WO2018145845A1 - Schaltung und verfahren zum erkennen eines schleichenden kurzschlusses bei brückenschaltungen - Google Patents

Schaltung und verfahren zum erkennen eines schleichenden kurzschlusses bei brückenschaltungen Download PDF

Info

Publication number
WO2018145845A1
WO2018145845A1 PCT/EP2018/050513 EP2018050513W WO2018145845A1 WO 2018145845 A1 WO2018145845 A1 WO 2018145845A1 EP 2018050513 W EP2018050513 W EP 2018050513W WO 2018145845 A1 WO2018145845 A1 WO 2018145845A1
Authority
WO
WIPO (PCT)
Prior art keywords
count
circuit
power loss
detecting
register
Prior art date
Application number
PCT/EP2018/050513
Other languages
English (en)
French (fr)
Inventor
Yannick Chauvet
Johannes ZONDLER
Federico Ignacio Sanchez Pinzon
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201880011366.5A priority Critical patent/CN110249231B/zh
Priority to KR1020197026221A priority patent/KR102384214B1/ko
Priority to US16/484,217 priority patent/US11161414B2/en
Publication of WO2018145845A1 publication Critical patent/WO2018145845A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • G01R31/007Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks using microprocessors or computers

Definitions

  • the present invention relates to a circuit for detecting a
  • the invention relates to a computer program that performs each step of the method when it runs on a computing device, as well as a machine-readable
  • Storage medium storing the computer program.
  • the invention relates to an electronic computing device which is set up to carry out the method according to the invention.
  • Bridge branches connected to each other.
  • peak currents with large Amperage on.
  • peak currents must be allowed without inferring a short circuit.
  • these peak currents are taken into account in the detection of short circuits and a short circuit is not recognized until a detected current strength is above a characteristic current intensity of the peak currents.
  • creeping short circuits have significantly lower current intensities, which are below the characteristic current intensity of the peak currents or are the same.
  • the power loss refers to the part of the (active) power that is converted into heat in the electrical components. With the help of the power loss can be concluded that the electrical components due to excessive heat generation, i. be damaged by thermal overheating.
  • a circuit is proposed for detecting a creeping short circuit in bridge circuits.
  • the bridge circuit has at least one battery-side connection which is connected to the power supply,
  • the circuit for detecting the creeping short-circuit comprises a first detection device for a power loss at the battery-side terminal of the bridge circuit, wherein the first detection means comprises a first counting register.
  • the first detection means comprises a first counting register.
  • the second detection device for a power loss at the ground-side terminal of the bridge circuit, wherein the second detection device has its own second counting register.
  • the first and second detection means are arranged, the power losses over the square of a measured
  • Amperage of the current flowing through the respective port to to calculate is carried out with the aid of the so-called l 2 t principle, as is apparent, for example, from the unpublished German application with the file reference DE 10 2016 215 324.2.
  • the l 2 t principle is based on the fact that the power loss is proportional to the square of the current.
  • the power dissipation over time can be integrated to calculate a loss energy, which in turn can be used to realize a shutdown condition for the electrical circuit to be protected.
  • an analog-to-digital converter is used, which is realized by a comparator whose switching threshold for switching off the electrical circuit is adapted to the load current.
  • a counting register is used to realize an integrator by which the power dissipation is integrated.
  • the count of the count register is increased or decreased depending on the current and dependent thresholds.
  • For squaring the current to calculate the power loss can be dispensed in this case by a suitable choice of switching thresholds and the count register on a complex calculator.
  • a measured current is squared in order to obtain the power loss. This can advantageously be achieved by the combination of the analog-to-digital converter and of the combination resulting from DE 10 2016 215 324.2
  • this counting register for this implementation of the l 2 t principle corresponds to the counting register used in the present circuit, whereby components can be saved.
  • the first and the second counting register are arranged to increase their count value depending on the power loss which has been detected by the respective detection device associated with the counting register.
  • the dependency can have a basically arbitrary functional relationship and can therefore also be covered by the
  • Power dissipation dependent quantities e.g. a corresponding energy or the current / the current can be realized.
  • the counting register has a maximum count value.
  • This maximum count represents a critical energy loss at which the heat converted to thermal overheating of the components involved would lead.
  • Each counting register may have its own maximum count, which may be selected depending on the components. Preferably, however, the same maximum count is used in both counting registers when the same components are used at both terminals, so that the two counting registers are better comparable.
  • the maximum count can preferably be combined with the I 2 t principle described above.
  • the first count value of the first count register associated with the first detection means is increased depending on the power loss at the battery-side terminal. Furthermore, the
  • the second count value of the second counting register belonging to the second detecting means is increased depending on the power loss at the ground-side terminal. Care must be taken that the two counts are incremented with the same increment and to the same extent. However, this does not mean that the two counts are increased simultaneously and together. Rather, as already explained, the first count depends on the power loss on the battery side
  • connection increased and the second count increased depending on the power loss at the ground-side connection.
  • dependency can have a basically arbitrary functional relationship and therefore can also be realized via variables dependent on the detected power loss, such as a corresponding energy or the current / the current intensity.
  • the first count of the first count register and the second count of the second count register are compared with each other. As a result, a possible deviation between the first count and the second count is detected. In particular, for this purpose, the amount of a difference between the first count and the second count or vice versa can be calculated. If the deviation between the first count and the second count above a threshold, the creeping becomes
