発せられた光Lは、屈折部54を透過する際に、第1方向xにおいて受光素子32(検出部350)から遠ざかる方向に屈折する。 As shown in the cross-sectional view of FIG. 41, when the light emitted from the light emitting element 31 is incident on the refracting portion 54, the light on the surface of the refracting portion 54 (the boundary between the refracting portion 54 and the air) is shifted to the right (first) Refracted in a direction x away from the light receiving element 32). In the example shown in FIG. 41, the light is refracted to the right in the traveling direction even when it is emitted from the refracting portion 54. As described above, the light L emitted from the light emitting element 31 is refracted in the direction away from the light receiving element 32 (detection unit 350) in the first direction x when passing through the refraction unit 54.
 図41の例において、発光素子31から出射された直後の光は、厚さ方向zに沿って進行するように描かれているが、実際には厚さ方向zに対し傾斜した角度で進行する光もある。たとえば、図41において、厚さ方向zに対し左側に傾斜して進行する光もある(図20参照)。このような光でも、少なくとも屈折部54に入射する際には、進行方向右側(すなわち第1方向xにおいて受光素子32から遠ざかる方向)に屈折する。その結果、光が(検出対象物ではなく)光学窓OWと外部との境界面Sで反射した場合であっても、当該反射光(ノイズ)が受光素子32の検出部350に到達することを回避しうる。 In the example of FIG. 41, the light immediately after being emitted from the light emitting element 31 is drawn to travel along the thickness direction z, but actually travels at an angle inclined with respect to the thickness direction z. There is also light. For example, in FIG. 41, there is also light that travels while being inclined to the left with respect to the thickness direction z (see FIG. 20). Even such light is refracted rightward in the traveling direction (that is, the direction away from the light receiving element 32 in the first direction x) at least when entering the refracting portion 54. As a result, even if the light is reflected by the boundary surface S between the optical window OW and the outside (not the detection object), the reflected light (noise) reaches the detection unit 350 of the light receiving element 32. It can be avoided.
 発光素子31をVCSELとすることによって、発光ダイオードよりも発光素子31から発せられる光の指向性の向上を図ることができる。このことは、クロストークを抑制することに寄与する。また、第2区域62は中空である。VCSELは外力に対して弱い半導体素子であり、発光素子31をVCSELとした場合、第2区域62が中空であることは発光素子31に外力が作用しないため好ましい。 By making the light emitting element 31 a VCSEL, the directivity of light emitted from the light emitting element 31 can be improved rather than the light emitting diode. This contributes to suppressing crosstalk. The second area 62 is hollow. The VCSEL is a semiconductor element that is weak against external force. When the light emitting element 31 is a VCSEL, it is preferable that the second area 62 is hollow because no external force acts on the light emitting element 31.
 ケース40は、少なくとも発光素子31を囲んでおり、厚さ方向zにおいて発光素子31から離間して配置された天板41を有する。天板41には、平面視において発光素子31を臨む出射開口部412が設けられている。透光部材50は、出射開口部412を塞ぎ、かつ天板41に支持されている。このような構成により、透光部材50が強固にケース40に支持されるとともに、外力などに起因した透光部材50の変形を抑制することができる。 The case 40 surrounds at least the light emitting element 31 and has a top plate 41 that is disposed away from the light emitting element 31 in the thickness direction z. The top plate 41 is provided with an emission opening 412 that faces the light emitting element 31 in plan view. The translucent member 50 closes the emission opening 412 and is supported by the top plate 41. With such a configuration, the translucent member 50 is firmly supported by the case 40, and deformation of the translucent member 50 due to an external force or the like can be suppressed.
 ケース40は、平面視において発光素子31と受光素子32との間に位置し、かつ厚さ方向zにおいて一端が天板41につながる隔壁43を有する。このような構成により、ケース40の剛性の向上を図ることができる。また、半導体装置B10の内部において発光素子31から発せられた光が受光素子32の検出部350に直接到達することが回避されるため、受光素子32による誤検知の抑制を図ることができる。 The case 40 has a partition wall 43 located between the light emitting element 31 and the light receiving element 32 in a plan view and having one end connected to the top plate 41 in the thickness direction z. With such a configuration, the rigidity of the case 40 can be improved. In addition, since light emitted from the light emitting element 31 directly reaches the detection unit 350 of the light receiving element 32 inside the semiconductor device B10, erroneous detection by the light receiving element 32 can be suppressed.
