WO2018147025A1 - 物体検知装置、物体検知方法及びコンピュータ読み取り可能な記録媒体 - Google Patents

物体検知装置、物体検知方法及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2018147025A1
WO2018147025A1 PCT/JP2018/001253 JP2018001253W WO2018147025A1 WO 2018147025 A1 WO2018147025 A1 WO 2018147025A1 JP 2018001253 W JP2018001253 W JP 2018001253W WO 2018147025 A1 WO2018147025 A1 WO 2018147025A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
signal
reflectance
object detection
reception
Prior art date
Application number
PCT/JP2018/001253
Other languages
English (en)
French (fr)
Inventor
慎吾 山之内
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018566817A priority Critical patent/JP7001069B2/ja
Priority to US16/484,515 priority patent/US11313960B2/en
Publication of WO2018147025A1 publication Critical patent/WO2018147025A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Definitions

  • the present invention relates to an object detection device and an object detection method for detecting an object from a radio wave reflected from the object or radiated from the object, and further, a computer-readable recording program for realizing these objects
  • the present invention relates to various recording media.
  • radio waves microwaves, millimeter waves, terahertz waves, etc.
  • An imaging apparatus that uses this radio wave transmission capability to image and inspect articles hidden under clothes or articles in bags has been put into practical use.
  • a remote sensing technique for imaging the ground surface through a cloud from a satellite or an aircraft has been put into practical use.
  • FIG. 21 is a diagram showing an object detection apparatus employing a conventional array antenna system.
  • FIG. 22 is a diagram showing the configuration of the receiver shown in FIG.
  • the object detection apparatus includes a transmitter 211 and a receiver 201.
  • the transmitter 211 includes a transmission antenna 212.
  • the receiver 201 includes receiving antennas 202 1 , 202 2 ,..., 202 N (N is the number of receiving antennas).
  • the transmitter 211 irradiates an RF signal (radio wave) 213 from the transmitting antenna 212 toward the detection objects 204 1 , 204 2 ,..., 204 K (K is the number of objects).
  • RF signal (radio wave) 213, the detection object 204 1, 204 2, ..., are reflected in the 204 K, the reflected wave 203 1, 203 2, ..., 203 K is generated, respectively.
  • Reflected wave 203 1 generated, 203 2, ..., 203 K, the receiving antenna 201 1, 202 2, ..., is received at 202 N.
  • the receiver 201 calculates reflected wave 203 1 receiving, 203 2, ..., based on 203 K, the detection object 204 1, 204 2, ..., a radio field intensity of the radio wave is reflected by 204 K To do.
  • the receiver 201 images the calculated radio wave intensity distribution. Thereby, the images of the detection objects 204 1 , 204 2 ,..., 204 K are obtained.
  • the complex amplitudes of the incoming waves 208 1 , 208 2 ,..., 208 K are [s ( ⁇ 1 ), s ( ⁇ 2 ),..., S ( ⁇ K )].
  • the receiver 201 is provided with the down-converter (not shown in FIG. 22), by the down converter, the receiving antennas 202 1, 202 2, ..., the complex amplitude of the received RF signal at 202 N (Baseband signal) [r 1 , r 2 ,..., R N ] are extracted. Further, the complex amplitudes [r 1 , r 2 ,..., R N ] of the signals received by the receiving antennas 202 1 , 202 2 ,..., 202 N are output to the signal processing unit 205.
  • Receiving antennas 202 1 , 202 2 ,..., 202 N receive signal complex amplitudes [r 1 , r 2 ,..., R N ] and incoming wave complex amplitudes [s ( ⁇ 1 ), s
  • the relationship with ( ⁇ 2 ),..., s ( ⁇ K )] is given by the following equation (1).
  • n (t) is a vector whose elements are noise components.
  • the subscript T represents the transpose of the vector or matrix.
  • d is the distance between the antennas
  • lambda is incoming wave (RF signal) 208 1, 208 2, ..., a wavelength of 208 K.
  • the complex amplitude r of the received signal is an amount obtained by measurement.
  • the direction matrix A is an amount that can be defined (designated) in signal processing.
  • the complex amplitude s of the incoming wave is an unknown, and the purpose of the incoming wave direction estimation is to determine the direction of the incoming wave s from the received signal r obtained by measurement.
  • a correlation matrix R E [r ⁇ r H ] is calculated from the received signal r obtained by measurement.
  • E [] represents that time-average processing is performed on the elements in parentheses, and the subscript H represents complex conjugate transpose.
  • any evaluation function represented by the following equations (2) to (4) is calculated.
  • E N [e K + 1 ,..., E N ] in the MUSIC method is N ⁇ (K + 1) vectors whose eigenvalue is the power of noise n (t) among the eigenvectors of the correlation matrix R It is a matrix composed of
  • the evaluation function shown in Equation (2) to (4) the angle theta 1 of the incoming waves, theta 2, ⁇ ⁇ ⁇ , with a peak at theta K. Therefore, the angle of the incoming wave can be obtained by calculating the evaluation function and looking at the peak.
  • the position and shape of the object can be displayed as an image from the angular distribution of the incoming waves obtained by the evaluation functions of Expressions (2) to (4).
  • FIG. 23 shows a signal processing unit when the evaluation function based on the beamformer method of Expression (2) among the evaluation functions expressed by Expression (2) to Expression (4) is applied.
  • FIG. 23 is a diagram illustrating an example in which the beamformer method is applied in the receiver illustrated in FIG.
  • phase shifters 206 1 , 206 2 ,..., 206 N of the conventional antenna array shown in FIG. 23 and the combiner 207 correspond to the signal processing unit 205 in the conventional antenna array shown in FIG. To do.
  • Phase shifter 206 1, 206 2, ..., 206 N respectively, receive antennas 202 1, 202 2, ..., an incoming wave 208 received by the 202 N 1, 208 2, ..., 208 K
  • Phase rotations ⁇ 1 , ⁇ 2 ,..., ⁇ N are added to the complex amplitude of.
  • Phase rotation ⁇ 1, ⁇ 2, ⁇ , ⁇ N is incoming wave 208 1 applied, 208 2, ⁇ ⁇ ⁇ , 208 K are added by the adder 207.
  • the directivity component AF ( ⁇ ) obtained by removing the directivity g ( ⁇ ) of the receiving antenna 202 from the directivity E ( ⁇ ) of the array antenna is called an array factor.
  • the array factor AF ( ⁇ ) represents the effect of directivity due to the formation of the array antenna.
  • Reception antenna 202 n (n 1,2, ⁇ , N) signal received in a g ( ⁇ ) a n exp ( j ⁇ n).
  • a signal obtained by adding in (5) is obtained as the directivity E ( ⁇ ) of the equation (5).
  • d is the receiving antenna 202
  • lambda is arriving wave 208 1, 208 2, ..., a wavelength of 208 K.
  • Patent Documents 1 to 3 Other examples of the object detection apparatus using the array antenna method are also disclosed in Patent Documents 1 to 3.
  • the object detection devices disclosed in Patent Documents 1 and 2 are receptions formed by N reception antennas by phase shifters connected to the N reception antennas incorporated in the receiver. Controls the directivity of the array antenna.
  • the object detection devices disclosed in Patent Documents 1 and 2 change the directivity of the N reception array antennas formed in a beam shape, and each of the D detection objects has the reception array antenna. Direct the directional beam. Thereby, the radio wave intensity reflected by each detection object is calculated.
  • the object detection device disclosed in Patent Document 3 controls the directivity of the N reception array antennas by using the frequency dependence of the N reception array antennas. Similarly to the examples of Patent Documents 1 and 2, the object detection device disclosed in Patent Document 3 also directs the directional beams of N reception array antennas to each of the D detection objects. The radio field intensity reflected by each detection object is calculated.
  • FIG. 24 is a diagram showing a schematic configuration of a receiving array antenna when a conventional array antenna system is adopted.
  • FIG. 25 is a diagram illustrating an object detection device that employs the MillsCross method.
  • the object detection apparatus includes a one-dimensional array antenna 201 arranged in the vertical direction and a one-dimensional array antenna 201 arranged in the horizontal direction.
  • the multiplier 221 calculates a product of signals for each set of the reception antenna in the vertical direction and the reception antenna in the horizontal direction. Therefore, a two-dimensional image can be displayed by using the calculated product.
  • FIG. 26 is a diagram illustrating an object detection apparatus that employs a conventional synthetic aperture radar system.
  • the object detection apparatus includes a transmitter 311 and a receiver 301.
  • the transmitter 311 is provided with a transmission antenna 312.
  • the receiver 301 includes a reception antenna 302.
  • the transmitter 311 emits an RF signal (radio wave) 313 from the transmission antenna 312 toward the detection objects 304 1 , 304 2 ,..., 304 K (K is the number of detection objects).
  • RF signal (radio wave) 313, the detection object 304 1, 304 2, ..., are reflected in the 304 K, the reflected wave 303 1, 303 2, ..., 303 K is generated, respectively.
  • the receiver 301 sequentially receives the reflected waves 303 1 , 303 2 ,..., 303 K while moving to N preset positions in order.
  • 301 1 , 301 2 ,..., 301 N indicate the receiver 301 at each position.
  • 302 1 , 302 2 ,..., 302 N indicate reception antennas at the respective positions.
  • N is the number of positions of the receiver 301 set in advance.
  • one receiving antenna 302 functions as N receiving antennas 302 1 , 302 2 ,..., 302 N. That is, in FIG. 25, one receiving antenna is a receiving array antenna (virtual array) with N antennas in the same manner as the receiving antennas 202 1 , 202 2 ,..., 202 N in the array antenna system shown in FIG. Array antenna).
  • one receiving antenna is a receiving array antenna (virtual array) with N antennas in the same manner as the receiving antennas 202 1 , 202 2 ,..., 202 N in the array antenna system shown in FIG. Array antenna).
  • the receiver 301 shown in FIG. 21 the reflected wave 303 1 receiving, 303 2, ..., based on 303 K.
  • the radio wave intensity reflected from the detection objects 304 1 , 304 2 ,..., 304 K is calculated.
  • the receiver 301 images the calculated distribution of radio field intensity.
  • images of the detection objects 304 1 , 304 2 ,..., 304 K are obtained.
  • Patent Documents 4 to 6 disclose examples of an object detection device based on a synthetic aperture radar system.
  • Patent Document 7 discloses an example of an in-vehicle radar instead of an imaging device.
  • the on-vehicle radar disclosed in Patent Document 7 measures the distance from the on-vehicle radar to an object (the position in the front-rear direction with respect to the on-vehicle radar) using an FMCW (Frequency-Modulated-continuous-Wave) signal. Further, this on-vehicle radar measures the position of an object by estimating the direction of arrival by the MUSIC method. In this case, the position of the object is represented by an angle from a reference line passing through the in-vehicle radar.
  • the receiving antenna 201 1, 202 2, ..., 202 intervals of each antenna of N reflected wave 203 1 received at the receiver 201, 203 2, ..., 203 K Must be less than half of the wavelength ⁇ .
  • the wavelength ⁇ is about several millimeters, so that the interval between the antennas is several millimeters or less. If this condition is not satisfied, there arises a problem that a virtual image is generated at a position where the detection objects 204 1 , 204 2 ,..., 204 K do not exist in the generated image.
  • the resolution of the image is determined by the directional beam width ⁇ of the receiving array antenna (201 1 , 202 2 ,..., 202 N ).
  • the width ⁇ of the directional beam of the receiving array antenna (201 1 , 202 2 ,..., 202 N ) is given by ⁇ to ⁇ / D.
  • D is the opening size of the receiving array antenna (201 1 , 202 2 ,... 202 N ), and corresponds to the distance between the receiving antennas 202 1 and 202 N existing at both ends. That is, in order to obtain a practical resolution in imaging an article hidden under clothes or an article in a bag, the openings of the receiving array antennas (201 1 , 202 2 ,..., 202 N ).
  • the size D needs to be set to about several tens of centimeters to several meters.
  • the distance between the antennas of the N receiving antennas should be less than half of the wavelength ⁇ (several mm or less) and the distance between the receiving antennas existing at both ends should be at least about several tens of centimeters. From this point, the number N of antennas required per row is about several hundred.
  • N reception antennas 202 are installed in each of the vertical direction and the horizontal direction.
  • the total number of reception antennas required is N 2 . Therefore, in order to employ the array antenna system, the number of reception antennas necessary for the whole and the number of receivers associated therewith are approximately tens of thousands.
  • the cost is extremely high in the array antenna system.
  • the antenna is installed in four regions with one side of several tens of centimeters to several meters, the size and weight of the device are very large.
  • the number of receiving antennas and receivers can be reduced as compared with the case where the array antenna method is adopted.
  • the number of necessary reception antennas and receivers is 2N, and about several hundred reception antennas are required. Therefore, even in this case, it is difficult to solve the problems of cost, device size and weight.
  • the in-vehicle radar including the in-vehicle radar disclosed in Patent Document 7, is generally downsized as compared with the imaging devices disclosed in Patent Documents 1 to 3.
  • the resolution of the in-vehicle radar is deteriorated compared with the imaging apparatus by the size reduction.
  • the in-vehicle radar cannot identify the shape of the object because of its low resolution, and can only grasp the position of the object.
  • the resolution is given by c / (2 BW), where c is the speed of light and BW is the bandwidth of the RF signal. Therefore, when the bandwidth BW is set to 2 GHz, the resolution is 7.5 cm. With this resolution, the position of an object having a size of several centimeters can be measured, but it is difficult to identify the shape of the object having a size of several centimeters.
  • the aperture size D is reduced to about several centimeters. For this reason, the width of the directional beam ⁇ ⁇ / D is increased, and there is a problem that the resolution of the measurement in the angular direction (estimation of arrival direction) is degraded.
  • the applications and opportunities for actually using the object detection device are limited. Also, depending on the method employed, the speed at which the object is inspected is limited. From these points, it is required to reduce the number of antennas and receivers required than before, and to realize image generation by high-speed scanning without moving the receiver.
  • An example of an object of the present invention is to solve the above-described problems and improve the accuracy of detecting an object using radio waves while suppressing an increase in apparatus cost, size, and weight. It is to provide a method and a computer-readable recording medium.
  • an object detection device for detecting an object by radio waves, A plurality of transmitters that emit radio waves as transmission signals toward the object; and Corresponding to any of the plurality of transmission units, and receiving a radio wave reflected by the object as a reception signal, and further mixing the transmission signal with the received reception signal to generate an intermediate frequency signal, A receiver, A spectrum calculation unit for calculating a spectrum representing a position distribution of the object based on the intermediate frequency signal; A section determining unit that determines a section for calculating the reflectance of the object based on the calculated peak position of the amplitude of the spectrum; For each set of the transmitting unit and the corresponding receiving unit, the reflectance of the object in each of the determined sections is calculated based on the intermediate frequency signal, and each of the sections is calculated for each set.
  • a reflectance distribution calculator that calculates a product of the reflectance distributions of An image generation unit that generates an image using a product of the reflectance distribution calculated for each set; It
  • an object detection method corresponds to any of the plurality of transmission units and the plurality of transmission units that irradiate a radio wave as a transmission signal toward the object, And receiving a radio wave reflected by the object as a reception signal, and further generating an intermediate frequency signal by mixing the transmission signal with the received reception signal, using a device comprising: A method for detecting an object, comprising: (A) calculating a spectrum representing a position distribution of the object based on the intermediate frequency signal; (B) determining a section for calculating the reflectance of the object based on the calculated peak position of the amplitude of the spectrum; (C) calculating the reflectance of the object in each of the determined sections based on the intermediate frequency signal for each set of the transmitting unit and the corresponding receiving unit; and for each set, Calculating a product of the reflectance distribution of each of the sections; and (D) generating an image using a product of the reflectance distribution calculated for each set; and It is characterized
  • a computer-readable recording medium Corresponding to any of the plurality of transmitters and the plurality of transmitters that radiate radio waves toward the object as transmission signals, and receiving radio waves reflected by the objects as reception signals, and further receiving