  • Short circuit detected Short circuit detected.
  • the threshold value is selected so that tolerances of, for example, the material are taken into account.
  • the method is based on differing power losses caused by the creeping short circuit. By contrast, higher current peak currents would equally increase the power losses at both ports. This results in detecting short circuits based on absolute values, e.g. absolute currents that must be above a threshold, the advantage that the creeping
  • Short circuit is detected even at low currents. Furthermore, the detection of hard short circuits, where high currents occur (above the peak currents), is not affected.
  • the comparison of the first count and the second count is not performed until either of the two counts reaches the maximum count.
  • the maximum counts of the two count registers are the same, it is only checked in comparing the first count and the second count whether at the time one of the two counts has reached the maximum count, the other is also the maximum Has reached the count value or a deviation between the two counts at this time is less than the threshold value. In this case, it is an increased load, for example due to peak currents, which leads to larger currents at both terminals. Is the
  • Deviation greater than the threshold the creeping short circuit is detected. This has the advantage of a better one
  • the Bridge circuit are switched off according to one aspect when one of the counts reaches the maximum count.
  • the computer program is set up every step of the procedure
  • the electronic computing device the electronic computing device is obtained, which is set up to detect creeping short circuits.
  • Figure 1 shows a circuit diagram of an embodiment of the invention
  • FIG. 2 shows a flow diagram of an embodiment of the invention
  • FIG. 3 shows a flowchart of a further exemplary embodiment of the method according to the invention
  • a bridge circuit 10 has four resistors 1 1, 12, 13 and 14, wherein in each case two resistors 1 1 and 12 or 13 and 14 are connected in series and these are in turn connected in parallel to each other, which are connectable by means of a bridge branch 15.
  • the bridge circuit has four field-effect transistors 16, 17, 18 and 19, for example, metal-oxide-semiconductor field-effect transistors (MOSFET), via which the
  • Bridge circuit 10 is controlled.
  • the bridge circuit 10 is powered by a potential difference between a battery 20 and a ground 25 with voltage.
  • a battery-side terminal 21 of the bridge circuit 10 is connected to the battery 20 and has a battery-side shunt 22 (shunt resistor).
  • a ground-side terminal 26 of the bridge circuit 10 is connected to the ground 25 and has a ground-side shunt 22.
  • a first detection means 30 is connected to the battery-side terminal 21, it measures the current Ibat of the current through the battery-side shunt 22 and calculated therefrom by means of the so-called I 2 t principle by squaring the current Ibat of the current through the battery-side shunt 22 the
  • the first detection device 30 has a first counting register 31 and a first analog-to-digital converter 32. Therein, a first count value Zi of the first count register 31 is increased depending on the power loss at the battery-side terminal 21.
  • a second detection means 35 is connected to the ground-side terminal 25, it also measures the current I gn d of the current through the ground-side shunt 27 and calculates from it using the I 2 t principle by squaring the current I gn d of the current by the ground-side shunt 27, the corresponding power loss.
  • the second one is connected to the ground-side terminal 25, it also measures the current I gn d of the current through the ground-side shunt 27 and calculates from it using the I 2 t principle by squaring the current I gn d of the current by the ground-side shunt 27, the corresponding power loss.
  • Detection device 35 for this purpose, a second counting register 36 and a second analog-to-digital converter 37. Therein, a second count Z2 of the second count register 36 depends on the power dissipation of the ground side
  • Terminal 25 increased.
  • the first detection means 30 and the second detection means 35 are connected to an electronic computing device 40 which can compare the first count value Z1 of the first count register 31 and the second count value Z2 of the second count register 36 with each other.
  • FIGS. 2 and 3 each show a flowchart of two
  • Detection device 30 performed. Subsequently, a calculation 51 of the power dissipation at the battery-side terminal 21 is carried out by means of the I 2 t principle by squaring the current Ibat of the current through the battery-side shunt 22, and the first count Zi of the first counter register 31 depending on the power dissipation detected at the battery-side terminal 21 52. Simultaneously, a measurement 60 of the current I gn d of the current through the ground-side shunt 27 is performed by the second detection means 35. Analogously, a calculation 61 of the power loss on
  • the ground-side terminal 26 using the I 2 t principle by squaring the current strength l gn d of the current through the ground-side shunt 27 executed and the second count Z2 of the second counting register 36 depending on the detected on the ground-side terminal 26 power loss increases 62.
  • the first count Zi and the second count Z2 are independently compared to a maximum count Z ma x 53, 63
  • a comparison 80 of the first count Zi and the second count Z 2 , in the course of which a deviation A between the two counts Zi and Z 2 is determined becomes. For this is
  • Bridge circuit 10 is turned off 70th Then takes place for this case, the Comparison 80 of the first count value Zi and the second count value Z 2 , wherein it is determined here whether the respective other count value Zi or Z 2 has also reached the maximum count value Z max . If the respective other count value Zi or Z 2 has not yet reached the maximum count value Z max , a deviation A between the two count values Zi and Z 2 is determined. This can be like in
  • the deviation A is then compared 81 to a threshold value S.
  • the threshold value S becomes dependent on
  • the deviation A between the first count value Zi and the second count value Z 2 is above the threshold value S, the creeping short circuit is detected 82. Otherwise, the deviation A is still in the tolerance range and no creeping short circuit is detected 83.
  • the exemplary embodiment in FIG. 3 in the latter case, can additionally be assumed to be an increased load, for example due to peak currents, since one of the two counts Zi or Z 2 has already reached the maximum count Z max and the other one has also reached it or at least is about to.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