 基板10の主面11に配置された内部導体21と、裏面12に配置された外部導体22は、基板10に埋設された中間導体23によって相互に導通している。このような構成により、外部導体22が半導体装置B10の側方に露出しない構成となるため、半導体装置B10の小型化を図ることができる。 The internal conductor 21 disposed on the main surface 11 of the substrate 10 and the external conductor 22 disposed on the back surface 12 are electrically connected to each other by an intermediate conductor 23 embedded in the substrate 10. With such a configuration, since the outer conductor 22 is not exposed to the side of the semiconductor device B10, the semiconductor device B10 can be downsized.
 内部導体21(第1内部導体211および第2内部導体212)および外部導体22は、ともにめっき層により覆われている。このような構成により、半導体装置B10の製造において、発光素子31および受光素子32の搭載時や、第1ワイヤ38および第2ワイヤ39の接続時の熱などの衝撃から内部導体21を保護することができる。また、半導体装置B10を回路基板に実装する際、クリームはんだなどの影響による外部導体22の侵食を防止することができる。 The inner conductor 21 (the first inner conductor 211 and the second inner conductor 212) and the outer conductor 22 are both covered with a plating layer. With such a configuration, in manufacturing the semiconductor device B10, the internal conductor 21 is protected from an impact such as heat when the light emitting element 31 and the light receiving element 32 are mounted or when the first wire 38 and the second wire 39 are connected. Can do. Further, when the semiconductor device B10 is mounted on the circuit board, the erosion of the external conductor 22 due to the influence of cream solder or the like can be prevented.
 図42および図43に基づき、本開示の第7実施形態に基づく半導体装置B20について説明する。これらの図において、先述した半導体装置B10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。 A semiconductor device B20 based on the seventh embodiment of the present disclosure will be described based on FIGS. In these drawings, the same or similar elements as those of the semiconductor device B10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 図42は、半導体装置B20の平面図であり、透光部材50を二点鎖線で示している。図43は、図42のXLIII-XLIII線に沿う断面図である。 FIG. 42 is a plan view of the semiconductor device B20, and the translucent member 50 is indicated by a two-dot chain line. 43 is a cross-sectional view taken along line XLIII-XLIII in FIG.
 本実施形態の半導体装置B20は、ケース40の構成が先述した半導体装置B10と異なる。半導体装置B20では、図43に示すように、ケース40内に隔壁が設けられていない。このため、ケース40内は、一つの中空領域をなしている。主面11に配置された主面絶縁膜28は、開口を一つだけ有している。 The semiconductor device B20 of the present embodiment is different from the semiconductor device B10 described above in the configuration of the case 40. In the semiconductor device B20, as shown in FIG. 43, no partition is provided in the case 40. For this reason, the inside of the case 40 forms one hollow region. The main surface insulating film 28 disposed on the main surface 11 has only one opening.
 先述した半導体装置B10と同様に、半導体装置B20の透光部材50には、発光素子31から発せられた光を第1方向xにおいて受光素子32から遠ざかるように屈折させる屈折部54が設けられている。したがって、半導体装置B20によっても、半導体装置B10と同様にクロストークを抑制することが可能となる。 Similar to the semiconductor device B10 described above, the light transmissive member 50 of the semiconductor device B20 is provided with a refracting unit 54 that refracts the light emitted from the light emitting element 31 so as to be away from the light receiving element 32 in the first direction x. Yes. Therefore, the semiconductor device B20 can suppress the crosstalk similarly to the semiconductor device B10.