  • the object detection device including a reception unit and a processor that generates an intermediate frequency signal by mixing the transmission signal with the reception signal
  • the processor In the processor, (A) calculating a spectrum representing a position distribution of the object based on the intermediate frequency signal; (B) determining a section for calculating the reflectance of the object based on the calculated peak position of the amplitude of the spectrum; (C) calculating the reflectance of the object in each of the determined sections based on the intermediate frequency signal for each set of the transmitting unit and the corresponding receiving unit; and for each set, Calculating a product of the reflectance distribution of each of the sections; and (D) generating an image using a product of the reflectance distribution calculated for each set; and A program including an instruction
  • FIG. 1 is a block diagram showing a configuration of an object detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an external configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 3 is a diagram specifically illustrating the configuration of the transmission unit and the reception unit of the object detection device according to the embodiment of the present invention.
  • FIG. 4 is a diagram specifically illustrating the configuration of another example of the transmission unit and the reception unit of the object detection device according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a transmission signal emitted by the object detection device according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating another example of the transmission signal emitted by the object detection device according to the embodiment of the present invention.
  • FIG. 1 is a block diagram showing a configuration of an object detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing an external configuration of the object detection device according to the embodiment of the present
  • FIG. 7 is a flowchart showing the operation of the object detection apparatus according to the embodiment of the present invention.
  • FIG. 8 is a diagram for explaining the distance between the dotted object and the transmission / reception apparatus when K dotted objects are arranged.
  • FIG. 9 is a diagram illustrating a state in which a correlation is generated between the reflected waves from the object.
  • FIG. 10 is a diagram illustrating an example of a subarray constructed by a plurality of receiving antennas.
  • FIG. 11 is a diagram showing an example of a spectrum representing the position distribution of an object obtained in the embodiment of the present invention.
  • FIG. 12 is a diagram illustrating the distance from the transmission / reception device when a continuous object is arranged.
  • FIG. 13 is a diagram showing another example of a spectrum representing the position distribution of an object obtained in the embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a positional relationship between an object and a transmission / reception device when the object has a T-shape.
  • FIG. 15 is a diagram showing a spectrum representing the position distribution of the object obtained with the arrangement shown in FIG.
  • FIG. 16 is a diagram specifically illustrating the shape of the object illustrated in FIG. 14.
  • FIG. 17 is a diagram showing the relationship between the section determined in step A4 shown in FIG. 7 and the object.
  • FIG. 18 is a diagram illustrating an example of the calculation result of the reflectance of the object calculated in step A5 illustrated in FIG.
  • FIG. 19 is a diagram illustrating an example of an image of an object generated in the present embodiment.
  • FIG. 20 is a block diagram illustrating an example of a computer that implements the object detection device according to the embodiment of the present invention.
  • FIG. 21 is a diagram showing an object detection apparatus employing a conventional array antenna system.
  • FIG. 22 is a diagram showing the configuration of the receiver shown in FIG.
  • FIG. 23 is a diagram illustrating an example in which the beamformer method is applied in the receiver illustrated in FIG.
  • FIG. 24 is a diagram showing a schematic configuration of a receiving array antenna when a conventional array antenna system is adopted.
  • FIG. 25 is a diagram illustrating an object detection device that employs the Mills-Cross method.
  • FIG. 26 is a diagram illustrating an object detection apparatus that employs a conventional synthetic aperture radar system.
  • FIG. 1 is a block diagram showing a configuration of an object detection apparatus according to an embodiment of the present invention.
  • the object detection apparatus 1000 includes a transmission unit 1101, a reception unit 1102, a spectrum calculation unit 1103, a section determination unit 1104, a reflectance distribution calculation unit 1105, and an image generation unit 1106. ing.
  • the transmission unit 1101 irradiates the object 1003 with a radio wave serving as a transmission signal.
  • the reception unit 1102 receives the radio wave reflected by the object 1003 as a reception signal, and further mixes the transmission signal generated by the transmission unit 1101 with the received reception signal to obtain an intermediate frequency signal (hereinafter referred to as “IF (Intermediate). (Frequency) signal ”).
  • IF Intermediate frequency
  • Frequency Frequency
  • the spectrum calculation unit 1103 calculates a spectrum representing the position distribution of the object 1003 based on the IF signal.
  • the section determination unit 1104 determines a section for calculating the reflectance of the object 1003 based on the calculated peak position of the amplitude of the spectrum.
  • the reflectance distribution calculation unit 1105 calculates the reflectance of the object in each determined section based on the IF signal for each set of the transmission unit 1101 and the reception unit 1102 corresponding thereto, and further, for each set, The product of the reflectance distribution of each section is calculated.
  • the image generation unit 1106 generates an image using the product of the reflectance distribution calculated for each group.
  • a spectrum representing the position distribution of an object (hereinafter referred to as “object”) 1003 to be detected is calculated, and the reflection of the object 1003 is calculated from the peak position of the amplitude.
  • An interval for calculating the rate is determined.
  • An image is formed from the product of the reflectance distributions for each section.
  • FIG. 2 is a diagram schematically showing an external configuration of the object detection device according to the embodiment of the present invention.
  • FIG. 3 is a diagram specifically illustrating the configuration of the transmission unit and the reception unit of the object detection device according to the embodiment of the present invention.
  • FIG. 4 is a diagram specifically illustrating the configuration of another example of the transmission unit and the reception unit of the object detection device according to the embodiment of the present invention.
  • one transmission / reception device 1001 is configured by a transmission unit 1101 and a reception unit 1102 corresponding thereto. That is, one set of the transmission unit 1101 and the reception unit 1102 corresponds to one transmission / reception device 1001.
  • spectrum calculation section 1103, section determination section 1104, reflectance distribution calculation section 1105, and image generation section 1106 introduce a program in this embodiment to be described later into arithmetic device (computer) 1211. It is built by doing.
  • the transmission unit 1101 outputs a transmission signal to the reception unit 1102 via the terminal 1208.
  • the receiving unit 1102 mixes the radio wave reflected and received from the object 1003 and the transmission signal obtained via the terminal 1208, and outputs an IF signal.
  • a plurality of transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N are arranged on the transmission / reception device arrangement surface 1002.
  • Each of the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N is connected to the arithmetic device 1211.
  • N is the number of transmission / reception apparatuses 1001 arranged.
  • the object 1003 is arranged on the object arrangement surface 1004.
  • each of the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N radiates radio waves toward the object 1003. Thereafter, each of the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N is assumed to receive radio waves reflected by the object 1003.
  • Each of the transceiver 1001 1, 1001 2, ⁇ , 1001 N based on radio waves transmitted and received, transmission and reception device 1001 1, 1001 2, ⁇ , 1001 N and the distance R between the object 1003 1 , R 2 ,..., RN are measured.
  • the transmission unit 1101 includes an oscillator 1201 and a transmission antenna 1202.
  • the receiving unit 1102 includes a receiving antenna 1203, a mixer 1204, and an interface circuit 1205. Further, as described above, the transmission unit 1101 and the reception unit 1102 are connected via the terminal 1208.
  • the oscillator 1201 In the transmission unit 1101, the oscillator 1201 generates an RF signal (radio wave).
  • the RF signal generated by the oscillator 1201 is transmitted as a transmission signal from the transmission antenna 1202 and irradiated on the object 1003.
  • the radio wave reflected by the object 1003 is received by the reception antenna 1203 in the reception unit 1102.
  • the mixer 1204 generates an IF signal by mixing the RF signal input from the oscillator 1201 via the terminal 1208 and the radio wave (received signal) received by the receiving antenna 1203.
  • the IF signal generated by the mixer 1204 is transmitted to the arithmetic device 1211 via the interface circuit 1205.
  • the interface circuit 1205 has a function of converting an IF signal that is an analog signal into a digital signal that can be handled by the arithmetic device 1211, and outputs the obtained digital signal to the arithmetic device 1211.
  • the arithmetic device 1211 is separated from the transmission / reception devices 1001 1 ,..., 1001 N , but this embodiment is not limited to this mode. In the present embodiment, the arithmetic device 1211 may be mounted inside or any one of the transmission / reception units 1001 1 ,..., 1001 N.
  • one transmission / reception device 1001 includes one transmission antenna 1202 and one reception antenna 1203.
  • the present embodiment is not limited to this mode.
  • a single transmission / reception device 1001 may include a plurality of transmission antennas 1202 and a plurality of reception antennas 1203.
  • the transmission unit 1101 includes one oscillator 1201 and a plurality of transmission antennas 1202.
  • the transmission unit 1101 also includes a variable phase shifter 1206 provided for each transmission antenna 1202, and each transmission antenna 1202 is connected to the oscillator 1201 via the variable phase shifter 1206.
  • Each variable phase shifter 1206 controls the directivity of the transmission antenna 1202 by controlling the phase of the transmission signal supplied from the oscillator 1201 to each of the transmission antennas 1202.
  • the reception unit 1102 includes one interface circuit 1205 and a plurality of reception antennas 1203. Further, the reception unit 1102 includes a mixer 1204 provided for each reception antenna 1203 and a variable phase shifter 1207 similarly provided for each reception antenna 1203. Each receiving antenna 1203 is connected to an interface circuit 1205 via a variable phase shifter 1207 and a mixer 1204.
  • Each variable phase shifter 1207 controls the directivity of the reception antenna 1203 by controlling the phase of the reception signal supplied from each of the reception antennas 1203 to the mixer 1204.
  • the variable phase shifter 1207 may be installed between the mixer 1204 and the interface circuit 1205.
  • FIG. 5 is a diagram illustrating an example of a transmission signal emitted by the object detection device according to the embodiment of the present invention.
  • FIG. 6 is a diagram illustrating another example of the transmission signal emitted by the object detection device according to the embodiment of the present invention.
  • f min is the minimum value of the RF frequency
  • BW is the bandwidth of the RF signal.
  • radio waves are emitted from the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N toward the object 1003, and then the radio waves reflected by the object 1003 are transmitted / received to the transmission / reception devices 1001 1 , 1001, 1001 2 ,..., 1001 N are received.
  • the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N are controlled so as not to operate simultaneously with other transmission / reception devices. That is, the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N are controlled so that each one operates at a different timing, and each transmission unit radiates radio waves at different timings.
  • FIG. 7 is a flowchart showing the operation of the object detection apparatus according to the embodiment of the present invention.
  • FIGS. 1 to 6 are referred to as appropriate.
  • the object detection method is implemented by operating the object detection apparatus 1000. Therefore, the description of the object detection method in the present embodiment is replaced with the following description of the operation of the object detection apparatus 1000.
  • transceiver 1001 1, 1001 2, ..., from 1001 N respective transmission unit 1101, in turn, toward an object 1003 is irradiated with radio waves as a transmission signal (step A1). Further, each transmission unit 1101 outputs the transmission signal to the reception unit 1102 via the terminal 1208 simultaneously with the irradiation of the radio wave serving as the transmission signal.
  • the reception unit 1102 receives the radio wave reflected from the object 1003 as a reception signal, and transmits the received signal to the transmission unit 1101.
  • the IF signal is generated by mixing the transmission signal generated in (Step A2).
  • the spectrum calculation unit 1103 calculates a distance spectrum between each of the transmission / reception devices 1001 1 , 1001 2 ,..., 1001 N and the object 1003 based on the IF signal generated in step A2 (step A3). ).
  • the section determining unit 1104 determines a section for calculating the reflectance of the object 1003 based on the peak position of the amplitude of the distance spectrum calculated in step A3 (step A4).
  • the reflectance distribution calculation unit 1105 performs the transmission / reception apparatuses 1001 1 , 1001 2 ,..., 1001 N in each section determined in step A4 based on the IF signal generated in step A2.
  • the reflectance (effective reflectance) of the object 1003 is calculated (step A5).
  • the reflectance distribution calculation unit 1105 further calculates the product of the reflectance distributions of the sections for each transmission / reception apparatus.
  • steps A3 to A6 shown in FIG. 7 will be described in more detail with reference to FIGS.
  • Step A3 First, details of Step A3 for calculating a distance spectrum between the transmitting / receiving devices 1001 1 , 1001 2 ,..., 1001 N and the object 1003 based on the transmitted / received radio waves will be described.
  • null steering type arrival direction estimation technology such as the MUSIC method is applied to the FMCW radar in step A3, and the resolution of the distance spectrum is improved.
  • transceiver distance from 1001 R 1, R 2, ⁇ ⁇ ⁇ , K-number of the point-like object in the R K position 1003 1, 1003 2 , 1003 K is considered.
  • Distance R 1, R 2 of the object, ..., R K is unknown, the distance R 1, R 2 of the object, ..., be seeking R K is a problem in measurement.
  • FIG. 8 is a diagram for explaining the distance between the point-like object and the transmission / reception apparatus when K point-like objects are arranged.
  • the in-phase component I (t) of the received IF signal is given by the following equation (6).
  • Equation (6) ⁇ (R k ) is the reflectance of the object existing at the distance R k .
  • c is the speed of light.
  • t ' is the time in one chirp period, it takes values between -T chirp / 2 of T chirp / 2.
  • the orthogonal component Q (t) of the received IF signal is given by the following equation (7).
  • the quadrature component Q (t) is calculated by using a quadrature modulator or by performing Hilbert transform of the in-phase component I (t). From the in-phase component and the quadrature component of the reception IF signal, a complex reception IF signal r (t) is calculated by the following equation (8).
  • FIG. 9 is a diagram illustrating a state in which a correlation is generated between the reflected waves from the object. As shown in FIG. 9, when there is a correlation, the same signal has arrived at the receiving antenna 1203 from different objects 1003 1 , 1003 2 , and 1003 K. Therefore, different objects 1003 1 , 1003 2 , and 1003 K It becomes difficult to distinguish the positions.
  • the problem of correlation between reflections always occurs as long as the objects 1003 1 , 1003 2 , and 1003 K are irradiated with radio waves from the same transmitter (transmitting antenna 1202).
  • FIG. 10 is a diagram illustrating an example of a subarray constructed by a plurality of receiving antennas.
  • a correlation matrix R col (q) calculated from the q-th subarray is calculated as in the following equation (10).
  • the number Q of sub-arrays is equal to or greater than the number K of objects.
  • the problem caused by the correlation between reflections can be avoided by utilizing the property that the correlation is weakened between the received signals of different subarrays.
  • an evaluation function (MUSIC spectrum) P MU (R) shown in the following equation (11) is calculated using the correlation matrix R all and the direction vector a (R) defined by the equation (9). .
  • FIG. 11 is a diagram showing an example of a spectrum representing the position distribution of an object obtained in the embodiment of the present invention.