Die Erfindung betrifft eine Schaltungzum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen (10). Die Schaltung umfasst eine erste Erfassungseinrichtung (30) für eine Verlustleistung an einem batterieseitigen Anschluss (21) der Brückenschaltung (10) mit einem ersten Zählregister (31) und eine zweite Erfassungseinrichtung (35) für eine Verlustleistung an einem masseseitigen Anschluss (26) der Brückenschaltung (10)mit einem zweiten Zählregister (36).

Description

Beschreibung Titel
Schaltung und Verfahren zum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen
Die vorliegende Erfindung betrifft eine Schaltung zum Erkennen eines
schleichenden Kurzschlusses bei Brückenschaltungen sowie ein Verfahren zum Erkennen des schleichenden Kurzschlusses mittels der Schaltung. Ferner betrifft die Erfindung ein Computerprogramm, das jeden Schritt des Verfahrens ausführt, wenn es auf einem Rechengerät abläuft, sowie ein maschinenlesbares
Speichermedium, welches das Computerprogramm speichert. Schließlich betrifft die Erfindung ein elektronisches Rechengerät, welches eingerichtet ist, um das erfindungsgemäße Verfahren auszuführen.
Stand der Technik
Heutzutage müssen elektrische Schaltungen, vor allem im Automotive-Bereich, gewissen Sicherheitsanforderungen entsprechen. Zu diesen Anforderungen gehört das Erkennen von Kurzschlüssen. Hierbei unterscheidet man zwischen einem niederohmigen Kurzschluss, der auch als harter Kurzschluss bezeichnet wird, und einem mittelohmigen Kurzschluss, der als weicher oder schleichender Kurzschluss bezeichnet wird. Bei schleichenden Kurzschlüssen fließen deutlich kleinere Ströme als bei harten Kurzschlüssen. Kurzschlüsse in elektrischen Schaltungen können zu Fehlfunktionen und zu thermischer Überhitzung der Bauteile führen.
Bei einer Brückenschaltung sind zwei Spannungsteiler, d.h. eine
Reihenschaltung aus Widerständen, parallel geschaltet und mittels eines
Brückenzweigs miteinander verbunden. In der Praxis treten beim Betreiben der Brückenschaltung für wenige Mikrosekunden Peak-Ströme mit großer Stromstärke auf. Um den vollen Funktionsumfang der Brückenschaltung zu gewährleisten, müssen solche Peak-Ströme zugelassen werden, ohne dass fälschlicherweise auf einen Kurzschluss geschlossen wird. Üblicherweise werden diese Peak-Ströme bei der Erkennung von Kurzschlüssen berücksichtigt und ein Kurzschluss erst erkannt, wenn eine erfasste Stromstärke oberhalb einer charakteristischen Stromstärke der Peak-Ströme liegt. Wie vorstehend beschrieben, weisen schleichende Kurzschlüsse jedoch deutlich geringere Stromstärken auf, die unterhalb der charakteristischen Stromstärke der Peak- Ströme liegen oder gleich groß sind.
Die Verlustleistung bezeichnet den Teil der (Wirk-) Leistung, der in den elektrischen Bauteilen als Wärme umgesetzt wird. Mit Hilfe der Verlustleistung kann darauf geschlossen werden, dass die elektrischen Bauteile durch zu starke Wärmeentwicklung, d.h. durch thermische Überhitzung beschädigt werden.
Offenbarung der Erfindung
Es wird eine Schaltung zum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen vorgeschlagen. Die Brückenschaltung weist zumindest einen batterieseitigen Anschluss, der mit der Spannungsversorgung,
insbesondere mit einer Batterie, verbunden ist, und einen masseseitigen Anschluss, der mit der Masse verbunden ist, auf. Die Schaltung zum Erkennen des schleichenden Kurzschlusses umfasst eine erste Erfassungseinrichtung für eine Verlustleistung am batterieseitigen Anschluss der Brückenschaltung, wobei die erste Erfassungseinrichtung ein erstes Zählregister aufweist. Zudem umfasst sie eine zweite Erfassungseinrichtung für eine Verlustleistung am masseseitigen Anschluss der Brückenschaltung, wobei die zweite Erfassungseinrichtung ein eigenes zweites Zählregister aufweist. Dadurch ergibt sich der Vorteil, dass die Verlustleistungen an den beiden Anschlüssen unabhängig voneinander erfasst werden können und folglich eine Abweichung zwischen den beiden
Verlustleistungen erkannt werden kann.
Vorteilhafterweise sind die erste und die zweite Erfassungseinrichtung eingerichtet, die Verlustleistungen über das Quadrat einer gemessenen
Stromstärke des durch den jeweiligen Anschluss fließenden Stroms zu berechnen. Bevorzugt erfolgt die Berechnung mit Hilfe des sogenannten l2t- Prinzips, wie es beispielsweise aus der nicht vorveröffentlichten deutschen Anmeldung mit dem Aktenzeichen DE 10 2016 215 324.2 hervorgeht. Dem l2t- Prinzip liegt zugrunde, dass die Verlustleistung proportional zum Quadrat der Stromstärke ist. Darüber hinaus kann die Verlustleistung über die Zeit integriert werden, um eine Verlustenergie zu berechnen, welche wiederum verwendet werden kann, um eine Abschaltbedingung für die zu schützende elektrische Schaltung zu realisieren. Bei der aus der DE 10 2016 215 324.2 hervorgehenden Schalungsanordnung wird einerseits ein Analog-Digital-Umsetzer verwendet, der durch einen Komparator realisiert wird, dessen Schaltschwelle zum Abschalten der elektrischen Schaltung dem Laststrom angepasst wird. Andererseits wird ein Zählregister verwendet, um einen Integrator zu realisieren, durch den die Verlustleistung integriert wird. Der Zählwert des Zählregisters wird abhängig von der Stromstärke und davon abhängigen Schwellen erhöht oder verringert. Für das Quadrieren der Stromstärke zur Berechnung der Verlustleistung kann in diesem Fall durch geeignete Wahl der Schaltschwellen und des Zählregisters auf ein komplexes Rechenwerk verzichtet werden. Somit wird bei dem bekannten I2t-Prinzip ein gemessener Strom quadriert, um die Verlustleistung zu erhalten. In vorteilhafter Weise kann dies durch die aus der DE 10 2016 215 324.2 hervorgehenden Kombination des Analog-Digital-Umsetzers und des
Zählregisters umgesetzt werden. Vorzugsweise entspricht dieses Zählregister für diese Realisierung des l2t Prinzips dem in der vorliegenden Schaltung verwendeten Zählregister, wodurch Bauteile eingespart werden können.
Vorteilhafterweise sind das erste und das zweite Zählregister eingerichtet, ihren Zählwert abhängig von der Verlustleistung zu erhöhen, welche durch die jeweilige mit dem Zählregister zusammenhängende Erfassungseinrichtung erfasst wurde. Die Abhängigkeit kann einen im Prinzip beliebigen funktionalen Zusammenhang aufweisen und kann daher auch über von der erfassten