 図44および図45に基づき、本開示の第8実施形態に基づく半導体装置B30について説明する。これらの図において、先述した半導体装置B10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。 44 and 45, the semiconductor device B30 according to the eighth embodiment of the present disclosure will be described. In these drawings, the same or similar elements as those of the semiconductor device B10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 本実施形態の半導体装置B30は、ケース40の構成と、透光部材50の配置形態とが先述した半導体装置B10と異なる。半導体装置B30では、図45に示すように、ケース40内に隔壁が設けられていない。また、主面11に配置された主面絶縁膜28において、開口は一つである。天板41の上面は、側壁42の頂面421と面一である。透光部材50は、外面51が天板41に対向するように接着層59を介して天板41に固定されている。また、出射開口部412および入射開口部411は、ともに下方から透光部材50により塞がれている。入射開口部411と外部とに通じる空気抜き溝44は、天板41の下面から凹むように設けられている。半導体装置B30においても、屈折部54により、クロストークを抑制することが可能となる。 The semiconductor device B30 of the present embodiment is different from the semiconductor device B10 described above in the configuration of the case 40 and the arrangement form of the translucent member 50. In the semiconductor device B30, as shown in FIG. 45, no partition is provided in the case 40. Further, the main surface insulating film 28 disposed on the main surface 11 has one opening. The top surface of the top plate 41 is flush with the top surface 421 of the side wall 42. The translucent member 50 is fixed to the top plate 41 via an adhesive layer 59 so that the outer surface 51 faces the top plate 41. Further, both the exit opening 412 and the entrance opening 411 are closed by the translucent member 50 from below. An air vent groove 44 communicating with the incident opening 411 and the outside is provided so as to be recessed from the lower surface of the top plate 41. Also in the semiconductor device B30, the refracting portion 54 can suppress crosstalk.
 図46および図47に基づき、本開示の第9実施形態に基づく半導体装置B40について説明する。これらの図において、先述した半導体装置B10と同一または類似の要素には同一の符号を付して、説明を適宜省略する。図46は、半導体装置B40の平面図であり、透光部材50を二点鎖線で示している。図47は、図46のXLVII-XLVII線に沿う断面図である。 A semiconductor device B40 according to the ninth embodiment of the present disclosure will be described based on FIGS. In these drawings, the same or similar elements as those of the semiconductor device B10 described above are denoted by the same reference numerals, and description thereof will be omitted as appropriate. FIG. 46 is a plan view of the semiconductor device B40, and the translucent member 50 is indicated by a two-dot chain line. FIG. 47 is a sectional view taken along line XLVII-XLVII in FIG.
 半導体装置B40は、ケース40および透光部材50等の構成が先述した半導体装置B10と異なる。半導体装置B40では、図47に示すように、天板41の上面は、側壁42の頂面421と面一である。本実施形態では、透光部材50に対応するものとして、第1透光部材501および第2透光部材502の2つが用いられている。第1透光部材501は、入射開口部411を塞いでいる。第2透光部材502は、出射開口部412を塞ぎ、かつ屈折部54が設けられている。第1方向xにおいて第1透光部材501および第2透光部材502は、互いに離間している。第1透光部材501および第2透光部材502それぞれの外面51は、天板41の上面と面一である。換言すれば、各透光部材501,502は、全体的に天板41に埋設されている。各透光部材501,502の内面52は、天板41に対向するように接着層59を介して天板41に固定されている。半導体装置B40においても、第2透光部材502に屈折部54が設けられていることにより、クロストークを抑制することが可能である。 The semiconductor device B40 is different from the semiconductor device B10 described above in the configuration of the case 40, the translucent member 50, and the like. In the semiconductor device B40, as shown in FIG. 47, the top surface of the top plate 41 is flush with the top surface 421 of the side wall. In the present embodiment, two members, a first light transmitting member 501 and a second light transmitting member 502, are used corresponding to the light transmitting member 50. The first light transmissive member 501 closes the incident opening 411. The second light transmissive member 502 closes the emission opening 412 and is provided with a refracting portion 54. In the first direction x, the first light transmissive member 501 and the second light transmissive member 502 are separated from each other. The outer surfaces 51 of the first light transmitting member 501 and the second light transmitting member 502 are flush with the upper surface of the top plate 41. In other words, each of the translucent members 501 and 502 is embedded in the top plate 41 as a whole. The inner surface 52 of each of the translucent members 501 and 502 is fixed to the top plate 41 via an adhesive layer 59 so as to face the top plate 41. Also in the semiconductor device B40, the second light transmitting member 502 is provided with the refracting portion 54, whereby crosstalk can be suppressed.
 上述した実施形態B10~B40にかかる半導体装置は、たとえば、付記として以下のように規定しうる。 For example, the semiconductor devices according to the above-described Embodiments B10 to B40 can be defined as an appendix as follows.