  • FIG. 12 shows a situation in which a continuous object 1003 having a distance from the transmission / reception device 1001 extending from R min to R max.
  • FIG. 13 shows the result of obtaining the distance spectrum of the continuous object 1003 distributed from a distance of 20 cm to 30 cm by the MUSIC spectrum of the equation (11) by the transmission / reception device 1001 using radio waves with an RF frequency of 18 to 20 GHz.
  • FIG. 12 is a diagram illustrating the distance from the transmission / reception device when a continuous object is arranged.
  • FIG. 13 is a diagram showing another example of a spectrum representing the position distribution of an object obtained in the embodiment of the present invention.
  • step A4 is required.
  • step A4 will be described in detail with reference to FIG.
  • FIG. 14 is a diagram illustrating a positional relationship between an object and a transmission / reception device when the object has a T-shape.
  • FIG. 14 is also used in the description of steps A5 and A6 described later.
  • transmission / reception devices 1001 1 , 1001 2 , 1001 3 , 1001 4 are arranged on a circle 1005 on the device arrangement surface 1002.
  • a T-shaped object 1003 is arranged on the object arrangement surface 1004.
  • FIG. 15 is a diagram showing a spectrum representing the position distribution of the object obtained with the arrangement shown in FIG. 14.
  • FIG. 16 is a diagram specifically illustrating the shape of the object illustrated in FIG. 14.
  • step A4 based on the peak information of the MUSIC spectrum, as shown in FIG. 16, between the peaks P1 and P2 and between P2 and P3, respectively, are determined as sections (section 1 and section 2).
  • the number of intervals is equal to the number of peaks minus one.
  • step A5 step A5 will be described.
  • z be the distance between the device arrangement plane 1002 and the object arrangement plane 1004, and let O be the point where the distance from the transmission / reception apparatus 1001 is minimum on the object arrangement plane.
  • This section corresponds to the section given by the peak of the MUSIC spectrum shown in FIG.
  • FIG. 17 is a diagram showing the relationship between the section determined in step A4 shown in FIG. 7 and the object.
  • ⁇ ′ (L) is an effective reflectance, which is an amount proportional to the width of the object in the angular direction (direction perpendicular to the distance direction) and the reflectance.
  • the effective reflectance ⁇ ′ (L) is large in the section [L k ⁇ k / 2, L k + ⁇ k / 2]. It is effective when there is no change. In other words, in the section [L k ⁇ k / 2, L k + ⁇ k / 2], it is assumed that there is little change between the angular width of the object and the reflectance.
  • a direction matrix AK is defined as shown in the following formula (14).
  • equation (14) the direction matrix A K is a known quantity composed of known parameters.
  • the correlation matrix R col (0) is a known amount that can be calculated from the received IF signal r 0 obtained as measured data or simulation data.
  • FIG. 18 is a diagram illustrating an example of the calculation result of the reflectance of the object calculated in step A5 illustrated in FIG.
  • data obtained by the transmission / reception apparatuses 1001 1 to 1001 4 is shown.
  • Transceiver 1001 1 to 1001 4 can be measured for the position in the distance direction of the object (direction from transceiver 1001 1 to 1001 4 to an object when viewed object).
  • transceiver 1001 1 to 1001 4 are each difficult to measure for the location of the (direction towards the lateral from the object when viewed object from transceiver 1001 1 to 1001 4) angular direction. Therefore, the section is defined only in the distance direction.
  • the section is an area on the object surface 1004 that is sandwiched between the circles with the point O (FIG. 17) of each of the transmission / reception devices 1001 1 to 1001 4 as the origin. Since the effective reflectance takes the same value within the section, it appears to have a donut-shaped distribution.
  • the effective reflectance is an amount proportional to the angular width of the object 1003 and the reflectance. Since the reflectance of the object 1003 is uniform, the effective reflectance of a pattern having a large width in the angular direction when viewed from the transmission / reception device 1001 is a particularly large value. As an example, when the measurement is performed with the transmission / reception device 10011 1 or 1001 3 , the effective reflectance of the vertical bar portion of the object 1003 is increased. Meanwhile, in the case measured by transceiver 1001 2 or 1001 4, the effective reflectivity of the horizontal bar portion of the object 1003 is increased.
  • Equation (12) the fact that there is little change in the angular width and reflectance of the object in the interval [L k - ⁇ k / 2, L k + ⁇ k / 2], that is, the object within the interval. He stated that it is desirable that there is no discontinuity of objects as a condition for section setting. By setting the interval between the ends of the object detected at the peak of the MUSIC spectrum as an interval, the above-described conditions for setting the interval are satisfied.
  • step A6 step A6 will be described.
  • FIG. 19 is a diagram illustrating an example of an image of an object generated in the present embodiment. As shown in FIG. 19, in this embodiment, by executing steps A1 to A6, a T-shaped original shape having a width of 5 cm is compared to a T-shaped original shape in a millimeter wave image measured with a bandwidth of 2 GHz. The shape is obtained.
  • the synthetic aperture radar system it is necessary to move the receiver mechanically, which has a problem that it takes a long time to detect and inspect the object.
  • the conventional radar that measures the distance by the FMCW method has a problem that the resolution is poor and the shape of the object cannot be detected correctly.
  • the null steering type arrival direction estimation technique such as the MUSIC method is applied to the FMCW radar, the resolution of the distance spectrum is improved.
  • the section for calculating the effective reflectance of the object is determined using the amplitude peak position of the distance spectrum, the effective reflectance of the object for each section is calculated, and each transmitting / receiving device Since the image of the object is reproduced using the product of the effective reflectances of the respective sections measured in step 1, the shape detection of the entire object is realized.
  • the number of necessary antennas and the associated receivers can be reduced as compared with the general array antenna system, so that the cost of the apparatus can be reduced.
  • the size and weight can be reduced.
  • the object detection apparatus and the object detection method in the present embodiment do not require the apparatus to be moved mechanically, so that the time required for object detection and inspection can be shortened. Play.
  • an image of a detection target object is obtained by irradiating a detection target with a radio wave whose RF frequency changes over time and detecting a radio wave reflected by the target object or a radio wave radiated from the target object. Can be generated. Therefore, according to the present embodiment, it is possible to realize image generation by high-speed scanning without reducing the number of antennas and receiving units required compared to the prior art and without having to move them.
  • the program in this embodiment may be a computer, that is, a program that causes the arithmetic device 1211 to execute steps A3 to A6 shown in FIG.
  • the processor of the arithmetic device 1211 functions as a spectrum calculation unit 1103, a section determination unit 1104, a reflectance distribution calculation unit 1105, and an image generation unit 1106 to perform processing.
  • each computer may function as any one of the spectrum calculation unit 1103, the section determination unit 1104, the reflectance distribution calculation unit 1105, and the image generation unit 1106, respectively.
  • FIG. 20 is a block diagram illustrating an example of a computer that implements the object detection device according to the embodiment of the present invention.
  • a computer 110 includes a CPU (Central Processing Unit) 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. With. These units are connected to each other via a bus 121 so that data communication is possible.
  • the computer 110 may include a GPU (GraphicsGraphProcessing Unit) or an FPGA (Field-ProgrammableGate Array) in addition to or instead of the CPU 111.
  • GPU GraphicsGraphProcessing Unit
  • FPGA Field-ProgrammableGate Array
  • the CPU 111 performs various operations by developing the program (code) in the present embodiment stored in the storage device 113 in the main memory 112 and executing them in a predetermined order.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. Note that the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 includes a hard disk drive and a semiconductor storage device such as a flash memory.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls display on the display device 119.
  • the data reader / writer 116 mediates data transmission between the CPU 111 and the recording medium 120, and reads a program from the recording medium 120 and writes a processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as ROM (Compact Disk Read Only Memory) may be used.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic recording media such as a flexible disk
  • CD- An optical recording medium such as ROM (Compact Disk Read Only Memory) may be used.
  • the object detection apparatus 1000 can be realized not by using a computer in which a program is installed but also by using hardware corresponding to each unit. Furthermore, part of the object detection apparatus 1000 may be realized by a program, and the remaining part may be realized by hardware.
  • An object detection device for detecting an object by radio waves, A plurality of transmitters that emit radio waves as transmission signals toward the object; and Corresponding to any of the plurality of transmission units, and receiving a radio wave reflected by the object as a reception signal, and further mixing the transmission signal with the received reception signal to generate an intermediate frequency signal, A receiver, A spectrum calculation unit for calculating a spectrum representing a position distribution of the object based on the intermediate frequency signal; A section determining unit that determines a section for calculating the reflectance of the object based on the calculated peak position of the amplitude of the spectrum; For each set of the transmitting unit and the corresponding receiving unit, the reflectance of the object in each of the determined sections is calculated based on the intermediate frequency signal, and each of the sections is calculated for each set.
  • a reflectance distribution calculator that calculates a product of the reflectance distributions of An image generation unit that generates an image using a product of the reflectance distribution calculated for each set;
  • An object detection device comprising:
  • the transmitter transmits a frequency-modulated radio wave as the transmission signal;
  • the object detection device according to attachment 1.
  • the transmission unit includes an oscillator that generates the transmission signal, and a transmission antenna that irradiates the transmission signal, A receiving antenna for receiving the received signal; a mixer for generating the intermediate frequency signal by mixing the transmission signal and the received signal; and an interface circuit for outputting the intermediate frequency signal.
  • the object detection device according to any one of appendices 1 to 4.
  • the spectrum calculation unit calculates a correlation matrix from the measured values of the intermediate frequency signal for each preset sampling time, and calculates the spectrum based on the calculated correlation matrix;
  • the object detection apparatus according to any one of appendices 1 to 5.
  • the spectrum calculation unit calculates the correlation matrix corresponding to each of the sampling time ranges from the measurement value of the intermediate frequency signal having a different sampling time range, and further corresponds to each of the sampling time ranges. Calculating an average value of the correlation matrix, and then calculating the spectrum based on the average value of the correlation matrix;
  • the object detection device according to attachment 6.
  • the reflectance distribution calculation unit calculates a direction matrix whose value is determined for each section, and calculates the reflectance of the object in each section using the calculated direction matrix and the calculated correlation matrix.
  • the object detection apparatus according to appendix 6 or 7.
  • the transmitter transmits a frequency-modulated radio wave as the transmission signal;
  • the transmission unit includes an oscillator that generates the transmission signal, and a transmission antenna that irradiates the transmission signal, A receiving antenna for receiving the received signal; a mixer for generating the intermediate frequency signal by mixing the transmission signal and the received signal; and an interface circuit for outputting the intermediate frequency signal.
  • step (a) a correlation matrix is calculated from the measurement value of the intermediate frequency signal for each preset sampling time, and the spectrum is calculated based on the calculated correlation matrix.
  • the object detection method according to any one of appendices 9 to 13.
  • the correlation matrix corresponding to each of the sampling time ranges is calculated from the measured values of the intermediate frequency signals having different sampling time ranges, and further corresponding to each of the sampling time ranges. Calculating an average value of the correlation matrix, and then calculating the spectrum based on the average value of the correlation matrix; The object detection method according to attachment 14.
  • the reflectance distribution calculation unit calculates a direction matrix whose value is determined for each section, and uses the calculated direction matrix and the calculated correlation matrix to calculate the object in each section. Calculate the reflectance of The object detection method according to appendix 14 or 15.
  • (Appendix 17) Corresponding to any of the plurality of transmitters and the plurality of transmitters that radiate radio waves toward the object as transmission signals, and receiving radio waves reflected by the objects as reception signals, and further receiving
  • the object detection device including a reception unit and a processor that generates an intermediate frequency signal by mixing the transmission signal with the reception signal,
  • the processor In the processor, (A) calculating a spectrum representing a position distribution of the object based on the intermediate frequency signal; (B) determining a section for calculating the reflectance of the object based on the calculated peak position of the amplitude of the spectrum; (C) calculating the reflectance of the object in each of the determined sections based on the intermediate frequency signal for each set of the transmitting unit and the corresponding receiving unit; and for each set, Calculating a product of the reflectance distribution of each of the sections; and (D) generating an image using a product of the reflectance distribution calculated for each set; and
  • the computer-readable recording medium which recorded the program containing the instruction
  • the transmitter transmits a frequency-modulated radio wave as the transmission signal;
  • the computer-readable recording medium according to appendix 17.
  • Appendix 19 The computer-readable recording medium according to appendix 17 or 18, wherein each of the plurality of transmission units irradiates the transmission signal at different timings.
  • Appendix 20 The plurality of transmission units irradiate the transmission signals having different frequencies at the same timing, The computer-readable recording medium according to appendix 17 or 18.
  • the transmission unit includes an oscillator that generates the transmission signal, and a transmission antenna that irradiates the transmission signal, A receiving antenna for receiving the received signal; a mixer for generating the intermediate frequency signal by mixing the transmission signal and the received signal; and an interface circuit for outputting the intermediate frequency signal.
  • the computer-readable recording medium according to any one of appendices 17 to 20.
  • step (a) a correlation matrix is calculated from the measurement value of the intermediate frequency signal for each preset sampling time, and the spectrum is calculated based on the calculated correlation matrix.
  • the computer-readable recording medium according to any one of appendices 17 to 21.
  • the correlation matrix corresponding to each of the sampling time ranges is calculated from the measured values of the intermediate frequency signals having different sampling time ranges, and further corresponding to each of the sampling time ranges. Calculating an average value of the correlation matrix, and then calculating the spectrum based on the average value of the correlation matrix;
  • the reflectance distribution calculation unit calculates a direction matrix whose value is determined for each section, and uses the calculated direction matrix and the calculated correlation matrix to calculate the object in each section. Calculate the reflectance of The computer-readable recording medium according to appendix 22 or 23.
  • the present invention it is possible to suppress an increase in device cost, size, and weight while improving accuracy in detecting an object using radio waves.
  • INDUSTRIAL APPLICABILITY The present invention is useful for imaging and inspecting articles hidden under clothes or articles in bags.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