Verlustleistung abhängige Größen, wie z.B. einer entsprechenden Energie oder des Stroms / der Stromstärke, realisiert werden.
Das Zählregister weist insbesondere einen maximalen Zählwert auf. Dieser maximale Zählwert repräsentiert eine kritische Verlustenergie, bei der die umgesetzte Wärme zu einer thermischen Überhitzung der beteiligten Bauteile führen würde. Jedes Zählregister kann einen eigenen maximalen Zählwert aufweisen, der abhängig von den Bauteilen gewählt werden kann. Vorzugsweise wird allerdings in beiden Zählregistern derselbe maximale Zählwert verwendet, wenn die gleichen Bauteile an beiden Anschlüssen verwendet werden, sodass die beiden Zählregister besser vergleichbar sind. Der maximale Zählwert kann bevorzugt mit dem vorstehend beschriebenen I2t-Prinzip kombiniert werden.
Darüber hinaus wird ein Verfahren zum Erkennen des schleichenden
Kurzschlusses bei Brückenschaltungen mittels der vorstehend beschriebenen Schaltung vorgeschlagen. Bei diesem Verfahren wird die Verlustleistung am batterieseitigen Anschluss der Brückenschaltung durch die erste
Erfassungseinrichtung erfasst. Daraufhin wird der erste Zählwert des zur ersten Erfassungseinrichtung gehörenden ersten Zählregisters abhängig von der Verlustleistung am batterieseitigen Anschluss erhöht. Ferner wird die
Verlustleistung am masseseitigen Anschluss der Brückenschaltung durch die zweite Erfassungseinrichtung erfasst. Analog wird der zweite Zählwert des zur zweiten Erfassungseinrichtung gehörenden zweiten Zählregisters abhängig von der Verlustleistung am masseseitigen Anschluss erhöht. Dabei ist darauf zu achten, dass die beiden Zählwerte mit gleicher Schrittweite und in gleichem Maße erhöht werden. Damit ist jedoch nicht gemeint, dass die beiden Zählwerte simultan und gemeinsam erhöht werden. Vielmehr wird - wie bereits dargelegt - der erste Zählwert abhängig von der Verlustleistung am batterieseitigen
Anschluss erhöht und der zweite Zählwert abhängig von der Verlustleistung am masseseitigen Anschluss erhöht. Wie vorstehend beschrieben, gilt auch hier, dass die Abhängigkeit einen im Prinzip beliebigen funktionalen Zusammenhang aufweisen kann und daher auch über von der erfassten Verlustleistung abhängige Größen, wie z.B. einer entsprechenden Energie oder des Stroms / der Stromstärke, realisiert werden kann. Daraufhin folgend werden der erste Zählwert des ersten Zählregisters und der zweite Zählwert des zweiten Zählregisters miteinander verglichen. Im Zuge dessen wird eine mögliche Abweichung zwischen dem ersten Zählwert und dem zweiten Zählwert erkannt. Insbesondere kann hierfür der Betrag einer Differenz zwischen dem ersten Zählwert und dem zweiten Zählwert oder umgekehrt berechnet werden. Liegt die Abweichung zwischen dem ersten Zählwert und dem zweiten Zählwert oberhalb eines Schwellenwerts, wird der schleichende
Kurzschluss erkannt. Der Schwellenwert wird so gewählt, dass Toleranzen beispielsweise des Materials berücksichtigt werden. Das Verfahren beruht auf sich unterscheidenden Verlustleistungen, die aufgrund des schleichenden Kurzschlusses verursacht werden. Peak-Ströme mit erhöhter Stromstärke hingegen würden die Verlustleistungen an beiden Anschlüssen gleichermaßen erhöhen. Dadurch ergibt sich gegenüber dem Erkennen von Kurzschlüssen basierend auf absoluten Werten, wie z.B. absoluten Stromstärken, die über einem Schwellenwert liegen müssen, der Vorteil, dass der schleichende
Kurzschluss auch bei niedrigen Stromstärken erkannt wird. Ferner wird das Erkennen von harten Kurschlüssen, bei denen hohe Stromstärken (oberhalb der Peak-Ströme) auftreten, nicht beeinflusst.
Wie vorstehend beschrieben, ist es vorteilhaft die jeweilige Verlustleistung mittels Quadrieren der Stromstärke des jeweiligen Stroms, insbesondere mit Hilfe des I2t-Prinzips, zu erfassen.
Optional wird das Vergleichen des ersten Zählwerts und des zweiten Zählwerts erst ausgeführt, wenn einer der beiden Zählwerte den maximalen Zählwert erreicht hat. Für den Fall, dass die maximalen Zählwerte der beiden Zählregister dieselben sind, wird beim Vergleichen des ersten Zählwerts und des zweiten Zählwerts lediglich geprüft, ob zu dem Zeitpunkt, an dem einer der beiden Zählwerte den maximalen Zählwert erreicht hat, der jeweils andere ebenfalls den maximalen Zählwert erreicht hat oder eine Abweichung zwischen beiden Zählwerten zu diesem Zeitpunkt kleiner als der Schwellenwert ist. In diesem Fall handelt es sich um eine erhöhte Last, beispielsweise aufgrund von Peak- Strömen, die zu größeren Strömen an beiden Anschlüssen führt. Ist die
Abweichung allerdings größer als der Schwellenwert, wird der schleichende Kurzschluss erkannt. Dies hat zum einen den Vorteil einer besseren
Erkennbarkeit, zum anderen erfolgt die Erkennung des schleichenden
Kurzschluss nahe bei der kritischen Verlustenergie, bei welcher die umgesetzte Wärme zur thermischen Überhitzung der beteiligten Bauteile führen würde.
Um die beteiligten Bauteile vor thermischer Überhitzung durch die bei der kritischen Verlustenergie umgesetzten Wärme zu schützen, kann die Brückenschaltung gemäß einem Aspekt abgeschaltet werden, wenn einer der Zählwerte den maximalen Zählwert erreicht.
Das Computerprogramm ist eingerichtet, jeden Schritt des Verfahrens
durchzuführen, insbesondere, wenn es auf einem Rechengerät durchgeführt wird. Es ermöglicht die Implementierung des Verfahrens in einem herkömmlichen elektronischen Rechengerät, ohne hieran bauliche Veränderungen vornehmen zu müssen. Hierzu ist es auf dem maschinenlesbaren Speichermedium gespeichert.
Durch Aufspielen des Computerprogramms auf ein herkömmliches
elektronisches Rechengerät, wird das elektronische Rechengerät erhalten, welches eingerichtet ist, schleichende Kurzschlüsse zu erkennen. Kurze Beschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Figur 1 zeigt eine Schaltungsskizze eines Ausführungsbeispiels der
erfindungsgemäßen Schaltung.
Figur 2 zeigt ein Ablaufdiagramm eines Ausführungsbeispiels des
erfindungsgemäßen Verfahrens.
Figur 3 zeigt ein Ablaufdiagramm eines weiteren Ausführungsbeispiels des erfindungsgemäßen Verfahrens
Ausführungsbeispiele der Erfindung
Die erfindungsgemäße Schaltung ist in einem Ausführungsbeispiel als