付記1.主面および裏面を有する基板と、
 前記主面に搭載された発光素子と、
 前記発光素子から第1方向に離間して前記主面に搭載された受光素子であって、前記発光素子から発せられた光を検出する検出部を有する受光素子と、
 前記発光素子を囲み、かつ前記主面に支持されたケースと、
 前記基板の厚さ方向において前記発光素子から離間して前記ケースに支持された透光部材と、を備えており、
 前記透光部材には、前記発光素子から発せられた光を、前記第1方向において前記受光素子から遠ざかる方向に屈折させる屈折部が設けられている、半導体装置。
Appendix 1. A substrate having a main surface and a back surface;
A light emitting element mounted on the main surface;
A light receiving element mounted on the main surface at a distance from the light emitting element in a first direction, the light receiving element having a detection unit for detecting light emitted from the light emitting element;
A case surrounding the light emitting element and supported by the main surface;
A translucent member that is spaced apart from the light emitting element and supported by the case in the thickness direction of the substrate,
The semiconductor device, wherein the light transmissive member is provided with a refracting portion that refracts light emitted from the light emitting element in a direction away from the light receiving element in the first direction.
付記2.前記透光部材は、前記主面と同方向を向く外面と、前記主面に対向する内面と、を有し、
 前記屈折部は、前記内面に設けられた傾斜面を有し、当該傾斜面は、前記第1方向において前記受光素子に近づくほど、前記厚さ方向において前記発光素子から遠ざかる構成とされている、付記1に記載の半導体装置。
Appendix 2. The translucent member has an outer surface facing the same direction as the main surface, and an inner surface facing the main surface,
The refracting portion has an inclined surface provided on the inner surface, and the inclined surface is configured to move away from the light emitting element in the thickness direction as it approaches the light receiving element in the first direction. The semiconductor device according to appendix 1.
付記3.前記屈折部は、前記内面から凹むように設けられている、付記2に記載の半導体装置。 Appendix 3. The semiconductor device according to attachment 2, wherein the refracting portion is provided so as to be recessed from the inner surface.
付記4.前記屈折部は、前記内面から前記主面に向けて突出するように設けられている、付記2に記載の半導体装置。 Appendix 4. The semiconductor device according to appendix 2, wherein the refracting portion is provided so as to protrude from the inner surface toward the main surface.
付記5.前記外面は、平坦面である、付記2~4のいずれか1つに記載の半導体装置。 Appendix 5. The semiconductor device according to any one of appendices 2 to 4, wherein the outer surface is a flat surface.
付記6.前記透光部材は、前記主面と同方向を向く外面と、前記主面に対向する内面と、を有し、
 前記屈折部は、前記外面に設けられた傾斜面を有し、当該傾斜面は、前記第1方向において前記受光素子に近づくほど、前記厚さ方向において前記発光素子に近づく構成とされている、付記1に記載の半導体装置。
Appendix 6. The translucent member has an outer surface facing the same direction as the main surface, and an inner surface facing the main surface,
The refracting portion has an inclined surface provided on the outer surface, and the inclined surface is configured to approach the light emitting element in the thickness direction as it approaches the light receiving element in the first direction. The semiconductor device according to appendix 1.
付記7.前記ケースは、天板および側壁を有し、前記天板は、前記厚さ方向において前記発光素子から離間して配置されており、前記側壁は、前記基板の厚さ方向視において前記天板の周面につながり、かつ前記厚さ方向における一端が前記主面に支持されており、
 前記天板には、前記厚さ方向視において前記発光素子を臨む出射開口部が設けられ、
 前記透光部材は、前記出射開口部を塞ぎ、かつ前記天板に支持されている、付記2~6のいずれか1つに記載の半導体装置。
Appendix 7. The case has a top plate and a side wall, and the top plate is disposed apart from the light emitting element in the thickness direction, and the side wall of the top plate is viewed in the thickness direction of the substrate. Connected to the peripheral surface, and one end in the thickness direction is supported by the main surface,
The top plate is provided with an emission opening facing the light emitting element in the thickness direction view,
The semiconductor device according to any one of appendices 2 to 6, wherein the translucent member closes the emission opening and is supported by the top plate.
付記8.前記透光部材の前記内面が前記天板に対向している、付記7に記載の半導体装置。 Appendix 8. The semiconductor device according to appendix 7, wherein the inner surface of the translucent member faces the top plate.
付記9.前記透光部材の前記外面が前記天板に対向している、付記7に記載の半導体装置。 Appendix 9. The semiconductor device according to appendix 7, wherein the outer surface of the translucent member faces the top plate.