物体検知装置1000は、物体に向けて電波(送信信号)照射する複数の送信部1101と、反射された電波(受信信号)と送信信号をミキシングしてIF信号を生成する受信部1102と、IF信号に基づいて物体の位置分布を表すスペクトルを算出するスペクトル算出部1103と、スペクトルの振幅のピーク位置に基づいて物体の反射率を算出するための区間を決定する区間決定部1104と、送信部と受信部との組毎に、中間周波数信号に基づいて各区間における物体の反射率を算出し、組毎に各区間の反射率の分布の積を算出する反射率分布算出部1105と、組毎に算出した反射率の分布の積を用いて画像を生成する画像生成部1106とを備えている。

Description

物体検知装置、物体検知方法及びコンピュータ読み取り可能な記録媒体
 本発明は、対象物で反射又は対象物から放射された電波から対象物を検知するための、物体検知装置及び物体検知方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
 電波(マイクロ波、ミリ波、テラヘルツ波など)は、光と異なり、物体を透過する能力に優れている。この電波の透過能力を活用して、衣服の下に隠されている物品又は鞄の中の物品等を画像化して検査するイメージング装置(物体検知装置)が実用化されている。同様にして、衛星又は航空機から雲を透過して地表を画像化するリモートセンシング技術も実用化されている。
 また、物体検知装置における画像化の方式としては、いくつかの方式が提案されている。一つは、アレイアンテナ方式である(例えば、非特許文献1参照)。ここで、図21~図25を用いて、アレイアンテナ方式について説明する。図21は、従来からのアレイアンテナ方式を採用した物体検知装置を示す図である。図22は、図21に示された受信機の構成を示す図である。
 図21に示すように、アレイアンテナ方式においては、物体検知装置は、送信機211と受信機201とを備えている。また、送信機211は、送信アンテナ212を備えている。受信機201は、受信アンテナ202、202、・・・、202を備えている(Nは受信アンテナの数)。
 送信機211は、送信アンテナ212から、RF信号(電波)213を検知対象物204、204、・・・、204(Kは対象物の数)に向けて照射する。RF信号(電波)213は、検知対象物204、204、・・・、204において反射され、反射波203、203、・・・、203がそれぞれ発生する。
 発生した反射波203、203、・・・、203は、受信アンテナ201、202、・・・、202において受信される。受信機201は、受信した反射波203、203、・・・、203に基づいて、検知対象物204、204、・・・、204で反射された電波の電波強度を算出する。その後、受信機201は、算出した電波強度の分布を画像化する。これにより、検知対象物204、204、・・・、204それぞれの像が得られることになる。
 また、図22に示すように、アレイアンテナ方式が採用される場合、受信機201は、N本の受信アンテナ202、202、・・・、202を備えている。受信アンテナ202、202、・・・、202で、角度θk(k=1,2,・・・K)を持つK個の到来波208、208、・・・、208を受信する。
 ここで、到来波208、208、・・・、208の複素振幅を[s(θ1),s(θ2),・・・, s(θK)]とする。受信機201は、ダウンコンバータ(図22では図示せず)を備えているので、このダウンコンバータにより、各受信アンテナ202、202、・・・、202で受信されたRF信号の複素振幅(ベースバンド信号)[r1,r2,・・・,rN]が抽出される。また、受信アンテナ202、202、・・・、202で受信された信号の複素振幅[r1,r2,・・・,rN]は信号処理部205へ出力される。
 受信アンテナ202、202、・・・、202における、受信信号の複素振幅[r1,r2,・・・,rN]と、到来波の複素振幅[s(θ1),s(θ2),・・・, s(θK)]との関係は、以下の式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、n(t)はノイズ成分を要素とするベクトルである。添字Tはベクトル又は行列の転置を表す。dはアンテナ間の距離、λは到来波(RF信号)208、208、・・・、208の波長である。
 また、上記式(1)において、受信信号の複素振幅rは測定で得られる量である。方向行列Aは信号処理上で定義(指定)できる量である。到来波の複素振幅sは未知数であり、測定で得た受信信号rから到来波sの方向を決定する事が到来波方向推定の目的となる。
 到来方向推定のアルゴリズムでは、測定で得た受信信号rから相関行列R=E[r・rH]を計算する。ここでE[]は括弧内の要素に時間平均の処理を施す事を表し、添字Hは複素共役転置を表す。次に、計算した相関行列Rから、以下の式(2)~(4)で示すいずれかの評価関数が計算される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 MUSIC法におけるEN=[eK+1,・・・,eN]は、相関行列Rの固有ベクトルの内、固有値がノイズn(t)の電力となるN-(K+1)個のベクトルで構成した行列である。
 また、図22で示した従来型のアンテナアレイにおいて、受信信号rから相関行列Rを計算する過程、更には、式(2)~(4)の評価関数を計算する過程は、信号処理部205で実施される。
 非特許文献1に記載の理論によれば、式(2)~式(4)で示した評価関数は、到来波の角度θ12,・・・,θKにおいてピークを持つ。従って、評価関数を計算してそのピークを見れば、到来波の角度を求める事ができる。式(2)~式(4)の評価関数で得た到来波の角度分布から、対象物の位置及び形状を画像として表示する事ができる。
 また、式(2)~式(4)で示した評価関数の内、特に式(2)のビームフォーマ法による評価関数が適用される場合の信号処理部が、図23において示される。図23は、図21に示された受信機においてビームフォーマ法が適用される場合の例を示す図である。
 図23で示した従来型のアンテナアレイの移相器206、206、・・・、206と合成器207とが、図22で示した従来型のアンテナアレイにおける信号処理部205に対応する。移相器206、206、・・・、206は、それぞれ、受信アンテナ202、202、・・・、202で受信した到来波208、208、・・・、208の複素振幅に対し、位相回転Φ、Φ、・・・、Φを加える。位相回転Φ、Φ、・・・、Φが加えられた到来波208、208、・・・、208は、加算器207で加算される。
 移相器206、206、・・・、206と、加算器207とは、アナログ回路によって実装される事もあれば、コンピュータに組み込まれたソフトウェアによって実装される事もある。また、アレイアンテナ方式では、移相器206、206、・・・、206における、位相回転Φ、Φ、・・・、Φの設定により、アレイアンテナの指向性が制御される。受信アンテナ202の指向性をg(θ)とし、受信アンテナ202で受信した到来波208(n=1,2,・・・,K)の振幅と位相とをそれぞれaおよびφとした場合、アレイアンテナの指向性E(θ)は、以下の式(5)のように計算される。
Figure JPOXMLDOC01-appb-M000005
 式(5)において、アレイアンテナの指向性E(θ)から受信アンテナ202の指向性g(θ)を除去して得られる、指向性成分AF(θ)は、アレイファクターと呼ばれる。アレイファクターAF(θ)が、アレイアンテナを形成した事による指向性の効果を表す。受信アンテナ202(n=1,2,・・・,N)で受信した信号は、g(θ)aexp(jφ)である。また、移相器206の位相回転Φを受けた信号g(θ)aexp(jφ)exp(jΦ)をn=1,2,・・・,Nに渡って加算器207で加算することによって得られた信号が、式(5)の指向性E(θ)として得られる。
 到来波208、208、・・・、208の入射角をθとした場合、到来波208の位相φは、-2π・n・d・sinθ/λで与えられる(n=1,2,・・・,K)。ここで、dは受信アンテナ202(n=1,2,・・・,N)の間隔であり、λは到来波208、208、・・・、208の波長である。
 上記の式(5)において、振幅aがnによらず一定とした場合、移相器206の位相回転Φ(n=1,2,・・・,N)が、到来波208の位相φに-1を掛けた値と等しくなるように設定すると、アレイファクターAF(θ)は角度θの方向において最大となる。このことは、即ち、移相器206の位相回転Φによるアレイアンテナの指向性の制御法を示している。
 アレイアンテナ方式による物体検知装置の例は、その他に、特許文献1~3においても開示されている。具体的には、特許文献1及び2に開示された物体検知装置は、受信機に内蔵されたN個の受信アンテナそれぞれに接続された移相器により、N個の受信アンテナで形成される受信アレイアンテナの指向性を制御する。
 そして、特許文献1及び2に開示された物体検知装置は、ビーム状に形成されたN個の受信アレイアンテナの指向性を変化させ、D個の検知対象物それぞれに対して、受信アレイアンテナの指向性ビームを向ける。これにより、各検知対象物で反射された電波強度が算出される。
 また、特許文献3に開示された物体検知装置は、N個の受信アレイアンテナの周波数依存性を利用する事で、N個の受信アレイアンテナの指向性を制御している。また、特許文献3に開示された物体検知装置も、特許文献1及び2の例と同様に、D個の検知対象物それぞれに対して、N個の受信アレイアンテナの指向性ビームを向ける事で、各検知対象物で反射された電波強度を算出する。
 また、実際の物体検知装置は、2次元画像を表示するため、図24で示すように、受信アンテナ202は、縦方向と横方向とにそれぞれN個ずつ設置されている。この場合、全体で必要なアンテナの数はN個となる。図24は、従来からのアレイアンテナ方式を採用した場合の受信アレイアンテナの概略構成を示す図である。
 また、2次元画像を表示するための方式としては、Mills Cross方式も知られている(例えば、非特許文献2参照)。図25は、MillsCross方式を採用した物体検知装置を示す図である。図25に示すように、この物体検知装置は、縦方向に配列された1次元のアレイアンテナ201と、横方向に配列された1次元のアレイアンテナ201とを備えている。そして、この物体検知装置では、乗算器221は、縦方向にある受信アンテナと横方向にある受信アンテナとの組毎に、信号の積を算出する。よって、算出された積を用いることで、2次元画像を表示することが可能となる。
 続いて、図26を用いて、物体検知装置における画像化の他の方式として、合成開口レーダ(SAR:Synthetic Aperture Radar)方式について説明する。図26は、従来からの合成開口レーダ方式を採用した物体検知装置を示す図である。
 図26に示すように、合成開口レーダ方式において、物体検知装置は、送信機311と受信機301とを備えている。また、送信機311は、送信アンテナ312を備えている。受信機301は、受信アンテナ302を備えている。
 送信機311は、送信アンテナ312から、RF信号(電波)313を検知対象物304、304、・・・、304(Kは検知対象物の数)に向けて照射する。RF信号(電波)313は、検知対象物304、304、・・・、304において反射され、反射波303、303、・・・、303がそれぞれ発生する。
 この時、受信機301は予め設定されたN個の位置に順に移動しながら、各位置において反射波303、303、・・・、303を受信する。図25において、301、301、・・・、301は、各位置における受信機301を示している。また、302、302、・・・、302は、それぞれ、各位置での受信アンテナを示している。Nは、予め設定された受信機301の位置の数である。
 また、これにより、1つの受信アンテナ302は、N個の受信アンテナ302、302、・・・、302として機能する。即ち、図25にいては、1つの受信アンテナが、図21で示したアレイアンテナ方式における受信アンテナ202、202、・・・、202と同じく、N本のアンテナによる受信アレイアンテナ(仮想アレイアンテナ)を形成する。
 従って、図26で示した合成開口レーダ方式においても、図21で示したアレイアンテナ方式と同じく、受信機301は、受信した反射波303、303、・・・、303に基づいて、検知対象物304、304、・・・、304から反射されている電波強度を算出する。その後、受信機301は、算出した電波強度の分布を画像化する。これにより、検知対象物304、304、・・・、304それぞれの像が得られることになる。
 また、特許文献4~6は、合成開口レーダ方式による物体検知装置の例を開示している。特許文献7は、イメージング装置ではなく、車載レーダの例を開示している。特許文献7に開示された車載レーダは、車載レーダから対象物までの距離(車載レーダを基準とした前後方向の位置)を、FMCW(Frequency Modulated continuous Wave)信号を用いて測定する。また、この車載レーダは、対象物の位置を、MUSIC法による到来方向推定によって測定する。なお、この場合、対象物の位置は、車載レーダを通る基準線からの角度で表される。
特表2013-528788号公報 特開2015-014611号公報 特許第5080795号公報 特許第4653910号公報 特表2011-513721号公報 特開2015-036682号公報 特開2007-285912号公報
菊間信良、"アレーアンテナの基礎"、MWE2010 Digest,(2010) B. R. Slattery,"Use of Mills cross receivingarrays in radar systems,"PROC.IEE,Vol.113,No.11,NOVEMBER 1966, pp.1712-1722.
 ところで、アレイアンテナ方式においては、対象物を精度良く検知しようとすると、必要となる受信アンテナの数とそれに付随する受信機の数とが非常に多くなってしまい、結果として、物体検知装置のコスト、サイズ、及び重量が大きくなるという問題がある。
 上記の問題点について具体的に説明する。まず、アレイアンテナ方式の場合、受信アンテナ201、202、・・・、202の各アンテナの間隔は、受信機201において受信される反射波203、203、・・・、203の波長λの半分以下にする必要がある。例えば、反射波203、203、・・・、203がミリ波である場合は、波長λは数mm程度であるので、各アンテナの間隔は数mm以下となる。そして、この条件が満たされない場合は、生成した画像において、検知対象物204、204、・・・、204が存在しない位置に、虚像が発生するという問題が生じてしまう。
 また、画像の分解能は受信アレイアンテナ(201、202、・・・、202)の指向性ビーム幅△θで決まる。受信アレイアンテナ(201、202、・・・、202)の指向性ビームの幅△θは、△θ~λ/Dにて与えられる。ここで、Dは受信アレイアンテナ(201、202、・・・、202)の開口サイズであり、両端に存在する受信アンテナ202と202と間の距離に相当する。つまり、衣服の下に隠されている物品又は鞄の中の物品等の画像化において実用的な分解能を得るには、受信アレイアンテナ(201、202、・・・、202)の開口サイズDは数十cmから数m程度に設定されている必要がある。
 上記の2つの条件、即ち、N個の受信アンテナのアンテナ間の間隔は波長λの半分以下(数mm以下)とする点と、両端に存在する受信アンテナ間の距離が少なくとも数十cm程度必要という点とから、一列あたりに必要なアンテナの数Nは数百個程度となる。
 また、実際の物体検知装置では、2次元画像を表示するため、図23で示したように、受信アンテナ202は、縦方向と横方向とにそれぞれN個ずつ設置されている。この場合、全体で必要な受信アンテナの数はN個となる。従って、アレイアンテナ方式を採用するためには、全体で必要な受信アンテナ及びそれに付随する受信機の数は数万個程度となる。
 このように大量の受信アンテナと受信機とが必要となるため、上述したように、アレイアンテナ方式においては、コストは非常に高いものになる。また、一辺が数十cm~数mの四方の領域にアンテナが設置されるので、装置のサイズ及び重量は非常に大きなものとなる。