Schaltungsskizze in Figur 1 dargestellt. Eine Brückenschaltung 10 weist vier Widerstände 1 1 , 12, 13 und 14 auf, wobei jeweils zwei Widerstände 1 1 und 12 bzw. 13 und 14 in Reihe geschaltet sind und diese wiederrum parallel zueinander geschaltet sind, die mittels eines Brückenzweigs 15 verbindbar sind. Des Weiteren weist die Brückenschaltung vier Feldeffekttransistoren 16, 17, 18 und 19, beispielsweise Metall-Oxid-Halbleiter-Feldeffekttransistoren (metal-oxide- semiconductor field-effect transistor, MOSFET) auf, über welche die
Brückenschaltung 10 geregelt wird.
Die Brückenschaltung 10 wird über einen Potentialunterschied zwischen einer Batterie 20 und einer Masse 25 mit Spannung versorgt. Ein batterieseitiger Anschluss 21 der Brückenschaltung 10 ist mit der Batterie 20 verbunden und weist einen batterieseitigen Shunt 22 (Nebenschlusswiderstand) auf. Ein masseseitiger Anschluss 26 der Brückenschaltung 10 ist mit der Masse 25 verbunden und weist einen masseseitigen Shunt 22 auf. Zudem ist eine erste Erfassungseinrichtung 30 mit dem batterieseitigen Anschluss 21 verbunden, sie misst die Stromstärke Ibat des Stroms durch den batterieseitigen Shunt 22 und berechnet daraus mit Hilfe des sogenannten I2t-Prinzips mittels Quadrieren der Stromstärke Ibat des Stroms durch den batterieseitigen Shunt 22 die
entsprechende Verlustleistung. Hierfür weist die erste Erfassungseinrichtung 30 ein erstes Zählregister 31 und einen ersten Analog-Digital-Umsetzer 32 auf. Darin wird ein erster Zählwert Zi des ersten Zählregisters 31 abhängig von der Verlustleistung am batterieseitigen Anschluss 21 erhöht. In gleicher weise ist eine zweite Erfassungseinrichtung 35 mit dem masseseitigen Anschluss 25 verbunden, sie misst ebenso die Stromstärke lgnd des Stroms durch den masseseitigen Shunt 27 und berechnet daraus mit Hilfe des I2t-Prinzips mittels Quadrieren der Stromstärke lgnd des Stroms durch den masseseitigen Shunt 27 die entsprechende Verlustleistung. Gleichermaßen weist die zweite
Erfassungseinrichtung 35 hierfür ein zweites Zählregister 36 und einen zweiten Analog-Digital-Umsetzer 37 auf. Darin wird ein zweiter Zählwert Z2 des zweiten Zählregisters 36 abhängig von der Verlustleistung des masseseitigen
Anschlusses 25 erhöht. Die erste Erfassungseinrichtung 30 und die zweite Erfassungseinrichtung 35 sind mit einem elektronischen Rechengerät 40 verbunden, das den ersten Zählwert Z1 des ersten Zählregisters 31 und den zweiten Zählwert Z2 des zweiten Zählregisters 36 miteinander vergleichen kann.
Die Figuren 2 und 3 zeigen jeweils ein Ablaufdiagramm zweier
Ausführungseispiele des erfindungsgemäßen Verfahrens. Gleiche
Bezugszeichen weisen auf gleiche Funktionen bzw. Arbeitsschritte hin und werden daher stellvertretend für beide Figuren einmalig erläutert. Bei beiden Ausführungsbeispielen wird zu Beginn eine Messung 50 der Stromstärke Ibat des Stroms durch den batterieseitigen Shunt 22 mittels der ersten
Erfassungseinrichtung 30 durchgeführt. Anschließend wird eine Berechnung 51 der Verlustleistung am batterieseitigen Anschluss 21 mit Hilfe des I2t-Prinzips mittels Quadrieren der Stromstärke Ibat des Stroms durch den batterieseitigen Shunt 22 ausgeführt und der erste Zählwert Zi des ersten Zählregisters 31 abhängig von der am batterieseitigen Anschluss 21 erfassten Verlustleistung erhöht 52. Simultan wird eine Messung 60 der Stromstärke lgnd des Stroms durch den masseseitigen Shunt 27 mittels der zweiten Erfassungseinrichtung 35 durchgeführt. Analog wird eine Berechnung 61 der Verlustleistung am
masseseitigen Anschluss 26 mit Hilfe des I2t-Prinzips mittels Quadrieren der Stromstärke lgnd des Stroms durch den masseseitigen Shunt 27 ausgeführt und der zweite Zählwert Z2 des zweiten Zählregisters 36 abhängig von der am masseseitigen Anschluss 26 erfassten Verlustleistung erhöht 62. Der erste Zählwert Zi und der zweite Zählwert Z2 werden unabhängig voneinander mit einem maximalen Zählwert Zmax verglichen 53, 63. Da diese
Ausführungsbeispiele des erfindungsgemäßen Verfahrens bei einer Schaltung wie in Figur 1 gezeigt ablaufen, bei welcher sich die Bauteile am batterieseitigen Anschluss 21 und am masseseitigen Anschluss 26 entsprechen, wird ein gemeinsamer maximaler Zählwert Zmax für beide Zählregister 31 und 36 verwendet.
Bei dem in Figur 2 gezeigten Ausführungsbeispiel wird, wenn einer der beiden Zählwerte Zi oder Z2 den maximalen Zählwert Zmax erreicht, die
Brückenschaltung 10 abgeschaltet 70 und das Verfahren beendet 71. Ist dies nicht der Fall, erfolgt in einem weiteren Schritt ein Vergleich 80 des ersten Zählwerts Zi und des zweiten Zählwerts Z2, im Zuge dessen eine Abweichung A zwischen den beiden Zählwerten Zi und Z2 ermittelt wird. Hierfür wird
beispielsweise eine Differenz zwischen den beiden Zählwerten Zi und Z2 gebildet und anschließend der Betrag der Differenz berechnet.
Bei dem in Figur 3 gezeigten Ausführungsbeispiel wird, wenn einer der beiden Zählwerte Zi oder Z2 den maximalen Zählwert Zmax erreicht, ebenso die
Brückenschaltung 10 abgeschaltet 70. Daraufhin erfolgt für diesen Fall der Vergleich 80 des ersten Zählwerts Zi und des zweiten Zählwerts Z2, wobei hier festgestellt wird, ob der jeweils andere Zählwert Zi oder Z2 ebenfalls den maximalen Zählwert Zmax erreicht hat. Hat der jeweils andere Zählwert Zi oder Z2 den maximalen Zählwert Zmax noch nicht erreicht, wird eine Abweichung A zwischen den beiden Zählwerten Zi und Z2 ermittelt. Dies kann wie in
Zusammenhang mit Figur 2 bereits aufgezeigt erfolgen.
In beiden Ausführungsbeispielen wird anschließend die Abweichung A mit einem Schwellenwert S verglichen 81. Der Schwellenwert S wird abhängig von
Toleranzen unter anderem des Materials gewählt. Liegt die Abweichung A zwischen dem ersten Zählwert Zi und dem zweiten Zählwert Z2 oberhalb des Schwellenwerts S, wird der schleichende Kurzschluss erkannt 82. Andernfalls liegt die Abweichung A noch im Toleranzbereich und es wird kein schleichender Kurzschluss erkannt 83. In Bezug auf das Ausführungsbeispiel in Figur 3, kann in letzterem Fall zusätzlich von einer erhöhten Last, beispielsweise aufgrund von Peak-Strömen, ausgegangen werden, da einer der beiden Zählwerte Zi oder Z2 bereits den maximalen Zählwert Zmax erreicht hat und der jeweils andere diesen ebenfalls erreicht hat oder zumindest kurz davor steht.