付記10.前記側壁は、前記発光素子および前記受光素子を囲み、
 前記天板には、前記第1方向において前記出射開口部から離間し、かつ前記厚さ方向視において前記受光素子を臨む入射開口部が設けられ、
 前記透光部材は、前記入射開口部を塞いでいる、付記8または9に記載の半導体装置。
Appendix 10. The side wall surrounds the light emitting element and the light receiving element;
The top plate is provided with an incident opening that is spaced apart from the emission opening in the first direction and faces the light receiving element in the thickness direction view,
The semiconductor device according to appendix 8 or 9, wherein the translucent member blocks the incident opening.
付記11.前記ケースは、前記厚さ方向視において前記発光素子と前記受光素子との間に位置する隔壁を含んでおり、前記隔壁は、前記厚さ方向において一端が前記天板につながっており、
 前記発光素子および前記受光素子は、前記隔壁によって互いに分離されている、付記10に記載の半導体装置。
Appendix 11. The case includes a partition located between the light emitting element and the light receiving element in the thickness direction view, and the partition has one end connected to the top plate in the thickness direction,
The semiconductor device according to appendix 10, wherein the light emitting element and the light receiving element are separated from each other by the partition wall.
付記12.前記透光部材は、前記入射開口部を塞ぐ第1透光部材と、前記出射開口部を塞ぐ第2透光部材とを含み、前記屈折部は、前記第2透光部材に設けられており、
 前記第1透光部材および前記第2透光部材は、前記第1方向において互いに離間している、付記10または11に記載の半導体装置。
Appendix 12. The translucent member includes a first translucent member that closes the incident opening, and a second translucent member that closes the exit opening, and the refracting portion is provided in the second translucent member. ,
The semiconductor device according to appendix 10 or 11, wherein the first light transmissive member and the second light transmissive member are separated from each other in the first direction.
付記13.前記発光素子は、VCSELである、付記1~10のいずれか1つに記載の半導体装置。 Appendix 13. 11. The semiconductor device according to any one of appendices 1 to 10, wherein the light emitting element is a VCSEL.
付記14.第1内部導体、第2内部導体および外部導体をさらに備える構成において、
 前記第1内部導体および前記第2内部導体は、前記主面に設けられて、それぞれ前記発光素子および前記受光素子に導通し、
 前記外部導体は、前記裏面に設けられて、前記第1内部導体および前記第2内部導体のいずれか一方に導通している、付記1~13のいずれか1つに記載の半導体装置。
Appendix 14. In the configuration further comprising the first inner conductor, the second inner conductor and the outer conductor,
The first inner conductor and the second inner conductor are provided on the main surface, and are electrically connected to the light emitting element and the light receiving element, respectively.
14. The semiconductor device according to any one of appendices 1 to 13, wherein the outer conductor is provided on the back surface and is electrically connected to one of the first inner conductor and the second inner conductor.
付記15.前記第1内部導体、前記第2内部導体および前記外部導体は、いずれもめっき層により覆われている、付記14に記載の半導体装置。 Appendix 15. The semiconductor device according to appendix 14, wherein the first inner conductor, the second inner conductor, and the outer conductor are all covered with a plating layer.
付記16.中間導体をさらに備える構成において、
 前記基板には、前記主面から前記裏面に至りかつ前記中間導体が配置された貫通孔が形成されており、
 前記中間導体は、前記外部導体を前記第1内部導体および前記第2内部導体のいずれか一方に接続する、付記14または15に記載の半導体装置。
Appendix 16. In the configuration further comprising an intermediate conductor,
The substrate is formed with a through hole from the main surface to the back surface where the intermediate conductor is disposed,
The semiconductor device according to appendix 14 or 15, wherein the intermediate conductor connects the outer conductor to one of the first inner conductor and the second inner conductor.
付記17前記受光素子は集積回路であり、前記検出部はフォトダイオードである、付記14~16のいずれか1つに記載の半導体装置。 APPENDIX 17 The semiconductor device according to any one of appendices 14 to 16, wherein the light receiving element is an integrated circuit, and the detection unit is a photodiode.