 また、上述した図26に示したMills Cross方式の物体検知装置によれば、アレイアンテナ方式を採用する場合よりは、受信アンテナ及び受信機の数を減らすことは可能である。しかし、この場合であっても、必要な受信アンテナ及び受信機の数は、2N個であり、やはり数百個程度の受信アンテナが必要となる。従って、この場合であっても、コスト、装置サイズ及び重量の問題を解決することは困難である。
 また、上述した図26に示した合成開口レーダ方式を採用した物体検知装置においては、受信機を機械的に動かす必要があるため、走査時間の短縮が難しいという問題がある。そして、この問題は、物体検知装置によって、物品又は人を検査する時に、単位時間当りに検査できる対象物の数が限られるという問題につながる。また、特許文献6に開示されている物体検知装置においては、受信機を動かすための機械的な機構を必要としているため、装置のサイズ及び重量が増大するという問題が発生している。
 一方、車載レーダは、特許文献7に開示されている車載レーダを含め、一般に、特許文献1~3に開示されたイメージング装置に比べて小型化される。しかしながら、車載レーダでは、小型化された分だけ、イメージング装置よりも分解能が劣化している。車載レーダでは、その分解能の低さから、対象物の形状を識別する事はできず、対象物の位置の把握のみが可能である。
 具体的には、特許文献7に開示したFMCW方式を採用する場合において、cを光速、BWをRF信号の帯域幅とすると、分解能はc/(2BW)で与えられる。従って、帯域幅BWを2GHzに設定すると、分解能は7.5cmとなる。この分解能では、数cmのサイズを持つ対象物の位置については測定できるが、数cmのサイズを持つ対象物の形状を識別する事は困難である。
 加えて、特許文献7に開示されている車載レーダでは、開口サイズDは数cm程度に小型化されている。このため、指向性ビームの幅△θ~λ/Dが大きくなり、角度方向の測定(到来方向推定)の分解能が劣化するという問題もある。
 上述したように、従来からの物体検知装置では、所望のミリ波画像の分解能を得ようとした場合、装置のコスト、サイズ、重量が非常に大きなものになる。一方、装置を小型化しようとすると、ミリ波画像の分解能が劣化するという問題が発生する。
 このため、物体検知装置を実際に使用できる用途及び機会は、限定されたものになる。また、採用する方式によっては、対象物を検査する速度も限られたものになる。これらの点から、従来よりも必要となるアンテナ及び受信機の数を減らし、更に、受信機を移動させる必要も無く、高速な走査による画像生成を実現することが求められている。
 本発明の目的の一例は、上記問題を解消し、電波を用いた物体の検知において、精度を向上させつつ、装置コスト、サイズ、及び重量の増大化を抑制し得る、物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
 上記目的を達成するため、本発明の一側面における物体検知装置は、電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて電波を送信信号として照射する、複数の送信部と、
 前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、
 前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、スペクトル算出部と、
 算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、区間決定部と、
 前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、反射率分布算出部と、
 前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、画像生成部と、
を備えている、ことを特徴とする。
 また、上記目的を達成するため、本発明の一側面における物体検知方法は、物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、を備える装置を用いて、前記物体を検知するための方法であって、
(a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
(b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
(c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
(d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
を有する、ことを特徴とする。
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、
 物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、プロセッサとを備えた物体検知装置において、
 前記プロセッサに、
(a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
(b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
(c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
(d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
 以上のように、本発明によれば、電波を用いた物体の検知において、精度を向上させつつ、装置コスト、サイズ、及び重量の増大化を抑制することができる。
図1は、本発明の実施の形態における物体検知装置の構成を示すブロック図である。 図2は、本発明の実施の形態における物体検知装置の外観構成を概略的に示す図である。 図3は、本発明の実施の形態における物体検知装置の送信部及び受信部の構成を具体的に示す図である。 図4は、本発明の実施の形態における物体検知装置の送信部及び受信部の他の例の構成を具体的に示す図である。 図5は、本発明の実施の形態における物体検知装置が照射する送信信号の一例を示す図である。 図6は、本発明の実施の形態における物体検知装置が照射する送信信号の他の例を示す図である。 図7は、本発明の実施の形態における物体検知装置の動作を示すフロー図である。 図8は、K個の点状対象物が配置された場合の点状対象物と送受信装置との距離を説明する図である。 図9は、対象物からの反射波の間に相関が発生している状態を示す図である。 図10は、複数の受信アンテナによって構築されたサブアレイの一例を示す図である。 図11は、本発明の実施の形態で得られた、物体の位置分布を表すスペクトルの一例を示す図である。 図12は、連続体状の対象物が配置された場合の送受信装置との距離を説明する図である。 図13は、本発明の実施の形態で得られた、物体の位置分布を表すスペクトルの他の例を示す図である。 図14は、対象物がT字状を呈する場合の対象物と送受信装置との位置関係を示す図である。 図15は、図14に示した配置で得られた物体の位置分布を表すスペクトルを示す図である。 図16は、図14に示した対象物の形状を具体的に示す図である。 図17は、図7に示したステップA4で決定された区間と対象物との関係を示す図である。 図18は、図7に示したステップA5で算出された対象物の反射率の算出結果の一例を示す図である。 図19は、本実施の形態で生成された対象物の画像の一例を示す図である。 図20は、本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。 図21は、従来からのアレイアンテナ方式を採用した物体検知装置を示す図である。 図22は、図21に示された受信機の構成を示す図である。 図23は、図21に示された受信機においてビームフォーマ法が適用される場合の例を示す図である。 図24は、従来からのアレイアンテナ方式を採用した場合の受信アレイアンテナの概略構成を示す図である。 図25は、Mills Cross方式を採用した物体検知装置を示す図である。 図26は、従来からの合成開口レーダ方式を採用した物体検知装置を示す図である。
(実施の形態)
 以下、本発明の実施の形態における、物体検知装置、物体検知方法、及びプログラムについて、図1~図20を参照しながら説明する。
[装置構成]
 最初に、図1を用いて本実施の形態における物体検知装置の構成について説明する。図1は、本発明の実施の形態における物体検知装置の構成を示すブロック図である。
 図1に示す本実施の形態における物体検知装置1000は、電波によって対象物体1003を検知するための装置である。図1に示すように、物体検知装置1000は、送信部1101と、受信部1102と、スペクトル算出部1103と、区間決定部1104と、反射率分布算出部1105と、画像生成部1106とを備えている。
 送信部1101は、物体1003に向けて、送信信号となる電波を照射する。受信部1102は、物体1003で反射された電波を受信信号として受信し、更に、受信した受信信号に、送信部1101で生成された送信信号をミキシングして、中間周波数信号(以下「IF(Intermediate Frequency)信号」と表記する。)を生成する。また、図1においては、送信部1101及び受信部1102は、それぞれ一つのみが図示されているが、送信部1101及び受信部1102は、実際には複数備えられている。そして、受信部1102は、いずれかの送信部1101対応している。
 スペクトル算出部1103は、IF信号に基づいて物体1003の位置分布を表すスペクトルを算出する。区間決定部1104は、算出されたスペクトルの振幅のピーク位置に基づいて、物体1003の反射率を算出するための区間を決定する。
 反射率分布算出部1105は、送信部1101とそれに対応する受信部1102との組毎に、IF信号に基づいて、決定された区間それぞれにおける物体の反射率を算出し、更に、組毎に、区間それぞれの反射率の分布の積を算出する。画像生成部1106は、組毎に算出した、反射率の分布の積を用いて、画像を生成する。
 このように、本実施の形態では、検知対象となる物体(以下、「対象物」と表記する。)1003の位置分布を表すスペクトルが算出され、その振幅のピーク位置から、対象物1003の反射率を算出するための区間が決定される。そして、区間毎の反射率の分布の積から画像が形成される。このため、本実施の形態によれば、電波を用いた物体の検知において、精度を向上させつつ、装置コスト、サイズ、及び重量の増大化が抑制される。
 続いて、図1に加えて、図2~図4を用いて、本実施の形態における物体検知装置の構成について更に具体的に説明する。図2は、本発明の実施の形態における物体検知装置の外観構成を概略的に示す図である。図3は、本発明の実施の形態における物体検知装置の送信部及び受信部の構成を具体的に示す図である。図4は、本発明の実施の形態における物体検知装置の送信部及び受信部の他の例の構成を具体的に示す図である。
 まず、本実施の形態では、図1に示すように、送信部1101と、それに対応する受信部1102とで、一つの送受信装置1001が構成されている。すなわち、送信部1101と受信部1102との一つの組は、一つの送受信装置1001に対応する。また、本実施の形態では、スペクトル算出部1103、区間決定部1104、反射率分布算出部1105、及び画像生成部1106は、演算装置(コンピュータ)1211に、後述する本実施の形態におけるプログラムを導入することよって構築されている。
 更に、図1に示すように、本実施の形態では、送信部1101は、受信部1102に向けて端子1208を経由して送信信号を出力する。受信部1102は、対象物1003から反射され受信した電波と、端子1208を経由して得た送信信号とをミキシングして、IF信号を出力する。
 また、図2に示すように、本実施の形態1では、送受信装置配置面1002に複数個の送受信装置1001、1001、・・・、1001が配置されている。各送受信装置1001、1001、・・・、1001は、それぞれ演算装置1211に接続されている。ここでNは、配置される送受信装置1001の個数である。また、対象物1003が、対象物配置面1004に配置されているものとする。
 この場合において、各々の送受信装置1001、1001、・・・、1001は、対象物1003に向けて電波を照射する。その後、各々の送受信装置1001、1001、・・・、1001は、対象物1003において反射された電波を受信するものとする。そして、各々の送受信装置1001、1001、・・・、1001は、送受信した電波に基づいて、送受信装置1001、1001、・・・、1001と対象物1003の間の距離R、R、・・・、Rを測定する。
 また、図3に示すように、本実施の形態では、送受信装置1001、・・・、1001それぞれにおいて、送信部1101は、発振機1201と、送信アンテナ1202とを備えている。また、受信部1102は、受信アンテナ1203と、ミキサ1204と、インターフェイス回路1205とを備えている。更に、上述したように、送信部1101と受信部1102とは、端子1208を介して接続されている。
 送信部1101において、発振機1201は、RF信号(電波)を生成する。発振機1201で生成されたRF信号は、送信アンテナ1202から送信信号として送信され、対象物1003に照射される。対象物1003で反射された電波は、受信部1102において、受信アンテナ1203によって受信される。
 ミキサ1204は、発振機1201から端子1208を経由して入力されてきたRF信号と受信アンテナ1203で受信された電波(受信信号)とを、ミキシングする事で、IF信号を生成する。ミキサ1204で生成されたIF信号は、インターフェイス回路1205を経由して、演算装置1211へと送信される。インターフェイス回路1205は、アナログ信号であるIF信号を、演算装置1211で扱えるデジタル信号に変換する機能を持ち、得られたデジタル信号を演算装置1211へと出力する。
 なお、図1及び図3に示した例では、演算装置1211は、送受信装置1001、・・・、1001と分離されているが、本実施の形態は、この態様に限定されない。本実施の形態では、演算装置1211は、送受信1001、・・・、1001それぞれの内部、又はいずれか一つに実装されていても良い。
 また、図3に示した例では、一つの送受信装置1001には、一つの送信アンテナ1202と一つの受信アンテナ1203とが備えられているが、本実施の形態は、この態様に限定されない。本実施の形態では、例えば、図4に示すように、一つの送受信装置1001において、複数の送信アンテナ1202と、複数の受信アンテナ1203とが備えられていても良い。
 具体的には、図4の例では、送信部1101は、一つの発振機1201と、複数の送信アンテナ1202とを備えている。また、送信部1101は、送信アンテナ1202毎に設けられた可変移相器1206も備え、各送信アンテナ1202は、可変移相器1206を介して、発振機1201に接続されている。各可変移相器1206は、発振機1201から送信アンテナ1202の各々に供給される送信信号の位相を制御する事で、送信アンテナ1202の指向性の制御を行なっている。
 また、図4の例では、受信部1102は、一つのインターフェイス回路1205と、複数の受信アンテナ1203とを備えている。更に、受信部1102は、受信アンテナ1203毎に設けられたミキサ1204と、同じく受信アンテナ1203毎に設けられた可変移相器1207も備えている。各受信アンテナ1203は、可変移相器1207及びミキサ1204を介して、インターフェイス回路1205に接続されている。
 各可変移相器1207は、受信アンテナ1203の各々からミキサ1204に供給される受信信号の位相を制御する事で、受信アンテナ1203の指向性の制御を行なっている。なお、可変移相器1207は、ミキサ1204とインターフェイス回路1205の間に設置されていても良い。
 ここで、図5及び図6を用いて、本実施の形態において物体に照射される送信信号について説明する。図5は、本発明の実施の形態における物体検知装置が照射する送信信号の一例を示す図である。図6は、本発明の実施の形態における物体検知装置が照射する送信信号の他の例を示す図である。
 まず、本実施の形態において、発振機1201で生成されるRF信号は、図5に示すように、周期Tchirpで、RF周波数がfminからfmin+BWに時間的に変化する、FMCW信号であるのが良い。なお、fminはRF周波数の最小値であり、BWはRF信号の帯域幅である。