Claims

Ansprüche
Schaltung zum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen (10), umfassend: eine erste Erfassungseinrichtung (30) für eine Verlustleistung an einem batterieseitigen Anschluss (21) der Brückenschaltung (10) mit einem ersten Zählregister (31); und
eine zweite Erfassungseinrichtung (35) für eine Verlustleistung an einem masseseitigen Anschluss (26) der Brückenschaltung (10) mit einem zweiten Zählregister (36).
Schaltung nach Anspruch 1, dadurch gekennzeichnet, dass die
Erfassungseinrichtungen (30, 35) für die Verlustleistungen eingerichtet sind, die Verlustleistung über das Quadrat einer gemessenen
Stromstärke zu berechnen.
3. Schaltung nach Anspruch 2, dadurch gekennzeichnet, dass die
Erfassungseinrichtungen (30, 35) für die Verlustleistung eingerichtet sind, die Verlustleistung mit Hilfe des I2t-Prinzips über das Quadrat der gemessenen Stromstärke zu berechnen.
4. Schaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Zählregister (31, 36) eingerichtet sind, ihren Zählwert (Zi, Z2) abhängig von der erfassten Verlustleistung zu erhöhen.
5. Schaltung nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die Zählregister (31, 36) einen maximalen Zählwert (Zmax) aufweisen. Verfahren zum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen (10) mittels der Schaltung gemäß einem der Ansprüche 1 bis 4, umfassend die folgenden Schritte:
Erfassen einer Verlustleistung an einem batterieseitigen Anschluss (21) der Brückenschaltung (10) durch eine erste
Erfassungseinrichtung (30);
Erhöhen (52) eines ersten Zählwerts (Zi) eines ersten Zählregisters (31) der ersten Erfassungseinrichtung (30) abhängig von der am batterieseitigen Anschluss (21) erfassten Verlustleistung;
Erfassen einer Verlustleistung an einem masseseitigen Anschluss (26) der Brückenschaltung (10) durch eine zweite
Erfassungseinrichtung (35);
Erhöhen (62) eines zweiten Zählwerts (Z2) eines zweiten
Zählregisters (36) der zweiten Erfassungseinrichtung (35) abhängig von der am masseseitigen Anschluss (26) erfassten Verlustleistung; Vergleich (80) des ersten Zählwerts (Zi) des ersten Zählregisters (31) und des zweiten Zählwerts (Z2) des zweiten Zählregisters (36); Erkennen (82) des schleichenden Kurzschlusses, wenn eine
Abweichung (A) zwischen dem ersten Zählwert (Zi) und dem zweiten Zählwert (Z2) oberhalb eines Schwellenwerts (S) liegt.
Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die jeweilige Verlustleistung mittels Quadrieren einer gemessenen Stromstärke berechnet wird.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das
Quadrieren einer gemessenen Stromstärke mit Hilfe eines I2t-Prinzips ausgeführt wird.
Verfahren nach einem der Ansprüche6 bis 8, dadurch gekennzeichnet, dass das Vergleichen (80) des ersten Zählwerts (Zi) des ersten
Zählregisters (31) und des zweiten Zählwerts (Z2) des zweiten
Zählregisters (36) erst ausgeführt wird, wenn einer der Zählwerte (Zi, Z2) einen maximalen Zählwert (Zmax) erreicht hat.
10. Verfahren nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Brückenschaltung (10) abgeschaltet (70) wird, wenn einer der Zählwerte (Zi, Z2) einen maximalen Zählwert (Zmax) erreicht.
11. Computerprogramm, welches eingerichtet ist, jeden Schritt des
Verfahrens nach einem der Ansprüche 6 bis 9 durchzuführen.
12. Maschinenlesbares Speichermedium, auf welchem ein
Computerprogramm nach Anspruch 10 gespeichert ist.
13. Elektronisches Rechengerät (40), welches eingerichtet ist, um mittels eines Verfahrens nach einem der Ansprüche 6 bis 9 einen
schleichenden Kurzschluss zu erkennen.
PCT/EP2018/050513 2017-02-13 2018-01-10 Schaltung und verfahren zum erkennen eines schleichenden kurzschlusses bei brückenschaltungen WO2018145845A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880011366.5A CN110249231B (zh) 2017-02-13 2018-01-10 用于识别在桥式电路中的缓慢短路的电路和方法
KR1020197026221A KR102384214B1 (ko) 2017-02-13 2018-01-10 브리지 회로에서 크리핑 단락을 검출하기 위한 회로 및 방법
US16/484,217 US11161414B2 (en) 2017-02-13 2018-01-10 Circuit and method for detecting a creeping short circuit in bridge connections