 以上、種々の実施形態につき、図面を参照しつつ具体的に説明したが、これらは単に例示的なものであり、本開示は、上述した実施形態に限定されない。本開示にかかる各部の具体的な構成は、種々に設計変更自在である。 Although various embodiments have been specifically described above with reference to the drawings, these are merely examples, and the present disclosure is not limited to the above-described embodiments. The specific configuration of each part according to the present disclosure can be varied in design in various ways.

Claims (17)

  1.  主面および裏面を有する基板と、
     前記主面に搭載された発光素子と、
     前記発光素子から離間して前記主面に搭載された光検出手段であって、前記発光素子から発せられた光を検出する第1検出部を有する光検出手段と、
     前記光検出手段を囲み、かつ前記主面に支持されたケースと、
     前記主面側を向く内面および前記内面とは反対側を向く外面を有する透光部材であって、前記基板の厚さ方向において前記光検出手段から離間して前記ケースに支持された透光部材と、
     前記透光部材に設けられた遮光層であって、前記発光素子から発せられた光に対応する波長帯の光を透過させない遮光層と、
    を備え、
     前記遮光層には、前記基板の厚さ方向視において前記第1検出部を臨む第1開口部が形成されている、半導体装置。
    A substrate having a main surface and a back surface;
    A light emitting element mounted on the main surface;
    A light detecting means mounted on the main surface at a distance from the light emitting element, the light detecting means having a first detection unit for detecting light emitted from the light emitting element;
    A case surrounding the light detection means and supported by the main surface;
    A translucent member having an inner surface facing the main surface side and an outer surface facing the side opposite to the inner surface, the translucent member being supported by the case spaced apart from the light detection means in the thickness direction of the substrate When,
    A light shielding layer provided on the light transmissive member, the light shielding layer that does not transmit light in a wavelength band corresponding to light emitted from the light emitting element;
    With
    The semiconductor device, wherein the light-shielding layer is formed with a first opening facing the first detection unit when viewed in the thickness direction of the substrate.
  2.  前記遮光層は、前記透光部材の前記内面に設けられている、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the light shielding layer is provided on the inner surface of the translucent member.
  3.  前記遮光層は、前記透光部材の前記外面に設けられている、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the light shielding layer is provided on the outer surface of the translucent member.
  4.  前記光検出手段は、前記第1検出部が検出する光とは異なる波長帯の光を検出する第2検出部を含み、
     前記厚さ方向視において前記第2検出部は前記遮光層に重なっている、請求項1~3のいずれか1つに記載の半導体装置。
    The light detection means includes a second detection unit that detects light in a wavelength band different from the light detected by the first detection unit,
    4. The semiconductor device according to claim 1, wherein the second detection unit overlaps the light shielding layer when viewed in the thickness direction.
  5.  前記光検出手段は、前記第1検出部が検出する光とは異なる波長帯の光を検出する第2検出部と、を含み、
     前記厚さ方向視において前記第2検出部は、前記第1開口部と重なる部分を有する、請求項1~3のいずれか1つに記載の半導体装置。
    The light detection means includes a second detection unit that detects light in a wavelength band different from the light detected by the first detection unit,
    The semiconductor device according to any one of claims 1 to 3, wherein the second detection unit includes a portion that overlaps the first opening when viewed in the thickness direction.
  6.  前記ケースは、天板および側壁を含み、前記天板は、前記厚さ方向において前記光検出手段から離間しており、前記側壁は、前記厚さ方向視において前記天板の周面につながり、かつ前記主面に支持されており、
     前記天板には、前記厚さ方向視において前記光検出手段を臨む入射開口部が設けられており、
     前記透光部材は、前記入射開口部を塞ぎ、かつ前記天板に支持されており、
     前記厚さ方向視において前記第1開口部は、前記入射開口部の内側に位置している、請求項1~5のいずれか1つに記載の半導体装置。
    The case includes a top plate and a side wall, the top plate is separated from the light detection means in the thickness direction, and the side wall is connected to a peripheral surface of the top plate in the thickness direction view, And supported by the main surface,
    The top plate is provided with an incident opening facing the light detection means in the thickness direction view,
    The translucent member closes the incident opening and is supported by the top plate,
    6. The semiconductor device according to claim 1, wherein the first opening is located inside the incident opening in the thickness direction view.
  7.  前記透光部材は、前記内面が前記天板に対向している、請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the translucent member has the inner surface facing the top plate.