 また、本実施の形態では、送受信装置1001、1001、・・・、1001から対象物1003に向けて電波が照射され、その後、対象物1003で反射された電波が送受信装置1001、1001、・・・、1001で受信される。このとき、送受信装置1001、1001、・・・、1001は、それぞれ、他の送受信装置と同時に動作しないように制御される。即ち、送受信装置1001、1001、・・・、1001は、それぞれ一つずつが異なるタイミングで動作するように制御され、各送信部は互いに異なるタイミングで電波を照射する。このように同時に動作しないようにすれば、送受信装置1001、1001、・・・、1001が互いに干渉してしまう事態が回避される。
 また、本実施の形態では、送受信装置1001、1001、・・・、1001それぞれを他の送受信装置と同じ時間内で動作させる場合は、図6に示すように、送受信装置1001、1001、・・・、1001それぞれの送信電波のRF周波数1231、1231、・・・、1231が、同じにならないように制御が行なわれても良い。これにより、送受信装置間での干渉は抑制される。
[装置動作]
 次に、本実施の形態における物体検知装置1000の動作について図7を用いて説明する。図7は、本発明の実施の形態における物体検知装置の動作を示すフロー図である。以下の説明においては、適宜図1~図6を参酌する。また、本実施の形態1では、物体検知装置1000を動作させることによって、物体検知方法が実施される。よって、本実施の形態における物体検知方法の説明は、以下の物体検知装置1000の動作説明に代える。
 図7に示すように、最初に、送受信装置1001、1001、・・・、1001それぞれの送信部1101から、順に、対象物1003に向けて、送信信号となる電波を照射する(ステップA1)。また、各送信部1101は、送信信号となる電波の照射と同時に、送信信号を端子1208を介して受信部1102に出力する。
 次に、送受信装置1001、1001、・・・、1001それぞれにおいて、受信部1102が、対象物1003から反射された電波を、受信信号として受信し、受信した受信信号に、送信部1101で生成された送信信号をミキシングして、IF信号を生成する(ステップA2)。
 次に、スペクトル算出部1103が、ステップA2で生成されたIF信号に基づいて、送受信装置1001、1001、・・・、1001それぞれと対象物1003との距離スペクトルを算出する(ステップA3)。
 次に、区間決定部1104は、ステップA3で算出された距離スペクトルの振幅のピーク位置に基づいて、対象物1003の反射率を計算するための区間を決定する(ステップA4)。
 次に、反射率分布算出部1105は、送受信装置1001、1001、・・・、1001それぞれ毎に、ステップA2で生成されたIF信号に基づいて、ステップA4で決定された区間それぞれにおける対象物1003の反射率(有効反射率)を算出する(ステップA5)。また、ステップA5では、反射率分布算出部1105は、更に、送受信装置毎に、区間それぞれの反射率の分布の積を算出する。
 次に、画像生成部1106は、送受信装置1001、1001、・・・、1001それぞれ毎に算出した、各区間の対象物1003の反射率の分布の積を用いて、対象物1003の画像を生成する(ステップA6)。
 続いて、図7に示したステップA3~A6について、図8~図19を用いてより詳細に説明する。
[ステップA3]
 まず、送受信した電波に基づいて送受信装置1001、1001、・・・、1001と対象物1003との距離スペクトルを算出する、ステップA3の詳細について説明する。本実施の形態では、ステップA3において、FMCWレーダにMUSIC法等のヌルステアリング型の到来方向推定技術が適用されており、距離スペクトルの分解能が向上している。
 ステップA3の説明にあたり、まず、図8で示すように、送受信装置1001からの距離がR1,R2,・・・,RKとなる位置にK個の点状対象物1003、1003、1003が配置された状況を考える。対象物の距離R1,R2,・・・,RKは未知数であり、測定で対象物の距離R1,R2,・・・,RKを求める事が課題となる。
 図8は、K個の点状対象物が配置された場合の点状対象物と送受信装置との距離を説明する図である。図8の系において、受信IF信号の同相成分I(t)は以下の式(6)で与えられる。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、σ(Rk)は、距離Rkに存在する対象物の反射率である。cは光速である。αはRF周波数の時間変化率であり、α=BW/Tchirpである。t’は1チャープ周期内の時刻であり、-Tchirp/2からTchirp/2の間の値を取る。チャープ信号の周期性を考慮して、時間がチャープ周期を過ぎる毎に、チャープ周期を差し引いて(t’=t-hTchirp,hは整数)、t’が-Tchirp/2からTchirp/2の間に収まるように設定される。
 また、受信IF信号の直交成分Q(t)は、以下の式(7)で与えられる。
Figure JPOXMLDOC01-appb-M000007
 直交成分Q(t)は、直交変調器を用いることによって、又は同相成分I(t)のヒルベルト変換を行なうことによって、算出される。受信IF信号の同相成分と直交成分とから、以下の式(8)により、複素受信IF信号r(t)が算出される。
Figure JPOXMLDOC01-appb-M000008
 複素受信IF信号r(t)は、サンプリング時刻tm(m = 1,2,・・・,M0)で得られるとする。M0はサンプリング点数である。tmの範囲はチャープ周期とする。サンプリング時間ΔtはTchirp/ M0で与えられ、tm=-Tchirp/2+mΔt (m = 1,2,・・・, M0)となる。従って、式(8)は、下記の式(9)のように表記できる。
Figure JPOXMLDOC01-appb-M000009
 また、図9に示すように異なる対象物1003、1003、1003からの反射波間の相関がある場合、対象物1003、1003、1003の位置を正しく推定する事が困難になる。図9は、対象物からの反射波の間に相関が発生している状態を示す図である。図9に示すように、相関がある場合、受信アンテナ1203には、異なる対象物1003、1003、1003から同じ信号が届いているため、異なる対象物1003、1003、1003の位置を区別することが困難となる。
 反射間の相関の問題は、各対象物1003、1003、1003に同じ送信機(送信アンテナ1202)から電波を照射する限り、必ず発生する。
 これに対して、反射間の相関の問題は、図10で示すように、受信信号の引数である時間をずらした複数のサブアレイ1221、1221、・・・、1221(Qはサブアレイの数)を構築し、それらのサブアレイ毎に算出した相関行列の平均を取る事で回避できる。図10は、複数の受信アンテナによって構築されたサブアレイの一例を示す図である。
 具体的には、q番目のサブアレイは、q番目からq+M-1番目までのサブアレイの受信信号、すなわちrq = [r(tq),r(tq+1),・・・,r(tq+M-1)]Tで構成される。Mは各サブアレイを構成するサンプリング点数である。q番目のサブアレイから計算される相関行列Rcol(q)を以下の式(10)のように計算する。
Figure JPOXMLDOC01-appb-M000010
 全てのサブアレイの相関行列Rcol(q) (q=1,2,・・・,Q)の平均をRallとする。サブアレイの数Qは対象物の数K以上とする。
 上記の方法では、異なるサブアレイの受信信号間では相関が弱まるという性質を利用する事で、反射間の相関に起因する問題が回避される。
 次に、相関行列Rallと式(9)で定義されている方向ベクトルa(R)を用いて、以下の式(11)に示す評価関数(MUSICスペクトル)PMU(R)が計算される。
Figure JPOXMLDOC01-appb-M000011
 ここで、EN=[eK+1,・・・,eM]であり、en(n=K+1,・・・,M)は、相関行列Rallの固有ベクトルの内、最小の固有値を持つ(M-K)個のベクトルである。式(11)の評価関数PMU(R)は、対象物の存在位置Rk(k=1,2,・・・,K)で、極値(ピーク)を持つ。従って、上記の式(11)に示す評価関数の性質により、評価関数PMU(R)がピークとなる位置から、対象物1003、1003、・・・、1003の存在距離R1,R2,・・・,RKを検知できる。
 具体的には、送受信装置1001からの距離が20cmと30cmとなる位置に対象物1003を置いた場合に、RF周波数18~20GHzの電波を用いる送受信装置1001で対象物1003の距離スペクトルを求めると、結果は図11に示す通りとなる。図11は、本発明の実施の形態で得られた、物体の位置分布を表すスペクトルの一例を示す図である。
 通常のFMCWレーダでは、解能の悪さのために、送受信装置からの距離が20cmとなる位置と30cmとなる位置とに置かれた対象物を区別することは困難である。これに対して、上記式(11)のMUSICスペクトルを用いた場合は、図11に示したように、送受信装置からの距離が20cmとなる位置と30cmとなる位置とに置かれた対象物の区別が可能となる。すなわち、式(11)のMUSICスペクトルを用いる事で、通常のFMCWレーダよりも分解能向上が図られることになる。
[ステップA4]
 次に、図12で示すように、送受信装置1001からの距離がRminからRmaxまで広がった連続体状の対象物1003が配置された状況を考える。RF周波数18~20GHzの電波を用いる送受信装置1001によって、距離20cmから30cmに分布した連続体状の対象物1003の距離スペクトルを、式(11)のMUSICスペクトルで求めた結果を図13に示す。図12は、連続体状の対象物が配置された場合の送受信装置との距離を説明する図である。図13は、本発明の実施の形態で得られた、物体の位置分布を表すスペクトルの他の例を示す図である。
 図13に示すように、MUSICスペクトルでは、連続体状の対象物1003の端の位置のみがピークとして検出される。すなわち、式(11)のMUSICスペクトルでは連続体状の対象物1003の全体像を捉える事ができない。この問題は、式(6)~(11)の導出において、対象物として、点状の対象物1003、1003、・・・、1003が前提となっており、連続体状の対象物は前提となっていない事に起因する。
 そこで、連続体状の対象物1003の全体像を再生するために、ステップA4が必要となる。以下、図14を用いて、ステップA4について具体的に説明する。図14は、対象物がT字状を呈する場合の対象物と送受信装置との位置関係を示す図である。なお、図14は、後述のステップA5及びA6の説明においても利用する。
 図14の例では、装置配置面1002に4つの送受信装置1001、1001、1001、1001が、円1005上に配置されている。また、対象物配置面1004には、T字状の対象物1003が配置されている。
 図14に示した配置において、RF周波数を18~20GHz(帯域幅=2GHz)、サンプリング点数M0を101、サブアレイ数Qを75に設定した状態で、送受信装置1001で得た対象物1003のMUSICスペクトルを図15に示す。図15は、図14に示した配置で得られた物体の位置分布を表すスペクトルを示す図である。
 図15に示したMUSICスペクトルでは、P1、P2及びP3の3つのピークが現われている。また、図15に示したMUSICスペクトルのピークP1、P2及びP3は、それぞれ、図16に示す対象物1003における不連続点(端)P1、P2及びP3に対応している。図16は、図14に示した対象物の形状を具体的に示す図である。
 そして、ステップA4では、MUSICスペクトルのピーク情報に基づき、図16に示すように、ピークP1とP2との間、P2とP3との間、それぞれが、区間(区間1及び区間2)として決定される。区間の数は、ピークの数から1を引いた値に等しくなる。
[ステップA5]
 次に、ステップA5について説明する。図17に示すように、装置配置面1002と対象物配置面1004の距離をzとし、対象物配置面上で送受信装置1001からの距離が最小になる点をOとする。OからLk(k=1,2,・・・,K)の距離を中心位置として、区間幅Δkで対象物が存在しているとする。この区間は、図15に示したMUSICスペクトルのピークで与えられる区間に相当する。図17は、図7に示したステップA4で決定された区間と対象物との関係を示す図である。
 そして、連続体状の対象物1003からの反射で得られる複素IF信号r(t)は、以下の式(12)及び(13)で与えられる。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 式(12)におけるσ’(L)は、有効反射率であり、対象物の角度方向(距離方向に垂直な方向)の幅と反射率とに比例する量とする。式(12)の1行目から2行目に移行する際の近似は、有効反射率σ’(L)が、区間[Lk-Δk/2, Lkk/2]で大きく変化しない場合において有効である。すなわち、区間[Lk-Δk/2, Lkk/2]では、対象物の角度方向の幅と反射率との変化は少ないということが前提となる。
 ステップA3で述べた点状対象物の場合の複素IF信号の式(8)と、ステップA4で述べた連続体の場合の式とを比較すると、連続体の場合は、積分で連続的に分布した対象物の反射波の合成を取っている点に特徴がある。
 次に、以下の式(14)に示すように方向行列AKを定義する。
Figure JPOXMLDOC01-appb-M000014
 式(14)において、方向行列AKは、既知パラメータから構成された既知量である。
 受信IF信号の全てのサンプリングデータr0 = [r(t1),r(t2),・・・,r(tM0)]T、方向行列AK、各区間の反射率s = [σ’(L1),σ’(L2),・・・,σ’(LK)]の間には、以下の式(15)に示す関係がある。
Figure JPOXMLDOC01-appb-M000015
 次に、受信IF信号の全てのサンプリングデータr0 = [r(t1),r(t2),・・・,r(tM0)]Tを用いて、以下の式(16)を用いて相関行列Rcol(0)を計算する。
Figure JPOXMLDOC01-appb-M000016
 相関行列Rcol(0)は、実測データ又はシミュレーションデータとして得られる受信IF信号r0から算出できる既知量である。
 そして、上記の式(15)と式(16)とから、以下の式(17)に示す関係が得られる。
Figure JPOXMLDOC01-appb-M000017
 また、式(17)にAKの擬逆行列を適用する事で、Sは以下の式(18)によって算出できる。
Figure JPOXMLDOC01-appb-M000018
 式(18)で得られたSの対角成分から、各区間における対象物の有効反射率|σ’(Lk)|2 (k=1,2,・・・,K)を求める事ができる。
 ここで、ステップA5で得られた各区間における対象物1003の有効反射率の算出結果を図18に示す。図18は、図7に示したステップA5で算出された対象物の反射率の算出結果の一例を示す図である。図18の例では、送受信装置1001から1001でで得られたデータが示されている。
 送受信装置1001~1001は、それぞれ、対象物の距離方向(送受信装置1001~1001から対象物を見たときの対象物へと向かう方向)における位置については測定できる。しかし、送受信装置1001~1001は、それぞれ、角度方向(送受信装置1001~1001から対象物を見たときの対象物から横へと向かう方向)における位置については測定困難である。そのため、区間は距離方向のみで定義される。そして、区間は、対象物面1004において、送受信装置1001~1001それぞれの点O(図17)を原点とする各円で挟まれた領域になる。有効反射率は区間内で同じ値を取るので、ドーナツ状の分布を持つように見える。
 有効反射率は、対象物1003の角度方向の幅と反射率に比例する量である。そして、対象物1003の反射率は一様としているので、送受信装置1001から見て角度方向の幅が大きいパターンの有効反射率が特に大きな値となる。例として、送受信装置1001または1001で測定した場合では、対象物1003の縦棒部分の有効反射率が強くなる。一方、送受信装置1001または1001で測定した場合では、対象物1003の横棒部分の有効反射率が強くなる。