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017202191.8A DE102017202191A1 (de) 2017-02-13 2017-02-13 Schaltung und Verfahren zum Erkennen eines schleichenden Kurzschlusses bei Brückenschaltungen
DE102017202191.8 2017-02-13

Publications (1)

Publication Number Publication Date
WO2018145845A1 true WO2018145845A1 (de) 2018-08-16

Family

ID=61094411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/050513 WO2018145845A1 (de) 2017-02-13 2018-01-10 Schaltung und verfahren zum erkennen eines schleichenden kurzschlusses bei brückenschaltungen

Country Status (5)

Country Link
US (1) US11161414B2 (de)
KR (1) KR102384214B1 (de)
CN (1) CN110249231B (de)
DE (1) DE102017202191A1 (de)
WO (1) WO2018145845A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603695B2 (ja) * 2017-09-15 2019-11-06 矢崎総業株式会社 異常検出装置
CN112816894A (zh) * 2020-12-29 2021-05-18 苏州精控能源科技有限公司 一种锂电池短路检测装置及方法以及锂电池供电控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050298A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zum Erkennen eines Lastabfalls
DE102014211739A1 (de) * 2014-06-18 2015-12-24 Bayerische Motoren Werke Aktiengesellschaft Erkennung eines Kurzschlusses, insbesondere eines schleichenden Kurzschlusses, im Leitungsnetz eines Kraftfahrzeugs

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2325308A (en) * 1942-04-22 1943-07-27 Leeds & Northrup Co Electrical system
US2906928A (en) * 1955-09-26 1959-09-29 Specialties Dev Corp Electrical network automatically responsive to a rate of change of a condition and a predetermined change of the condition
US3476906A (en) * 1966-11-21 1969-11-04 United Aircraft Corp Resistance monitoring apparatus
CH496509A (de) * 1968-08-30 1970-09-30 Aeg Elotherm Gmbh Verfahren und Schaltungsanordnung zur Kurzschlussabschaltung einer Einrichtung zum elektrochemischen Metallabtrag
GB1432318A (en) * 1973-07-04 1976-04-14 Vdo Schindling Apparatus for determining the state of charge of accumulator
DE8705971U1 (de) 1987-04-24 1987-08-06 Hella KG Hueck & Co, 4780 Lippstadt Kraftfahrzeug mit einer Schaltung für elektrische Verbraucher
US5382946A (en) * 1993-01-08 1995-01-17 Ford Motor Company Method and apparatus for detecting leakage resistance in an electric vehicle
US5467240A (en) * 1993-09-30 1995-11-14 Caterpillar Inc. Driver circuit with diagnostics and over voltage protection
US5606242A (en) * 1994-10-04 1997-02-25 Duracell, Inc. Smart battery algorithm for reporting battery parameters to an external device
US5530360A (en) * 1994-12-09 1996-06-25 Chrysler Corporation Apparatus and method for diagnosing faults in a vehicle electrical system
TW403838B (en) * 1997-10-30 2000-09-01 Matsushita Electric Ind Co Ltd Electric leak detecting method and apparatus for electric motorcars
US6130813A (en) * 1999-01-11 2000-10-10 Dell U.S.A., L.P. Protection circuit for electronic devices
JP3292179B2 (ja) * 1999-09-07 2002-06-17 トヨタ自動車株式会社 モータ駆動装置のための異常検出装置
DE10048599C1 (de) * 2000-09-30 2002-04-18 Bosch Gmbh Robert Vorrichtung zur elektrischen Energieversorgung von Meldern, Steuer- und Signalisierungseinrichtungen
US20020190733A1 (en) * 2001-06-11 2002-12-19 Dainichiro Kinoshita Circuit for detecting a minute change in resistance
JP4173306B2 (ja) * 2001-11-30 2008-10-29 東京エレクトロン株式会社 信頼性評価試験装置、信頼性評価試験システム及び信頼性評価試験方法
JP4210200B2 (ja) * 2003-11-11 2009-01-14 本田技研工業株式会社 車両用電源システム
JP4059838B2 (ja) * 2003-11-14 2008-03-12 ソニー株式会社 バッテリパック、バッテリ保護処理装置、およびバッテリ保護処理装置の制御方法
KR101429769B1 (ko) * 2007-11-27 2014-09-23 엘지전자 주식회사 배터리 충전 장치 및 방법
DE102008044301B4 (de) 2008-12-03 2016-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung eines elektrischen Verbrauchers
JP5365432B2 (ja) * 2009-09-07 2013-12-11 コベルコ建機株式会社 建設機械の漏電検出装置
DE102010036847B4 (de) * 2010-08-04 2015-01-08 Phoenix Contact Gmbh & Co. Kg Verfahren und Vorrichtung zur Fremdstromdetektion
US9952565B2 (en) * 2010-11-15 2018-04-24 Guang Liu Networked, channelized power distribution, monitor and control for security and life safety applications
CN104067415B (zh) * 2012-01-23 2016-10-26 丰田自动车株式会社 电池以及电池模块
US8571738B1 (en) * 2012-06-13 2013-10-29 Jtt Electronics Ltd Automotive vehicle battery power system monitoring systems, apparatus and methods
US20140095089A1 (en) * 2012-10-02 2014-04-03 Zhijian James Wu System and method for estimated battery state of charge
TWI453432B (zh) * 2012-11-28 2014-09-21 Simplo Technology Co Ltd 絕緣偵測電路及其方法
EP2878964B8 (de) * 2013-12-02 2016-09-21 ABB Schweiz AG Detektion kurzgeschlossener Dioden
US9194918B2 (en) * 2013-12-12 2015-11-24 Ford Global Technologies, Llc Leakage detection circuit with integral circuit robustness check
KR101567165B1 (ko) * 2013-12-19 2015-11-09 현대자동차주식회사 인젝터 드라이버
US9308826B2 (en) * 2013-12-19 2016-04-12 Continental Automotive Systems, Inc. Method and apparatus to detect leakage current between power sources
DE102014200288A1 (de) * 2014-01-10 2015-07-16 Bender Gmbh & Co. Kg Verfahren und Vorrichtung zur Isolationsüberwachung mit Alarm-Diagnose-Darstellung
US9726240B2 (en) * 2014-04-16 2017-08-08 Eaton Corporation Method and system for detecting and clearing battery power failure of electric clutch actuator
US10725115B2 (en) * 2014-10-16 2020-07-28 Ford Global Technologies, Llc Methods and apparatus for detecting electrical leakage in a vehicle
US9678154B2 (en) * 2014-10-30 2017-06-13 Qualcomm Incorporated Circuit techniques for efficient scan hold path design
DE102015101235A1 (de) 2015-01-28 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Elektrisches Energieversorgungssystem für ein Fahrzeug und Verfahren zum Betreiben eines elektrischen Energieversorgungssystems
US11031796B2 (en) * 2016-05-25 2021-06-08 Dialog Semiconductor Inc. Short circuit and soft short protection for data interface charging
DE102016215324A1 (de) 2016-08-17 2018-02-22 Robert Bosch Gmbh Schaltungsanordnung zur Steuerung eines elektrischen Verbrauchers
DE102016011815B3 (de) * 2016-10-05 2018-02-15 IAD Gesellschaft für Informatik, Automatisierung und Datenverarbeitung mbH Betriebsgerät mit gestaffeltem Überspannungs- und Überstromschutz für die Ansteuerung von intelligenten Leuchtmitteln und Geräten sowie Leuchtmittel mit diesem Betriebsgerät
CN209400633U (zh) * 2018-11-22 2019-09-17 深圳供电局有限公司 基于电能损耗的变压器匝间短路在线监测系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007050298A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zum Erkennen eines Lastabfalls
DE102014211739A1 (de) * 2014-06-18 2015-12-24 Bayerische Motoren Werke Aktiengesellschaft Erkennung eines Kurzschlusses, insbesondere eines schleichenden Kurzschlusses, im Leitungsnetz eines Kraftfahrzeugs