  8.  前記透光部材は、前記外面が前記天板に対向している、請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein the translucent member has the outer surface facing the top plate.
  9.  前記側壁は、前記発光素子および前記光検出手段を囲み、
     前記天板には、前記厚さ方向視において、前記入射開口部から離間し、かつ前記発光素子を臨む出射開口部が設けられ、
     前記透光部材は、前記出射開口部を塞いでいる、請求項7または8に記載の半導体装置。
    The side wall surrounds the light emitting element and the light detection means;
    The top plate is provided with an exit opening spaced from the entrance opening and facing the light emitting element in the thickness direction view,
    The semiconductor device according to claim 7, wherein the translucent member closes the emission opening.
  10.  前記ケースは、前記厚さ方向視において前記発光素子と前記光検出手段との間に位置する隔壁を含み、この隔壁は、前記厚さ方向において一端が前記天板につながっており、
     前記基板、前記ケースおよび前記透光部材によって囲まれた領域は、前記隔壁によって、前記光検出手段が存する第1区域と前記発光素子が存する第2区域とに分離されている、請求項9に記載の半導体装置。
    The case includes a partition wall positioned between the light emitting element and the light detection means in the thickness direction view, and the partition wall has one end connected to the top plate in the thickness direction,
    The region surrounded by the substrate, the case, and the translucent member is separated by the partition into a first area where the light detection means exists and a second area where the light emitting element exists. The semiconductor device described.
  11.  前記透光部材は、前記入射開口部を塞ぐ第1透光部材と、前記出射開口部を塞ぐ第2透光部材とを含み、前記第1透光部材には、前記第1開口部を有する前記遮光層が設けられている、請求項9または10に記載の半導体装置。 The translucent member includes a first translucent member that closes the incident opening, and a second translucent member that closes the emission opening, and the first translucent member has the first opening. The semiconductor device according to claim 9, wherein the light shielding layer is provided.
  12.  前記遮光層は、前記第1開口部から離間する第2開口部を有し、前記第2開口部は、前記透光部材の一部を露出させ、かつ前記厚さ方向視において前記発光素子を臨むように形成されており、
     前記厚さ方向視において前記第2開口部は、前記出射開口部の内側に位置している、請求項9に記載の半導体装置。
    The light shielding layer has a second opening that is spaced apart from the first opening, and the second opening exposes a part of the translucent member and allows the light emitting element to be viewed in the thickness direction. It is formed to face,
    The semiconductor device according to claim 9, wherein the second opening is positioned inside the emission opening in the thickness direction view.
  13.  前記透光部材は、前記入射開口部を塞ぐ第1透光部材と、前記出射開口部を塞ぐ第2透光部材とを含み、前記遮光層は、前記第1開口部を有する第1遮光層と、前記第2開口を有する第2遮光層とを含み、前記第1透光部材には、前記第1遮光層が設けられ、前記第2透光部材には、前記第2遮光層が設けられている、請求項12に記載の半導体装置。 The translucent member includes a first translucent member that closes the incident opening and a second translucent member that closes the exit opening, and the light shielding layer includes a first light shielding layer having the first opening. And a second light shielding layer having the second opening, wherein the first light transmissive member is provided with the first light shielding layer, and the second light transmissive member is provided with the second light shielding layer. The semiconductor device according to claim 12.
  14.  前記基板、前記ケースおよび前記透光部材によって囲まれた領域は、中空部分を有する、請求項9~13のいずれか1つに記載の半導体装置。 14. The semiconductor device according to claim 9, wherein a region surrounded by the substrate, the case, and the translucent member has a hollow portion.
  15.  内部導体および外部導体をさらに備える構成において、
     前記内部導体は、前記主面に配置されて、前記発光素子または前記光検出手段のいずれか一方に導通しており、
     前記外部導体は、前記裏面に配置されて、前記内部導体に導通している、請求項1~14のいずれか1つに記載の半導体装置。
    In the configuration further comprising an inner conductor and an outer conductor,
    The inner conductor is disposed on the main surface and is conducted to either the light emitting element or the light detecting means.
    The semiconductor device according to any one of claims 1 to 14, wherein the outer conductor is disposed on the back surface and is electrically connected to the inner conductor.
  16.  前記内部導体および前記外部導体は、いずれもめっき層により覆われている、請求項15に記載の半導体装置。 The semiconductor device according to claim 15, wherein the inner conductor and the outer conductor are both covered with a plating layer.