 ここで、区間の数について説明する。上記の手順では、MUSICスペクトルのピークで検出した対象物の端の間を区間として定めている。しかし、形式的には、MUSICスペクトルの情報を使わずに区間[Lk-Δk/2, Lkk/2] (k=1,2,・・・,K)を任意に取っても式(12)~(18)は計算できる。ただし、区間の数を増やすとAKが数値的に非正則に近づき、式(18)の計算で誤差が出て正しい結果が得られなくなる。そのため、区間の数を必要以上に増やさずに、しかし正しい結果が得られる区間の設定を行う必要がある。
 式(12)の議論で、区間[Lk-Δk/2, Lkk/2]において対象物の角度方向の幅と反射率の変化とは少ないという事、すなわち区間内で対象物の不連続性が無い事が区間設定の条件として望ましい事を述べた。MUSICスペクトルのピークで検出した対象物の端の間を区間とする事で、上述の区間設定の条件は満たされる。
[ステップA6]
 次に、ステップA6について説明する。まず、図18で示した送受信装置1001n(n=1,2,・・・,N,図18の例ではN=4)におけるX-Y平面上の有効反射率の分布を、σ’n(x,y)とする。最終的に得られる画像I(x,y)は、式(19)で示すように、送受信装置1001n
(n=1,2,・・・,N,)で得られた有効反射率の分布σ’n(x,y)の積を用いて算出される。
Figure JPOXMLDOC01-appb-M000019
 式(19)において、δは画像のダイナミックレンジを調整するパラメータである。式(19)に基づいてδ=2の場合に得たミリ波画像を図19に示す。図19は、本実施の形態で生成された対象物の画像の一例を示す図である。図19に示すように、本実施の形態では、ステップA1~A6の実行により、幅5cmのT字状の元形状に対し、帯域幅2GHzの測定によるミリ波画像でも元形状と同じくT字状の形状が得られている。
[実施の形態による効果]
 以下において、本実施の形態における効果を要約する。従来の一般的なアレイアンテナ方式では、受信した電波の到来方向(角度方向)推定を行うために、本実施の形態と比べて多数のアンテナを必要とする。その一方で、本実施の形態では、電波の到来方向推定、すなわち角度方向の測定を行う従来の方式に代わりに、送受信装置と対象物の距離測定の結果とから対象物の形状を検知する方式が用いられる。よって、送信アンテナと受信アンテナとがそれぞれ一つずつ備えられた数個の送受信装置で、一般的なアレイアンテナ方式と同等の機能を実装できる。したがって、本実施の形態では、実際のアンテナ本数を一般的なアレイアンテナ方式と比べて大幅に削減できる。
 合成開口レーダ方式では、受信機を機械的に動かす必要があり、これが物体の検知及び検査のための時間が長くなるという問題があった。一方、本実施の形態では、受信機の位置ではなく、送信電波のRF周波数を電子的に走査すればよいので、合成開口レーダ方式に比べて物体の検知及び検査のための時間を短縮できる。
 FMCW方式で距離測定する従来型のレーダは分解能が悪く対象物の形状を正しく検知できないという問題があった。一方、本実施の形態では、FMCWレーダにMUSIC法などのヌルステアリング型の到来方向推定技術が適用されるので、距離スペクトルの分解能が向上している。
 さらに、FMCWレーダにMUSIC法などのヌルステアリング型の到来方向推定技術を適用するだけでは、対象物の端のみが検知されて、対象物全体の形状を検知できないという問題があった。これに対して、本実施の形態では、距離スペクトルの振幅ピーク位置を用いて対象物の有効反射率を計算する区間を決定し、区間毎の対象物の有効反射率を計算し、各送受信装置で測定した各区間の有効反射率の積を用いて対象物の像を再生するので、対象物全体の形状検知が実現される。
 以上をまとめると、本実施の形態における物体検知装置及び物体検知方法においては、一般的なアレイアンテナ方式よりも必要なアンテナおよびそれに付随する受信機の数を削減する事ができるので、装置のコスト、サイズ、重量を削減できるという効果を奏する。また、本実施の形態における物体検知装置及び物体検知方法においては、一般的な合成開口レーダ方式と異なり、装置を機械的に動かす必要がないため、物体検知及び検査の時間を短縮できるという効果も奏する。
 本実施の形態では、時間的にRF周波数が変化する電波を検知対象物に照射し、対象物で反射された電波、又は対象物から放射される電波を検知する事で、検知対象物の画像を生成することができる。従って、本実施の形態によれば、従来よりも必要なアンテナおよび受信部の数を減らし、かつ移動させる必要も無く、高速な走査による画像生成を実現することができる。
[プログラム]
 本実施の形態におけるプログラムは、コンピュータ、すなわち、演算装置1211に、図7に示すステップA3~A6を実行させるプログラムであれば良い。このプログラムを演算装置1211にインストールし、実行することによって、本実施の形態における物体検知装置と物体検知方法とを実現することができる。この場合、演算装置1211のプロセッサは、スペクトル算出部1103、区間決定部1104、反射率分布算出部1105、及び画像生成部1106として機能し、処理を行なう。
 また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、スペクトル算出部1103、区間決定部1104、反射率分布算出部1105、及び画像生成部1106のいずれかとして機能しても良い。
 ここで、本実施の形態におけるプログラムを実行することによって、物体検知装置1000を実現するコンピュータ(演算装置)について図20を用いて説明する。図20は、本発明の実施の形態における物体検知装置を実現するコンピュータの一例を示すブロック図である。
 図20に示すように、コンピュータ110は、CPU(Central Processing Unit)111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-ProgrammableGate Array)を備えていても良い。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact DiskRead Only Memory)などの光学記録媒体が挙げられる。
 なお、本実施の形態における物体検知装置1000は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、物体検知装置1000は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記24)によって表現することができるが、以下の記載に限定されるものではない。
(付記1)
 電波によって物体を検知するための物体検知装置であって、
 前記物体に向けて電波を送信信号として照射する、複数の送信部と、
 前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、
 前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、スペクトル算出部と、
 算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、区間決定部と、
 前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、反射率分布算出部と、
 前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、画像生成部と、
を備えている、ことを特徴とする物体検知装置。
(付記2)
 前記送信部が、周波数変調した電波を、前記送信信号として送信する、
付記1に記載の物体検知装置。
(付記3)
 前記複数の送信部それぞれが、互いに異なるタイミングで、前記送信信号を照射する、付記1または2に記載の物体検知装置。
(付記4)
 前記複数の送信部が、周波数が互いに異なる前記送信信号を、同じタイミングで照射する、
付記1または2に記載の物体検知装置。
(付記5)
 前記送信部が、前記送信信号を生成する発振機と、前記送信信号を照射する送信アンテナとを備え、
 前記受信部が、前記受信信号を受信する受信アンテナと、前記送信信号と前記受信信号とをミキシングして前記中間周波数信号を生成するミキサと、前記中間周波数信号を出力するためのインターフェイス回路とを備えている、
付記1から4のいずれかに記載の物体検知装置。
(付記6)
 前記スペクトル算出部が、予め設定されたサンプリング時間毎の前記中間周波数信号の測定値から相関行列を算出し、算出した前記相関行列に基づいて、前記スペクトルを算出する、
付記1から5のいずれかに記載の物体検知装置。
(付記7)
 前記スペクトル算出部が、前記サンプリング時間の範囲が異なる前記中間周波数信号の測定値から、前記サンプリング時間の範囲それぞれに対応する前記相関行列を算出し、更に、前記サンプリング時間の範囲それぞれに対応する前記相関行列の平均値を算出し、その後、前記相関行列の平均値に基づいて、前記スペクトルを算出する、
付記6に記載の物体検知装置。
(付記8)
 前記反射率分布算出部が、前記区間毎に値が定まる方向行列を算出し、算出した前記方向行列と算出された前記相関行列とを用いて、前記区間それぞれにおける前記物体の反射率を算出する、
付記6または7に記載の物体検知装置。
(付記9)
 物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、を備える装置を用いて、前記物体を検知するための方法であって、
(a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
(b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
(c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
(d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
を有する、ことを特徴とする物体検知方法。
(付記10)
 前記送信部が、周波数変調した電波を、前記送信信号として送信する、
付記9に記載の物体検知方法。
(付記11)
 前記複数の送信部それぞれが、互いに異なるタイミングで、前記送信信号を照射する、付記9または10に記載の物体検知方法。
(付記12)
 前記複数の送信部が、周波数が互いに異なる前記送信信号を、同じタイミングで照射する、
付記9または10に記載の物体検知方法。
(付記13)
 前記送信部が、前記送信信号を生成する発振機と、前記送信信号を照射する送信アンテナとを備え、
 前記受信部が、前記受信信号を受信する受信アンテナと、前記送信信号と前記受信信号とをミキシングして前記中間周波数信号を生成するミキサと、前記中間周波数信号を出力するためのインターフェイス回路とを備えている、
付記9から12のいずれかに記載の物体検知方法。
(付記14)
 前記(a)のステップにおいて、予め設定されたサンプリング時間毎の前記中間周波数信号の測定値から相関行列を算出し、算出した前記相関行列に基づいて、前記スペクトルを算出する、
付記9から13のいずれかに記載の物体検知方法。
(付記15)
 前記(a)のステップにおいて、前記サンプリング時間の範囲が異なる前記中間周波数信号の測定値から、前記サンプリング時間の範囲それぞれに対応する前記相関行列を算出し、更に、前記サンプリング時間の範囲それぞれに対応する前記相関行列の平均値を算出し、その後、前記相関行列の平均値に基づいて、前記スペクトルを算出する、
付記14に記載の物体検知方法。
(付記16)
 前記(c)のステップにおいて反射率分布算出部が、前記区間毎に値が定まる方向行列を算出し、算出した前記方向行列と算出された前記相関行列とを用いて、前記区間それぞれにおける前記物体の反射率を算出する、
付記14または15に記載の物体検知方法。
(付記17)
 物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、プロセッサとを備えた物体検知装置において、
 前記プロセッサに、
(a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
(b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
(c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
(d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
を実行させる命令を含む、プログラムを記録したコンピュータ読み取り可能な記録媒体。
(付記18)
 前記送信部が、周波数変調した電波を、前記送信信号として送信する、
付記17に記載のコンピュータ読み取り可能な記録媒体。
(付記19)
 前記複数の送信部それぞれが、互いに異なるタイミングで、前記送信信号を照射する、付記17または18に記載のコンピュータ読み取り可能な記録媒体。
(付記20)
 前記複数の送信部が、周波数が互いに異なる前記送信信号を、同じタイミングで照射する、
付記17または18に記載のコンピュータ読み取り可能な記録媒体。
(付記21)
 前記送信部が、前記送信信号を生成する発振機と、前記送信信号を照射する送信アンテナとを備え、
 前記受信部が、前記受信信号を受信する受信アンテナと、前記送信信号と前記受信信号とをミキシングして前記中間周波数信号を生成するミキサと、前記中間周波数信号を出力するためのインターフェイス回路とを備えている、
付記17から20のいずれかに記載のコンピュータ読み取り可能な記録媒体。
(付記22)
 前記(a)のステップにおいて、予め設定されたサンプリング時間毎の前記中間周波数信号の測定値から相関行列を算出し、算出した前記相関行列に基づいて、前記スペクトルを算出する、
付記17から21のいずれかに記載のコンピュータ読み取り可能な記録媒体。
(付記23)
 前記(a)のステップにおいて、前記サンプリング時間の範囲が異なる前記中間周波数信号の測定値から、前記サンプリング時間の範囲それぞれに対応する前記相関行列を算出し、更に、前記サンプリング時間の範囲それぞれに対応する前記相関行列の平均値を算出し、その後、前記相関行列の平均値に基づいて、前記スペクトルを算出する、
付記22に記載のコンピュータ読み取り可能な記録媒体。
(付記24)
 前記(c)のステップにおいて反射率分布算出部が、前記区間毎に値が定まる方向行列を算出し、算出した前記方向行列と算出された前記相関行列とを用いて、前記区間それぞれにおける前記物体の反射率を算出する、
付記22または23に記載のコンピュータ読み取り可能な記録媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。また、上述の各特許文献等に開示されている内容は、本願発明に引用をもって繰り込むことも可能とする。本願発明の全開示(特許請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施の形態の変更・調整が可能である。また、本願発明の特許請求の範囲の枠内において種々の開示要素の多様な組み合わせあるいは選択も可能である。すなわち、本願発明は、特許請求の範囲を含む全開示、技術的思想にしたがって、当業者であればなし得ることが可能な各種変形、修正を含むことは勿論である。
 この出願は、2017年2月10日に出願された日本出願特願2017-23410を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように本発明によれば、電波を用いた物体の検知において、精度を向上させつつ、装置コスト、サイズ、及び重量の増大化を抑制することができる。本発明は、衣服の下に隠されている物品又は鞄の中の物品等を画像化して検査する場合に有用である。
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 1000 物体検知装置
 1001 送受信装置
 1002 送受信装置配置面
 1003 対象物(検知対象となる物体)
 1004 対象物配置面
 1101 送信部
 1102 受信部
 1103 スペクトル算出部
 1104 区間決定部
 1105 反射率分布算出部
 1106 画像生成部
 1201 発振機
 1202 送信アンテナ
 1203 受信アンテナ
 1204 ミキサ
 1205 インターフェイス回路
 1206、1207 可変移相器
 1208 端子
 1211 演算装置
 1221 サブアレイ
 1231 RF周波数

Claims (10)

  1.  電波によって物体を検知するための物体検知装置であって、
     前記物体に向けて電波を送信信号として照射する、複数の送信部と、
     前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、
     前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、スペクトル算出部と、
     算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、区間決定部と、
     前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、反射率分布算出部と、
     前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、画像生成部と、
    を備えている、ことを特徴とする物体検知装置。
  2.  前記送信部が、周波数変調した電波を、前記送信信号として送信する、
    請求項1に記載の物体検知装置。
  3.  前記複数の送信部それぞれが、互いに異なるタイミングで、前記送信信号を照射する、請求項1または2に記載の物体検知装置。
  4.  前記複数の送信部が、周波数が互いに異なる前記送信信号を、同じタイミングで照射する、
    請求項1または2に記載の物体検知装置。
  5.  前記送信部が、前記送信信号を生成する発振機と、前記送信信号を照射する送信アンテナとを備え、
     前記受信部が、前記受信信号を受信する受信アンテナと、前記送信信号と前記受信信号とをミキシングして前記中間周波数信号を生成するミキサと、前記中間周波数信号を出力するためのインターフェイス回路とを備えている、
    請求項1から4のいずれかに記載の物体検知装置。
  6.  前記スペクトル算出部が、予め設定されたサンプリング時間毎の前記中間周波数信号の測定値から相関行列を算出し、算出した前記相関行列に基づいて、前記スペクトルを算出する、
    請求項1から5のいずれかに記載の物体検知装置。
  7.  前記スペクトル算出部が、前記サンプリング時間の範囲が異なる前記中間周波数信号の測定値から、前記サンプリング時間の範囲それぞれに対応する前記相関行列を算出し、更に、前記サンプリング時間の範囲それぞれに対応する前記相関行列の平均値を算出し、その後、前記相関行列の平均値に基づいて、前記スペクトルを算出する、
    請求項6に記載の物体検知装置。
  8.  前記反射率分布算出部が、前記区間毎に値が定まる方向行列を算出し、算出した前記方向行列と算出された前記相関行列とを用いて、前記区間それぞれにおける前記物体の反射率を算出する、
    請求項6または7に記載の物体検知装置。
  9.  物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、を備える装置を用いて、前記物体を検知するための方法であって、
    (a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
    (b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
    (c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
    (d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
    を有する、ことを特徴とする物体検知方法。
     
  10.  物体に向けて電波を送信信号として照射する、複数の送信部と、前記複数の送信部のいずれかに対応し、且つ、前記物体で反射された電波を受信信号として受信し、更に、受信した前記受信信号に前記送信信号をミキシングして中間周波数信号を生成する、受信部と、プロセッサとを備えた物体検知装置において、
     前記プロセッサに、
    (a)前記中間周波数信号に基づいて前記物体の位置分布を表すスペクトルを算出する、ステップと、
    (b)算出された前記スペクトルの振幅のピーク位置に基づいて、前記物体の反射率を算出するための区間を決定する、ステップと、
    (c)前記送信部とそれに対応する前記受信部との組毎に、前記中間周波数信号に基づいて、決定された前記区間それぞれにおける前記物体の反射率を算出し、更に、前記組毎に、前記区間それぞれの反射率の分布の積を算出する、ステップと、
    (d)前記組毎に算出した、前記反射率の分布の積を用いて、画像を生成する、ステップと、
    を実行させる命令を含む、プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2018/001253 2017-02-10 2018-01-17 物体検知装置、物体検知方法及びコンピュータ読み取り可能な記録媒体 WO2018147025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018566817A JP7001069B2 (ja) 2017-02-10 2018-01-17 推論用知識生成装置、推論用知識生成方法、及びプログラム
US16/484,515 US11313960B2 (en) 2017-02-10 2018-01-17 Apparatus, method, and computer-readable medium to generate an object image using correlation matrices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-023410 2017-02-10
JP2017023410 2017-02-10

Publications (1)

Publication Number Publication Date
WO2018147025A1 true WO2018147025A1 (ja) 2018-08-16

Family

ID=63107365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001253 WO2018147025A1 (ja) 2017-02-10 2018-01-17 物体検知装置、物体検知方法及びコンピュータ読み取り可能な記録媒体

Country Status (3)

Country Link
US (1) US11313960B2 (ja)
JP (1) JP7001069B2 (ja)
WO (1) WO2018147025A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132454B1 (ko) * 2019-11-04 2020-07-09 엘아이지넥스원 주식회사 시분할 방식으로 동작하는 능수동 복합 센서
WO2020255265A1 (ja) * 2019-06-18 2020-12-24 日本電気株式会社 レーダシステム、イメージング方法およびイメージングプログラム
JPWO2021048929A1 (ja) * 2019-09-10 2021-03-18
JP2021110589A (ja) * 2020-01-08 2021-08-02 株式会社デンソー 自己診断装置
JP2021110588A (ja) * 2020-01-08 2021-08-02 株式会社デンソー 自己診断装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020030281A1 (en) * 2018-08-10 2020-02-13 HELLA GmbH & Co. KGaA Method for evaluating overlapping targets
US11129042B2 (en) * 2019-09-16 2021-09-21 Nec Corporation Of America Path crossing detection based on wireless signals travel time
JPWO2022004231A1 (ja) * 2020-06-30 2022-01-06
JP2022144749A (ja) * 2021-03-19 2022-10-03 日本電気株式会社 検査システム及び検査方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313091A (ja) * 1991-04-10 1992-11-05 Honda Motor Co Ltd Fmレーダ装置
JP2007285912A (ja) * 2006-04-18 2007-11-01 Toyota Central Res & Dev Lab Inc 物体検知装置
US20140247181A1 (en) * 2012-11-12 2014-09-04 Sony Corporation Radar apparatus and method
JP2017003494A (ja) * 2015-06-12 2017-01-05 株式会社東芝 レーダ装置及びレーダ信号処理方法
JP2017021013A (ja) * 2015-07-07 2017-01-26 三菱電機株式会社 高分解能2次元レーダー画像を生成する方法およびシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3798552A (en) * 1972-12-07 1974-03-19 Rca Corp Automatic frequency control for pulse radar and communication systems
JP4653910B2 (ja) 2001-08-08 2011-03-16 三井造船株式会社 マルチパスミリ波映像化レーダシステムおよび透過映像再生方法
JP5080795B2 (ja) 2006-12-08 2012-11-21 日本放送協会 イメージング装置
DE102008011350A1 (de) 2008-02-27 2009-09-03 Loeffler Technology Gmbh Vorrichtung und Verfahren zur Echtzeiterfassung von elektromagnetischer THz-Strahlung
JP5610281B2 (ja) 2009-10-29 2014-10-22 株式会社リコー ベルト装置及び画像形成装置
US8456351B2 (en) 2010-04-20 2013-06-04 International Business Machines Corporation Phased array millimeter wave imaging techniques
JP5851752B2 (ja) * 2011-07-30 2016-02-03 富士通テン株式会社 信号処理装置、レーダ装置、および、信号処理方法
CN104375144A (zh) 2013-08-15 2015-02-25 同方威视技术股份有限公司 毫米波三维全息扫描成像设备及人体或物品检查方法
US9753131B2 (en) * 2013-10-09 2017-09-05 Massachusetts Institute Of Technology Motion tracking via body radio reflections
US10422852B1 (en) * 2013-12-18 2019-09-24 Amazon Technologies, Inc. System for determining position of an object
US10545107B2 (en) * 2015-04-26 2020-01-28 Vayyar Imaging Ltd System, device and methods for measuring substances' dielectric properties using microwave sensors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313091A (ja) * 1991-04-10 1992-11-05 Honda Motor Co Ltd Fmレーダ装置
JP2007285912A (ja) * 2006-04-18 2007-11-01 Toyota Central Res & Dev Lab Inc 物体検知装置
US20140247181A1 (en) * 2012-11-12 2014-09-04 Sony Corporation Radar apparatus and method
JP2017003494A (ja) * 2015-06-12 2017-01-05 株式会社東芝 レーダ装置及びレーダ信号処理方法
JP2017021013A (ja) * 2015-07-07 2017-01-26 三菱電機株式会社 高分解能2次元レーダー画像を生成する方法およびシステム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255265A1 (ja) * 2019-06-18 2020-12-24 日本電気株式会社 レーダシステム、イメージング方法およびイメージングプログラム
JPWO2020255265A1 (ja) * 2019-06-18 2020-12-24
JP7211510B2 (ja) 2019-06-18 2023-01-24 日本電気株式会社 レーダシステムおよびイメージング方法
JPWO2021048929A1 (ja) * 2019-09-10 2021-03-18
WO2021048929A1 (ja) * 2019-09-10 2021-03-18 日本電気株式会社 物体検知装置、物体検知方法、及びコンピュータ読み取り可能な記録媒体
JP7375823B2 (ja) 2019-09-10 2023-11-08 日本電気株式会社 物体検知装置、物体検知方法、及びプログラム
KR102132454B1 (ko) * 2019-11-04 2020-07-09 엘아이지넥스원 주식회사 시분할 방식으로 동작하는 능수동 복합 센서
KR102132453B1 (ko) * 2019-11-04 2020-07-09 엘아이지넥스원 주식회사 분배기 및 필터 뱅크를 구비한 탐색 장치
JP2021110589A (ja) * 2020-01-08 2021-08-02 株式会社デンソー 自己診断装置
JP2021110588A (ja) * 2020-01-08 2021-08-02 株式会社デンソー 自己診断装置
JP7327168B2 (ja) 2020-01-08 2023-08-16 株式会社デンソー 自己診断装置
JP7327169B2 (ja) 2020-01-08 2023-08-16 株式会社デンソー 自己診断装置

Also Published As

Publication number Publication date
JP7001069B2 (ja) 2022-01-19
US20200011986A1 (en) 2020-01-09
US11313960B2 (en) 2022-04-26
JPWO2018147025A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7001069B2 (ja) 推論用知識生成装置、推論用知識生成方法、及びプログラム
JP5617334B2 (ja) レーダ装置及び目標探知方法
JP6911861B2 (ja) 物体検知装置および物体検知方法
JP6838658B2 (ja) 物体検知装置、物体検知方法、及びプログラム
JP5701106B2 (ja) レーダ装置及び該レーダ装置の到来角算出方法
US20190195984A1 (en) Radar device
JP2008170193A (ja) レーダ装置
US10746765B2 (en) Data processing method and the measurement device
US10948580B2 (en) Object sensing device and object sensing method
US20210263139A1 (en) Distributed Monopulse Radar Antenna Array for Collision Avoidance
JP6678554B2 (ja) アンテナ測定装置
JP6849100B2 (ja) 物体検知装置、物体検知方法及びプログラム
CN112147593B (zh) 一种高速密集爆炸物破片目标的四维参数估计方法
JP6939981B2 (ja) 物体検知装置、及び物体検知方法
WO2021240776A1 (ja) レーダ装置および物体検出方法並びに物体検出プログラム
Schmid et al. Mutual coupling and compensation in FMCW MIMO radar systems
JP7375823B2 (ja) 物体検知装置、物体検知方法、及びプログラム
JP7416275B2 (ja) 物体検知装置、物体検知方法及びプログラム
López et al. A Backpropagation Imaging Technique for Subsampled Synthetic Apertures
US20230358880A1 (en) Radar signal processing device and radar signal processing method
JP2006052977A (ja) レーダ装置
Lukin et al. Noise waveform sar imaging in antenna near zone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18751054

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18751054

Country of ref document: EP

Kind code of ref document: A1