Also Published As

Publication number Publication date
US11161414B2 (en) 2021-11-02
KR102384214B1 (ko) 2022-04-08
CN110249231A (zh) 2019-09-17
US20200025816A1 (en) 2020-01-23
KR20190117589A (ko) 2019-10-16
CN110249231B (zh) 2022-02-11
DE102017202191A1 (de) 2018-08-16

Similar Documents

Publication Publication Date Title
EP2608399B1 (de) Verfahren zur Erdschlusserkennung beim Betrieb eines Stromrichters
DE102018221621A1 (de) Masseschluss-Erfassungsvorrichtung
DE1904403A1 (de) Verfahren zur Ortsbestimmung von Fehlern an elektrischen Fernleitungen
DE102015101074B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Isolationsgröße sowie Kraftfahrzeug mit dieser Vorrichtung
DE102014206694A1 (de) Vorladeschaltanordnung, Spannungsversorgungsanordnung und Verfahren zum Verbinden eines Verbrauchers mit einer Gleichspannungs-Hochspannungsquelle
EP3075048A1 (de) Überspannungsschutz für kraftfahrzeugbordnetz bei lastabwurf
DE112014003904T5 (de) Einschaltstrom-Begrenzungsschaltung
DE102015223358A1 (de) Vorrichtung zur Detektion eines Überstroms
DE102016117003A1 (de) Schutzschaltgerät
EP0314681B1 (de) Endstufe in brückenschaltung
EP2629107A1 (de) Widerstandsmesseinrichtung
DE102020114018A1 (de) Verfahren und Vorrichtung zur Ermittlung der Richtung zu einem Erdschluss
WO2018145845A1 (de) Schaltung und verfahren zum erkennen eines schleichenden kurzschlusses bei brückenschaltungen
DE202010001197U1 (de) Elektronischer Überstromauslöser für Schutzschalter
DE102020108878A1 (de) Schutzschaltung mit Halbleiterschalter, Verfahren zum Betreiben eines Halbleiterschalters, Hochvoltbordnetz sowie Kraftfahrzeug
DE4142666C2 (de) Schaltungsanordnung mit einem Halbleiterschalter zum Schalten einer Last
DE102014004233A1 (de) Überwachung einer Schirmvorrichtung
DE102021201859A1 (de) Verfahren und Steuereinheit zur Umschaltung eines Elektroantriebs zwischen einem Betriebsmodus mit aktivem Kurzschluss und einem Freilauf-Betriebsmodus
DE102014202610A1 (de) Stromdetektionseinrichtung und Verfahren zum Erfassen eines elektrischen Stroms
EP3389156B1 (de) Verfahren zum betreiben eines elektrischen garten- und/oder forstgerätesystems, schutzelektronikschaltung, schutzelektronikschaltungssystem, akkumulatorsystem und elektrisches garten- und/oder forstgerätesystem
DE102018123903A1 (de) Temperaturmessung eines Halbleiterleistungsschaltelementes
DE3240280A1 (de) Schutzschaltung fuer analog- und digitalsignale
DE102021205406B4 (de) Gleichspannungs-Fehlerstromüberwachung zur Erfassung eines Isolationsfehlers
DE102020130784A1 (de) Bordnetz, insbesondere für ein Elektrofahrzeug, mit zwei Teilbordnetzen und einer dazwischen angeordneten Schutzvorrichtung
DE102021118233A1 (de) Vorrichtung zur Erzeugung eines Kompensationsstroms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18702087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197026221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18702087

Country of ref document: EP

Kind code of ref document: A1