  17.  中間導体をさらに備える構成において、
     前記基板には前記主面から前記裏面に至る貫通孔が設けられており、前記中間導体は、前記貫通孔に配置されるとともに、前記内部導体および前記外部導体の双方に接続されている、請求項15または16に記載の半導体装置。
    In the configuration further comprising an intermediate conductor,
    The substrate is provided with a through hole extending from the main surface to the back surface, and the intermediate conductor is disposed in the through hole and connected to both the inner conductor and the outer conductor. Item 15. The semiconductor device according to Item 15 or 16.
PCT/JP2018/003793 2017-02-10 2018-02-05 Semiconductor device WO2018147222A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-022920 2017-02-10
JP2017022920 2017-02-10
JP2017-032019 2017-02-23
JP2017032019 2017-02-23

Publications (1)

Publication Number Publication Date
WO2018147222A1 true WO2018147222A1 (en) 2018-08-16

Family

ID=63107628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003793 WO2018147222A1 (en) 2017-02-10 2018-02-05 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2018147222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840470A (en) * 2018-12-14 2019-06-04 宁波欧琳厨具有限公司 A kind of intelligence is protected from light identification food materials and pushes the method and system of menu

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199573A (en) * 1982-05-17 1983-11-19 Hitachi Ltd Semiconductor device
JPH07183415A (en) * 1993-11-12 1995-07-21 Sony Corp Semiconductor device and manufacture thereof
US20100181578A1 (en) * 2009-01-21 2010-07-22 Pixart Imaging Inc. Package structure
WO2015025593A1 (en) * 2013-08-20 2015-02-26 シャープ株式会社 Proximity sensor
JP2016538727A (en) * 2013-11-22 2016-12-08 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッドHeptagon Micro Optics Pte. Ltd. Compact optoelectronic module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199573A (en) * 1982-05-17 1983-11-19 Hitachi Ltd Semiconductor device
JPH07183415A (en) * 1993-11-12 1995-07-21 Sony Corp Semiconductor device and manufacture thereof
US20100181578A1 (en) * 2009-01-21 2010-07-22 Pixart Imaging Inc. Package structure
WO2015025593A1 (en) * 2013-08-20 2015-02-26 シャープ株式会社 Proximity sensor
JP2016538727A (en) * 2013-11-22 2016-12-08 ヘプタゴン・マイクロ・オプティクス・プライベート・リミテッドHeptagon Micro Optics Pte. Ltd. Compact optoelectronic module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840470A (en) * 2018-12-14 2019-06-04 宁波欧琳厨具有限公司 A kind of intelligence is protected from light identification food materials and pushes the method and system of menu

Similar Documents

Publication Publication Date Title
TWI780117B (en) Eye safe vcsel illuminator package
KR20130058750A (en) Optoelectronic semiconductor device
KR100824154B1 (en) Light-receiving module
US20090146155A1 (en) Light-emitting diode
US10903387B2 (en) Optical sensing assembly and method for manufacturing the same, and optical sensing system
KR20110015550A (en) Semiconductor component, reflected-light barrier and method for producing a housing therefor
JP2006005141A (en) Optical semiconductor package and method of manufacturing the same
JP6738224B2 (en) LED package
JP2010114114A (en) Reflection-type photointerrupter
WO2018147222A1 (en) Semiconductor device
JP5010198B2 (en) Light emitting device
JP2014041865A (en) Semiconductor device
JP2007035758A (en) Light-receiving module
JP5985843B2 (en) Optical semiconductor device
WO2017099022A1 (en) Sensor substrate and sensor device
JP5762778B2 (en) Optical device
JP2012150022A (en) Proximity sensor
US20220368100A1 (en) Optical integrated circuit sensor package using a stacked configuration for the sensor die and the emitter die
JP4877239B2 (en) Method for manufacturing light emitting device
JP5865593B2 (en) OPTICAL DEVICE, OPTICAL DEVICE MANUFACTURING METHOD, AND ELECTRONIC DEVICE
JP2010114196A (en) Reflection-type photointerrupter
CN115719539A (en) Optical machine structure of smoke detector
JP2007194381A (en) Photodetector module
JP2016187060A (en) Optical semiconductor device
JP2007053196A (en) Photodetector module and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP